xref: /openbmc/linux/drivers/hwmon/asc7621.c (revision 8a26af30)
1 /*
2  * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
3  * Copyright (c) 2007, 2010 George Joseph  <george.joseph@fairview5.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/slab.h>
23 #include <linux/jiffies.h>
24 #include <linux/i2c.h>
25 #include <linux/hwmon.h>
26 #include <linux/hwmon-sysfs.h>
27 #include <linux/err.h>
28 #include <linux/mutex.h>
29 
30 /* Addresses to scan */
31 static const unsigned short normal_i2c[] = {
32 	0x2c, 0x2d, 0x2e, I2C_CLIENT_END
33 };
34 
35 enum asc7621_type {
36 	asc7621,
37 	asc7621a
38 };
39 
40 #define INTERVAL_HIGH   (HZ + HZ / 2)
41 #define INTERVAL_LOW    (1 * 60 * HZ)
42 #define PRI_NONE        0
43 #define PRI_LOW         1
44 #define PRI_HIGH        2
45 #define FIRST_CHIP      asc7621
46 #define LAST_CHIP       asc7621a
47 
48 struct asc7621_chip {
49 	char *name;
50 	enum asc7621_type chip_type;
51 	u8 company_reg;
52 	u8 company_id;
53 	u8 verstep_reg;
54 	u8 verstep_id;
55 	const unsigned short *addresses;
56 };
57 
58 static struct asc7621_chip asc7621_chips[] = {
59 	{
60 		.name = "asc7621",
61 		.chip_type = asc7621,
62 		.company_reg = 0x3e,
63 		.company_id = 0x61,
64 		.verstep_reg = 0x3f,
65 		.verstep_id = 0x6c,
66 		.addresses = normal_i2c,
67 	 },
68 	{
69 		.name = "asc7621a",
70 		.chip_type = asc7621a,
71 		.company_reg = 0x3e,
72 		.company_id = 0x61,
73 		.verstep_reg = 0x3f,
74 		.verstep_id = 0x6d,
75 		.addresses = normal_i2c,
76 	 },
77 };
78 
79 /*
80  * Defines the highest register to be used, not the count.
81  * The actual count will probably be smaller because of gaps
82  * in the implementation (unused register locations).
83  * This define will safely set the array size of both the parameter
84  * and data arrays.
85  * This comes from the data sheet register description table.
86  */
87 #define LAST_REGISTER 0xff
88 
89 struct asc7621_data {
90 	struct i2c_client client;
91 	struct device *class_dev;
92 	struct mutex update_lock;
93 	int valid;		/* !=0 if following fields are valid */
94 	unsigned long last_high_reading;	/* In jiffies */
95 	unsigned long last_low_reading;		/* In jiffies */
96 	/*
97 	 * Registers we care about occupy the corresponding index
98 	 * in the array.  Registers we don't care about are left
99 	 * at 0.
100 	 */
101 	u8 reg[LAST_REGISTER + 1];
102 };
103 
104 /*
105  * Macro to get the parent asc7621_param structure
106  * from a sensor_device_attribute passed into the
107  * show/store functions.
108  */
109 #define to_asc7621_param(_sda) \
110 	container_of(_sda, struct asc7621_param, sda)
111 
112 /*
113  * Each parameter to be retrieved needs an asc7621_param structure
114  * allocated.  It contains the sensor_device_attribute structure
115  * and the control info needed to retrieve the value from the register map.
116  */
117 struct asc7621_param {
118 	struct sensor_device_attribute sda;
119 	u8 priority;
120 	u8 msb[3];
121 	u8 lsb[3];
122 	u8 mask[3];
123 	u8 shift[3];
124 };
125 
126 /*
127  * This is the map that ultimately indicates whether we'll be
128  * retrieving a register value or not, and at what frequency.
129  */
130 static u8 asc7621_register_priorities[255];
131 
132 static struct asc7621_data *asc7621_update_device(struct device *dev);
133 
134 static inline u8 read_byte(struct i2c_client *client, u8 reg)
135 {
136 	int res = i2c_smbus_read_byte_data(client, reg);
137 	if (res < 0) {
138 		dev_err(&client->dev,
139 			"Unable to read from register 0x%02x.\n", reg);
140 		return 0;
141 	}
142 	return res & 0xff;
143 }
144 
145 static inline int write_byte(struct i2c_client *client, u8 reg, u8 data)
146 {
147 	int res = i2c_smbus_write_byte_data(client, reg, data);
148 	if (res < 0) {
149 		dev_err(&client->dev,
150 			"Unable to write value 0x%02x to register 0x%02x.\n",
151 			data, reg);
152 	}
153 	return res;
154 }
155 
156 /*
157  * Data Handlers
158  * Each function handles the formatting, storage
159  * and retrieval of like parameters.
