1 /* 2 asb100.c - Part of lm_sensors, Linux kernel modules for hardware 3 monitoring 4 5 Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com> 6 7 (derived from w83781d.c) 8 9 Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>, 10 Philip Edelbrock <phil@netroedge.com>, and 11 Mark Studebaker <mdsxyz123@yahoo.com> 12 13 This program is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2 of the License, or 16 (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 28 /* 29 This driver supports the hardware sensor chips: Asus ASB100 and 30 ASB100-A "BACH". 31 32 ASB100-A supports pwm1, while plain ASB100 does not. There is no known 33 way for the driver to tell which one is there. 34 35 Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA 36 asb100 7 3 1 4 0x31 0x0694 yes no 37 */ 38 39 #include <linux/module.h> 40 #include <linux/slab.h> 41 #include <linux/i2c.h> 42 #include <linux/hwmon.h> 43 #include <linux/hwmon-sysfs.h> 44 #include <linux/hwmon-vid.h> 45 #include <linux/err.h> 46 #include <linux/init.h> 47 #include <linux/jiffies.h> 48 #include <linux/mutex.h> 49 #include "lm75.h" 50 51 /* I2C addresses to scan */ 52 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END }; 53 54 /* Insmod parameters */ 55 I2C_CLIENT_INSMOD_1(asb100); 56 I2C_CLIENT_MODULE_PARM(force_subclients, "List of subclient addresses: " 57 "{bus, clientaddr, subclientaddr1, subclientaddr2}"); 58 59 /* Voltage IN registers 0-6 */ 60 #define ASB100_REG_IN(nr) (0x20 + (nr)) 61 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2)) 62 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2)) 63 64 /* FAN IN registers 1-3 */ 65 #define ASB100_REG_FAN(nr) (0x28 + (nr)) 66 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr)) 67 68 /* TEMPERATURE registers 1-4 */ 69 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17}; 70 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18}; 71 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19}; 72 73 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr]) 74 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr]) 75 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr]) 76 77 #define ASB100_REG_TEMP2_CONFIG 0x0152 78 #define ASB100_REG_TEMP3_CONFIG 0x0252 79 80 81 #define ASB100_REG_CONFIG 0x40 82 #define ASB100_REG_ALARM1 0x41 83 #define ASB100_REG_ALARM2 0x42 84 #define ASB100_REG_SMIM1 0x43 85 #define ASB100_REG_SMIM2 0x44 86 #define ASB100_REG_VID_FANDIV 0x47 87 #define ASB100_REG_I2C_ADDR 0x48 88 #define ASB100_REG_CHIPID 0x49 89 #define ASB100_REG_I2C_SUBADDR 0x4a 90 #define ASB100_REG_PIN 0x4b 91 #define ASB100_REG_IRQ 0x4c 92 #define ASB100_REG_BANK 0x4e 93 #define ASB100_REG_CHIPMAN 0x4f 94 95 #define ASB100_REG_WCHIPID 0x58 96 97 /* bit 7 -> enable, bits 0-3 -> duty cycle */ 98 #define ASB100_REG_PWM1 0x59 99 100 /* CONVERSIONS 101 Rounding and limit checking is only done on the TO_REG variants. */ 102 103 /* These constants are a guess, consistent w/ w83781d */ 104 #define ASB100_IN_MIN ( 0) 105 #define ASB100_IN_MAX (4080) 106 107 /* IN: 1/1000 V (0V to 4.08V) 108 REG: 16mV/bit */ 109 static u8 IN_TO_REG(unsigned val) 110 { 111 unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX); 112 return (nval + 8) / 16; 113 } 114 115 static unsigned IN_FROM_REG(u8 reg) 116 { 117 return reg * 16; 118 } 119 120 static u8 FAN_TO_REG(long rpm, int div) 121 { 122 if (rpm == -1) 123 return 0; 124 if (rpm == 0) 125 return 255; 126 rpm = SENSORS_LIMIT(rpm, 1, 1000000); 127 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 128 } 129 130 static int FAN_FROM_REG(u8 val, int div) 131 { 132 return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div); 133 } 134 135 /* These constants are a guess, consistent w/ w83781d */ 136 #define ASB100_TEMP_MIN (-128000) 137 #define ASB100_TEMP_MAX ( 127000) 138 139 /* TEMP: 0.001C/bit (-128C to +127C) 140 REG: 1C/bit, two's complement */ 141 static u8 TEMP_TO_REG(long temp) 142 { 143 int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX); 144 ntemp += (ntemp<0 ? -500 : 