xref: /openbmc/linux/drivers/hwmon/asb100.c (revision a1e58bbd)
1 /*
2     asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 	        monitoring
4 
5     Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
6 
7 	(derived from w83781d.c)
8 
9     Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
10     Philip Edelbrock <phil@netroedge.com>, and
11     Mark Studebaker <mdsxyz123@yahoo.com>
12 
13     This program is free software; you can redistribute it and/or modify
14     it under the terms of the GNU General Public License as published by
15     the Free Software Foundation; either version 2 of the License, or
16     (at your option) any later version.
17 
18     This program is distributed in the hope that it will be useful,
19     but WITHOUT ANY WARRANTY; without even the implied warranty of
20     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21     GNU General Public License for more details.
22 
23     You should have received a copy of the GNU General Public License
24     along with this program; if not, write to the Free Software
25     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27 
28 /*
29     This driver supports the hardware sensor chips: Asus ASB100 and
30     ASB100-A "BACH".
31 
32     ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
33     way for the driver to tell which one is there.
34 
35     Chip	#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
36     asb100	7	3	1	4	0x31	0x0694	yes	no
37 */
38 
39 #include <linux/module.h>
40 #include <linux/slab.h>
41 #include <linux/i2c.h>
42 #include <linux/hwmon.h>
43 #include <linux/hwmon-sysfs.h>
44 #include <linux/hwmon-vid.h>
45 #include <linux/err.h>
46 #include <linux/init.h>
47 #include <linux/jiffies.h>
48 #include <linux/mutex.h>
49 #include "lm75.h"
50 
51 /* I2C addresses to scan */
52 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
53 
54 /* Insmod parameters */
55 I2C_CLIENT_INSMOD_1(asb100);
56 I2C_CLIENT_MODULE_PARM(force_subclients, "List of subclient addresses: "
57 	"{bus, clientaddr, subclientaddr1, subclientaddr2}");
58 
59 /* Voltage IN registers 0-6 */
60 #define ASB100_REG_IN(nr)	(0x20 + (nr))
61 #define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
62 #define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))
63 
64 /* FAN IN registers 1-3 */
65 #define ASB100_REG_FAN(nr)	(0x28 + (nr))
66 #define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))
67 
68 /* TEMPERATURE registers 1-4 */
69 static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
70 static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
71 static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};
72 
73 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
74 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
75 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
76 
77 #define ASB100_REG_TEMP2_CONFIG	0x0152
78 #define ASB100_REG_TEMP3_CONFIG	0x0252
79 
80 
81 #define ASB100_REG_CONFIG	0x40
82 #define ASB100_REG_ALARM1	0x41
83 #define ASB100_REG_ALARM2	0x42
84 #define ASB100_REG_SMIM1	0x43
85 #define ASB100_REG_SMIM2	0x44
86 #define ASB100_REG_VID_FANDIV	0x47
87 #define ASB100_REG_I2C_ADDR	0x48
88 #define ASB100_REG_CHIPID	0x49
89 #define ASB100_REG_I2C_SUBADDR	0x4a
90 #define ASB100_REG_PIN		0x4b
91 #define ASB100_REG_IRQ		0x4c
92 #define ASB100_REG_BANK		0x4e
93 #define ASB100_REG_CHIPMAN	0x4f
94 
95 #define ASB100_REG_WCHIPID	0x58
96 
97 /* bit 7 -> enable, bits 0-3 -> duty cycle */
98 #define ASB100_REG_PWM1		0x59
99 
100 /* CONVERSIONS
101    Rounding and limit checking is only done on the TO_REG variants. */
102 
103 /* These constants are a guess, consistent w/ w83781d */
104 #define ASB100_IN_MIN (   0)
105 #define ASB100_IN_MAX (4080)
106 
107 /* IN: 1/1000 V (0V to 4.08V)
108    REG: 16mV/bit */
109 static u8 IN_TO_REG(unsigned val)
110 {
111 	unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
112 	return (nval + 8) / 16;
113 }
114 
115 static unsigned IN_FROM_REG(u8 reg)
116 {
117 	return reg * 16;
118 }
119 
120 static u8 FAN_TO_REG(long rpm, int div)
121 {
122 	if (rpm == -1)
123 		return 0;
124 	if (rpm == 0)
125 		return 255;
126 	rpm = SENSORS_LIMIT(rpm, 1, 1000000);
127 	return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