160  */
161 
162 #define SETUP_SHOW_DATA_PARAM(d, a) \
163 	struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
164 	struct asc7621_data *data = asc7621_update_device(d); \
165 	struct asc7621_param *param = to_asc7621_param(sda)
166 
167 #define SETUP_STORE_DATA_PARAM(d, a) \
168 	struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
169 	struct i2c_client *client = to_i2c_client(d); \
170 	struct asc7621_data *data = i2c_get_clientdata(client); \
171 	struct asc7621_param *param = to_asc7621_param(sda)
172 
173 /*
174  * u8 is just what it sounds like...an unsigned byte with no
175  * special formatting.
176  */
177 static ssize_t show_u8(struct device *dev, struct device_attribute *attr,
178 		       char *buf)
179 {
180 	SETUP_SHOW_DATA_PARAM(dev, attr);
181 
182 	return sprintf(buf, "%u\n", data->reg[param->msb[0]]);
183 }
184 
185 static ssize_t store_u8(struct device *dev, struct device_attribute *attr,
186 			const char *buf, size_t count)
187 {
188 	SETUP_STORE_DATA_PARAM(dev, attr);
189 	long reqval;
190 
191 	if (kstrtol(buf, 10, &reqval))
192 		return -EINVAL;
193 
194 	reqval = clamp_val(reqval, 0, 255);
195 
196 	mutex_lock(&data->update_lock);
197 	data->reg[param->msb[0]] = reqval;
198 	write_byte(client, param->msb[0], reqval);
199 	mutex_unlock(&data->update_lock);
200 	return count;
201 }
202 
203 /*
204  * Many of the config values occupy only a few bits of a register.
205  */
206 static ssize_t show_bitmask(struct device *dev,
207 			    struct device_attribute *attr, char *buf)
208 {
209 	SETUP_SHOW_DATA_PARAM(dev, attr);
210 
211 	return sprintf(buf, "%u\n",
212 		       (data->reg[param->msb[0]] >> param->
213 			shift[0]) & param->mask[0]);
214 }
215 
216 static ssize_t store_bitmask(struct device *dev,
217 			     struct device_attribute *attr,
218 			     const char *buf, size_t count)
219 {
220 	SETUP_STORE_DATA_PARAM(dev, attr);
221 	long reqval;
222 	u8 currval;
223 
224 	if (kstrtol(buf, 10, &reqval))
225 		return -EINVAL;
226 
227 	reqval = clamp_val(reqval, 0, param->mask[0]);
228 
229 	reqval = (reqval & param->mask[0]) << param->shift[0];
230 
231 	mutex_lock(&data->update_lock);
232 	currval = read_byte(client, param->msb[0]);
233 	reqval |= (currval & ~(param->mask[0] << param->shift[0]));
234 	data->reg[param->msb[0]] = reqval;
235 	write_byte(client, param->msb[0], reqval);
236 	mutex_unlock(&data->update_lock);
237 	return count;
238 }
239 
240 /*
241  * 16 bit fan rpm values
242  * reported by the device as the number of 11.111us periods (90khz)
243  * between full fan rotations.  Therefore...
244  * RPM = (90000 * 60) / register value
245  */
246 static ssize_t show_fan16(struct device *dev,
247 			  struct device_attribute *attr, char *buf)
248 {
249 	SETUP_SHOW_DATA_PARAM(dev, attr);
250 	u16 regval;
251 
252 	mutex_lock(&data->update_lock);
253 	regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]];
254 	mutex_unlock(&data->update_lock);
255 
256 	return sprintf(buf, "%u\n",
257 		       (regval == 0 ? -1 : (regval) ==
258 			0xffff ? 0 : 5400000 / regval));
259 }
260 
261 static ssize_t store_fan16(struct device *dev,
262 			   struct device_attribute *attr, const char *buf,
263 			   size_t count)
264 {
265 	SETUP_STORE_DATA_PARAM(dev, attr);
266 	long reqval;
267 
268 	if (kstrtol(buf, 10, &reqval))
269 		return -EINVAL;
270 
271 	/*
272 	 * If a minimum RPM of zero is requested, then we set the register to
273 	 * 0xffff. This value allows the fan to be stopped completely without
274 	 * generating an alarm.
275 	 */
276 	reqval =
277 	    (reqval <= 0 ? 0xffff : clamp_val(5400000 / reqval, 0, 0xfffe));
278 
279 	mutex_lock(&data->update_lock);
280 	data->reg[param->msb[0]] = (reqval >> 8) & 0xff;
281 	data->reg[param->lsb[0]] = reqval & 0xff;
282 	write_byte(client, param->msb[0], data->reg[param->msb[0]]);
283 	write_byte(client, param->lsb[0], data->reg[param->lsb[0]]);
284 	mutex_unlock(&data->update_lock);
285 
286 	return count;
287 }
288 
289 /*
290  * Voltages are scaled in the device so that the nominal voltage
291  * is 3/4ths of the 0-255 range (i.e. 192).
292  * If all voltages are 'normal' then all voltage registers will
293  * read 0xC0.
294  *
295  * The data sheet provides us with the 3/4 scale value for each voltage
296  * which is stored in in_scaling.  The sda->index parameter value provides
297  * the index into in_scaling.
