1 /* 2 * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring 3 * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 */ 19 20 #include <linux/module.h> 21 #include <linux/init.h> 22 #include <linux/slab.h> 23 #include <linux/jiffies.h> 24 #include <linux/i2c.h> 25 #include <linux/hwmon.h> 26 #include <linux/hwmon-sysfs.h> 27 #include <linux/err.h> 28 #include <linux/mutex.h> 29 30 /* Addresses to scan */ 31 static const unsigned short normal_i2c[] = { 32 0x2c, 0x2d, 0x2e, I2C_CLIENT_END 33 }; 34 35 enum asc7621_type { 36 asc7621, 37 asc7621a 38 }; 39 40 #define INTERVAL_HIGH (HZ + HZ / 2) 41 #define INTERVAL_LOW (1 * 60 * HZ) 42 #define PRI_NONE 0 43 #define PRI_LOW 1 44 #define PRI_HIGH 2 45 #define FIRST_CHIP asc7621 46 #define LAST_CHIP asc7621a 47 48 struct asc7621_chip { 49 char *name; 50 enum asc7621_type chip_type; 51 u8 company_reg; 52 u8 company_id; 53 u8 verstep_reg; 54 u8 verstep_id; 55 const unsigned short *addresses; 56 }; 57 58 static struct asc7621_chip asc7621_chips[] = { 59 { 60 .name = "asc7621", 61 .chip_type = asc7621, 62 .company_reg = 0x3e, 63 .company_id = 0x61, 64 .verstep_reg = 0x3f, 65 .verstep_id = 0x6c, 66 .addresses = normal_i2c, 67 }, 68 { 69 .name = "asc7621a", 70 .chip_type = asc7621a, 71 .company_reg = 0x3e, 72 .company_id = 0x61, 73 .verstep_reg = 0x3f, 74 .verstep_id = 0x6d, 75 .addresses = normal_i2c, 76 }, 77 }; 78 79 /* 80 * Defines the highest register to be used, not the count. 81 * The actual count will probably be smaller because of gaps 82 * in the implementation (unused register locations). 83 * This define will safely set the array size of both the parameter 84 * and data arrays. 85 * This comes from the data sheet register description table. 86 */ 87 #define LAST_REGISTER 0xff 88 89 struct asc7621_data { 90 struct i2c_client client; 91 struct device *class_dev; 92 struct mutex update_lock; 93 int valid; /* !=0 if following fields are valid */ 94 unsigned long last_high_reading; /* In jiffies */ 95 unsigned long last_low_reading; /* In jiffies */ 96 /* 97 * Registers we care about occupy the corresponding index 98 * in the array. Registers we don't care about are left 99 * at 0. 100 */ 101 u8 reg[LAST_REGISTER + 1]; 102 }; 103 104 /* 105 * Macro to get the parent asc7621_param structure 106 * from a sensor_device_attribute passed into the 107 * show/store functions. 108 */ 109 #define to_asc7621_param(_sda) \ 110 container_of(_sda, struct asc7621_param, sda) 111 112 /* 113 * Each parameter to be retrieved needs an asc7621_param structure 114 * allocated. It contains the sensor_device_attribute structure 115 * and the control info needed to retrieve the value from the register map. 116 */ 117 struct asc7621_param { 118 struct sensor_device_attribute sda; 119 u8 priority; 120 u8 msb[3]; 121 u8 lsb[3]; 122 u8 mask[3]; 123 u8 shift[3]; 124 }; 125 126 /* 127 * This is the map that ultimately indicates whether we'll be 128 * retrieving a register value or not, and at what frequency. 129 */ 130 static u8 asc7621_register_priorities[255]; 131 132 static struct asc7621_data *asc7621_update_device(struct device *dev); 133 134 static inline u8 read_byte(struct i2c_client *client, u8 reg) 135 { 136 int res = i2c_smbus_read_byte_data(client, reg); 137 if (res < 0) { 138 dev_err(&client->dev, 139 "Unable to read from register 0x%02x.\n", reg); 140 return 0; 141 }; 142 return res & 0xff; 143 } 144 145 static inline int write_byte(struct i2c_client *client, u8 reg, u8 data) 146 { 147 int res = i2c_smbus_write_byte_data(client, reg, data); 148 if (res < 0) { 149 dev_err(&client->dev, 150 "Unable to write value 0x%02x to register 0x%02x.\n", 151 data, reg); 152 }; 153 return res; 154 } 155 156 /* 157 * Data Handlers 158 * Each function handles the formatting, storage 159 * and retrieval of like parameters. 160 */ 161 162 #define SETUP_SHOW_data_param(d, a) \ 163 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ 164 struct asc7621_data *data = asc7621_update_device(d); \ 165 struct asc7621_param *param = to_asc7621_param(sda) 166 167 #define SETUP_STORE_data_param(d, a) \ 168 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ 169 struct i2c_client *client = to_i2c_client(d); \ 170 struct asc7621_data *data = i2c_get_clientdata(client); \ 171 struct asc7621_param *param = to_asc7621_param(sda) 172 173 /* 174 * u8 is just what it sounds like...an unsigned byte with no 175 * special formatting. 