500); 145 return (u8)(ntemp / 1000); 146 } 147 148 static int TEMP_FROM_REG(u8 reg) 149 { 150 return (s8)reg * 1000; 151 } 152 153 /* PWM: 0 - 255 per sensors documentation 154 REG: (6.25% duty cycle per bit) */ 155 static u8 ASB100_PWM_TO_REG(int pwm) 156 { 157 pwm = SENSORS_LIMIT(pwm, 0, 255); 158 return (u8)(pwm / 16); 159 } 160 161 static int ASB100_PWM_FROM_REG(u8 reg) 162 { 163 return reg * 16; 164 } 165 166 #define DIV_FROM_REG(val) (1 << (val)) 167 168 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2) 169 REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */ 170 static u8 DIV_TO_REG(long val) 171 { 172 return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1; 173 } 174 175 /* For each registered client, we need to keep some data in memory. That 176 data is pointed to by client->data. The structure itself is 177 dynamically allocated, at the same time the client itself is allocated. */ 178 struct asb100_data { 179 struct i2c_client client; 180 struct device *hwmon_dev; 181 struct mutex lock; 182 enum chips type; 183 184 struct mutex update_lock; 185 unsigned long last_updated; /* In jiffies */ 186 187 /* array of 2 pointers to subclients */ 188 struct i2c_client *lm75[2]; 189 190 char valid; /* !=0 if following fields are valid */ 191 u8 in[7]; /* Register value */ 192 u8 in_max[7]; /* Register value */ 193 u8 in_min[7]; /* Register value */ 194 u8 fan[3]; /* Register value */ 195 u8 fan_min[3]; /* Register value */ 196 u16 temp[4]; /* Register value (0 and 3 are u8 only) */ 197 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */ 198 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */ 199 u8 fan_div[3]; /* Register encoding, right justified */ 200 u8 pwm; /* Register encoding */ 201 u8 vid; /* Register encoding, combined */ 202 u32 alarms; /* Register encoding, combined */ 203 u8 vrm; 204 }; 205 206 static int asb100_read_value(struct i2c_client *client, u16 reg); 207 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val); 208 209 static int asb100_attach_adapter(struct i2c_adapter *adapter); 210 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind); 211 static int asb100_detach_client(struct i2c_client *client); 212 static struct asb100_data *asb100_update_device(struct device *dev); 213 static void asb100_init_client(struct i2c_client *client); 214 215 static struct i2c_driver asb100_driver = { 216 .driver = { 217 .name = "asb100", 218 }, 219 .attach_adapter = asb100_attach_adapter, 220 .detach_client = asb100_detach_client, 221 }; 222 223 /* 7 Voltages */ 224 #define show_in_reg(reg) \ 225 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 226 char *buf) \ 227 { \ 228 int nr = to_sensor_dev_attr(attr)->index; \ 229 struct asb100_data *data = asb100_update_device(dev); \ 230 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ 231 } 232 233 show_in_reg(in) 234 show_in_reg(in_min) 235 show_in_reg(in_max) 236 237 #define set_in_reg(REG, reg) \ 238 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \ 239 const char *buf, size_t count) \ 240 { \ 241 int nr = to_sensor_dev_attr(attr)->index; \ 242 struct i2c_client *client = to_i2c_client(dev); \ 243 struct asb100_data *data = i2c_get_clientdata(client); \ 244 unsigned long val = simple_strtoul(buf, NULL, 10); \ 245 \ 246 mutex_lock(&data->update_lock); \ 247 data->in_##reg[nr] = IN_TO_REG(val); \ 248 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \ 249 data->in_##reg[nr]); \ 250 mutex_unlock(&data->update_lock); \ 251 return count; \ 252 } 253 254 set_in_reg(MIN, min) 255 set_in_reg(MAX, max) 256 257 #define sysfs_in(offset) \ 258 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 259 show_in, NULL, offset); \ 260 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 261 show_in_min, set_in_min, offset); \ 262 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 263 show_in_max, set_in_max, offset) 264 265 sysfs_in(0); 266 sysfs_in(1); 267 sysfs_in(2); 268 sysfs_in(3); 269 sysfs_in(4); 270 sysfs_in(5); 271 sysfs_in(6); 272 273 /* 3 Fans */ 274 static