1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * asb100.c - Part of lm_sensors, Linux kernel modules for hardware 4 * monitoring 5 * 6 * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com> 7 * 8 * (derived from w83781d.c) 9 * 10 * Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>, 11 * Philip Edelbrock <phil@netroedge.com>, and 12 * Mark Studebaker <mdsxyz123@yahoo.com> 13 */ 14 15 /* 16 * This driver supports the hardware sensor chips: Asus ASB100 and 17 * ASB100-A "BACH". 18 * 19 * ASB100-A supports pwm1, while plain ASB100 does not. There is no known 20 * way for the driver to tell which one is there. 21 * 22 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA 23 * asb100 7 3 1 4 0x31 0x0694 yes no 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/module.h> 29 #include <linux/slab.h> 30 #include <linux/i2c.h> 31 #include <linux/hwmon.h> 32 #include <linux/hwmon-sysfs.h> 33 #include <linux/hwmon-vid.h> 34 #include <linux/err.h> 35 #include <linux/init.h> 36 #include <linux/jiffies.h> 37 #include <linux/mutex.h> 38 #include "lm75.h" 39 40 /* I2C addresses to scan */ 41 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END }; 42 43 static unsigned short force_subclients[4]; 44 module_param_array(force_subclients, short, NULL, 0); 45 MODULE_PARM_DESC(force_subclients, 46 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}"); 47 48 /* Voltage IN registers 0-6 */ 49 #define ASB100_REG_IN(nr) (0x20 + (nr)) 50 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2)) 51 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2)) 52 53 /* FAN IN registers 1-3 */ 54 #define ASB100_REG_FAN(nr) (0x28 + (nr)) 55 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr)) 56 57 /* TEMPERATURE registers 1-4 */ 58 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17}; 59 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18}; 60 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19}; 61 62 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr]) 63 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr]) 64 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr]) 65 66 #define ASB100_REG_TEMP2_CONFIG 0x0152 67 #define ASB100_REG_TEMP3_CONFIG 0x0252 68 69 70 #define ASB100_REG_CONFIG 0x40 71 #define ASB100_REG_ALARM1 0x41 72 #define ASB100_REG_ALARM2 0x42 73 #define ASB100_REG_SMIM1 0x43 74 #define ASB100_REG_SMIM2 0x44 75 #define ASB100_REG_VID_FANDIV 0x47 76 #define ASB100_REG_I2C_ADDR 0x48 77 #define ASB100_REG_CHIPID 0x49 78 #define ASB100_REG_I2C_SUBADDR 0x4a 79 #define ASB100_REG_PIN 0x4b 80 #define ASB100_REG_IRQ 0x4c 81 #define ASB100_REG_BANK 0x4e 82 #define ASB100_REG_CHIPMAN 0x4f 83 84 #define ASB100_REG_WCHIPID 0x58 85 86 /* bit 7 -> enable, bits 0-3 -> duty cycle */ 87 #define ASB100_REG_PWM1 0x59 88 89 /* 90 * CONVERSIONS 91 * Rounding and limit checking is only done on the TO_REG variants. 92 */ 93 94 /* These constants are a guess, consistent w/ w83781d */ 95 #define ASB100_IN_MIN 0 96 #define ASB100_IN_MAX 4080 97 98 /* 99 * IN: 1/1000 V (0V to 4.08V) 100 * REG: 16mV/bit 101 */ 102 static u8 IN_TO_REG(unsigned val) 103 { 104 unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX); 105 return (nval + 8) / 16; 106 } 107 108 static unsigned IN_FROM_REG(u8 reg) 109 { 110 return reg * 16; 111 } 112 113 static u8 FAN_TO_REG(long rpm, int div) 114 { 115 if (rpm == -1) 116 return 0; 117 if (rpm == 0) 118 return 255; 119 rpm = clamp_val(rpm, 1, 1000000); 120 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 121 } 122 123 static int FAN_FROM_REG(u8 val, int div) 124 { 125 return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div); 126 } 127 128 /* These constants are a guess, consistent w/ w83781d */ 129 #define ASB100_TEMP_MIN -128000 130 #define