128 }
129 
130 static int FAN_FROM_REG(u8 val, int div)
131 {
132 	return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
133 }
134 
135 /* These constants are a guess, consistent w/ w83781d */
136 #define ASB100_TEMP_MIN (-128000)
137 #define ASB100_TEMP_MAX ( 127000)
138 
139 /* TEMP: 0.001C/bit (-128C to +127C)
140    REG: 1C/bit, two's complement */
141 static u8 TEMP_TO_REG(long temp)
142 {
143 	int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
144 	ntemp += (ntemp<0 ? -500 : 500);
145 	return (u8)(ntemp / 1000);
146 }
147 
148 static int TEMP_FROM_REG(u8 reg)
149 {
150 	return (s8)reg * 1000;
151 }
152 
153 /* PWM: 0 - 255 per sensors documentation
154    REG: (6.25% duty cycle per bit) */
155 static u8 ASB100_PWM_TO_REG(int pwm)
156 {
157 	pwm = SENSORS_LIMIT(pwm, 0, 255);
158 	return (u8)(pwm / 16);
159 }
160 
161 static int ASB100_PWM_FROM_REG(u8 reg)
162 {
163 	return reg * 16;
164 }
165 
166 #define DIV_FROM_REG(val) (1 << (val))
167 
168 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
169    REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
170 static u8 DIV_TO_REG(long val)
171 {
172 	return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
173 }
174 
175 /* For each registered client, we need to keep some data in memory. That
176    data is pointed to by client->data. The structure itself is
177    dynamically allocated, at the same time the client itself is allocated. */
178 struct asb100_data {
179 	struct i2c_client client;
180 	struct device *hwmon_dev;
181 	struct mutex lock;
182 	enum chips type;
183 
184 	struct mutex update_lock;
185 	unsigned long last_updated;	/* In jiffies */
186 
187 	/* array of 2 pointers to subclients */
188 	struct i2c_client *lm75[2];
189 
190 	char valid;		/* !=0 if following fields are valid */
191 	u8 in[7];		/* Register value */
192 	u8 in_max[7];		/* Register value */
193 	u8 in_min[7];		/* Register value */
194 	u8 fan[3];		/* Register value */
195 	u8 fan_min[3];		/* Register value */
196 	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
197 	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
198 	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
199 	u8 fan_div[3];		/* Register encoding, right justified */
200 	u8 pwm;			/* Register encoding */
201 	u8 vid;			/* Register encoding, combined */
202 	u32 alarms;		/* Register encoding, combined */
203 	u8 vrm;
204 };
205 
206 static int asb100_read_value(struct i2c_client *client, u16 reg);
207 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
208 
209 static int asb100_attach_adapter(struct i2c_adapter *adapter);
210 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind);
211 static int asb100_detach_client(struct i2c_client *client);
212 static struct asb100_data *asb100_update_device(struct device *dev);
213 static void asb100_init_client(struct i2c_client *client);
214 
215 static struct i2c_driver asb100_driver = {
216 	.driver = {
217 		.name	= "asb100",
218 	},
219 	.attach_adapter	= asb100_attach_adapter,
220 	.detach_client	= asb100_detach_client,
221 };
222 
223 /* 7 Voltages */
224 #define show_in_reg(reg) \
225 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
226 		char *buf) \
227 { \
228 	int nr = to_sensor_dev_attr(attr)->index; \
229 	struct asb100_data *data = asb100_update_device(dev); \
230 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
231 }
232 
233 show_in_reg(in)
234 show_in_reg(in_min)
235 show_in_reg(in_max)
236 
237 #define set_in_reg(REG, reg) \
238 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
239 		const char *buf, size_t count) \
240 { \
241 	int nr = to_sensor_dev_attr(attr)->index; \
242 	struct i2c_client *client = to_i2c_client(dev); \
243 	struct asb100_data *data = i2c_get_clientdata(client); \
244 	unsigned long val = simple_strtoul(buf, NULL, 10); \
245  \
246 	mutex_lock(&data->update_lock); \
247 	data->in_##reg[nr] = IN_TO_REG(val); \
248 	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
249 		data->in_##reg[nr]); \
250 	mutex_unlock(&data->update_lock); \
251 	return count; \
252 }
253 
254 set_in_reg(MIN, min)
255 set_in_reg(MAX, max)
256 
257 #define sysfs_in(offset) \
258 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