ssize_t show_fan(struct device *dev, struct device_attribute *attr, 275 char *buf) 276 { 277 int nr = to_sensor_dev_attr(attr)->index; 278 struct asb100_data *data = asb100_update_device(dev); 279 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 280 DIV_FROM_REG(data->fan_div[nr]))); 281 } 282 283 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, 284 char *buf) 285 { 286 int nr = to_sensor_dev_attr(attr)->index; 287 struct asb100_data *data = asb100_update_device(dev); 288 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], 289 DIV_FROM_REG(data->fan_div[nr]))); 290 } 291 292 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, 293 char *buf) 294 { 295 int nr = to_sensor_dev_attr(attr)->index; 296 struct asb100_data *data = asb100_update_device(dev); 297 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); 298 } 299 300 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, 301 const char *buf, size_t count) 302 { 303 int nr = to_sensor_dev_attr(attr)->index; 304 struct i2c_client *client = to_i2c_client(dev); 305 struct asb100_data *data = i2c_get_clientdata(client); 306 u32 val = simple_strtoul(buf, NULL, 10); 307 308 mutex_lock(&data->update_lock); 309 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 310 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 311 mutex_unlock(&data->update_lock); 312 return count; 313 } 314 315 /* Note: we save and restore the fan minimum here, because its value is 316 determined in part by the fan divisor. This follows the principle of 317 least surprise; the user doesn't expect the fan minimum to change just 318 because the divisor changed. */ 319 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, 320 const char *buf, size_t count) 321 { 322 int nr = to_sensor_dev_attr(attr)->index; 323 struct i2c_client *client = to_i2c_client(dev); 324 struct asb100_data *data = i2c_get_clientdata(client); 325 unsigned long min; 326 unsigned long val = simple_strtoul(buf, NULL, 10); 327 int reg; 328 329 mutex_lock(&data->update_lock); 330 331 min = FAN_FROM_REG(data->fan_min[nr], 332 DIV_FROM_REG(data->fan_div[nr])); 333 data->fan_div[nr] = DIV_TO_REG(val); 334 335 switch (nr) { 336 case 0: /* fan 1 */ 337 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 338 reg = (reg & 0xcf) | (data->fan_div[0] << 4); 339 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 340 break; 341 342 case 1: /* fan 2 */ 343 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 344 reg = (reg & 0x3f) | (data->fan_div[1] << 6); 345 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 346 break; 347 348 case 2: /* fan 3 */ 349 reg = asb100_read_value(client, ASB100_REG_PIN); 350 reg = (reg & 0x3f) | (data->fan_div[2] << 6); 351 asb100_write_value(client, ASB100_REG_PIN, reg); 352 break; 353 } 354 355 data->fan_min[nr] = 356 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); 357 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 358 359 mutex_unlock(&data->update_lock); 360 361 return count; 362 } 363 364 #define sysfs_fan(offset) \ 365 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 366 show_fan, NULL, offset - 1); \ 367 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 368 show_fan_min, set_fan_min, offset - 1); \ 369 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ 370 show_fan_div, set_fan_div, offset - 1) 371 372 sysfs_fan(1); 373 sysfs_fan(2); 374 sysfs_fan(3); 375 376 /* 4 Temp. Sensors */ 377 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr) 378 { 379 int ret = 0; 380 381 switch (nr) { 382 case 1: case 2: 383 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg)); 384 break; 385 case 0: case 3: default: 386 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg)); 387 break; 388 } 389 return ret; 390 } 391 392 #define show_temp_reg(reg) \ 393 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 394 char *buf) \ 395 { \ 396 int nr = to_sensor_dev_attr(attr)->index; \ 397 struct asb100_data *data = asb100_update_device(dev); \ 398 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \ 399 } 400 401 show_temp_reg(temp); 402 show_temp_reg(temp_max); 403 show_temp_reg(temp_hyst); 404 405 #define set_temp_reg(REG, reg) \ 406 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \ 407 const char *buf, size_t count) \ 408 { \ 409 int nr = to_sensor_dev_attr(attr)->index; \ 410 struct i2c_client *client = to_i2c_client(dev); \ 411 struct asb100_data *data = i2c_get_clientdata(client); \ 412 long val = simple_strtol(buf, NULL, 10); \ 413 \ 414 mutex_lock(&data->update_lock); \ 415 switch (nr) { \ 416 case 1: case 2: \ 417 data->reg[nr] = LM75_TEMP_TO_REG(val); \ 418 break; \ 419 case 0: case 3: default: \ 420 data->reg[nr] = TEMP_TO_REG(val); \ 421 break; \ 422 } \ 423 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \ 424 data->reg[nr]); \ 425 mutex_unlock(&data->update_lock); \ 426 return count; \ 427 } 428 429 set_temp_reg(MAX, temp_max); 430 set_temp_reg(HYST, temp_hyst); 431 432 #define sysfs_temp(num) \ 433 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \ 434 show_temp, NULL, num - 1); \ 435 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \ 436 show_temp_max, set_temp_max, num - 1); \ 437 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \ 438 show_temp_hyst, set_temp_hyst, num - 1) 439 440 sysfs_temp(1); 441 sysfs_temp(2); 442 sysfs_temp(3); 443 sysfs_temp(4); 444 445 /* VID */ 446 static ssize_t show_vid(struct device *dev, struct device_attribute *attr, 447 char *buf) 448 { 449 struct asb100_data *data = asb100_update_device(dev); 450 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); 451 } 452 453 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL); 454 455 /* VRM */ 456 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, 457 char *buf) 458 { 459 struct asb100_data *data = dev_get_drvdata(dev); 460 return sprintf(buf, "%d\n", data->vrm); 461 } 462 463 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, 464 const char *buf, size_t count) 465 { 466 struct asb100_data *data = dev_get_drvdata(dev); 467 data->vrm = simple_strtoul(buf, NULL, 10); 468 return count; 469 } 470 471 /* Alarms */ 472 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm); 473 474 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, 475 char *buf) 476 { 477 struct asb100_data *data = asb100_update_device(dev); 478 return sprintf(buf, "%u\n", data->alarms); 479 } 480 481 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); 482 483 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 484 char *buf) 485 { 486 int bitnr = to_sensor_dev_attr(attr)->index; 487 struct asb100_data *data = asb100_update_device(dev); 488 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); 489 } 490 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 491 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 492 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 493 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 494 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); 495 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); 496 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); 497 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11); 498 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); 499 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); 500 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13); 501 502 /* 1 PWM */ 503 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr, 504 char *buf) 505 { 506 struct asb100_data *data = asb100_update_device(dev); 507 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f)); 508 } 509 510 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr, 511 const char *buf, size_t count) 512 { 513 struct i2c_client *client = to_i2c_client(dev); 514 struct asb100_data *data = i2c_get_clientdata(client); 515 unsigned long val = simple_strtoul(buf, NULL, 10); 516 517 mutex_lock(&data->update_lock); 518 data->pwm &= 0x80; /* keep the enable bit */ 519 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val)); 520 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 521 