298  *
299  * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts
300  * respectively. That doesn't mean that's what the motherboard provides. :)
301  */
302 
303 static int asc7621_in_scaling[] = {
304 	2500, 2250, 3300, 5000, 12000
305 };
306 
307 static ssize_t show_in10(struct device *dev, struct device_attribute *attr,
308 			 char *buf)
309 {
310 	SETUP_SHOW_DATA_PARAM(dev, attr);
311 	u16 regval;
312 	u8 nr = sda->index;
313 
314 	mutex_lock(&data->update_lock);
315 	regval = (data->reg[param->msb[0]] << 8) | (data->reg[param->lsb[0]]);
316 	mutex_unlock(&data->update_lock);
317 
318 	/* The LSB value is a 2-bit scaling of the MSB's LSbit value. */
319 	regval = (regval >> 6) * asc7621_in_scaling[nr] / (0xc0 << 2);
320 
321 	return sprintf(buf, "%u\n", regval);
322 }
323 
324 /* 8 bit voltage values (the mins and maxs) */
325 static ssize_t show_in8(struct device *dev, struct device_attribute *attr,
326 			char *buf)
327 {
328 	SETUP_SHOW_DATA_PARAM(dev, attr);
329 	u8 nr = sda->index;
330 
331 	return sprintf(buf, "%u\n",
332 		       ((data->reg[param->msb[0]] *
333 			 asc7621_in_scaling[nr]) / 0xc0));
334 }
335 
336 static ssize_t store_in8(struct device *dev, struct device_attribute *attr,
337 			 const char *buf, size_t count)
338 {
339 	SETUP_STORE_DATA_PARAM(dev, attr);
340 	long reqval;
341 	u8 nr = sda->index;
342 
343 	if (kstrtol(buf, 10, &reqval))
344 		return -EINVAL;
345 
346 	reqval = clamp_val(reqval, 0, 0xffff);
347 
348 	reqval = reqval * 0xc0 / asc7621_in_scaling[nr];
349 
350 	reqval = clamp_val(reqval, 0, 0xff);
351 
352 	mutex_lock(&data->update_lock);
353 	data->reg[param->msb[0]] = reqval;
354 	write_byte(client, param->msb[0], reqval);
355 	mutex_unlock(&data->update_lock);
356 
357 	return count;
358 }
359 
360 static ssize_t show_temp8(struct device *dev,
361 			  struct device_attribute *attr, char *buf)
362 {
363 	SETUP_SHOW_DATA_PARAM(dev, attr);
364 
365 	return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000);
366 }
367 
368 static ssize_t store_temp8(struct device *dev,
369 			   struct device_attribute *attr, const char *buf,
370 			   size_t count)
371 {
372 	SETUP_STORE_DATA_PARAM(dev, attr);
373 	long reqval;
374 	s8 temp;
375 
376 	if (kstrtol(buf, 10, &reqval))
377 		return -EINVAL;
378 
379 	reqval = clamp_val(reqval, -127000, 127000);
380 
381 	temp = reqval / 1000;
382 
383 	mutex_lock(&data->update_lock);
384 	data->reg[param->msb[0]] = temp;
385 	write_byte(client, param->msb[0], temp);
386 	mutex_unlock(&data->update_lock);
387 	return count;
388 }
389 
390 /*
391  * Temperatures that occupy 2 bytes always have the whole
392  * number of degrees in the MSB with some part of the LSB
393  * indicating fractional degrees.
394  */
395 
396 /*   mmmmmmmm.llxxxxxx */
397 static ssize_t show_temp10(struct device *dev,
398 			   struct device_attribute *attr, char *buf)
399 {
400 	SETUP_SHOW_DATA_PARAM(dev, attr);
401 	u8 msb, lsb;
402 	int temp;
403 
404 	mutex_lock(&data->update_lock);
405 	msb = data->reg[param->msb[0]];
406 	lsb = (data->reg[param->lsb[0]] >> 6) & 0x03;
407 	temp = (((s8) msb) * 1000) + (lsb * 250);
408 	mutex_unlock(&data->update_lock);
409 
410 	return sprintf(buf, "%d\n", temp);
411 }
412 
413 /*   mmmmmm.ll */
414 static ssize_t show_temp62(struct device *dev,
415 			   struct device_attribute *attr, char *buf)
416 {
417 	SETUP_SHOW_DATA_PARAM(dev, attr);
418 	u8 regval = data->reg[param->msb[0]];
419 	int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250);
420 
421 	return sprintf(buf, "%d\n", temp);
422 }
423 
424 static ssize_t store_temp62(struct device *dev,
425 			    struct device_attribute *attr, const char *buf,
426 			    size_t count)
427 {
428 	SETUP_STORE_DATA_PARAM(dev, attr);
429 	long reqval, i, f;
430 	s8 temp;
431 
432 	if (kstrtol(buf, 10, &reqval))
433 		return -EINVAL;
434 
435 	reqval = clamp_val(reqval, -32000, 31750);
436 	i = reqval / 1000;
437 	f = reqval - (i * 1000);
438 	temp = i << 2;
439 	temp |= f / 250;
440 
441 	mutex_lock(&data->update_lock);
442 	data->reg[param->msb[0]] = temp;
443 	write_byte(client, param->msb[0], temp);
444 	mutex_unlock(&data->update_lock);
445 	return count;
446 }
447 
448 /*
449  * The aSC7621 doesn't provide an "auto_point2".  Instead, you
450  * specify the auto_point1 and a range.  To keep with the sysfs
451  * hwmon specs, we synthesize the auto_point_2 from them.