259 		show_in, NULL, offset); \
260 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
261 		show_in_min, set_in_min, offset); \
262 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
263 		show_in_max, set_in_max, offset)
264 
265 sysfs_in(0);
266 sysfs_in(1);
267 sysfs_in(2);
268 sysfs_in(3);
269 sysfs_in(4);
270 sysfs_in(5);
271 sysfs_in(6);
272 
273 /* 3 Fans */
274 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
275 		char *buf)
276 {
277 	int nr = to_sensor_dev_attr(attr)->index;
278 	struct asb100_data *data = asb100_update_device(dev);
279 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
280 		DIV_FROM_REG(data->fan_div[nr])));
281 }
282 
283 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
284 		char *buf)
285 {
286 	int nr = to_sensor_dev_attr(attr)->index;
287 	struct asb100_data *data = asb100_update_device(dev);
288 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
289 		DIV_FROM_REG(data->fan_div[nr])));
290 }
291 
292 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
293 		char *buf)
294 {
295 	int nr = to_sensor_dev_attr(attr)->index;
296 	struct asb100_data *data = asb100_update_device(dev);
297 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
298 }
299 
300 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
301 		const char *buf, size_t count)
302 {
303 	int nr = to_sensor_dev_attr(attr)->index;
304 	struct i2c_client *client = to_i2c_client(dev);
305 	struct asb100_data *data = i2c_get_clientdata(client);
306 	u32 val = simple_strtoul(buf, NULL, 10);
307 
308 	mutex_lock(&data->update_lock);
309 	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
310 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
311 	mutex_unlock(&data->update_lock);
312 	return count;
313 }
314 
315 /* Note: we save and restore the fan minimum here, because its value is
316    determined in part by the fan divisor.  This follows the principle of
317    least surprise; the user doesn't expect the fan minimum to change just
318    because the divisor changed. */
319 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
320 		const char *buf, size_t count)
321 {
322 	int nr = to_sensor_dev_attr(attr)->index;
323 	struct i2c_client *client = to_i2c_client(dev);
324 	struct asb100_data *data = i2c_get_clientdata(client);
325 	unsigned long min;
326 	unsigned long val = simple_strtoul(buf, NULL, 10);
327 	int reg;
328 
329 	mutex_lock(&data->update_lock);
330 
331 	min = FAN_FROM_REG(data->fan_min[nr],
332 			DIV_FROM_REG(data->fan_div[nr]));
333 	data->fan_div[nr] = DIV_TO_REG(val);
334 
335 	switch (nr) {
336 	case 0:	/* fan 1 */
337 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
338 		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
339 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
340 		break;
341 
342 	case 1:	/* fan 2 */
343 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
344 		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
345 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
346 		break;
347 
348 	case 2:	/* fan 3 */
349 		reg = asb100_read_value(client, ASB100_REG_PIN);
350 		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
351 		asb100_write_value(client, ASB100_REG_PIN, reg);
352 		break;
353 	}
354 
355 	data->fan_min[nr] =
356 		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
357 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
358 
359 	mutex_unlock(&data->update_lock);
360 
361 	return count;
362 }
363 
364 #define sysfs_fan(offset) \
365 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
366 		show_fan, NULL, offset - 1); \
367 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
368 		show_fan_min, set_fan_min, offset - 1); \
369 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
370 		show_fan_div, set_fan_div, offset - 1)
371 
372 sysfs_fan(1);
373 sysfs_fan(2);
374 sysfs_fan(3);
375 
376 /* 4 Temp. Sensors */
377 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
378 {
379 	int ret = 0;
380 
381 	switch (nr) {
382 	case 1: case 2:
383 		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
384 		break;
385 	case 0: case 3: default:
386 		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
387 		break;
388 	}
389 	return ret;
390 }
391 
392 #define show_temp_reg(reg) \