176 */ 177 static ssize_t show_u8(struct device *dev, struct device_attribute *attr, 178 char *buf) 179 { 180 SETUP_SHOW_data_param(dev, attr); 181 182 return sprintf(buf, "%u\n", data->reg[param->msb[0]]); 183 } 184 185 static ssize_t store_u8(struct device *dev, struct device_attribute *attr, 186 const char *buf, size_t count) 187 { 188 SETUP_STORE_data_param(dev, attr); 189 long reqval; 190 191 if (kstrtol(buf, 10, &reqval)) 192 return -EINVAL; 193 194 reqval = SENSORS_LIMIT(reqval, 0, 255); 195 196 mutex_lock(&data->update_lock); 197 data->reg[param->msb[0]] = reqval; 198 write_byte(client, param->msb[0], reqval); 199 mutex_unlock(&data->update_lock); 200 return count; 201 } 202 203 /* 204 * Many of the config values occupy only a few bits of a register. 205 */ 206 static ssize_t show_bitmask(struct device *dev, 207 struct device_attribute *attr, char *buf) 208 { 209 SETUP_SHOW_data_param(dev, attr); 210 211 return sprintf(buf, "%u\n", 212 (data->reg[param->msb[0]] >> param-> 213 shift[0]) & param->mask[0]); 214 } 215 216 static ssize_t store_bitmask(struct device *dev, 217 struct device_attribute *attr, 218 const char *buf, size_t count) 219 { 220 SETUP_STORE_data_param(dev, attr); 221 long reqval; 222 u8 currval; 223 224 if (kstrtol(buf, 10, &reqval)) 225 return -EINVAL; 226 227 reqval = SENSORS_LIMIT(reqval, 0, param->mask[0]); 228 229 reqval = (reqval & param->mask[0]) << param->shift[0]; 230 231 mutex_lock(&data->update_lock); 232 currval = read_byte(client, param->msb[0]); 233 reqval |= (currval & ~(param->mask[0] << param->shift[0])); 234 data->reg[param->msb[0]] = reqval; 235 write_byte(client, param->msb[0], reqval); 236 mutex_unlock(&data->update_lock); 237 return count; 238 } 239 240 /* 241 * 16 bit fan rpm values 242 * reported by the device as the number of 11.111us periods (90khz) 243 * between full fan rotations. Therefore... 244 * RPM = (90000 * 60) / register value 245 */ 246 static ssize_t show_fan16(struct device *dev, 247 struct device_attribute *attr, char *buf) 248 { 249 SETUP_SHOW_data_param(dev, attr); 250 u16 regval; 251 252 mutex_lock(&data->update_lock); 253 regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]]; 254 mutex_unlock(&data->update_lock); 255 256 return sprintf(buf, "%u\n", 257 (regval == 0 ? -1 : (regval) == 258 0xffff ? 0 : 5400000 / regval)); 259 } 260 261 static ssize_t store_fan16(struct device *dev, 262 struct device_attribute *attr, const char *buf, 263 size_t count) 264 { 265 SETUP_STORE_data_param(dev, attr); 266 long reqval; 267 268 if (kstrtol(buf, 10, &reqval)) 269 return -EINVAL; 270 271 /* 272 * If a minimum RPM of zero is requested, then we set the register to 273 * 0xffff. This value allows the fan to be stopped completely without 274 * generating an alarm. 275 */ 276 reqval = 277 (reqval <= 0 ? 0xffff : SENSORS_LIMIT(5400000 / reqval, 0, 0xfffe)); 278 279 mutex_lock(&data->update_lock); 280 data->reg[param->msb[0]] = (reqval >> 8) & 0xff; 281 data->reg[param->lsb[0]] = reqval & 0xff; 282 write_byte(client, param->msb[0], data->reg[param->msb[0]]); 283 write_byte(client, param->lsb[0], data->reg[param->lsb[0]]); 284 mutex_unlock(&data->update_lock); 285 286 return count; 287 } 288 289 /* 290 * Voltages are scaled in the device so that the nominal voltage 291 * is 3/4ths of the 0-255 range (i.e. 192). 292 * If all voltages are 'normal' then all voltage registers will 293 * read 0xC0. 294 * 295 * The data sheet provides us with the 3/4 scale value for each voltage 296 * which is stored in in_scaling. The sda->index parameter value provides 297 * the index into in_scaling. 298 * 299 * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts 300 * respectively. That doesn't mean that's what the motherboard provides. :) 301 */ 302 303 static int asc7621_in_scaling[] = { 304 2500, 2250, 3300, 5000, 12000 305 }; 306 307 static ssize_t show_in10(struct device *dev, struct device_attribute *attr, 308 char *buf) 309 { 310 SETUP_SHOW_data_param(dev, attr); 311 u16 regval; 312 u8 nr = sda->index; 313 314 mutex_lock(&data->update_lock); 315 regval = (data->reg[param->msb[0]] << 8) | (data->reg[param->lsb[0]]); 316 mutex_unlock(&data->update_lock); 317 318 /* The LSB value is a 2-bit scaling of the MSB's LSbit value. */ 319 regval = (regval >> 6) * asc7621_in_scaling[nr] / (0xc0 << 2); 320 321 return sprintf(buf, "%u\n", regval); 322 } 323 324 /* 8 bit voltage values (the mins and maxs) */ 325 static ssize_t show_in8(struct device *dev, struct device_attribute *attr, 326 char *buf) 327 { 328 SETUP_SHOW_data_param(dev, attr); 329 u8 nr = sda->index; 330 331 return sprintf(buf, "%u\n", 332 ((data->reg[param->msb[0]] * 333 asc7621_in_scaling[nr]) / 0xc0)); 334 } 335 336 static ssize_t store_in8(struct device *dev, struct device_attribute *attr, 337 const char *buf, size_t count) 338 { 339 SETUP_STORE_data_param(dev, attr); 340 long reqval; 341 u8 nr = sda->index; 342 343 if (kstrtol(buf, 10, &reqval)) 344 return -EINVAL; 345 346 reqval = SENSORS_LIMIT(reqval, 0, 0xffff); 347 348 reqval = reqval * 0xc0 / asc7621_in_scaling[nr]; 349 350 reqval = SENSORS_LIMIT(reqval, 0, 0xff); 351 352 