mutex_unlock(&data->update_lock); 522 return count; 523 } 524 525 static ssize_t show_pwm_enable1(struct device *dev, 526 struct device_attribute *attr, char *buf) 527 { 528 struct asb100_data *data = asb100_update_device(dev); 529 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0); 530 } 531 532 static ssize_t set_pwm_enable1(struct device *dev, 533 struct device_attribute *attr, const char *buf, size_t count) 534 { 535 struct i2c_client *client = to_i2c_client(dev); 536 struct asb100_data *data = i2c_get_clientdata(client); 537 unsigned long val = simple_strtoul(buf, NULL, 10); 538 539 mutex_lock(&data->update_lock); 540 data->pwm &= 0x0f; /* keep the duty cycle bits */ 541 data->pwm |= (val ? 0x80 : 0x00); 542 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 543 mutex_unlock(&data->update_lock); 544 return count; 545 } 546 547 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1); 548 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, 549 show_pwm_enable1, set_pwm_enable1); 550 551 static struct attribute *asb100_attributes[] = { 552 &sensor_dev_attr_in0_input.dev_attr.attr, 553 &sensor_dev_attr_in0_min.dev_attr.attr, 554 &sensor_dev_attr_in0_max.dev_attr.attr, 555 &sensor_dev_attr_in1_input.dev_attr.attr, 556 &sensor_dev_attr_in1_min.dev_attr.attr, 557 &sensor_dev_attr_in1_max.dev_attr.attr, 558 &sensor_dev_attr_in2_input.dev_attr.attr, 559 &sensor_dev_attr_in2_min.dev_attr.attr, 560 &sensor_dev_attr_in2_max.dev_attr.attr, 561 &sensor_dev_attr_in3_input.dev_attr.attr, 562 &sensor_dev_attr_in3_min.dev_attr.attr, 563 &sensor_dev_attr_in3_max.dev_attr.attr, 564 &sensor_dev_attr_in4_input.dev_attr.attr, 565 &sensor_dev_attr_in4_min.dev_attr.attr, 566 &sensor_dev_attr_in4_max.dev_attr.attr, 567 &sensor_dev_attr_in5_input.dev_attr.attr, 568 &sensor_dev_attr_in5_min.dev_attr.attr, 569 &sensor_dev_attr_in5_max.dev_attr.attr, 570 &sensor_dev_attr_in6_input.dev_attr.attr, 571 &sensor_dev_attr_in6_min.dev_attr.attr, 572 &sensor_dev_attr_in6_max.dev_attr.attr, 573 574 &sensor_dev_attr_fan1_input.dev_attr.attr, 575 &sensor_dev_attr_fan1_min.dev_attr.attr, 576 &sensor_dev_attr_fan1_div.dev_attr.attr, 577 &sensor_dev_attr_fan2_input.dev_attr.attr, 578 &sensor_dev_attr_fan2_min.dev_attr.attr, 579 &sensor_dev_attr_fan2_div.dev_attr.attr, 580 &sensor_dev_attr_fan3_input.dev_attr.attr, 581 &sensor_dev_attr_fan3_min.dev_attr.attr, 582 &sensor_dev_attr_fan3_div.dev_attr.attr, 583 584 &sensor_dev_attr_temp1_input.dev_attr.attr, 585 &sensor_dev_attr_temp1_max.dev_attr.attr, 586 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, 587 &sensor_dev_attr_temp2_input.dev_attr.attr, 588 &sensor_dev_attr_temp2_max.dev_attr.attr, 589 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, 590 &sensor_dev_attr_temp3_input.dev_attr.attr, 591 &sensor_dev_attr_temp3_max.dev_attr.attr, 592 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, 593 &sensor_dev_attr_temp4_input.dev_attr.attr, 594 &sensor_dev_attr_temp4_max.dev_attr.attr, 595 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr, 596 597 &sensor_dev_attr_in0_alarm.dev_attr.attr, 598 &sensor_dev_attr_in1_alarm.dev_attr.attr, 599 &sensor_dev_attr_in2_alarm.dev_attr.attr, 600 &sensor_dev_attr_in3_alarm.dev_attr.attr, 601 &sensor_dev_attr_in4_alarm.dev_attr.attr, 602 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 603 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 604 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 605 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 606 &sensor_dev_attr_temp2_alarm.dev_attr.attr, 607 &sensor_dev_attr_temp3_alarm.dev_attr.attr, 608 609 &dev_attr_cpu0_vid.attr, 610 &dev_attr_vrm.attr, 611 &dev_attr_alarms.attr, 612 &dev_attr_pwm1.attr, 613 &dev_attr_pwm1_enable.attr, 614 615 NULL 616 }; 617 618 static const struct attribute_group asb100_group = { 619 .attrs = asb100_attributes, 620 }; 621 622 /* This function is called when: 623 asb100_driver is inserted (when this module is loaded), for each 624 available adapter 625 when a new adapter is inserted (and asb100_driver is still present) 626 */ 627 static int asb100_attach_adapter(struct i2c_adapter *adapter) 628 { 629 if (!