ASB100_TEMP_MAX 127000 131 132 /* 133 * TEMP: 0.001C/bit (-128C to +127C) 134 * REG: 1C/bit, two's complement 135 */ 136 static u8 TEMP_TO_REG(long temp) 137 { 138 int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX); 139 ntemp += (ntemp < 0 ? -500 : 500); 140 return (u8)(ntemp / 1000); 141 } 142 143 static int TEMP_FROM_REG(u8 reg) 144 { 145 return (s8)reg * 1000; 146 } 147 148 /* 149 * PWM: 0 - 255 per sensors documentation 150 * REG: (6.25% duty cycle per bit) 151 */ 152 static u8 ASB100_PWM_TO_REG(int pwm) 153 { 154 pwm = clamp_val(pwm, 0, 255); 155 return (u8)(pwm / 16); 156 } 157 158 static int ASB100_PWM_FROM_REG(u8 reg) 159 { 160 return reg * 16; 161 } 162 163 #define DIV_FROM_REG(val) (1 << (val)) 164 165 /* 166 * FAN DIV: 1, 2, 4, or 8 (defaults to 2) 167 * REG: 0, 1, 2, or 3 (respectively) (defaults to 1) 168 */ 169 static u8 DIV_TO_REG(long val) 170 { 171 return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1; 172 } 173 174 /* 175 * For each registered client, we need to keep some data in memory. That 176 * data is pointed to by client->data. The structure itself is 177 * dynamically allocated, at the same time the client itself is allocated. 178 */ 179 struct asb100_data { 180 struct device *hwmon_dev; 181 struct mutex lock; 182 183 struct mutex update_lock; 184 unsigned long last_updated; /* In jiffies */ 185 186 /* array of 2 pointers to subclients */ 187 struct i2c_client *lm75[2]; 188 189 char valid; /* !=0 if following fields are valid */ 190 u8 in[7]; /* Register value */ 191 u8 in_max[7]; /* Register value */ 192 u8 in_min[7]; /* Register value */ 193 u8 fan[3]; /* Register value */ 194 u8 fan_min[3]; /* Register value */ 195 u16 temp[4]; /* Register value (0 and 3 are u8 only) */ 196 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */ 197 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */ 198 u8 fan_div[3]; /* Register encoding, right justified */ 199 u8 pwm; /* Register encoding */ 200 u8 vid; /* Register encoding, combined */ 201 u32 alarms; /* Register encoding, combined */ 202 u8 vrm; 203 }; 204 205 static int asb100_read_value(struct i2c_client *client, u16 reg); 206 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val); 207 208 static int asb100_probe(struct i2c_client *client, 209 const struct i2c_device_id *id); 210 static int asb100_detect(struct i2c_client *client, 211 struct i2c_board_info *info); 212 static int asb100_remove(struct i2c_client *client); 213 static struct asb100_data *asb100_update_device(struct device *dev); 214 static void asb100_init_client(struct i2c_client *client); 215 216 static const struct i2c_device_id asb100_id[] = { 217 { "asb100", 0 }, 218 { } 219 }; 220 MODULE_DEVICE_TABLE(i2c, asb100_id); 221 222 static struct i2c_driver asb100_driver = { 223 .class = I2C_CLASS_HWMON, 224 .driver = { 225 .name = "asb100", 226 }, 227 .probe = asb100_probe, 228 .remove = asb100_remove, 229 .id_table = asb100_id, 230 .detect = asb100_detect, 231 .address_list = normal_i2c, 232 }; 233 234 /* 7 Voltages */ 235 #define show_in_reg(reg) \ 236 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 237 char *buf) \ 238 { \ 239 int nr = to_sensor_dev_attr(attr)->index; \ 240 struct asb100_data *data = asb100_update_device(dev); \ 241 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ 242 } 243 244 show_in_reg(in) 245 show_in_reg(in_min) 246 show_in_reg(in_max) 247 248 #define set_in_reg(REG, reg) \ 249 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \ 250 const char *buf, size_t count) \ 251 { \ 252 int nr = to_sensor_dev_attr(attr)->index; \ 253 struct i2c_client *client = to_i2c_client(dev); \ 254 struct asb100_data *data = i2c_get_clientdata(client); \ 255 unsigned long val; \ 256 int err = kstrtoul(buf, 