mutex_lock(&data->update_lock); 353 data->reg[param->msb[0]] = reqval; 354 write_byte(client, param->msb[0], reqval); 355 mutex_unlock(&data->update_lock); 356 357 return count; 358 } 359 360 static ssize_t show_temp8(struct device *dev, 361 struct device_attribute *attr, char *buf) 362 { 363 SETUP_SHOW_data_param(dev, attr); 364 365 return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000); 366 } 367 368 static ssize_t store_temp8(struct device *dev, 369 struct device_attribute *attr, const char *buf, 370 size_t count) 371 { 372 SETUP_STORE_data_param(dev, attr); 373 long reqval; 374 s8 temp; 375 376 if (kstrtol(buf, 10, &reqval)) 377 return -EINVAL; 378 379 reqval = SENSORS_LIMIT(reqval, -127000, 127000); 380 381 temp = reqval / 1000; 382 383 mutex_lock(&data->update_lock); 384 data->reg[param->msb[0]] = temp; 385 write_byte(client, param->msb[0], temp); 386 mutex_unlock(&data->update_lock); 387 return count; 388 } 389 390 /* 391 * Temperatures that occupy 2 bytes always have the whole 392 * number of degrees in the MSB with some part of the LSB 393 * indicating fractional degrees. 394 */ 395 396 /* mmmmmmmm.llxxxxxx */ 397 static ssize_t show_temp10(struct device *dev, 398 struct device_attribute *attr, char *buf) 399 { 400 SETUP_SHOW_data_param(dev, attr); 401 u8 msb, lsb; 402 int temp; 403 404 mutex_lock(&data->update_lock); 405 msb = data->reg[param->msb[0]]; 406 lsb = (data->reg[param->lsb[0]] >> 6) & 0x03; 407 temp = (((s8) msb) * 1000) + (lsb * 250); 408 mutex_unlock(&data->update_lock); 409 410 return sprintf(buf, "%d\n", temp); 411 } 412 413 /* mmmmmm.ll */ 414 static ssize_t show_temp62(struct device *dev, 415 struct device_attribute *attr, char *buf) 416 { 417 SETUP_SHOW_data_param(dev, attr); 418 u8 regval = data->reg[param->msb[0]]; 419 int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250); 420 421 return sprintf(buf, "%d\n", temp); 422 } 423 424 static ssize_t store_temp62(struct device *dev, 425 struct device_attribute *attr, const char *buf, 426 size_t count) 427 { 428 SETUP_STORE_data_param(dev, attr); 429 long reqval, i, f; 430 s8 temp; 431 432 if (kstrtol(buf, 10, &reqval)) 433 return -EINVAL; 434 435 reqval = SENSORS_LIMIT(reqval, -32000, 31750); 436 i = reqval / 1000; 437 f = reqval - (i * 1000); 438 temp = i << 2; 439 temp |= f / 250; 440 441 mutex_lock(&data->update_lock); 442 data->reg[param->msb[0]] = temp; 443 write_byte(client, param->msb[0], temp); 444 mutex_unlock(&data->update_lock); 445 return count; 446 } 447 448 /* 449 * The aSC7621 doesn't provide an "auto_point2". Instead, you 450 * specify the auto_point1 and a range. To keep with the sysfs 451 * hwmon specs, we synthesize the auto_point_2 from them. 452 */ 453 454 static u32 asc7621_range_map[] = { 455 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000, 456 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000, 457 }; 458 459 static ssize_t show_ap2_temp(struct device *dev, 460 struct device_attribute *attr, char *buf) 461 { 462 SETUP_SHOW_data_param(dev, attr); 463 long auto_point1; 464 u8 regval; 465 int temp; 466 467 mutex_lock(&data->update_lock); 468 auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000; 469 regval = 470 ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]); 471 temp = auto_point1 + asc7621_range_map[SENSORS_LIMIT(regval, 0, 15)]; 472 mutex_unlock(&data->update_lock); 473 474 return sprintf(buf, "%d\n", temp); 475 476 } 477 478 static ssize_t store_ap2_temp(struct device *dev, 479 struct device_attribute *attr, 480 const char *buf, size_t count) 481 { 482 SETUP_STORE_data_param(dev, attr); 483 long reqval, auto_point1; 484 int i; 485 u8 currval, newval = 0; 486 487 if (kstrtol(buf, 10, &reqval)) 488 return -EINVAL; 489 490 mutex_lock(&data->update_lock); 491 auto_point1 = data->reg[param->msb[1]] * 1000; 492 reqval = SENSORS_LIMIT(reqval, auto_point1 + 2000, auto_point1 + 80000); 493 494 for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) { 495 if (reqval >= auto_point1 + asc7621_range_map[i]) { 496 newval = i; 497 break; 498 } 499 } 500 501 newval = (newval & param->mask[0]) << param->shift[0]; 502 currval = read_byte(client, param->msb[0]); 503 newval |= (currval & ~(param->mask[0] << param->shift[0])); 504 data->reg[param->msb[0]] = newval; 505 write_byte(client, param->msb[0], newval); 506 mutex_unlock(&data->update_lock); 507 return count; 508 } 509 510 static ssize_t show_pwm_ac(struct device *dev, 511 struct device_attribute *attr, char *buf) 512 { 513 SETUP_SHOW_data_param(dev, attr); 514 u8 config, altbit, regval; 515 u8 map[] = { 516 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10, 517 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f 518 }; 519 520 mutex_lock(&data->update_lock); 521 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; 