xref: /openbmc/linux/drivers/hwmon/asb100.c (revision 64c70b1c)
1 /*
2     asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 	        monitoring
4 
5     Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
6 
7 	(derived from w83781d.c)
8 
9     Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
10     Philip Edelbrock <phil@netroedge.com>, and
11     Mark Studebaker <mdsxyz123@yahoo.com>
12 
13     This program is free software; you can redistribute it and/or modify
14     it under the terms of the GNU General Public License as published by
15     the Free Software Foundation; either version 2 of the License, or
16     (at your option) any later version.
17 
18     This program is distributed in the hope that it will be useful,
19     but WITHOUT ANY WARRANTY; without even the implied warranty of
20     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21     GNU General Public License for more details.
22 
23     You should have received a copy of the GNU General Public License
24     along with this program; if not, write to the Free Software
25     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27 
28 /*
29     This driver supports the hardware sensor chips: Asus ASB100 and
30     ASB100-A "BACH".
31 
32     ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
33     way for the driver to tell which one is there.
34 
35     Chip	#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
36     asb100	7	3	1	4	0x31	0x0694	yes	no
37 */
38 
39 #include <linux/module.h>
40 #include <linux/slab.h>
41 #include <linux/i2c.h>
42 #include <linux/hwmon.h>
43 #include <linux/hwmon-vid.h>
44 #include <linux/err.h>
45 #include <linux/init.h>
46 #include <linux/jiffies.h>
47 #include <linux/mutex.h>
48 #include "lm75.h"
49 
50 /*
51 	HISTORY:
52 	2003-12-29	1.0.0	Ported from lm_sensors project for kernel 2.6
53 */
54 #define ASB100_VERSION "1.0.0"
55 
56 /* I2C addresses to scan */
57 static unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
58 
59 /* Insmod parameters */
60 I2C_CLIENT_INSMOD_1(asb100);
61 I2C_CLIENT_MODULE_PARM(force_subclients, "List of subclient addresses: "
62 	"{bus, clientaddr, subclientaddr1, subclientaddr2}");
63 
64 /* Voltage IN registers 0-6 */
65 #define ASB100_REG_IN(nr)	(0x20 + (nr))
66 #define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
67 #define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))
68 
69 /* FAN IN registers 1-3 */
70 #define ASB100_REG_FAN(nr)	(0x28 + (nr))
71 #define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))
72 
73 /* TEMPERATURE registers 1-4 */
74 static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
75 static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
76 static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};
77 
78 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
79 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
80 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
81 
82 #define ASB100_REG_TEMP2_CONFIG	0x0152
83 #define ASB100_REG_TEMP3_CONFIG	0x0252
84 
85 
86 #define ASB100_REG_CONFIG	0x40
87 #define ASB100_REG_ALARM1	0x41
88 #define ASB100_REG_ALARM2	0x42
89 #define ASB100_REG_SMIM1	0x43
90 #define ASB100_REG_SMIM2	0x44
91 #define ASB100_REG_VID_FANDIV	0x47
92 #define ASB100_REG_I2C_ADDR	0x48
93 #define ASB100_REG_CHIPID	0x49
94 #define ASB100_REG_I2C_SUBADDR	0x4a
95 #define ASB100_REG_PIN		0x4b
96 #define ASB100_REG_IRQ		0x4c
97 #define ASB100_REG_BANK		0x4e
98 #define ASB100_REG_CHIPMAN	0x4f
99 
100 #define ASB100_REG_WCHIPID	0x58
101 
102 /* bit 7 -> enable, bits 0-3 -> duty cycle */
103 #define ASB100_REG_PWM1		0x59
104 
105 /* CONVERSIONS
106    Rounding and limit checking is only done on the TO_REG variants. */
107 
108 /* These constants are a guess, consistent w/ w83781d */
109 #define ASB100_IN_MIN (   0)
110 #define ASB100_IN_MAX (4080)
111 
112 /* IN: 1/1000 V (0V to 4.08V)
113    REG: 16mV/bit */
114 static u8 IN_TO_REG(unsigned val)
115 {
116 	unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
117 	return (nval + 8) / 16;
118 }
119 