10, &val); \ 257 if (err) \ 258 return err; \ 259 mutex_lock(&data->update_lock); \ 260 data->in_##reg[nr] = IN_TO_REG(val); \ 261 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \ 262 data->in_##reg[nr]); \ 263 mutex_unlock(&data->update_lock); \ 264 return count; \ 265 } 266 267 set_in_reg(MIN, min) 268 set_in_reg(MAX, max) 269 270 #define sysfs_in(offset) \ 271 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 272 show_in, NULL, offset); \ 273 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 274 show_in_min, set_in_min, offset); \ 275 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 276 show_in_max, set_in_max, offset) 277 278 sysfs_in(0); 279 sysfs_in(1); 280 sysfs_in(2); 281 sysfs_in(3); 282 sysfs_in(4); 283 sysfs_in(5); 284 sysfs_in(6); 285 286 /* 3 Fans */ 287 static ssize_t show_fan(struct device *dev, struct device_attribute *attr, 288 char *buf) 289 { 290 int nr = to_sensor_dev_attr(attr)->index; 291 struct asb100_data *data = asb100_update_device(dev); 292 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 293 DIV_FROM_REG(data->fan_div[nr]))); 294 } 295 296 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, 297 char *buf) 298 { 299 int nr = to_sensor_dev_attr(attr)->index; 300 struct asb100_data *data = asb100_update_device(dev); 301 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], 302 DIV_FROM_REG(data->fan_div[nr]))); 303 } 304 305 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, 306 char *buf) 307 { 308 int nr = to_sensor_dev_attr(attr)->index; 309 struct asb100_data *data = asb100_update_device(dev); 310 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); 311 } 312 313 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, 314 const char *buf, size_t count) 315 { 316 int nr = to_sensor_dev_attr(attr)->index; 317 struct i2c_client *client = to_i2c_client(dev); 318 struct asb100_data *data = i2c_get_clientdata(client); 319 unsigned long val; 320 int err; 321 322 err = kstrtoul(buf, 10, &val); 323 if (err) 324 return err; 325 326 mutex_lock(&data->update_lock); 327 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 328 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 329 mutex_unlock(&data->update_lock); 330 return count; 331 } 332 333 /* 334 * Note: we save and restore the fan minimum here, because its value is 335 * determined in part by the fan divisor. This follows the principle of 336 * least surprise; the user doesn't expect the fan minimum to change just 337 * because the divisor changed. 338 */ 339 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, 340 const char *buf, size_t count) 341 { 342 int nr = to_sensor_dev_attr(attr)->index; 343 struct i2c_client *client = to_i2c_client(dev); 344 struct asb100_data *data = i2c_get_clientdata(client); 345 unsigned long min; 346 int reg; 347 unsigned long val; 348 int err; 349 350 err = kstrtoul(buf, 10, &val); 351 if (err) 352 return err; 353 354 mutex_lock(&data->update_lock); 355 356 min = FAN_FROM_REG(data->fan_min[nr], 357 DIV_FROM_REG(data->fan_div[nr])); 358 data->fan_div[nr] = DIV_TO_REG(val); 359 360 switch (nr) { 361 case 0: /* fan 1 */ 362 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 363 reg = (reg & 0xcf) | (data->fan_div[0] << 4); 364 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 365 break; 366 367 case 1: /* fan 2 */ 368 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 369 reg = (reg & 0x3f) | (data->fan_div[1] << 6); 370 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 371 break; 372 373 case 2: /* fan 3 */ 374 reg = asb100_read_value(client, ASB100_REG_PIN); 375 reg = (reg & 0x3f) | (data->fan_div[2] << 6); 376 asb100_write_value(client, ASB100_REG_PIN, reg); 377 break; 378 } 379 380 data->fan_min[nr] = 381 