522 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; 523 regval = config | (altbit << 3); 524 mutex_unlock(&data->update_lock); 525 526 return sprintf(buf, "%u\n", map[SENSORS_LIMIT(regval, 0, 15)]); 527 } 528 529 static ssize_t store_pwm_ac(struct device *dev, 530 struct device_attribute *attr, 531 const char *buf, size_t count) 532 { 533 SETUP_STORE_data_param(dev, attr); 534 unsigned long reqval; 535 u8 currval, config, altbit, newval; 536 u16 map[] = { 537 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06, 538 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, 539 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 540 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 541 }; 542 543 if (kstrtoul(buf, 10, &reqval)) 544 return -EINVAL; 545 546 if (reqval > 31) 547 return -EINVAL; 548 549 reqval = map[reqval]; 550 if (reqval == 0xff) 551 return -EINVAL; 552 553 config = reqval & 0x07; 554 altbit = (reqval >> 3) & 0x01; 555 556 config = (config & param->mask[0]) << param->shift[0]; 557 altbit = (altbit & param->mask[1]) << param->shift[1]; 558 559 mutex_lock(&data->update_lock); 560 currval = read_byte(client, param->msb[0]); 561 newval = config | (currval & ~(param->mask[0] << param->shift[0])); 562 newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); 563 data->reg[param->msb[0]] = newval; 564 write_byte(client, param->msb[0], newval); 565 mutex_unlock(&data->update_lock); 566 return count; 567 } 568 569 static ssize_t show_pwm_enable(struct device *dev, 570 struct device_attribute *attr, char *buf) 571 { 572 SETUP_SHOW_data_param(dev, attr); 573 u8 config, altbit, minoff, val, newval; 574 575 mutex_lock(&data->update_lock); 576 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; 577 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; 578 minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2]; 579 mutex_unlock(&data->update_lock); 580 581 val = config | (altbit << 3); 582 newval = 0; 583 584 if (val == 3 || val >= 10) 585 newval = 255; 586 else if (val == 4) 587 newval = 0; 588 else if (val == 7) 589 newval = 1; 590 else if (minoff == 1) 591 newval = 2; 592 else 593 newval = 3; 594 595 return sprintf(buf, "%u\n", newval); 596 } 597 598 static ssize_t store_pwm_enable(struct device *dev, 599 struct device_attribute *attr, 600 const char *buf, size_t count) 601 { 602 SETUP_STORE_data_param(dev, attr); 603 long reqval; 604 u8 currval, config, altbit, newval, minoff = 255; 605 606 if (kstrtol(buf, 10, &reqval)) 607 return -EINVAL; 608 609 switch (reqval) { 610 case 0: 611 newval = 0x04; 612 break; 613 case 1: 614 newval = 0x07; 615 break; 616 case 2: 617 newval = 0x00; 618 minoff = 1; 619 break; 620 case 3: 621 newval = 0x00; 622 minoff = 0; 623 break; 624 case 255: 625 newval = 0x03; 626 break; 627 default: 628 return -EINVAL; 629 } 630 631 config = newval & 0x07; 632 altbit = (newval >> 3) & 0x01; 633 634 mutex_lock(&data->update_lock); 635 config = (config & param->mask[0]) << param->shift[0]; 636 altbit = (altbit & param->mask[1]) << param->shift[1]; 637 currval = read_byte(client, param->msb[0]); 638 newval = config | (currval & ~(param->mask[0] << param->shift[0])); 639 newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); 640 data->reg[param->msb[0]] = newval; 641 write_byte(client, param->msb[0], newval); 642 if (minoff < 255) { 643 minoff = (minoff & param->mask[2]) << param->shift[2]; 644 currval = read_byte(client, param->msb[2]); 645 newval = 646 minoff | (currval & ~(param->mask[2] << param->shift[2])); 647 data->reg[param->msb[2]] = newval; 648 write_byte(client, param->msb[2], newval); 649 } 650 mutex_unlock(&data->update_lock); 651 return count; 652 } 653 654 static u32 asc7621_pwm_freq_map[] = { 655 10, 15, 23, 30, 38, 47, 62, 94, 656 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000 657 }; 658 659 static ssize_t show_pwm_freq(struct device *dev, 660 struct device_attribute *attr, char *buf) 661 { 662 SETUP_SHOW_data_param(dev, attr); 663 u8 regval = 664 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; 665 666 regval = SENSORS_LIMIT(regval, 0, 15); 667 668 return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]); 669 } 670 671 static ssize_t store_pwm_freq(struct device *dev, 672 struct device_attribute *attr, 673 const char *buf, size_t count) 674 { 675 SETUP_STORE_data_param(dev, attr); 676 unsigned long reqval; 677 u8 currval, newval = 255; 678 int i; 679 680 if (kstrtoul(buf, 10, &reqval)) 681 return -EINVAL; 682 683 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) { 684 if (reqval == asc7621_pwm_freq_map[i]) { 685 newval = i; 686 break; 687 } 688 } 689 if (newval == 255) 690 return -EINVAL; 691 692 newval = (newval & param->mask[0]) << param->shift[0]; 693 694 