(adapter->class & I2C_CLASS_HWMON)) 630 return 0; 631 return i2c_probe(adapter, &addr_data, asb100_detect); 632 } 633 634 static int asb100_detect_subclients(struct i2c_adapter *adapter, int address, 635 int kind, struct i2c_client *client) 636 { 637 int i, id, err; 638 struct asb100_data *data = i2c_get_clientdata(client); 639 640 data->lm75[0] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL); 641 if (!(data->lm75[0])) { 642 err = -ENOMEM; 643 goto ERROR_SC_0; 644 } 645 646 data->lm75[1] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL); 647 if (!(data->lm75[1])) { 648 err = -ENOMEM; 649 goto ERROR_SC_1; 650 } 651 652 id = i2c_adapter_id(adapter); 653 654 if (force_subclients[0] == id && force_subclients[1] == address) { 655 for (i = 2; i <= 3; i++) { 656 if (force_subclients[i] < 0x48 || 657 force_subclients[i] > 0x4f) { 658 dev_err(&client->dev, "invalid subclient " 659 "address %d; must be 0x48-0x4f\n", 660 force_subclients[i]); 661 err = -ENODEV; 662 goto ERROR_SC_2; 663 } 664 } 665 asb100_write_value(client, ASB100_REG_I2C_SUBADDR, 666 (force_subclients[2] & 0x07) | 667 ((force_subclients[3] & 0x07) << 4)); 668 data->lm75[0]->addr = force_subclients[2]; 669 data->lm75[1]->addr = force_subclients[3]; 670 } else { 671 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR); 672 data->lm75[0]->addr = 0x48 + (val & 0x07); 673 data->lm75[1]->addr = 0x48 + ((val >> 4) & 0x07); 674 } 675 676 if (data->lm75[0]->addr == data->lm75[1]->addr) { 677 dev_err(&client->dev, "duplicate addresses 0x%x " 678 "for subclients\n", data->lm75[0]->addr); 679 err = -ENODEV; 680 goto ERROR_SC_2; 681 } 682 683 for (i = 0; i <= 1; i++) { 684 i2c_set_clientdata(data->lm75[i], NULL); 685 data->lm75[i]->adapter = adapter; 686 data->lm75[i]->driver = &asb100_driver; 687 strlcpy(data->lm75[i]->name, "asb100 subclient", I2C_NAME_SIZE); 688 } 689 690 if ((err = i2c_attach_client(data->lm75[0]))) { 691 dev_err(&client->dev, "subclient %d registration " 692 "at address 0x%x failed.\n", i, data->lm75[0]->addr); 693 goto ERROR_SC_2; 694 } 695 696 if ((err = i2c_attach_client(data->lm75[1]))) { 697 dev_err(&client->dev, "subclient %d registration " 698 "at address 0x%x failed.\n", i, data->lm75[1]->addr); 699 goto ERROR_SC_3; 700 } 701 702 return 0; 703 704 /* Undo inits in case of errors */ 705 ERROR_SC_3: 706 i2c_detach_client(data->lm75[0]); 707 ERROR_SC_2: 708 kfree(data->lm75[1]); 709 ERROR_SC_1: 710 kfree(data->lm75[0]); 711 ERROR_SC_0: 712 return err; 713 } 714 715 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind) 716 { 717 int err; 718 struct i2c_client *client; 719 struct asb100_data *data; 720 721 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { 722 pr_debug("asb100.o: detect failed, " 723 "smbus byte data not supported!\n"); 724 err = -ENODEV; 725 goto ERROR0; 726 } 727 728 /* OK. For now, we presume we have a valid client. We now create the 729 client structure, even though we cannot fill it completely yet. 730 But it allows us to access asb100_{read,write}_value. */ 731 732 if (!(data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL))) { 733 pr_debug("asb100.o: detect failed, kzalloc failed!\n"); 734 err = -ENOMEM; 735 goto ERROR0; 736 } 737 738 client = &data->client; 739 mutex_init(&data->lock); 740 i2c_set_clientdata(client, data); 741 client->addr = address; 742 client->adapter = adapter; 743 client->driver = &asb100_driver; 744 745 /* Now, we do the remaining detection. */ 746 747 /* The chip may be stuck in some other bank than bank 0. This may 748 make reading other information impossible. Specify a force=... or 749 force_*=... parameter, and the chip will be reset to the right 750 bank. */ 751 if (kind < 0) { 752 753 int val1 = asb100_read_value(client, ASB100_REG_BANK); 754 int val2 = asb100_read_value(client, ASB100_REG_CHIPMAN); 755 756 /* If we're in bank 0 */ 757 if ((!