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); 382 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 383 384 mutex_unlock(&data->update_lock); 385 386 return count; 387 } 388 389 #define sysfs_fan(offset) \ 390 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 391 show_fan, NULL, offset - 1); \ 392 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 393 show_fan_min, set_fan_min, offset - 1); \ 394 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ 395 show_fan_div, set_fan_div, offset - 1) 396 397 sysfs_fan(1); 398 sysfs_fan(2); 399 sysfs_fan(3); 400 401 /* 4 Temp. Sensors */ 402 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr) 403 { 404 int ret = 0; 405 406 switch (nr) { 407 case 1: case 2: 408 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg)); 409 break; 410 case 0: case 3: default: 411 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg)); 412 break; 413 } 414 return ret; 415 } 416 417 #define show_temp_reg(reg) \ 418 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 419 char *buf) \ 420 { \ 421 int nr = to_sensor_dev_attr(attr)->index; \ 422 struct asb100_data *data = asb100_update_device(dev); \ 423 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \ 424 } 425 426 show_temp_reg(temp); 427 show_temp_reg(temp_max); 428 show_temp_reg(temp_hyst); 429 430 #define set_temp_reg(REG, reg) \ 431 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \ 432 const char *buf, size_t count) \ 433 { \ 434 int nr = to_sensor_dev_attr(attr)->index; \ 435 struct i2c_client *client = to_i2c_client(dev); \ 436 struct asb100_data *data = i2c_get_clientdata(client); \ 437 long val; \ 438 int err = kstrtol(buf, 10, &val); \ 439 if (err) \ 440 return err; \ 441 mutex_lock(&data->update_lock); \ 442 switch (nr) { \ 443 case 1: case 2: \ 444 data->reg[nr] = LM75_TEMP_TO_REG(val); \ 445 break; \ 446 case 0: case 3: default: \ 447 data->reg[nr] = TEMP_TO_REG(val); \ 448 break; \ 449 } \ 450 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \ 451 data->reg[nr]); \ 452 mutex_unlock(&data->update_lock); \ 453 return count; \ 454 } 455 456 set_temp_reg(MAX, temp_max); 457 set_temp_reg(HYST, temp_hyst); 458 459 #define sysfs_temp(num) \ 460 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \ 461 show_temp, NULL, num - 1); \ 462 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \ 463 show_temp_max, set_temp_max, num - 1); \ 464 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \ 465 show_temp_hyst, set_temp_hyst, num - 1) 466 467 sysfs_temp(1); 468 sysfs_temp(2); 469 sysfs_temp(3); 470 sysfs_temp(4); 471 472 /* VID */ 473 static ssize_t cpu0_vid_show(struct device *dev, 474 struct device_attribute *attr, char *buf) 475 { 476 struct asb100_data *data = asb100_update_device(dev); 477 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); 478 } 479 480 static DEVICE_ATTR_RO(cpu0_vid); 481 482 /* VRM */ 483 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, 484 char *buf) 485 { 486 struct asb100_data *data = dev_get_drvdata(dev); 487 return sprintf(buf, "%d\n", data->vrm); 488 } 489 490 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, 491 const char *buf, size_t count) 492 { 493 struct asb100_data *data = dev_get_drvdata(dev); 494 unsigned long val; 495 int err; 496 497 err = kstrtoul(buf, 10, &val); 498 if (err) 499 return err; 500 501 if (val > 255) 502 return -EINVAL; 503 504 data->vrm = val; 505 return count; 506 } 507 508 /* Alarms */ 509 static DEVICE_ATTR_RW(vrm); 510 511 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, 512 char *buf) 513 { 514 struct asb100_data *data = asb100_update_device(dev); 515 return sprintf(buf, "%u\n", data->alarms); 516 } 517 518 static DEVICE_ATTR_RO(alarms); 519 520 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 