393 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
394 		char *buf) \
395 { \
396 	int nr = to_sensor_dev_attr(attr)->index; \
397 	struct asb100_data *data = asb100_update_device(dev); \
398 	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
399 }
400 
401 show_temp_reg(temp);
402 show_temp_reg(temp_max);
403 show_temp_reg(temp_hyst);
404 
405 #define set_temp_reg(REG, reg) \
406 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
407 		const char *buf, size_t count) \
408 { \
409 	int nr = to_sensor_dev_attr(attr)->index; \
410 	struct i2c_client *client = to_i2c_client(dev); \
411 	struct asb100_data *data = i2c_get_clientdata(client); \
412 	long val = simple_strtol(buf, NULL, 10); \
413  \
414 	mutex_lock(&data->update_lock); \
415 	switch (nr) { \
416 	case 1: case 2: \
417 		data->reg[nr] = LM75_TEMP_TO_REG(val); \
418 		break; \
419 	case 0: case 3: default: \
420 		data->reg[nr] = TEMP_TO_REG(val); \
421 		break; \
422 	} \
423 	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
424 			data->reg[nr]); \
425 	mutex_unlock(&data->update_lock); \
426 	return count; \
427 }
428 
429 set_temp_reg(MAX, temp_max);
430 set_temp_reg(HYST, temp_hyst);
431 
432 #define sysfs_temp(num) \
433 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
434 		show_temp, NULL, num - 1); \
435 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
436 		show_temp_max, set_temp_max, num - 1); \
437 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
438 		show_temp_hyst, set_temp_hyst, num - 1)
439 
440 sysfs_temp(1);
441 sysfs_temp(2);
442 sysfs_temp(3);
443 sysfs_temp(4);
444 
445 /* VID */
446 static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
447 		char *buf)
448 {
449 	struct asb100_data *data = asb100_update_device(dev);
450 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
451 }
452 
453 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
454 
455 /* VRM */
456 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr,
457 		char *buf)
458 {
459 	struct asb100_data *data = dev_get_drvdata(dev);
460 	return sprintf(buf, "%d\n", data->vrm);
461 }
462 
463 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
464 		const char *buf, size_t count)
465 {
466 	struct asb100_data *data = dev_get_drvdata(dev);
467 	data->vrm = simple_strtoul(buf, NULL, 10);
468 	return count;
469 }
470 
471 /* Alarms */
472 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
473 
474 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
475 		char *buf)
476 {
477 	struct asb100_data *data = asb100_update_device(dev);
478 	return sprintf(buf, "%u\n", data->alarms);
479 }
480 
481 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
482 
483 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
484 		char *buf)
485 {
486 	int bitnr = to_sensor_dev_attr(attr)->index;
487 	struct asb100_data *data = asb100_update_device(dev);
488 	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
489 }
490 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
491 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
492 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
493 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
494 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
495 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
496 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
497 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
498 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
499 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
500 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
501 
502 /* 1 PWM */
503 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr,
504 		char *buf)
505 {
506 	struct asb100_data *data = asb100_update_device(dev);
507 	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
508 }
509 
510 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr,
511 		const char *buf, size_t count)
512 {
513 	struct i2c_client *client = to_i2c_client(dev);
514 	struct asb100_data *data = i2c_get_clientdata(client);
515 	unsigned long val = simple_strtoul(buf, NULL, 10);
516 
517 	mutex_lock(&data->update_lock);
518 	data->pwm &= 0x80; /* keep the enable bit */
519 	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