120 static unsigned IN_FROM_REG(u8 reg)
121 {
122 	return reg * 16;
123 }
124 
125 static u8 FAN_TO_REG(long rpm, int div)
126 {
127 	if (rpm == -1)
128 		return 0;
129 	if (rpm == 0)
130 		return 255;
131 	rpm = SENSORS_LIMIT(rpm, 1, 1000000);
132 	return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
133 }
134 
135 static int FAN_FROM_REG(u8 val, int div)
136 {
137 	return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
138 }
139 
140 /* These constants are a guess, consistent w/ w83781d */
141 #define ASB100_TEMP_MIN (-128000)
142 #define ASB100_TEMP_MAX ( 127000)
143 
144 /* TEMP: 0.001C/bit (-128C to +127C)
145    REG: 1C/bit, two's complement */
146 static u8 TEMP_TO_REG(int temp)
147 {
148 	int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
149 	ntemp += (ntemp<0 ? -500 : 500);
150 	return (u8)(ntemp / 1000);
151 }
152 
153 static int TEMP_FROM_REG(u8 reg)
154 {
155 	return (s8)reg * 1000;
156 }
157 
158 /* PWM: 0 - 255 per sensors documentation
159    REG: (6.25% duty cycle per bit) */
160 static u8 ASB100_PWM_TO_REG(int pwm)
161 {
162 	pwm = SENSORS_LIMIT(pwm, 0, 255);
163 	return (u8)(pwm / 16);
164 }
165 
166 static int ASB100_PWM_FROM_REG(u8 reg)
167 {
168 	return reg * 16;
169 }
170 
171 #define DIV_FROM_REG(val) (1 << (val))
172 
173 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
174    REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
175 static u8 DIV_TO_REG(long val)
176 {
177 	return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
178 }
179 
180 /* For each registered client, we need to keep some data in memory. That
181    data is pointed to by client->data. The structure itself is
182    dynamically allocated, at the same time the client itself is allocated. */
183 struct asb100_data {
184 	struct i2c_client client;
185 	struct class_device *class_dev;
186 	struct mutex lock;
187 	enum chips type;
188 
189 	struct mutex update_lock;
190 	unsigned long last_updated;	/* In jiffies */
191 
192 	/* array of 2 pointers to subclients */
193 	struct i2c_client *lm75[2];
194 
195 	char valid;		/* !=0 if following fields are valid */
196 	u8 in[7];		/* Register value */
197 	u8 in_max[7];		/* Register value */
198 	u8 in_min[7];		/* Register value */
199 	u8 fan[3];		/* Register value */
200 	u8 fan_min[3];		/* Register value */
201 	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
202 	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
203 	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
204 	u8 fan_div[3];		/* Register encoding, right justified */
205 	u8 pwm;			/* Register encoding */
206 	u8 vid;			/* Register encoding, combined */
207 	u32 alarms;		/* Register encoding, combined */
208 	u8 vrm;
209 };
210 
211 static int asb100_read_value(struct i2c_client *client, u16 reg);
212 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
213 
214 static int asb100_attach_adapter(struct i2c_adapter *adapter);
215 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind);
216 static int asb100_detach_client(struct i2c_client *client);
217 static struct asb100_data *asb100_update_device(struct device *dev);
218 static void asb100_init_client(struct i2c_client *client);
219 
220 static struct i2c_driver asb100_driver = {
221 	.driver = {
222 		.name	= "asb100",
223 	},
224 	.id		= I2C_DRIVERID_ASB100,
225 	.attach_adapter	= asb100_attach_adapter,
226 	.detach_client	= asb100_detach_client,
227 };
228 
229 /* 7 Voltages */
230 #define show_in_reg(reg) \
231 static ssize_t show_##reg (struct device *dev, char *buf, int nr) \
232 { \
233 	struct asb100_data *data = asb100_update_device(dev); \
234 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
235 }
236 
237 show_in_reg(in)
238 show_in_reg(in_min)
239 show_in_reg(in_max)
240 
241 #define set_in_reg(REG, reg) \
242 static ssize_t set_in_##reg(struct device *dev, const char *buf, \
243 		size_t count, int nr) \
244 { \
245 	struct i2c_client *client = to_i2c_client(dev); \
246 	struct asb100_data *data = i2c_get_clientdata(client); \
247 	unsigned long val = simple_strtoul(buf, NULL, 10); \