(val1 & 0x07)) && 758 /* Check for ASB100 ID (low byte) */ 759 (((!(val1 & 0x80)) && (val2 != 0x94)) || 760 /* Check for ASB100 ID (high byte ) */ 761 ((val1 & 0x80) && (val2 != 0x06)))) { 762 pr_debug("asb100.o: detect failed, " 763 "bad chip id 0x%02x!\n", val2); 764 err = -ENODEV; 765 goto ERROR1; 766 } 767 768 } /* kind < 0 */ 769 770 /* We have either had a force parameter, or we have already detected 771 Winbond. Put it now into bank 0 and Vendor ID High Byte */ 772 asb100_write_value(client, ASB100_REG_BANK, 773 (asb100_read_value(client, ASB100_REG_BANK) & 0x78) | 0x80); 774 775 /* Determine the chip type. */ 776 if (kind <= 0) { 777 int val1 = asb100_read_value(client, ASB100_REG_WCHIPID); 778 int val2 = asb100_read_value(client, ASB100_REG_CHIPMAN); 779 780 if ((val1 == 0x31) && (val2 == 0x06)) 781 kind = asb100; 782 else { 783 if (kind == 0) 784 dev_warn(&client->dev, "ignoring " 785 "'force' parameter for unknown chip " 786 "at adapter %d, address 0x%02x.\n", 787 i2c_adapter_id(adapter), address); 788 err = -ENODEV; 789 goto ERROR1; 790 } 791 } 792 793 /* Fill in remaining client fields and put it into the global list */ 794 strlcpy(client->name, "asb100", I2C_NAME_SIZE); 795 data->type = kind; 796 mutex_init(&data->update_lock); 797 798 /* Tell the I2C layer a new client has arrived */ 799 if ((err = i2c_attach_client(client))) 800 goto ERROR1; 801 802 /* Attach secondary lm75 clients */ 803 if ((err = asb100_detect_subclients(adapter, address, kind, 804 client))) 805 goto ERROR2; 806 807 /* Initialize the chip */ 808 asb100_init_client(client); 809 810 /* A few vars need to be filled upon startup */ 811 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0)); 812 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1)); 813 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2)); 814 815 /* Register sysfs hooks */ 816 if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group))) 817 goto ERROR3; 818 819 data->hwmon_dev = hwmon_device_register(&client->dev); 820 if (IS_ERR(data->hwmon_dev)) { 821 err = PTR_ERR(data->hwmon_dev); 822 goto ERROR4; 823 } 824 825 return 0; 826 827 ERROR4: 828 sysfs_remove_group(&client->dev.kobj, &asb100_group); 829 ERROR3: 830 i2c_detach_client(data->lm75[1]); 831 i2c_detach_client(data->lm75[0]); 832 kfree(data->lm75[1]); 833 kfree(data->lm75[0]); 834 ERROR2: 835 i2c_detach_client(client); 836 ERROR1: 837 kfree(data); 838 ERROR0: 839 return err; 840 } 841 842 static int asb100_detach_client(struct i2c_client *client) 843 { 844 struct asb100_data *data = i2c_get_clientdata(client); 845 int err; 846 847 /* main client */ 848 if (data) { 849 hwmon_device_unregister(data->hwmon_dev); 850 sysfs_remove_group(&client->dev.kobj, &asb100_group); 851 } 852 853 if ((err = i2c_detach_client(client))) 854 return err; 855 856 /* main client */ 857 if (data) 858 kfree(data); 859 860 /* subclient */ 861 else 862 kfree(client); 863 864 return 0; 865 } 866 867 /* The SMBus locks itself, usually, but nothing may access the chip between 868 bank switches. */ 869 static int asb100_read_value(struct i2c_client *client, u16 reg) 870 { 871 struct asb100_data *data = i2c_get_clientdata(client); 872 struct i2c_client *cl; 873 int res, bank; 874 875 mutex_lock(&data->lock); 876 877 bank = (reg >> 8) & 0x0f; 878 if (bank > 2) 879 /* switch banks */ 880 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 881 882 if (bank == 0 || bank > 2) { 883 res = i2c_smbus_read_byte_data(client, reg & 0xff); 884 } else { 885 /* switch to subclient */ 886 cl = data->lm75[bank - 1]; 887 888 /* convert from ISA to LM75 I2C addresses */ 889 switch (reg & 0xff) { 890 case 0x50: /* TEMP */ 891 res = swab16(i2c_smbus_read_word_data(cl, 0)); 892 break; 893 case 0x52: /* CONFIG */ 894 res = i2c_smbus_read_byte_data(cl, 1); 895 break; 896 case 0x53: /* HYST */ 897 res = swab16(i2c_smbus_read_word_data(cl, 2)); 898 break; 899 case 0x55: /* MAX */ 900 default: 901 res = swab16(i2c_smbus_read_word_data(cl, 3)); 902 break; 903 } 904 } 905 906 if (bank > 2) 907 