520 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
521 	mutex_unlock(&data->update_lock);
522 	return count;
523 }
524 
525 static ssize_t show_pwm_enable1(struct device *dev,
526 		struct device_attribute *attr, char *buf)
527 {
528 	struct asb100_data *data = asb100_update_device(dev);
529 	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
530 }
531 
532 static ssize_t set_pwm_enable1(struct device *dev,
533 		struct device_attribute *attr, const char *buf, size_t count)
534 {
535 	struct i2c_client *client = to_i2c_client(dev);
536 	struct asb100_data *data = i2c_get_clientdata(client);
537 	unsigned long val = simple_strtoul(buf, NULL, 10);
538 
539 	mutex_lock(&data->update_lock);
540 	data->pwm &= 0x0f; /* keep the duty cycle bits */
541 	data->pwm |= (val ? 0x80 : 0x00);
542 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
543 	mutex_unlock(&data->update_lock);
544 	return count;
545 }
546 
547 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
548 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
549 		show_pwm_enable1, set_pwm_enable1);
550 
551 static struct attribute *asb100_attributes[] = {
552 	&sensor_dev_attr_in0_input.dev_attr.attr,
553 	&sensor_dev_attr_in0_min.dev_attr.attr,
554 	&sensor_dev_attr_in0_max.dev_attr.attr,
555 	&sensor_dev_attr_in1_input.dev_attr.attr,
556 	&sensor_dev_attr_in1_min.dev_attr.attr,
557 	&sensor_dev_attr_in1_max.dev_attr.attr,
558 	&sensor_dev_attr_in2_input.dev_attr.attr,
559 	&sensor_dev_attr_in2_min.dev_attr.attr,
560 	&sensor_dev_attr_in2_max.dev_attr.attr,
561 	&sensor_dev_attr_in3_input.dev_attr.attr,
562 	&sensor_dev_attr_in3_min.dev_attr.attr,
563 	&sensor_dev_attr_in3_max.dev_attr.attr,
564 	&sensor_dev_attr_in4_input.dev_attr.attr,
565 	&sensor_dev_attr_in4_min.dev_attr.attr,
566 	&sensor_dev_attr_in4_max.dev_attr.attr,
567 	&sensor_dev_attr_in5_input.dev_attr.attr,
568 	&sensor_dev_attr_in5_min.dev_attr.attr,
569 	&sensor_dev_attr_in5_max.dev_attr.attr,
570 	&sensor_dev_attr_in6_input.dev_attr.attr,
571 	&sensor_dev_attr_in6_min.dev_attr.attr,
572 	&sensor_dev_attr_in6_max.dev_attr.attr,
573 
574 	&sensor_dev_attr_fan1_input.dev_attr.attr,
575 	&sensor_dev_attr_fan1_min.dev_attr.attr,
576 	&sensor_dev_attr_fan1_div.dev_attr.attr,
577 	&sensor_dev_attr_fan2_input.dev_attr.attr,
578 	&sensor_dev_attr_fan2_min.dev_attr.attr,
579 	&sensor_dev_attr_fan2_div.dev_attr.attr,
580 	&sensor_dev_attr_fan3_input.dev_attr.attr,
581 	&sensor_dev_attr_fan3_min.dev_attr.attr,
582 	&sensor_dev_attr_fan3_div.dev_attr.attr,
583 
584 	&sensor_dev_attr_temp1_input.dev_attr.attr,
585 	&sensor_dev_attr_temp1_max.dev_attr.attr,
586 	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
587 	&sensor_dev_attr_temp2_input.dev_attr.attr,
588 	&sensor_dev_attr_temp2_max.dev_attr.attr,
589 	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
590 	&sensor_dev_attr_temp3_input.dev_attr.attr,
591 	&sensor_dev_attr_temp3_max.dev_attr.attr,
592 	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
593 	&sensor_dev_attr_temp4_input.dev_attr.attr,
594 	&sensor_dev_attr_temp4_max.dev_attr.attr,
595 	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
596 
597 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
598 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
599 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
600 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
601 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
602 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
603 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
604 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
605 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
606 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
607 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
608 
609 	&dev_attr_cpu0_vid.attr,
610 	&dev_attr_vrm.attr,
611 	&dev_attr_alarms.attr,
612 	&dev_attr_pwm1.attr,
613 	&dev_attr_pwm1_enable.attr,
614 
615 	NULL
616 };
617 
618 static const struct attribute_group asb100_group = {
619 	.attrs = asb100_attributes,
620 };
621 
622 /* This function is called when:
623 	asb100_driver is inserted (when this module is loaded), for each
624 		available adapter