248  \
249 	mutex_lock(&data->update_lock); \
250 	data->in_##reg[nr] = IN_TO_REG(val); \
251 	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
252 		data->in_##reg[nr]); \
253 	mutex_unlock(&data->update_lock); \
254 	return count; \
255 }
256 
257 set_in_reg(MIN, min)
258 set_in_reg(MAX, max)
259 
260 #define sysfs_in(offset) \
261 static ssize_t \
262 	show_in##offset (struct device *dev, struct device_attribute *attr, char *buf) \
263 { \
264 	return show_in(dev, buf, offset); \
265 } \
266 static DEVICE_ATTR(in##offset##_input, S_IRUGO, \
267 		show_in##offset, NULL); \
268 static ssize_t \
269 	show_in##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
270 { \
271 	return show_in_min(dev, buf, offset); \
272 } \
273 static ssize_t \
274 	show_in##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \
275 { \
276 	return show_in_max(dev, buf, offset); \
277 } \
278 static ssize_t set_in##offset##_min (struct device *dev, struct device_attribute *attr, \
279 		const char *buf, size_t count) \
280 { \
281 	return set_in_min(dev, buf, count, offset); \
282 } \
283 static ssize_t set_in##offset##_max (struct device *dev, struct device_attribute *attr, \
284 		const char *buf, size_t count) \
285 { \
286 	return set_in_max(dev, buf, count, offset); \
287 } \
288 static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
289 		show_in##offset##_min, set_in##offset##_min); \
290 static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
291 		show_in##offset##_max, set_in##offset##_max);
292 
293 sysfs_in(0);
294 sysfs_in(1);
295 sysfs_in(2);
296 sysfs_in(3);
297 sysfs_in(4);
298 sysfs_in(5);
299 sysfs_in(6);
300 
301 /* 3 Fans */
302 static ssize_t show_fan(struct device *dev, char *buf, int nr)
303 {
304 	struct asb100_data *data = asb100_update_device(dev);
305 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
306 		DIV_FROM_REG(data->fan_div[nr])));
307 }
308 
309 static ssize_t show_fan_min(struct device *dev, char *buf, int nr)
310 {
311 	struct asb100_data *data = asb100_update_device(dev);
312 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
313 		DIV_FROM_REG(data->fan_div[nr])));
314 }
315 
316 static ssize_t show_fan_div(struct device *dev, char *buf, int nr)
317 {
318 	struct asb100_data *data = asb100_update_device(dev);
319 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
320 }
321 
322 static ssize_t set_fan_min(struct device *dev, const char *buf,
323 				size_t count, int nr)
324 {
325 	struct i2c_client *client = to_i2c_client(dev);
326 	struct asb100_data *data = i2c_get_clientdata(client);
327 	u32 val = simple_strtoul(buf, NULL, 10);
328 
329 	mutex_lock(&data->update_lock);
330 	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
331 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
332 	mutex_unlock(&data->update_lock);
333 	return count;
334 }
335 
336 /* Note: we save and restore the fan minimum here, because its value is
337    determined in part by the fan divisor.  This follows the principle of
338    least surprise; the user doesn't expect the fan minimum to change just
339    because the divisor changed. */
340 static ssize_t set_fan_div(struct device *dev, const char *buf,
341 				size_t count, int nr)
342 {
343 	struct i2c_client *client = to_i2c_client(dev);
344 	struct asb100_data *data = i2c_get_clientdata(client);
345 	unsigned long min;
346 	unsigned long val = simple_strtoul(buf, NULL, 10);
347 	int reg;
348 
349 	mutex_lock(&data->update_lock);
350 
351 	min = FAN_FROM_REG(data->fan_min[nr],
352 			DIV_FROM_REG(data->fan_div[nr]));
353 	data->fan_div[nr] = DIV_TO_REG(val);
354 
355 	switch(nr) {
356 	case 0:	/* fan 1 */
357 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
358 		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
359 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
360 		break;
361 
362 	case 1:	/* fan 2 */
363 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
364 		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
365 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