mutex_lock(&data->update_lock); 695 currval = read_byte(client, param->msb[0]); 696 newval |= (currval & ~(param->mask[0] << param->shift[0])); 697 data->reg[param->msb[0]] = newval; 698 write_byte(client, param->msb[0], newval); 699 mutex_unlock(&data->update_lock); 700 return count; 701 } 702 703 static u32 asc7621_pwm_auto_spinup_map[] = { 704 0, 100, 250, 400, 700, 1000, 2000, 4000 705 }; 706 707 static ssize_t show_pwm_ast(struct device *dev, 708 struct device_attribute *attr, char *buf) 709 { 710 SETUP_SHOW_data_param(dev, attr); 711 u8 regval = 712 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; 713 714 regval = SENSORS_LIMIT(regval, 0, 7); 715 716 return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]); 717 718 } 719 720 static ssize_t store_pwm_ast(struct device *dev, 721 struct device_attribute *attr, 722 const char *buf, size_t count) 723 { 724 SETUP_STORE_data_param(dev, attr); 725 long reqval; 726 u8 currval, newval = 255; 727 u32 i; 728 729 if (kstrtol(buf, 10, &reqval)) 730 return -EINVAL; 731 732 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) { 733 if (reqval == asc7621_pwm_auto_spinup_map[i]) { 734 newval = i; 735 break; 736 } 737 } 738 if (newval == 255) 739 return -EINVAL; 740 741 newval = (newval & param->mask[0]) << param->shift[0]; 742 743 mutex_lock(&data->update_lock); 744 currval = read_byte(client, param->msb[0]); 745 newval |= (currval & ~(param->mask[0] << param->shift[0])); 746 data->reg[param->msb[0]] = newval; 747 write_byte(client, param->msb[0], newval); 748 mutex_unlock(&data->update_lock); 749 return count; 750 } 751 752 static u32 asc7621_temp_smoothing_time_map[] = { 753 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800 754 }; 755 756 static ssize_t show_temp_st(struct device *dev, 757 struct device_attribute *attr, char *buf) 758 { 759 SETUP_SHOW_data_param(dev, attr); 760 u8 regval = 761 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; 762 regval = SENSORS_LIMIT(regval, 0, 7); 763 764 return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]); 765 } 766 767 static ssize_t store_temp_st(struct device *dev, 768 struct device_attribute *attr, 769 const char *buf, size_t count) 770 { 771 SETUP_STORE_data_param(dev, attr); 772 long reqval; 773 u8 currval, newval = 255; 774 u32 i; 775 776 if (kstrtol(buf, 10, &reqval)) 777 return -EINVAL; 778 779 for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) { 780 if (reqval == asc7621_temp_smoothing_time_map[i]) { 781 newval = i; 782 break; 783 } 784 } 785 786 if (newval == 255) 787 return -EINVAL; 788 789 newval = (newval & param->mask[0]) << param->shift[0]; 790 791 mutex_lock(&data->update_lock); 792 currval = read_byte(client, param->msb[0]); 793 newval |= (currval & ~(param->mask[0] << param->shift[0])); 794 data->reg[param->msb[0]] = newval; 795 write_byte(client, param->msb[0], newval); 796 mutex_unlock(&data->update_lock); 797 return count; 798 } 799 800 /* 801 * End of data handlers 802 * 803 * These defines do nothing more than make the table easier 804 * to read when wrapped at column 80. 805 */ 806 807 /* 808 * Creates a variable length array inititalizer. 809 * VAA(1,3,5,7) would produce {1,3,5,7} 810 */ 811 #define VAA(args...) {args} 812 813 #define PREAD(name, n, pri, rm, rl, m, s, r) \ 814 {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \ 815 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ 816 .shift[0] = s,} 817 818 #define PWRITE(name, n, pri, rm, rl, m, s, r) \ 819 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ 820 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ 821 .shift[0] = s,} 822 823 /* 824 * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift 825 * were created using the VAA macro. 826 */ 827 #define PWRITEM(name, n, pri, rm, rl, m, s, r) \ 828 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ 829 .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,} 830 831 static struct asc7621_param asc7621_params[] = { 832 PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10), 833 PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10), 834 PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10), 835 PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10), 836 PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10), 837 838 PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8), 839 PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8), 840 PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8), 841 PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8), 842 PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8), 843 844 PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8), 845 PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8), 846 PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8), 847 PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8), 848 PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8), 849 850 PREAD(in0_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 0, bitmask), 851 PREAD(in1_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 1, bitmask), 852 PREAD(in2_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 2, bitmask), 853 PREAD(in3_alarm, 3, PRI_HIGH, 0x41, 0, 0x01, 3, bitmask), 854 PREAD(in4_alarm, 4, PRI_HIGH, 0x42, 0, 0x01, 0, bitmask), 855 856 PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16), 857 PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16), 858 PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16), 859 PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16), 860 861 PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16), 862 PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16), 863 PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16), 864 PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16), 865 866 PREAD(fan1_alarm, 0, PRI_HIGH, 0x42, 0, 0x01, 2, bitmask), 867 PREAD(fan2_alarm, 1, PRI_HIGH, 0x42, 0, 0x01, 3, bitmask), 868 PREAD(fan3_alarm, 2, PRI_HIGH, 0x42, 0, 0x01, 4, bitmask), 869 PREAD(fan4_alarm, 3, PRI_HIGH, 0x42, 0, 0x01, 5, bitmask), 870 871 PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10), 872 PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10), 873 PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10), 874 PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10), 875 PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10), 876 PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10), 877 PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10), 878 PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10), 879 880 PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8), 881 PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8), 882 PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8), 883 PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8), 884 885 PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8), 886 PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8), 887 PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8), 888 PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8), 889 890 PREAD(temp1_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 4, bitmask), 891 PREAD(temp2_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 5, bitmask), 892 PREAD(temp3_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 6, bitmask), 893 PREAD(temp4_alarm, 3, PRI_HIGH, 0x43, 0, 0x01, 0, bitmask), 894 895 PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask), 896 PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask), 897 PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask), 898 PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask), 899 900 PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask), 901 PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask), 902 PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x63, 0, 0x01, 3, bitmask), 903 PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask), 904 905 PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st), 906 PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st), 907 PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st), 908 PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st), 909 910 PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, 911 bitmask), 912 PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, 913 bitmask), 914 PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, 915 bitmask), 916 PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, 917 bitmask), 918 919 PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, 920 bitmask), 921 PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, 922 bitmask), 923 PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, 924 bitmask), 925 PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, 926 bitmask), 927 928 PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8), 929 PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8), 930 PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8), 931 PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8), 932 933 PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0), 934 VAA(0x0f), VAA(4), ap2_temp), 935 PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0), 936 VAA(0x0f), VAA(4), ap2_temp), 937 PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0), 938 VAA(0x0f), VAA(4), ap2_temp), 939 PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0), 940 VAA(0x0f), VAA(4), ap2_temp), 941 942 PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8), 943 PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8), 944 PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8), 945 PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8), 946 947 PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask), 948 PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask), 949 PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask), 950 PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask), 951 952 PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62), 953 PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62), 954 955 PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8), 956 PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8), 957 PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8), 958 959 PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask), 960 PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask), 961 PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask), 962 963 PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0), 964 VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable), 965 PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0), 966 VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable), 967 PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0), 968 VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable), 969 970 PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0), 971 VAA(0x07, 0x01), VAA(5, 3), pwm_ac), 972 PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0), 973 VAA(0x07, 0x01), VAA(5, 3), pwm_ac), 974 PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0), 975 VAA(0x07, 0x01), VAA(5, 3), pwm_ac), 976 977 PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8), 978 PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8), 979 PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8), 980 981 PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8), 982 PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8), 983 PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8), 984 985 PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq), 986 PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq), 987 PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq), 988 989 PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask), 990 PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask), 991 PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask), 992 993 PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast), 994 PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast), 995 PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast), 996 997 PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask), 998 PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask), 999 PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask), 1000 PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask), 1001 PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask), 1002 PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask), 1003 1004 }; 1005 1006 static struct asc7621_data *asc7621_update_device(struct device *dev) 1007 { 1008 struct i2c_client *client = to_i2c_client(dev); 1009 struct asc7621_data *data = i2c_get_clientdata(client); 1010 int i; 1011 1012 /* 1013 * The asc7621 chips guarantee consistent reads of multi-byte values 1014 * regardless of the order of the reads. No special logic is needed 1015 * so we can just read the registers in whatever order they appear 1016 * in the asc7621_params array. 1017 */ 1018 1019 mutex_lock(&data->update_lock); 1020 1021 /* Read all the high priority registers */ 1022 1023 if (!data->valid || 1024 time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) { 1025 1026 for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) { 1027 if (asc7621_register_priorities[i] == PRI_HIGH) { 1028 data->reg[i] = 1029 i2c_smbus_read_byte_data(client, i) & 0xff; 1030 } 1031 } 1032 data->last_high_reading = jiffies; 1033 }; /* last_reading */ 1034 1035 /* Read all the low priority registers. */ 1036 1037 if (!data->valid || 1038 time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) { 1039 1040 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { 1041 if (asc7621_register_priorities[i] == PRI_LOW) { 1042 data->reg[i] = 1043 i2c_smbus_read_byte_data(client, i) & 0xff; 1044 } 1045 } 1046 data->last_low_reading = jiffies; 1047 }; /* last_reading */ 1048 1049 data->valid = 1; 1050 1051 mutex_unlock(&data->update_lock); 1052 1053 return data; 1054 } 1055 1056 /* 1057 * Standard detection and initialization below 1058 * 1059 * Helper function that checks if an address is valid 1060 * for a particular chip. 1061 */ 1062 1063 static inline int valid_address_for_chip(int chip_type, int address) 1064 { 1065 int i; 1066 1067 for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END; 1068 i++) { 1069 if (asc7621_chips[chip_type].addresses[i] == address) 1070 return 1; 1071 } 1072 return 0; 1073 } 1074 1075 static void asc7621_init_client(struct i2c_client *client) 1076 { 1077 int value; 1078 1079 /* Warn if part was not "READY" */ 1080 1081 value = read_byte(client, 0x40); 1082 1083 if (value & 0x02) { 1084 dev_err(&client->dev, 1085 "Client (%d,0x%02x) config is locked.