625 	when a new adapter is inserted (and asb100_driver is still present)
626  */
627 static int asb100_attach_adapter(struct i2c_adapter *adapter)
628 {
629 	if (!(adapter->class & I2C_CLASS_HWMON))
630 		return 0;
631 	return i2c_probe(adapter, &addr_data, asb100_detect);
632 }
633 
634 static int asb100_detect_subclients(struct i2c_adapter *adapter, int address,
635 		int kind, struct i2c_client *client)
636 {
637 	int i, id, err;
638 	struct asb100_data *data = i2c_get_clientdata(client);
639 
640 	data->lm75[0] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
641 	if (!(data->lm75[0])) {
642 		err = -ENOMEM;
643 		goto ERROR_SC_0;
644 	}
645 
646 	data->lm75[1] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
647 	if (!(data->lm75[1])) {
648 		err = -ENOMEM;
649 		goto ERROR_SC_1;
650 	}
651 
652 	id = i2c_adapter_id(adapter);
653 
654 	if (force_subclients[0] == id && force_subclients[1] == address) {
655 		for (i = 2; i <= 3; i++) {
656 			if (force_subclients[i] < 0x48 ||
657 			    force_subclients[i] > 0x4f) {
658 				dev_err(&client->dev, "invalid subclient "
659 					"address %d; must be 0x48-0x4f\n",
660 					force_subclients[i]);
661 				err = -ENODEV;
662 				goto ERROR_SC_2;
663 			}
664 		}
665 		asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
666 					(force_subclients[2] & 0x07) |
667 					((force_subclients[3] & 0x07) << 4));
668 		data->lm75[0]->addr = force_subclients[2];
669 		data->lm75[1]->addr = force_subclients[3];
670 	} else {
671 		int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
672 		data->lm75[0]->addr = 0x48 + (val & 0x07);
673 		data->lm75[1]->addr = 0x48 + ((val >> 4) & 0x07);
674 	}
675 
676 	if (data->lm75[0]->addr == data->lm75[1]->addr) {
677 		dev_err(&client->dev, "duplicate addresses 0x%x "
678 				"for subclients\n", data->lm75[0]->addr);
679 		err = -ENODEV;
680 		goto ERROR_SC_2;
681 	}
682 
683 	for (i = 0; i <= 1; i++) {
684 		i2c_set_clientdata(data->lm75[i], NULL);
685 		data->lm75[i]->adapter = adapter;
686 		data->lm75[i]->driver = &asb100_driver;
687 		strlcpy(data->lm75[i]->name, "asb100 subclient", I2C_NAME_SIZE);
688 	}
689 
690 	if ((err = i2c_attach_client(data->lm75[0]))) {
691 		dev_err(&client->dev, "subclient %d registration "
692 			"at address 0x%x failed.\n", i, data->lm75[0]->addr);
693 		goto ERROR_SC_2;
694 	}
695 
696 	if ((err = i2c_attach_client(data->lm75[1]))) {
697 		dev_err(&client->dev, "subclient %d registration "
698 			"at address 0x%x failed.\n", i, data->lm75[1]->addr);
699 		goto ERROR_SC_3;
700 	}
701 
702 	return 0;
703 
704 /* Undo inits in case of errors */
705 ERROR_SC_3:
706 	i2c_detach_client(data->lm75[0]);
707 ERROR_SC_2:
708 	kfree(data->lm75[1]);
709 ERROR_SC_1:
710 	kfree(data->lm75[0]);
711 ERROR_SC_0:
712 	return err;
713 }
714 
715 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind)
716 {
717 	int err;
718 	struct i2c_client *client;
719 	struct asb100_data *data;
720 
721 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
722 		pr_debug("asb100.o: detect failed, "
723 				"smbus byte data not supported!\n");
724 		err = -ENODEV;
725 		goto ERROR0;
726 	}
727 
728 	/* OK. For now, we presume we have a valid client. We now create the
729 	   client structure, even though we cannot fill it completely yet.
730 	   But it allows us to access asb100_{read,write}_value. */
731 
732 	if (!(data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL))) {
733 		pr_debug("asb100.o: detect failed, kzalloc failed!\n");
734 		err = -ENOMEM;
735 		goto ERROR0;
736 	}
737 
738 	client = &data->client;
739 	mutex_init(&data->lock);
740 	i2c_set_clientdata(client, data);
741 	client->addr = address;
742 	client->adapter = adapter;
743 	client->driver = &asb100_driver;
744 
745 	/* Now, we do the remaining detection. */
746 
747 	/* The chip may be stuck in some other bank than bank 0. This may
748 	   make reading other information impossible. Specify a force=... or
749 	   force_*=... parameter, and the chip will be reset to the right
750 	   bank. */
751 	if (kind < 0) {
752 
753 		int val1 = asb100_read_value(client, ASB100_REG_BANK);
754 		int val2 = asb100_read_value(client, ASB100_REG_CHIPMAN);
755 
756 		/* If we're in bank 0 */
757 		if ((!(val1 & 0x07)) &&