366 		break;
367 
368 	case 2:	/* fan 3 */
369 		reg = asb100_read_value(client, ASB100_REG_PIN);
370 		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
371 		asb100_write_value(client, ASB100_REG_PIN, reg);
372 		break;
373 	}
374 
375 	data->fan_min[nr] =
376 		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
377 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
378 
379 	mutex_unlock(&data->update_lock);
380 
381 	return count;
382 }
383 
384 #define sysfs_fan(offset) \
385 static ssize_t show_fan##offset(struct device *dev, struct device_attribute *attr, char *buf) \
386 { \
387 	return show_fan(dev, buf, offset - 1); \
388 } \
389 static ssize_t show_fan##offset##_min(struct device *dev, struct device_attribute *attr, char *buf) \
390 { \
391 	return show_fan_min(dev, buf, offset - 1); \
392 } \
393 static ssize_t show_fan##offset##_div(struct device *dev, struct device_attribute *attr, char *buf) \
394 { \
395 	return show_fan_div(dev, buf, offset - 1); \
396 } \
397 static ssize_t set_fan##offset##_min(struct device *dev, struct device_attribute *attr, const char *buf, \
398 					size_t count) \
399 { \
400 	return set_fan_min(dev, buf, count, offset - 1); \
401 } \
402 static ssize_t set_fan##offset##_div(struct device *dev, struct device_attribute *attr, const char *buf, \
403 					size_t count) \
404 { \
405 	return set_fan_div(dev, buf, count, offset - 1); \
406 } \
407 static DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
408 		show_fan##offset, NULL); \
409 static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
410 		show_fan##offset##_min, set_fan##offset##_min); \
411 static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
412 		show_fan##offset##_div, set_fan##offset##_div);
413 
414 sysfs_fan(1);
415 sysfs_fan(2);
416 sysfs_fan(3);
417 
418 /* 4 Temp. Sensors */
419 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
420 {
421 	int ret = 0;
422 
423 	switch (nr) {
424 	case 1: case 2:
425 		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
426 		break;
427 	case 0: case 3: default:
428 		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
429 		break;
430 	}
431 	return ret;
432 }
433 
434 #define show_temp_reg(reg) \
435 static ssize_t show_##reg(struct device *dev, char *buf, int nr) \
436 { \
437 	struct asb100_data *data = asb100_update_device(dev); \
438 	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
439 }
440 
441 show_temp_reg(temp);
442 show_temp_reg(temp_max);
443 show_temp_reg(temp_hyst);
444 
445 #define set_temp_reg(REG, reg) \
446 static ssize_t set_##reg(struct device *dev, const char *buf, \
447 			size_t count, int nr) \
448 { \
449 	struct i2c_client *client = to_i2c_client(dev); \
450 	struct asb100_data *data = i2c_get_clientdata(client); \
451 	unsigned long val = simple_strtoul(buf, NULL, 10); \
452  \
453 	mutex_lock(&data->update_lock); \
454 	switch (nr) { \
455 	case 1: case 2: \
456 		data->reg[nr] = LM75_TEMP_TO_REG(val); \
457 		break; \
458 	case 0: case 3: default: \
459 		data->reg[nr] = TEMP_TO_REG(val); \
460 		break; \
461 	} \
462 	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
463 			data->reg[nr]); \
464 	mutex_unlock(&data->update_lock); \
465 	return count; \
466 }
467 
468 set_temp_reg(MAX, temp_max);
469 set_temp_reg(HYST, temp_hyst);
470 
471 #define sysfs_temp(num) \
472 static ssize_t show_temp##num(struct device *dev, struct device_attribute *attr, char *buf) \
473 { \
474 	return show_temp(dev, buf, num-1); \
475 } \
476 static DEVICE_ATTR(temp##num##_input, S_IRUGO, show_temp##num, NULL); \
477 static ssize_t show_temp_max##num(struct device *dev, struct device_attribute *attr, char *buf) \
478 { \
479 	return show_temp_max(dev, buf, num-1); \
480 } \
481 static ssize_t set_temp_max##num(struct device *dev, struct device_attribute *attr, const char *buf, \
482 					size_t count) \
483 { \
484 	return set_temp_max(dev, buf, count, num-1); \
485 } \
486 static DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
487 		show_temp_max##num, set_temp_max##num); \