521 char *buf) 522 { 523 int bitnr = to_sensor_dev_attr(attr)->index; 524 struct asb100_data *data = asb100_update_device(dev); 525 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); 526 } 527 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 528 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 529 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 530 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 531 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); 532 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); 533 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); 534 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11); 535 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); 536 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); 537 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13); 538 539 /* 1 PWM */ 540 static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr, 541 char *buf) 542 { 543 struct asb100_data *data = asb100_update_device(dev); 544 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f)); 545 } 546 547 static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr, 548 const char *buf, size_t count) 549 { 550 struct i2c_client *client = to_i2c_client(dev); 551 struct asb100_data *data = i2c_get_clientdata(client); 552 unsigned long val; 553 int err; 554 555 err = kstrtoul(buf, 10, &val); 556 if (err) 557 return err; 558 559 mutex_lock(&data->update_lock); 560 data->pwm &= 0x80; /* keep the enable bit */ 561 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val)); 562 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 563 mutex_unlock(&data->update_lock); 564 return count; 565 } 566 567 static ssize_t pwm1_enable_show(struct device *dev, 568 struct device_attribute *attr, char *buf) 569 { 570 struct asb100_data *data = asb100_update_device(dev); 571 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0); 572 } 573 574 static ssize_t pwm1_enable_store(struct device *dev, 575 struct device_attribute *attr, 576 const char *buf, size_t count) 577 { 578 struct i2c_client *client = to_i2c_client(dev); 579 struct asb100_data *data = i2c_get_clientdata(client); 580 unsigned long val; 581 int err; 582 583 err = kstrtoul(buf, 10, &val); 584 if (err) 585 return err; 586 587 mutex_lock(&data->update_lock); 588 data->pwm &= 0x0f; /* keep the duty cycle bits */ 589 data->pwm |= (val ? 0x80 : 0x00); 590 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 591 mutex_unlock(&data->update_lock); 592 return count; 593 } 594 595 static DEVICE_ATTR_RW(pwm1); 596 static DEVICE_ATTR_RW(pwm1_enable); 597 598 static struct attribute *asb100_attributes[] = { 599 &sensor_dev_attr_in0_input.dev_attr.attr, 600 &sensor_dev_attr_in0_min.dev_attr.attr, 601 &sensor_dev_attr_in0_max.dev_attr.attr, 602 &sensor_dev_attr_in1_input.dev_attr.attr, 603 &sensor_dev_attr_in1_min.dev_attr.attr, 604 &sensor_dev_attr_in1_max.dev_attr.attr, 605 &sensor_dev_attr_in2_input.dev_attr.attr, 606 &sensor_dev_attr_in2_min.dev_attr.attr, 607 &sensor_dev_attr_in2_max.dev_attr.attr, 608 &sensor_dev_attr_in3_input.dev_attr.attr, 609 &sensor_dev_attr_in3_min.dev_attr.attr, 610 &sensor_dev_attr_in3_max.dev_attr.attr, 611 &sensor_dev_attr_in4_input.dev_attr.attr, 612 &sensor_dev_attr_in4_min.dev_attr.attr, 613 &sensor_dev_attr_in4_max.dev_attr.attr, 614 &sensor_dev_attr_in5_input.dev_attr.attr, 615 &sensor_dev_attr_in5_min.dev_attr.attr, 616 &sensor_dev_attr_in5_max.dev_attr.attr, 617 &sensor_dev_attr_in6_input.dev_attr.attr, 618 &sensor_dev_attr_in6_min.dev_attr.attr, 619 &sensor_dev_attr_in6_max.dev_attr.attr, 620 621 &sensor_dev_attr_fan1_input.dev_attr.attr, 622 &sensor_dev_attr_fan1_min.dev_attr.attr, 623 &sensor_dev_attr_fan1_div.dev_attr.attr, 624 &sensor_dev_attr_fan2_input.dev_attr.attr, 625 &sensor_dev_attr_fan2_min.dev_attr.attr, 626 &sensor_dev_attr_fan2_div.dev_attr.attr, 627 &sensor_dev_attr_fan3_input.dev_attr.attr, 628 &sensor_dev_attr_fan3_min.dev_attr.attr, 629 &sensor_dev_attr_fan3_div.dev_attr.attr, 630 631 &sensor_dev_attr_temp1_input.dev_attr.attr, 632 &sensor_dev_attr_temp1_max.dev_attr.attr, 633 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, 634 &sensor_dev_attr_temp2_input.dev_attr.attr, 635 &sensor_dev_attr_temp2_max.dev_attr.attr, 636 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, 637 &sensor_dev_attr_temp3_input.dev_attr.attr, 638 &sensor_dev_attr_temp3_max.dev_attr.attr, 639 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, 640 &sensor_dev_attr_temp4_input.dev_attr.attr, 641 &sensor_dev_attr_temp4_max.dev_attr.attr, 642 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr, 643 644 &sensor_dev_attr_in0_alarm.dev_attr.attr, 645 &sensor_dev_attr_in1_alarm.dev_attr.attr, 646 &sensor_dev_attr_in2_alarm.dev_attr.attr, 647 &sensor_dev_attr_in3_alarm.dev_attr.attr, 648 &sensor_dev_attr_in4_alarm.dev_attr.attr, 649 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 650 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 651 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 652 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 653 &sensor_dev_attr_temp2_alarm.dev_attr.attr, 654 &sensor_dev_attr_temp3_alarm.dev_attr.attr, 655 656 &dev_attr_cpu0_vid.attr, 657 &dev_attr_vrm.attr, 658 &dev_attr_alarms.attr, 659 &dev_attr_pwm1.attr, 660 &dev_attr_pwm1_enable.attr, 661 662 NULL 663 }; 664 665 static const struct attribute_group asb100_group = { 666 .attrs = asb100_attributes, 667 }; 668 669 static int asb100_detect_subclients(struct i2c_client *client) 670 { 671 int i, id, err; 672 int address = client->addr; 673 unsigned short sc_addr[2]; 674 struct asb100_data *data = i2c_get_clientdata(client); 675 struct i2c_adapter *adapter = client->adapter; 676 677 id = i2c_adapter_id(adapter); 678 679 if (force_subclients[0] == id && force_subclients[1] == address) { 680 for (i = 2; i <= 3; i++) { 681 if (force_subclients[i] < 0x48 || 682 force_subclients[i] > 0x4f) { 683 dev_err(&client->dev, 684 "invalid subclient address %d; must be 0x48-0x4f\n", 685 force_subclients[i]); 686 err = -ENODEV; 687 goto ERROR_SC_2; 688 } 689 } 690 asb100_write_value(client, ASB100_REG_I2C_SUBADDR, 691 (force_subclients[2] & 0x07) | 692 ((force_subclients[3] & 0x07) << 4)); 693 sc_addr[0] = force_subclients[2]; 694 sc_addr[1] = force_subclients[3]; 695 } else { 696 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR); 697 sc_addr[0] = 0x48 + (val & 0x07); 698 sc_addr[1] = 0x48 + ((val >> 4) & 0x07); 699 } 700 701 if (sc_addr[0] == sc_addr[1]) { 702 dev_err(&client->dev, 703 "duplicate addresses 0x%x for subclients\n", 704 sc_addr[0]); 705 err = -ENODEV; 706 goto ERROR_SC_2; 707 } 708 709 data->lm75[0] = i2c_new_dummy_device(adapter, sc_addr[0]); 710 if (IS_ERR(data->lm75[0])) { 711 dev_err(&client->dev, 712 "subclient %d registration at address 0x%x failed.\n", 713 1, sc_addr[0]); 714 err = PTR_ERR(data->lm75[0]); 715 goto ERROR_SC_2; 716 } 717 718 data->lm75[1] = i2c_new_dummy_device(adapter, sc_addr[1]); 719 if (IS_ERR(data->lm75[1])) { 720 dev_err(&client->dev, 721 "subclient %d registration at address 0x%x failed.\n", 722 2, sc_addr[1]); 723 err = PTR_ERR(data->lm75[1]); 724 goto ERROR_SC_3; 725 } 726 727 return 0; 728 729 /* Undo inits in case of errors */ 730 ERROR_SC_3: 731 i2c_unregister_device(data->lm75[0]); 732 ERROR_SC_2: 733 return err; 734 } 735 736 /* Return 0 if detection is successful, -ENODEV otherwise */ 737 static int asb100_detect(struct i2c_client *client, 738 struct i2c_board_info *info) 739 { 740 struct i2c_adapter *adapter = client->adapter; 741 int val1, val2; 742 743 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { 744 pr_debug("detect failed, smbus byte data not supported!