758 				/* Check for ASB100 ID (low byte) */
759 				(((!(val1 & 0x80)) && (val2 != 0x94)) ||
760 				/* Check for ASB100 ID (high byte ) */
761 				((val1 & 0x80) && (val2 != 0x06)))) {
762 			pr_debug("asb100.o: detect failed, "
763 					"bad chip id 0x%02x!\n", val2);
764 			err = -ENODEV;
765 			goto ERROR1;
766 		}
767 
768 	} /* kind < 0 */
769 
770 	/* We have either had a force parameter, or we have already detected
771 	   Winbond. Put it now into bank 0 and Vendor ID High Byte */
772 	asb100_write_value(client, ASB100_REG_BANK,
773 		(asb100_read_value(client, ASB100_REG_BANK) & 0x78) | 0x80);
774 
775 	/* Determine the chip type. */
776 	if (kind <= 0) {
777 		int val1 = asb100_read_value(client, ASB100_REG_WCHIPID);
778 		int val2 = asb100_read_value(client, ASB100_REG_CHIPMAN);
779 
780 		if ((val1 == 0x31) && (val2 == 0x06))
781 			kind = asb100;
782 		else {
783 			if (kind == 0)
784 				dev_warn(&client->dev, "ignoring "
785 					"'force' parameter for unknown chip "
786 					"at adapter %d, address 0x%02x.\n",
787 					i2c_adapter_id(adapter), address);
788 			err = -ENODEV;
789 			goto ERROR1;
790 		}
791 	}
792 
793 	/* Fill in remaining client fields and put it into the global list */
794 	strlcpy(client->name, "asb100", I2C_NAME_SIZE);
795 	data->type = kind;
796 	mutex_init(&data->update_lock);
797 
798 	/* Tell the I2C layer a new client has arrived */
799 	if ((err = i2c_attach_client(client)))
800 		goto ERROR1;
801 
802 	/* Attach secondary lm75 clients */
803 	if ((err = asb100_detect_subclients(adapter, address, kind,
804 			client)))
805 		goto ERROR2;
806 
807 	/* Initialize the chip */
808 	asb100_init_client(client);
809 
810 	/* A few vars need to be filled upon startup */
811 	data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
812 	data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
813 	data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
814 
815 	/* Register sysfs hooks */
816 	if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group)))
817 		goto ERROR3;
818 
819 	data->hwmon_dev = hwmon_device_register(&client->dev);
820 	if (IS_ERR(data->hwmon_dev)) {
821 		err = PTR_ERR(data->hwmon_dev);
822 		goto ERROR4;
823 	}
824 
825 	return 0;
826 
827 ERROR4:
828 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
829 ERROR3:
830 	i2c_detach_client(data->lm75[1]);
831 	i2c_detach_client(data->lm75[0]);
832 	kfree(data->lm75[1]);
833 	kfree(data->lm75[0]);
834 ERROR2:
835 	i2c_detach_client(client);
836 ERROR1:
837 	kfree(data);
838 ERROR0:
839 	return err;
840 }
841 
842 static int asb100_detach_client(struct i2c_client *client)
843 {
844 	struct asb100_data *data = i2c_get_clientdata(client);
845 	int err;
846 
847 	/* main client */
848 	if (data) {
849 		hwmon_device_unregister(data->hwmon_dev);
850 		sysfs_remove_group(&client->dev.kobj, &asb100_group);
851 	}
852 
853 	if ((err = i2c_detach_client(client)))
854 		return err;
855 
856 	/* main client */
857 	if (data)
858 		kfree(data);
859 
860 	/* subclient */
861 	else
862 		kfree(client);
863 
864 	return 0;
865 }
866 
867 /* The SMBus locks itself, usually, but nothing may access the chip between
868    bank switches. */
869 static int asb100_read_value(struct i2c_client *client, u16 reg)
870 {
871 	struct asb100_data *data = i2c_get_clientdata(client);
872 	struct i2c_client *cl;
873 	int res, bank;
874 
875 	mutex_lock(&data->lock);
876 
877 	bank = (reg >> 8) & 0x0f;
878 	if (bank > 2)
879 		/* switch banks */
880 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
881 
882 	if (bank == 0 || bank > 2) {
883 		res = i2c_smbus_read_byte_data(client, reg & 0xff);
884 	} else {
885 		/* switch to subclient */
886 		cl = data->lm75[bank - 1];
887 
888 		/* convert from ISA to LM75 I2C addresses */
889 		switch (reg & 0xff) {
890 		case 0x50: /* TEMP */
891 			res = swab16(i2c_smbus_read_word_data(cl, 0));
892 			break;
893 		case 0x52: /* CONFIG */
894 			res = i2c_smbus_read_byte_data(cl, 1);
895 			break;
896 		case 0x53: /* HYST */
897 			res = swab16(i2c_smbus_read_word_data(cl, 2));
898 			break;
899 		case 0x55: /* MAX */
900 		default:
901 			res = swab16(i2c_smbus_read_word_data(cl, 3));
902 			break;
903 		}
904 	}
905 
906 	if (bank > 2)