452  */
453 
454 static u32 asc7621_range_map[] = {
455 	2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000,
456 	13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000,
457 };
458 
459 static ssize_t show_ap2_temp(struct device *dev,
460 			     struct device_attribute *attr, char *buf)
461 {
462 	SETUP_SHOW_DATA_PARAM(dev, attr);
463 	long auto_point1;
464 	u8 regval;
465 	int temp;
466 
467 	mutex_lock(&data->update_lock);
468 	auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000;
469 	regval =
470 	    ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]);
471 	temp = auto_point1 + asc7621_range_map[clamp_val(regval, 0, 15)];
472 	mutex_unlock(&data->update_lock);
473 
474 	return sprintf(buf, "%d\n", temp);
475 
476 }
477 
478 static ssize_t store_ap2_temp(struct device *dev,
479 			      struct device_attribute *attr,
480 			      const char *buf, size_t count)
481 {
482 	SETUP_STORE_DATA_PARAM(dev, attr);
483 	long reqval, auto_point1;
484 	int i;
485 	u8 currval, newval = 0;
486 
487 	if (kstrtol(buf, 10, &reqval))
488 		return -EINVAL;
489 
490 	mutex_lock(&data->update_lock);
491 	auto_point1 = data->reg[param->msb[1]] * 1000;
492 	reqval = clamp_val(reqval, auto_point1 + 2000, auto_point1 + 80000);
493 
494 	for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) {
495 		if (reqval >= auto_point1 + asc7621_range_map[i]) {
496 			newval = i;
497 			break;
498 		}
499 	}
500 
501 	newval = (newval & param->mask[0]) << param->shift[0];
502 	currval = read_byte(client, param->msb[0]);
503 	newval |= (currval & ~(param->mask[0] << param->shift[0]));
504 	data->reg[param->msb[0]] = newval;
505 	write_byte(client, param->msb[0], newval);
506 	mutex_unlock(&data->update_lock);
507 	return count;
508 }
509 
510 static ssize_t show_pwm_ac(struct device *dev,
511 			   struct device_attribute *attr, char *buf)
512 {
513 	SETUP_SHOW_DATA_PARAM(dev, attr);
514 	u8 config, altbit, regval;
515 	u8 map[] = {
516 		0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10,
517 		0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
518 	};
519 
520 	mutex_lock(&data->update_lock);
521 	config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
522 	altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
523 	regval = config | (altbit << 3);
524 	mutex_unlock(&data->update_lock);
525 
526 	return sprintf(buf, "%u\n", map[clamp_val(regval, 0, 15)]);
527 }
528 
529 static ssize_t store_pwm_ac(struct device *dev,
530 			    struct device_attribute *attr,
531 			    const char *buf, size_t count)
532 {
533 	SETUP_STORE_DATA_PARAM(dev, attr);
534 	unsigned long reqval;
535 	u8 currval, config, altbit, newval;
536 	u16 map[] = {
537 		0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06,
538 		0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
539 		0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
540 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
541 	};
542 
543 	if (kstrtoul(buf, 10, &reqval))
544 		return -EINVAL;
545 
546 	if (reqval > 31)
547 		return -EINVAL;
548 
549 	reqval = map[reqval];
550 	if (reqval == 0xff)
551 		return -EINVAL;
552 
553 	config = reqval & 0x07;
554 	altbit = (reqval >> 3) & 0x01;
555 
556 	config = (config & param->mask[0]) << param->shift[0];
557 	altbit = (altbit & param->mask[1]) << param->shift[1];
558 
559 	mutex_lock(&data->update_lock);
560 	currval = read_byte(client, param->msb[0]);
561 	newval = config | (currval & ~(param->mask[0] << param->shift[0]));
562 	newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
563 	data->reg[param->msb[0]] = newval;
564 	write_byte(client, param->msb[0], newval);
565 	mutex_unlock(&data->update_lock);
566 	return count;
567 }
568 
569 static ssize_t show_pwm_enable(struct device *dev,
570 			       struct device_attribute *attr, char *buf)
571 {
572 	SETUP_SHOW_DATA_PARAM(dev, attr);
573 	u8 config, altbit, minoff, val, newval;
574 
575 	mutex_lock(&data->update_lock);
576 	config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
577 	altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
578 	minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2];
579 	mutex_unlock(&data->update_lock);
580 
581 	val = config | (altbit << 3);
582 	newval = 0;
583 
584 	if (val == 3 || val >= 10)
585 		newval = 255;
586 	else if (val == 4)
587 		newval = 0;
588 	else if (val == 7)
589 		newval = 1;
590 	else if (minoff == 1)
591 		newval = 2;
592 	else
593 		newval = 3;
594 
595 	return sprintf(buf, "%u\n", newval);
596 }
597 
598 static ssize_t store_pwm_enable(struct device *dev,
599 				struct device_attribute *attr,
600 				const char *buf, size_t count)
601 {
602 	SETUP_STORE_DATA_PARAM(dev, attr);
603 	long reqval;
604 	u8 currval, config, altbit, newval, minoff = 255;
605 
606 	if (kstrtol(buf, 10, &reqval))
607 		return -EINVAL;
608 
609 	switch (reqval) {
610 	case 0:
611 		newval = 0x04;
612 		break;
613 	case 1:
614 		newval = 0x07;
615 		break;
616 	case 2:
617 		newval = 0x00;
618 		minoff = 1;
619 		break;
620 	case 3:
621 		newval = 0x00;
622 		minoff = 0;
623 		break;
624 	case 255:
625 		newval = 0x03;
626 		break;
627 	default:
628 		return -EINVAL;
629 	}
630 
631 	config = newval & 0x07;
632 	altbit = (newval >> 3) & 0x01;
633 
634 	mutex_lock(&data->update_lock);
635 	config = (config & param->mask[0]) << param->shift[0];
636 	altbit = (altbit & param->mask[1]) << param->shift[1];
637 	currval = read_byte(client, param->msb[0]);