488 static ssize_t show_temp_hyst##num(struct device *dev, struct device_attribute *attr, char *buf) \
489 { \
490 	return show_temp_hyst(dev, buf, num-1); \
491 } \
492 static ssize_t set_temp_hyst##num(struct device *dev, struct device_attribute *attr, const char *buf, \
493 					size_t count) \
494 { \
495 	return set_temp_hyst(dev, buf, count, num-1); \
496 } \
497 static DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
498 		show_temp_hyst##num, set_temp_hyst##num);
499 
500 sysfs_temp(1);
501 sysfs_temp(2);
502 sysfs_temp(3);
503 sysfs_temp(4);
504 
505 /* VID */
506 static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf)
507 {
508 	struct asb100_data *data = asb100_update_device(dev);
509 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
510 }
511 
512 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
513 
514 /* VRM */
515 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, char *buf)
516 {
517 	struct asb100_data *data = asb100_update_device(dev);
518 	return sprintf(buf, "%d\n", data->vrm);
519 }
520 
521 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
522 {
523 	struct i2c_client *client = to_i2c_client(dev);
524 	struct asb100_data *data = i2c_get_clientdata(client);
525 	unsigned long val = simple_strtoul(buf, NULL, 10);
526 	data->vrm = val;
527 	return count;
528 }
529 
530 /* Alarms */
531 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
532 
533 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
534 {
535 	struct asb100_data *data = asb100_update_device(dev);
536 	return sprintf(buf, "%u\n", data->alarms);
537 }
538 
539 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
540 
541 /* 1 PWM */
542 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr, char *buf)
543 {
544 	struct asb100_data *data = asb100_update_device(dev);
545 	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
546 }
547 
548 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
549 {
550 	struct i2c_client *client = to_i2c_client(dev);
551 	struct asb100_data *data = i2c_get_clientdata(client);
552 	unsigned long val = simple_strtoul(buf, NULL, 10);
553 
554 	mutex_lock(&data->update_lock);
555 	data->pwm &= 0x80; /* keep the enable bit */
556 	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
557 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
558 	mutex_unlock(&data->update_lock);
559 	return count;
560 }
561 
562 static ssize_t show_pwm_enable1(struct device *dev, struct device_attribute *attr, char *buf)
563 {
564 	struct asb100_data *data = asb100_update_device(dev);
565 	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
566 }
567 
568 static ssize_t set_pwm_enable1(struct device *dev, struct device_attribute *attr, const char *buf,
569 				size_t count)
570 {
571 	struct i2c_client *client = to_i2c_client(dev);
572 	struct asb100_data *data = i2c_get_clientdata(client);
573 	unsigned long val = simple_strtoul(buf, NULL, 10);
574 
575 	mutex_lock(&data->update_lock);
576 	data->pwm &= 0x0f; /* keep the duty cycle bits */
577 	data->pwm |= (val ? 0x80 : 0x00);
578 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
579 	mutex_unlock(&data->update_lock);
580 	return count;
581 }
582 
583 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
584 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
585 		show_pwm_enable1, set_pwm_enable1);
586 
587 static struct attribute *asb100_attributes[] = {
588 	&dev_attr_in0_input.attr,
589 	&dev_attr_in0_min.attr,
590 	&dev_attr_in0_max.attr,
591 	&dev_attr_in1_input.attr,
592 	&dev_attr_in1_min.attr,
593 	&dev_attr_in1_max.attr,
594 	&dev_attr_in2_input.attr,
595 	&dev_attr_in2_min.attr,
596 	&dev_attr_in2_max.attr,
597 	&dev_attr_in3_input.attr,
598 	&dev_attr_in3_min.attr,
599 	&dev_attr_in3_max.attr,
600 	&dev_attr_in4_input.attr,
601 	&dev_attr_in4_min.attr,
602 	&dev_attr_in4_max.attr,
603 	&dev_attr_in5_input.attr,
604 	&dev_attr_in5_min.attr,
605 	&dev_attr_in5_max.attr,
606 	&dev_attr_in6_input.attr,
607 	&dev_attr_in6_min.attr,
608 	&dev_attr_in6_max.attr,
609 