\n"); 745 return -ENODEV; 746 } 747 748 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK); 749 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); 750 751 /* If we're in bank 0 */ 752 if ((!(val1 & 0x07)) && 753 /* Check for ASB100 ID (low byte) */ 754 (((!(val1 & 0x80)) && (val2 != 0x94)) || 755 /* Check for ASB100 ID (high byte ) */ 756 ((val1 & 0x80) && (val2 != 0x06)))) { 757 pr_debug("detect failed, bad chip id 0x%02x!\n", val2); 758 return -ENODEV; 759 } 760 761 /* Put it now into bank 0 and Vendor ID High Byte */ 762 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 763 (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78) 764 | 0x80); 765 766 /* Determine the chip type. */ 767 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID); 768 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); 769 770 if (val1 != 0x31 || val2 != 0x06) 771 return -ENODEV; 772 773 strlcpy(info->type, "asb100", I2C_NAME_SIZE); 774 775 return 0; 776 } 777 778 static int asb100_probe(struct i2c_client *client, 779 const struct i2c_device_id *id) 780 { 781 int err; 782 struct asb100_data *data; 783 784 data = devm_kzalloc(&client->dev, sizeof(struct asb100_data), 785 GFP_KERNEL); 786 if (!data) 787 return -ENOMEM; 788 789 i2c_set_clientdata(client, data); 790 mutex_init(&data->lock); 791 mutex_init(&data->update_lock); 792 793 /* Attach secondary lm75 clients */ 794 err = asb100_detect_subclients(client); 795 if (err) 796 return err; 797 798 /* Initialize the chip */ 799 asb100_init_client(client); 800 801 /* A few vars need to be filled upon startup */ 802 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0)); 803 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1)); 804 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2)); 805 806 /* Register sysfs hooks */ 807 err = sysfs_create_group(&client->dev.kobj, &asb100_group); 808 if (err) 809 goto ERROR3; 810 811 data->hwmon_dev = hwmon_device_register(&client->dev); 812 if (IS_ERR(data->hwmon_dev)) { 813 err = PTR_ERR(data->hwmon_dev); 814 goto ERROR4; 815 } 816 817 return 0; 818 819 ERROR4: 820 sysfs_remove_group(&client->dev.kobj, &asb100_group); 821 ERROR3: 822 i2c_unregister_device(data->lm75[1]); 823 i2c_unregister_device(data->lm75[0]); 824 return err; 825 } 826 827 static int asb100_remove(struct i2c_client *client) 828 { 829 struct asb100_data *data = i2c_get_clientdata(client); 830 831 hwmon_device_unregister(data->hwmon_dev); 832 sysfs_remove_group(&client->dev.kobj, &asb100_group); 833 834 i2c_unregister_device(data->lm75[1]); 835 i2c_unregister_device(data->lm75[0]); 836 837 return 0; 838 } 839 840 /* 841 * The SMBus locks itself, usually, but nothing may access the chip between 842 * bank switches. 843 */ 844 static int asb100_read_value(struct i2c_client *client, u16 reg) 845 { 846 struct asb100_data *data = i2c_get_clientdata(client); 847 struct i2c_client *cl; 848 int res, bank; 849 850 mutex_lock(&data->lock); 851 852 bank = (reg >> 8) & 0x0f; 853 if (bank > 2) 854 /* switch banks */ 855 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 856 857 if (bank == 0 || bank > 2) { 858 res = i2c_smbus_read_byte_data(client, reg & 0xff); 859 } else { 860 /* switch to subclient */ 861 cl = data->lm75[bank - 1]; 862 863 /* convert from ISA to LM75 I2C addresses */ 864 switch (reg & 0xff) { 865 case 0x50: /* TEMP */ 866 res = i2c_smbus_read_word_swapped(cl, 0); 867 break; 868 case 0x52: /* CONFIG */ 869 res = i2c_smbus_read_byte_data(cl, 1); 870 break; 871 case 0x53: /* HYST */ 872 res = i2c_smbus_read_word_swapped(cl, 