907 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
908 
909 	mutex_unlock(&data->lock);
910 
911 	return res;
912 }
913 
914 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
915 {
916 	struct asb100_data *data = i2c_get_clientdata(client);
917 	struct i2c_client *cl;
918 	int bank;
919 
920 	mutex_lock(&data->lock);
921 
922 	bank = (reg >> 8) & 0x0f;
923 	if (bank > 2)
924 		/* switch banks */
925 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
926 
927 	if (bank == 0 || bank > 2) {
928 		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
929 	} else {
930 		/* switch to subclient */
931 		cl = data->lm75[bank - 1];
932 
933 		/* convert from ISA to LM75 I2C addresses */
934 		switch (reg & 0xff) {
935 		case 0x52: /* CONFIG */
936 			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
937 			break;
938 		case 0x53: /* HYST */
939 			i2c_smbus_write_word_data(cl, 2, swab16(value));
940 			break;
941 		case 0x55: /* MAX */
942 			i2c_smbus_write_word_data(cl, 3, swab16(value));
943 			break;
944 		}
945 	}
946 
947 	if (bank > 2)
948 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
949 
950 	mutex_unlock(&data->lock);
951 }
952 
953 static void asb100_init_client(struct i2c_client *client)
954 {
955 	struct asb100_data *data = i2c_get_clientdata(client);
956 	int vid = 0;
957 
958 	vid = asb100_read_value(client, ASB100_REG_VID_FANDIV) & 0x0f;
959 	vid |= (asb100_read_value(client, ASB100_REG_CHIPID) & 0x01) << 4;
960 	data->vrm = vid_which_vrm();
961 	vid = vid_from_reg(vid, data->vrm);
962 
963 	/* Start monitoring */
964 	asb100_write_value(client, ASB100_REG_CONFIG,
965 		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
966 }
967 
968 static struct asb100_data *asb100_update_device(struct device *dev)
969 {
970 	struct i2c_client *client = to_i2c_client(dev);
971 	struct asb100_data *data = i2c_get_clientdata(client);
972 	int i;
973 
974 	mutex_lock(&data->update_lock);
975 
976 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
977 		|| !data->valid) {
978 
979 		dev_dbg(&client->dev, "starting device update...\n");
980 
981 		/* 7 voltage inputs */
982 		for (i = 0; i < 7; i++) {
983 			data->in[i] = asb100_read_value(client,
984 				ASB100_REG_IN(i));
985 			data->in_min[i] = asb100_read_value(client,
986 				ASB100_REG_IN_MIN(i));
987 			data->in_max[i] = asb100_read_value(client,
988 				ASB100_REG_IN_MAX(i));
989 		}
990 
991 		/* 3 fan inputs */
992 		for (i = 0; i < 3; i++) {
993 			data->fan[i] = asb100_read_value(client,
994 					ASB100_REG_FAN(i));
995 			data->fan_min[i] = asb100_read_value(client,
996 					ASB100_REG_FAN_MIN(i));
997 		}
998 
999 		/* 4 temperature inputs */
1000 		for (i = 1; i <= 4; i++) {
1001 			data->temp[i-1] = asb100_read_value(client,
1002 					ASB100_REG_TEMP(i));
1003 			data->temp_max[i-1] = asb100_read_value(client,
1004 					ASB100_REG_TEMP_MAX(i));
1005 			data->temp_hyst[i-1] = asb100_read_value(client,
1006 					ASB100_REG_TEMP_HYST(i));
1007 		}
1008 
1009 		/* VID and fan divisors */
1010 		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
1011 		data->vid = i & 0x0f;
1012 		data->vid |= (asb100_read_value(client,
1013 				ASB100_REG_CHIPID) & 0x01) << 4;
1014 		data->fan_div[0] = (i >> 4) & 0x03;
1015 		data->fan_div[1] = (i >> 6) & 0x03;
1016 		data->fan_div[2] = (asb100_read_value(client,
1017 				ASB100_REG_PIN) >> 6) & 0x03;
1018 
1019 		/* PWM */
1020 		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
1021 
1022 		/* alarms */
1023 		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
1024 			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);
1025 
1026 		data->last_updated = jiffies;
1027 		data->valid = 1;
1028 
1029 		dev_dbg(&client->dev, "... device update complete\n");
1030 	}
1031 
1032 	mutex_unlock(&data->update_lock);
1033 
1034 	return data;
1035 }
1036 
1037 static int __init asb100_init(void)
1038 {
1039 	return i2c_add_driver(&asb100_driver);
1040 }
1041 
1042 static void __exit asb100_exit(void)
1043 {
1044 	i2c_del_driver(&asb100_driver);
1045 }
1046 
1047 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1048 MODULE_DESCRIPTION("ASB100 Bach driver");
1049 MODULE_LICENSE("GPL");
1050 
1051 module_init(asb100_init);
1052 module_exit(asb100_exit);
1053