638 	newval = config | (currval & ~(param->mask[0] << param->shift[0]));
639 	newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
640 	data->reg[param->msb[0]] = newval;
641 	write_byte(client, param->msb[0], newval);
642 	if (minoff < 255) {
643 		minoff = (minoff & param->mask[2]) << param->shift[2];
644 		currval = read_byte(client, param->msb[2]);
645 		newval =
646 		    minoff | (currval & ~(param->mask[2] << param->shift[2]));
647 		data->reg[param->msb[2]] = newval;
648 		write_byte(client, param->msb[2], newval);
649 	}
650 	mutex_unlock(&data->update_lock);
651 	return count;
652 }
653 
654 static u32 asc7621_pwm_freq_map[] = {
655 	10, 15, 23, 30, 38, 47, 62, 94,
656 	23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000
657 };
658 
659 static ssize_t show_pwm_freq(struct device *dev,
660 			     struct device_attribute *attr, char *buf)
661 {
662 	SETUP_SHOW_DATA_PARAM(dev, attr);
663 	u8 regval =
664 	    (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
665 
666 	regval = clamp_val(regval, 0, 15);
667 
668 	return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]);
669 }
670 
671 static ssize_t store_pwm_freq(struct device *dev,
672 			      struct device_attribute *attr,
673 			      const char *buf, size_t count)
674 {
675 	SETUP_STORE_DATA_PARAM(dev, attr);
676 	unsigned long reqval;
677 	u8 currval, newval = 255;
678 	int i;
679 
680 	if (kstrtoul(buf, 10, &reqval))
681 		return -EINVAL;
682 
683 	for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) {
684 		if (reqval == asc7621_pwm_freq_map[i]) {
685 			newval = i;
686 			break;
687 		}
688 	}
689 	if (newval == 255)
690 		return -EINVAL;
691 
692 	newval = (newval & param->mask[0]) << param->shift[0];
693 
694 	mutex_lock(&data->update_lock);
695 	currval = read_byte(client, param->msb[0]);
696 	newval |= (currval & ~(param->mask[0] << param->shift[0]));
697 	data->reg[param->msb[0]] = newval;
698 	write_byte(client, param->msb[0], newval);
699 	mutex_unlock(&data->update_lock);
700 	return count;
701 }
702 
703 static u32 asc7621_pwm_auto_spinup_map[] =  {
704 	0, 100, 250, 400, 700, 1000, 2000, 4000
705 };
706 
707 static ssize_t show_pwm_ast(struct device *dev,
708 			    struct device_attribute *attr, char *buf)
709 {
710 	SETUP_SHOW_DATA_PARAM(dev, attr);
711 	u8 regval =
712 	    (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
713 
714 	regval = clamp_val(regval, 0, 7);
715 
716 	return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]);
717 
718 }
719 
720 static ssize_t store_pwm_ast(struct device *dev,
721 			     struct device_attribute *attr,
722 			     const char *buf, size_t count)
723 {
724 	SETUP_STORE_DATA_PARAM(dev, attr);
725 	long reqval;
726 	u8 currval, newval = 255;
727 	u32 i;
728 
729 	if (kstrtol(buf, 10, &reqval))
730 		return -EINVAL;
731 
732 	for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
733 		if (reqval == asc7621_pwm_auto_spinup_map[i]) {
734 			newval = i;
735 			break;
736 		}
737 	}
738 	if (newval == 255)
739 		return -EINVAL;
740 
741 	newval = (newval & param->mask[0]) << param->shift[0];
742 
743 	mutex_lock(&data->update_lock);
744 	currval = read_byte(client, param->msb[0]);
745 	newval |= (currval & ~(param->mask[0] << param->shift[0]));
746 	data->reg[param->msb[0]] = newval;
747 	write_byte(client, param->msb[0], newval);
748 	mutex_unlock(&data->update_lock);
749 	return count;
750 }
751 
752 static u32 asc7621_temp_smoothing_time_map[] = {
753 	35000, 17600, 11800, 7000, 4400, 3000, 1600, 800
754 };
755 
756 static ssize_t show_temp_st(struct device *dev,
757 			    struct device_attribute *attr, char *buf)
758 {
759 	SETUP_SHOW_DATA_PARAM(dev, attr);
760 	u8 regval =
761 	    (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
762 	regval = clamp_val(regval, 0, 7);
763 
764 	return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]);
765 }
766 
767 static ssize_t store_temp_st(struct device *dev,
768 			     struct device_attribute *attr,
769 			     const char *buf, size_t count)
770 {
771 	SETUP_STORE_DATA_PARAM(dev, attr);
772 	long reqval;
773 	u8 currval, newval = 255;
774 	u32 i;
775 
776 	if (kstrtol(buf, 10, &reqval))
777 		return -EINVAL;
778 
779 	for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) {
780 		if (reqval == asc7621_temp_smoothing_time_map[i]) {
781 			newval = i;
782 			break;
783 		}
784 	}
785 
786 	if (newval == 255)
787 		return -EINVAL;
788 
789 	newval = (newval & param->mask[0]) << param->shift[0];
790 
791 	mutex_lock(&data->update_lock);
792 	currval = read_byte(client, param->msb[0]);
793 	newval |= (currval & ~(param->mask[0] << param->shift[0]));
794 	data->reg[param->msb[0]] = newval;
795 	write_byte(client, param->msb[0], newval);
796 	mutex_unlock(&data->update_lock);
797 	return count;
798 }
799 
800 /*
801  * End of data handlers
802  *
803  * These defines do nothing more than make the table easier
804  * to read when wrapped at column 80.
805  */
806 
807 /*
808  * Creates a variable length array inititalizer.
809  * VAA(1,3,5,7) would produce {1,3,5,7}
810  */
811 #define VAA(args...) {args}
812 
813 #define PREAD(name, n, pri, rm, rl, m, s, r) \
814 	{.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \
815 	  .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
816 	  .shift[0] = s,}
817 
818 #define PWRITE(name, n, pri, rm, rl, m, s, r) \
819 	{.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
820 	  .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