\n", 1086 i2c_adapter_id(client->adapter), client->addr); 1087 }; 1088 if (!(value & 0x04)) { 1089 dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n", 1090 i2c_adapter_id(client->adapter), client->addr); 1091 }; 1092 1093 /* 1094 * Start monitoring 1095 * 1096 * Try to clear LOCK, Set START, save everything else 1097 */ 1098 value = (value & ~0x02) | 0x01; 1099 write_byte(client, 0x40, value & 0xff); 1100 1101 } 1102 1103 static int 1104 asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id) 1105 { 1106 struct asc7621_data *data; 1107 int i, err; 1108 1109 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1110 return -EIO; 1111 1112 data = devm_kzalloc(&client->dev, sizeof(struct asc7621_data), 1113 GFP_KERNEL); 1114 if (data == NULL) 1115 return -ENOMEM; 1116 1117 i2c_set_clientdata(client, data); 1118 data->valid = 0; 1119 mutex_init(&data->update_lock); 1120 1121 /* Initialize the asc7621 chip */ 1122 asc7621_init_client(client); 1123 1124 /* Create the sysfs entries */ 1125 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { 1126 err = 1127 device_create_file(&client->dev, 1128 &(asc7621_params[i].sda.dev_attr)); 1129 if (err) 1130 goto exit_remove; 1131 } 1132 1133 data->class_dev = hwmon_device_register(&client->dev); 1134 if (IS_ERR(data->class_dev)) { 1135 err = PTR_ERR(data->class_dev); 1136 goto exit_remove; 1137 } 1138 1139 return 0; 1140 1141 exit_remove: 1142 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { 1143 device_remove_file(&client->dev, 1144 &(asc7621_params[i].sda.dev_attr)); 1145 } 1146 1147 return err; 1148 } 1149 1150 static int asc7621_detect(struct i2c_client *client, 1151 struct i2c_board_info *info) 1152 { 1153 struct i2c_adapter *adapter = client->adapter; 1154 int company, verstep, chip_index; 1155 1156 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1157 return -ENODEV; 1158 1159 for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) { 1160 1161 if (!valid_address_for_chip(chip_index, client->addr)) 1162 continue; 1163 1164 company = read_byte(client, 1165 asc7621_chips[chip_index].company_reg); 1166 verstep = read_byte(client, 1167 asc7621_chips[chip_index].verstep_reg); 1168 1169 if (company == asc7621_chips[chip_index].company_id && 1170 verstep == asc7621_chips[chip_index].verstep_id) { 1171 strlcpy(info->type, asc7621_chips[chip_index].name, 1172 I2C_NAME_SIZE); 1173 1174 dev_info(&adapter->dev, "Matched %s at 0x%02x\n", 1175 asc7621_chips[chip_index].name, client->addr); 1176 return 0; 1177 } 1178 } 1179 1180 return -ENODEV; 1181 } 1182 1183 static int asc7621_remove(struct i2c_client *client) 1184 { 1185 struct asc7621_data *data = i2c_get_clientdata(client); 1186 int i; 1187 1188 hwmon_device_unregister(data->class_dev); 1189 1190 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { 1191 device_remove_file(&client->dev, 1192 &(asc7621_params[i].sda.dev_attr)); 1193 } 1194 1195 return 0; 1196 } 1197 1198 static const struct i2c_device_id asc7621_id[] = { 1199 {"asc7621", asc7621}, 1200 {"asc7621a", asc7621a}, 1201 {}, 1202 }; 1203 1204 MODULE_DEVICE_TABLE(i2c, asc7621_id); 1205 1206 static struct i2c_driver asc7621_driver = { 1207 .class = I2C_CLASS_HWMON, 1208 .driver = { 1209 .name = "asc7621", 1210 }, 1211 .probe = asc7621_probe, 1212 .remove = asc7621_remove, 1213 .id_table = asc7621_id, 1214 .detect = asc7621_detect, 1215 .address_list = normal_i2c, 1216 }; 1217 1218 static int __init sm_asc7621_init(void) 1219 { 1220 int i, j; 1221 /* 1222 * Collect all the registers needed into a single array. 1223 * This way, if a register isn't actually used for anything, 1224 * we don't retrieve it. 1225 */ 1226 1227 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { 1228 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++) 1229 asc7621_register_priorities[asc7621_params[i].msb[j]] = 1230 asc7621_params[i].priority; 1231 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++) 1232 asc7621_register_priorities[asc7621_params[i].lsb[j]] = 1233 asc7621_params[i].priority; 1234 } 1235 return i2c_add_driver(&asc7621_driver); 1236 } 1237 1238 static void __exit sm_asc7621_exit(void) 1239 { 1240 i2c_del_driver(&asc7621_driver); 1241 } 1242 1243 MODULE_LICENSE("GPL"); 1244 MODULE_AUTHOR("George Joseph"); 1245 MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver"); 1246 1247 module_init(sm_asc7621_init); 1248 module_exit(sm_asc7621_exit); 1249