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 908 909 mutex_unlock(&data->lock); 910 911 return res; 912 } 913 914 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value) 915 { 916 struct asb100_data *data = i2c_get_clientdata(client); 917 struct i2c_client *cl; 918 int bank; 919 920 mutex_lock(&data->lock); 921 922 bank = (reg >> 8) & 0x0f; 923 if (bank > 2) 924 /* switch banks */ 925 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 926 927 if (bank == 0 || bank > 2) { 928 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff); 929 } else { 930 /* switch to subclient */ 931 cl = data->lm75[bank - 1]; 932 933 /* convert from ISA to LM75 I2C addresses */ 934 switch (reg & 0xff) { 935 case 0x52: /* CONFIG */ 936 i2c_smbus_write_byte_data(cl, 1, value & 0xff); 937 break; 938 case 0x53: /* HYST */ 939 i2c_smbus_write_word_data(cl, 2, swab16(value)); 940 break; 941 case 0x55: /* MAX */ 942 i2c_smbus_write_word_data(cl, 3, swab16(value)); 943 break; 944 } 945 } 946 947 if (bank > 2) 948 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 949 950 mutex_unlock(&data->lock); 951 } 952 953 static void asb100_init_client(struct i2c_client *client) 954 { 955 struct asb100_data *data = i2c_get_clientdata(client); 956 int vid = 0; 957 958 vid = asb100_read_value(client, ASB100_REG_VID_FANDIV) & 0x0f; 959 vid |= (asb100_read_value(client, ASB100_REG_CHIPID) & 0x01) << 4; 960 data->vrm = vid_which_vrm(); 961 vid = vid_from_reg(vid, data->vrm); 962 963 /* Start monitoring */ 964 asb100_write_value(client, ASB100_REG_CONFIG, 965 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01); 966 } 967 968 static struct asb100_data *asb100_update_device(struct device *dev) 969 { 970 struct i2c_client *client = to_i2c_client(dev); 971 struct asb100_data *data = i2c_get_clientdata(client); 972 int i; 973 974 mutex_lock(&data->update_lock); 975 976 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 977 || !data->valid) { 978 979 dev_dbg(&client->dev, "starting device update...\n"); 980 981 /* 7 voltage inputs */ 982 for (i = 0; i < 7; i++) { 983 data->in[i] = asb100_read_value(client, 984 ASB100_REG_IN(i)); 985 data->in_min[i] = asb100_read_value(client, 986 ASB100_REG_IN_MIN(i)); 987 data->in_max[i] = asb100_read_value(client, 988 ASB100_REG_IN_MAX(i)); 989 } 990 991 /* 3 fan inputs */ 992 for (i = 0; i < 3; i++) { 993 data->fan[i] = asb100_read_value(client, 994 ASB100_REG_FAN(i)); 995 data->fan_min[i] = asb100_read_value(client, 996 ASB100_REG_FAN_MIN(i)); 997 } 998 999 /* 4 temperature inputs */ 1000 for (i = 1; i <= 4; i++) { 1001 data->temp[i-1] = asb100_read_value(client, 1002 ASB100_REG_TEMP(i)); 1003 data->temp_max[i-1] = asb100_read_value(client, 1004 ASB100_REG_TEMP_MAX(i)); 1005 data->temp_hyst[i-1] = asb100_read_value(client, 1006 ASB100_REG_TEMP_HYST(i)); 1007 } 1008 1009 /* VID and fan divisors */ 1010 i = asb100_read_value(client, ASB100_REG_VID_FANDIV); 1011 data->vid = i & 0x0f; 1012 data->vid |= (asb100_read_value(client, 1013 ASB100_REG_CHIPID) & 0x01) << 4; 1014 data->fan_div[0] = (i >> 4) & 0x03; 1015 data->fan_div[1] = (i >> 6) & 0x03; 1016 data->fan_div[2] = (asb100_read_value(client, 1017 ASB100_REG_PIN) >> 6) & 0x03; 1018 1019 /* PWM */ 1020 data->pwm = asb100_read_value(client, ASB100_REG_PWM1); 1021 1022 /* alarms */ 1023 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) + 1024 (asb100_read_value(client, ASB100_REG_ALARM2) << 8); 1025 1026 data->last_updated = jiffies; 1027 data->valid = 1; 1028 1029 dev_dbg(&client->dev, "... device update complete\n"); 1030 } 1031 1032 mutex_unlock(&data->update_lock); 1033 1034 return data; 1035 } 1036 1037 static int __init asb100_init(void) 1038 { 1039 return i2c_add_driver(&asb100_driver); 1040 } 1041 1042 static void __exit asb100_exit(void) 1043 { 1044 i2c_del_driver(&asb100_driver); 1045 } 1046 1047 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>"); 1048 MODULE_DESCRIPTION("ASB100 Bach driver"); 1049 MODULE_LICENSE("GPL"); 1050 1051 module_init(asb100_init); 1052 module_exit(asb100_exit); 1053