821 	  .shift[0] = s,}
822 
823 /*
824  * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift
825  * were created using the VAA macro.
826  */
827 #define PWRITEM(name, n, pri, rm, rl, m, s, r) \
828 	{.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
829 	  .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,}
830 
831 static struct asc7621_param asc7621_params[] = {
832 	PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10),
833 	PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10),
834 	PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10),
835 	PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10),
836 	PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10),
837 
838 	PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8),
839 	PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8),
840 	PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8),
841 	PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8),
842 	PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8),
843 
844 	PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8),
845 	PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8),
846 	PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8),
847 	PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8),
848 	PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8),
849 
850 	PREAD(in0_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 0, bitmask),
851 	PREAD(in1_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 1, bitmask),
852 	PREAD(in2_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 2, bitmask),
853 	PREAD(in3_alarm, 3, PRI_HIGH, 0x41, 0, 0x01, 3, bitmask),
854 	PREAD(in4_alarm, 4, PRI_HIGH, 0x42, 0, 0x01, 0, bitmask),
855 
856 	PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16),
857 	PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16),
858 	PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16),
859 	PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16),
860 
861 	PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16),
862 	PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16),
863 	PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16),
864 	PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16),
865 
866 	PREAD(fan1_alarm, 0, PRI_HIGH, 0x42, 0, 0x01, 2, bitmask),
867 	PREAD(fan2_alarm, 1, PRI_HIGH, 0x42, 0, 0x01, 3, bitmask),
868 	PREAD(fan3_alarm, 2, PRI_HIGH, 0x42, 0, 0x01, 4, bitmask),
869 	PREAD(fan4_alarm, 3, PRI_HIGH, 0x42, 0, 0x01, 5, bitmask),
870 
871 	PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10),
872 	PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10),
873 	PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10),
874 	PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10),
875 	PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10),
876 	PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10),
877 	PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10),
878 	PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10),
879 
880 	PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8),
881 	PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8),
882 	PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8),
883 	PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8),
884 
885 	PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8),
886 	PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8),
887 	PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8),
888 	PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8),
889 
890 	PREAD(temp1_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 4, bitmask),
891 	PREAD(temp2_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 5, bitmask),
892 	PREAD(temp3_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 6, bitmask),
893 	PREAD(temp4_alarm, 3, PRI_HIGH, 0x43, 0, 0x01, 0, bitmask),
894 
895 	PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask),
896 	PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask),
897 	PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask),
898 	PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask),
899 
900 	PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask),
901 	PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask),
902 	PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x63, 0, 0x01, 3, bitmask),
903 	PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask),
904 
905 	PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st),
906 	PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st),
907 	PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st),
908 	PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st),
909 
910 	PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
911 	       bitmask),
912 	PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
913 	       bitmask),
914 	PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
915 	       bitmask),
916 	PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
917 	       bitmask),
918 
919 	PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
920 	      bitmask),
921 	PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
922 	      bitmask),
923 	PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
924 	      bitmask),
925 	PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
926 	      bitmask),
927 
928 	PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8),
929 	PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8),