2); 873 break; 874 case 0x55: /* MAX */ 875 default: 876 res = i2c_smbus_read_word_swapped(cl, 3); 877 break; 878 } 879 } 880 881 if (bank > 2) 882 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 883 884 mutex_unlock(&data->lock); 885 886 return res; 887 } 888 889 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value) 890 { 891 struct asb100_data *data = i2c_get_clientdata(client); 892 struct i2c_client *cl; 893 int bank; 894 895 mutex_lock(&data->lock); 896 897 bank = (reg >> 8) & 0x0f; 898 if (bank > 2) 899 /* switch banks */ 900 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 901 902 if (bank == 0 || bank > 2) { 903 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff); 904 } else { 905 /* switch to subclient */ 906 cl = data->lm75[bank - 1]; 907 908 /* convert from ISA to LM75 I2C addresses */ 909 switch (reg & 0xff) { 910 case 0x52: /* CONFIG */ 911 i2c_smbus_write_byte_data(cl, 1, value & 0xff); 912 break; 913 case 0x53: /* HYST */ 914 i2c_smbus_write_word_swapped(cl, 2, value); 915 break; 916 case 0x55: /* MAX */ 917 i2c_smbus_write_word_swapped(cl, 3, value); 918 break; 919 } 920 } 921 922 if (bank > 2) 923 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 924 925 mutex_unlock(&data->lock); 926 } 927 928 static void asb100_init_client(struct i2c_client *client) 929 { 930 struct asb100_data *data = i2c_get_clientdata(client); 931 932 data->vrm = vid_which_vrm(); 933 934 /* Start monitoring */ 935 asb100_write_value(client, ASB100_REG_CONFIG, 936 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01); 937 } 938 939 static struct asb100_data *asb100_update_device(struct device *dev) 940 { 941 struct i2c_client *client = to_i2c_client(dev); 942 struct asb100_data *data = i2c_get_clientdata(client); 943 int i; 944 945 mutex_lock(&data->update_lock); 946 947 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 948 || !data->valid) { 949 950 dev_dbg(&client->dev, "starting device update...\n"); 951 952 /* 7 voltage inputs */ 953 for (i = 0; i < 7; i++) { 954 data->in[i] = asb100_read_value(client, 955 ASB100_REG_IN(i)); 956 data->in_min[i] = asb100_read_value(client, 957 ASB100_REG_IN_MIN(i)); 958 data->in_max[i] = asb100_read_value(client, 959 ASB100_REG_IN_MAX(i)); 960 } 961 962 /* 3 fan inputs */ 963 for (i = 0; i < 3; i++) { 964 data->fan[i] = asb100_read_value(client, 965 ASB100_REG_FAN(i)); 966 data->fan_min[i] = asb100_read_value(client, 967 ASB100_REG_FAN_MIN(i)); 968 } 969 970 /* 4 temperature inputs */ 971 for (i = 1; i <= 4; i++) { 972 data->temp[i-1] = asb100_read_value(client, 973 ASB100_REG_TEMP(i)); 974 data->temp_max[i-1] = asb100_read_value(client, 975 ASB100_REG_TEMP_MAX(i)); 976 data->temp_hyst[i-1] = asb100_read_value(client, 977 ASB100_REG_TEMP_HYST(i)); 978 } 979 980 /* VID and fan divisors */ 981 i = asb100_read_value(client, ASB100_REG_VID_FANDIV); 982 data->vid = i & 0x0f; 983 data->vid |= (asb100_read_value(client, 984 ASB100_REG_CHIPID) & 0x01) << 4; 985 data->fan_div[0] = (i >> 4) & 0x03; 986 data->fan_div[1] = (i >> 6) & 0x03; 987 data->fan_div[2] = (asb100_read_value(client, 988 ASB100_REG_PIN) >> 6) & 0x03; 989 990 /* PWM */ 991 data->pwm = asb100_read_value(client, ASB100_REG_PWM1); 992 993 /* alarms */ 994 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) + 995 (asb100_read_value(client, ASB100_REG_ALARM2) << 8); 996 997 data->last_updated = jiffies; 998 data->valid = 1; 999 1000 dev_dbg(&client->dev, "... device update complete\n"); 1001 } 1002 1003 mutex_unlock(&data->update_lock); 1004 1005 return data; 1006 } 1007 1008 module_i2c_driver(asb100_driver); 1009 1010 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>"); 1011 MODULE_DESCRIPTION("ASB100 Bach driver"); 1012 MODULE_LICENSE("GPL"); 1013