930 	PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8),
931 	PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8),
932 
933 	PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0),
934 		VAA(0x0f), VAA(4), ap2_temp),
935 	PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0),
936 		VAA(0x0f), VAA(4), ap2_temp),
937 	PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0),
938 		VAA(0x0f), VAA(4), ap2_temp),
939 	PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0),
940 		VAA(0x0f), VAA(4), ap2_temp),
941 
942 	PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8),
943 	PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8),
944 	PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8),
945 	PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8),
946 
947 	PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask),
948 	PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask),
949 	PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask),
950 	PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask),
951 
952 	PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62),
953 	PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62),
954 
955 	PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8),
956 	PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8),
957 	PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8),
958 
959 	PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask),
960 	PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask),
961 	PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask),
962 
963 	PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0),
964 		VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable),
965 	PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0),
966 		VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable),
967 	PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0),
968 		VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable),
969 
970 	PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0),
971 		VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
972 	PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0),
973 		VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
974 	PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0),
975 		VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
976 
977 	PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8),
978 	PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8),
979 	PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8),
980 
981 	PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8),
982 	PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8),
983 	PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8),
984 
985 	PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq),
986 	PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq),
987 	PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq),
988 
989 	PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask),
990 	PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask),
991 	PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask),
992 
993 	PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast),
994 	PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast),
995 	PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast),
996 
997 	PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask),
998 	PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask),
999 	PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask),
1000 	PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask),
1001 	PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask),
1002 	PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask),
1003 
1004 };
1005 
1006 static struct asc7621_data *asc7621_update_device(struct device *dev)
1007 {
1008 	struct i2c_client *client = to_i2c_client(dev);
1009 	struct asc7621_data *data = i2c_get_clientdata(client);
1010 	int i;
1011 
1012 /*
1013  * The asc7621 chips guarantee consistent reads of multi-byte values
1014  * regardless of the order of the reads.  No special logic is needed
1015  * so we can just read the registers in whatever  order they appear
1016  * in the asc7621_params array.
1017  */
1018 
1019 	mutex_lock(&data->update_lock);
1020 
1021 	/* Read all the high priority registers */
1022 
1023 	if (!data->valid ||
1024 	    time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) {
1025 
1026 		for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) {
1027 			if (asc7621_register_priorities[i] == PRI_HIGH) {
1028 				data->reg[i] =
1029 				    i2c_smbus_read_byte_data(client, i) & 0xff;
1030 			}
1031 		}
1032 		data->last_high_reading = jiffies;
1033 	}			/* last_reading */
1034 
1035 	/* Read all the low priority registers. */
1036 
1037 	if (!data->valid ||
1038 	    time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) {
1039 
1040 		for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1041 			if (asc7621_register_priorities[i] == PRI_LOW) {
1042 				data->reg[i] =
1043 				    i2c_smbus_read_byte_data(client, i) & 0xff;
1044 			}
1045 		}
1046 		data->last_low_reading = jiffies;
1047 	}			/* last_reading */
1048 
1049 	data->valid = 1;
1050 
1051 	mutex_unlock(&data->update_lock);
1052 
1053 	return data;
1054 }
1055 
1056 /*
1057  * Standard detection and initialization below
1058  *
1059  * Helper function that checks if an address is valid
1060  * for a particular chip.
1061  */
1062 
1063 static inline int valid_address_for_chip(int chip_type, int address)
1064 {
1065 	int i;
1066 
1067 	for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END;
1068 	     i++) {
1069 		if (asc7621_chips[chip_type].addresses[i] == address)
1070 			return 1;
1071 	}
1072 	return 0;
1073 }
1074 
1075 static void asc7621_init_client(struct i2c_client *client)
1076 {
1077 	int value;
1078 
1079 	/* Warn if part was not "READY" */
1080 
1081 	value = read_byte(client, 0x40);
1082 
1083 	if (value & 0x02) {
1084 		dev_err(&client->dev,
1085 			"Client (%d,0x%02x) config is locked.\n",
1086 			i2c_adapter_id(client->adapter), client->addr);
1087 	}
1088 	if (!(value & 0x04)) {
1089 		dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
1090 			i2c_adapter_id(client->adapter), client->addr);
1091 	}
1092 
1093 /*
1094  * Start monitoring
1095  *
1096  * Try to clear LOCK, Set START, save everything else
1097  */
1098 	value = (value & ~0x02) | 0x01;
1099 	write_byte(client, 0x40, value & 0xff);
1100 
1101 }
1102 
1103 static int
1104 asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id)
1105 {
1106 	struct asc7621_data *data;
1107 	int i, err;
1108 
1109 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1110 		return -EIO;
1111 
1112 	data = devm_kzalloc(&client->dev, sizeof(struct asc7621_data),
1113 			    GFP_KERNEL);
1114 	if (data == NULL)
1115 		return -ENOMEM;
1116 
1117 	i2c_set_clientdata(client, data);
1118 	mutex_init(&data->update_lock);
1119 
1120 	/* Initialize the asc7621 chip */
1121 	asc7621_init_client(client);
1122 
1123 	/* Create the sysfs entries */
1124 	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1125 		err =
1126 		    device_create_file(&client->dev,
1127 				       &(asc7621_params[i].sda.dev_attr));
1128 		if (err)
1129 			goto exit_remove;
1130 	}
1131 
1132 	data->class_dev = hwmon_device_register(&client->dev);
1133 	if (IS_ERR(data->class_dev)) {
1134 		err = PTR_ERR(data->class_dev);
1135 		goto exit_remove;
1136 	}
1137 
1138 	return 0;
1139 
1140 exit_remove:
1141 	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1142 		device_remove_file(&client->dev,
1143 				   &(asc7621_params[i].sda.dev_attr));
1144 	}
1145 
1146 	return err;
1147 }
1148 
1149 static int asc7621_detect(struct i2c_client *client,
1150 			  struct i2c_board_info *info)
1151 {
1152 	struct i2c_adapter *adapter = client->adapter;
1153 	int company, verstep, chip_index;
1154 
1155 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1156 		return -ENODEV;
1157 
1158 	for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) {
1159 
1160 		if (!valid_address_for_chip(chip_index, client->addr))
1161 			continue;
1162 
1163 		company = read_byte(client,
1164 			asc7621_chips[chip_index].company_reg);
1165 		verstep = read_byte(client,
1166 			asc7621_chips[chip_index].verstep_reg);
1167 
1168 		if (company == asc7621_chips[chip_index].company_id &&
1169 		    verstep == asc7621_chips[chip_index].verstep_id) {
1170 			strlcpy(info->type, asc7621_chips[chip_index].name,
1171 				I2C_NAME_SIZE);
1172 
1173 			dev_info(&adapter->dev, "Matched %s at 0x%02x\n",
1174 				 asc7621_chips[chip_index].name, client->addr);
1175 			return 0;
1176 		}
1177 	}
1178 
1179 	return -ENODEV;
1180 }
1181 
1182 static int asc7621_remove(struct i2c_client *client)
1183 {
1184 	struct asc7621_data *data = i2c_get_clientdata(client);
1185 	int i;
1186 
1187 	hwmon_device_unregister(data->class_dev);
1188 
1189 	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1190 		device_remove_file(&client->dev,
1191 				   &(asc7621_params[i].sda.dev_attr));
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static const struct i2c_device_id asc7621_id[] = {
1198 	{"asc7621", asc7621},
1199 	{"asc7621a", asc7621a},
1200 	{},
1201 };
1202 
1203 MODULE_DEVICE_TABLE(i2c, asc7621_id);
1204 
1205 static struct i2c_driver asc7621_driver = {
1206 	.class = I2C_CLASS_HWMON,
1207 	.driver = {
1208 		.name = "asc7621",
1209 	},
1210 	.probe = asc7621_probe,
1211 	.remove = asc7621_remove,
1212 	.id_table = asc7621_id,
1213 	.detect = asc7621_detect,
1214 	.address_list = normal_i2c,
1215 };
1216 
1217 static int __init sm_asc7621_init(void)
1218 {
1219 	int i, j;
1220 /*
1221  * Collect all the registers needed into a single array.
1222  * This way, if a register isn't actually used for anything,
1223  * we don't retrieve it.
1224  */
1225 
1226 	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1227 		for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++)
1228 			asc7621_register_priorities[asc7621_params[i].msb[j]] =
1229 			    asc7621_params[i].priority;
1230 		for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++)
1231 			asc7621_register_priorities[asc7621_params[i].lsb[j]] =
1232 			    asc7621_params[i].priority;
1233 	}
1234 	return i2c_add_driver(&asc7621_driver);
1235 }
1236 
1237 static void __exit sm_asc7621_exit(void)
1238 {
1239 	i2c_del_driver(&asc7621_driver);
1240 }
1241 
1242 MODULE_LICENSE("GPL");
1243 MODULE_AUTHOR("George Joseph");
1244 MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver");
1245 
1246 module_init(sm_asc7621_init);
1247 module_exit(sm_asc7621_exit);
1248