610 	&dev_attr_fan1_input.attr,
611 	&dev_attr_fan1_min.attr,
612 	&dev_attr_fan1_div.attr,
613 	&dev_attr_fan2_input.attr,
614 	&dev_attr_fan2_min.attr,
615 	&dev_attr_fan2_div.attr,
616 	&dev_attr_fan3_input.attr,
617 	&dev_attr_fan3_min.attr,
618 	&dev_attr_fan3_div.attr,
619 
620 	&dev_attr_temp1_input.attr,
621 	&dev_attr_temp1_max.attr,
622 	&dev_attr_temp1_max_hyst.attr,
623 	&dev_attr_temp2_input.attr,
624 	&dev_attr_temp2_max.attr,
625 	&dev_attr_temp2_max_hyst.attr,
626 	&dev_attr_temp3_input.attr,
627 	&dev_attr_temp3_max.attr,
628 	&dev_attr_temp3_max_hyst.attr,
629 	&dev_attr_temp4_input.attr,
630 	&dev_attr_temp4_max.attr,
631 	&dev_attr_temp4_max_hyst.attr,
632 
633 	&dev_attr_cpu0_vid.attr,
634 	&dev_attr_vrm.attr,
635 	&dev_attr_alarms.attr,
636 	&dev_attr_pwm1.attr,
637 	&dev_attr_pwm1_enable.attr,
638 
639 	NULL
640 };
641 
642 static const struct attribute_group asb100_group = {
643 	.attrs = asb100_attributes,
644 };
645 
646 /* This function is called when:
647 	asb100_driver is inserted (when this module is loaded), for each
648 		available adapter
649 	when a new adapter is inserted (and asb100_driver is still present)
650  */
651 static int asb100_attach_adapter(struct i2c_adapter *adapter)
652 {
653 	if (!(adapter->class & I2C_CLASS_HWMON))
654 		return 0;
655 	return i2c_probe(adapter, &addr_data, asb100_detect);
656 }
657 
658 static int asb100_detect_subclients(struct i2c_adapter *adapter, int address,
659 		int kind, struct i2c_client *new_client)
660 {
661 	int i, id, err;
662 	struct asb100_data *data = i2c_get_clientdata(new_client);
663 
664 	data->lm75[0] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
665 	if (!(data->lm75[0])) {
666 		err = -ENOMEM;
667 		goto ERROR_SC_0;
668 	}
669 
670 	data->lm75[1] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
671 	if (!(data->lm75[1])) {
672 		err = -ENOMEM;
673 		goto ERROR_SC_1;
674 	}
675 
676 	id = i2c_adapter_id(adapter);
677 
678 	if (force_subclients[0] == id && force_subclients[1] == address) {
679 		for (i = 2; i <= 3; i++) {
680 			if (force_subclients[i] < 0x48 ||
681 			    force_subclients[i] > 0x4f) {
682 				dev_err(&new_client->dev, "invalid subclient "
683 					"address %d; must be 0x48-0x4f\n",
684 					force_subclients[i]);
685 				err = -ENODEV;
686 				goto ERROR_SC_2;
687 			}
688 		}
689 		asb100_write_value(new_client, ASB100_REG_I2C_SUBADDR,
690 					(force_subclients[2] & 0x07) |
691 					((force_subclients[3] & 0x07) <<4));
692 		data->lm75[0]->addr = force_subclients[2];
693 		data->lm75[1]->addr = force_subclients[3];
694 	} else {
695 		int val = asb100_read_value(new_client, ASB100_REG_I2C_SUBADDR);
696 		data->lm75[0]->addr = 0x48 + (val & 0x07);
697 		data->lm75[1]->addr = 0x48 + ((val >> 4) & 0x07);
698 	}
699 
700 	if(data->lm75[0]->addr == data->lm75[1]->addr) {
701 		dev_err(&new_client->dev, "duplicate addresses 0x%x "
702 				"for subclients\n", data->lm75[0]->addr);
703 		err = -ENODEV;
704 		goto ERROR_SC_2;
705 	}
706 
707 	for (i = 0; i <= 1; i++) {
708 		i2c_set_clientdata(data->lm75[i], NULL);
709 		data->lm75[i]->adapter = adapter;
710 		data->lm75[i]->driver = &asb100_driver;
711 		data->lm75[i]->flags = 0;
712 		strlcpy(data->lm75[i]->name, "asb100 subclient", I2C_NAME_SIZE);
713 	}
714 
715 	if ((err = i2c_attach_client(data->lm75[0]))) {
716 		dev_err(&new_client->dev, "subclient %d registration "
717 			"at address 0x%x failed.\n", i, data->lm75[0]->addr);
718 		goto ERROR_SC_2;
719 	}
720 
721 	if ((err = i2c_attach_client(data->lm75[1]))) {
722 		dev_err(&new_client->dev, "subclient %d registration "
723 			"at address 0x%x failed.\n", i, data->lm75[1]->addr);
724 		goto ERROR_SC_3;
725 	}
726 
727 	return 0;
728 
729 /* Undo inits in case of errors */
730 ERROR_SC_3:
731 	i2c_detach_client(data->lm75[0]);
732 ERROR_SC_2:
733 	kfree(data->lm75[1]);
734 ERROR_SC_1:
735 	kfree(data->lm75[0]);
736 ERROR_SC_0:
737 	return err;
738 }
739 
740 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind)
741 {
742 	int err;
743 	struct i2c_client *new_client;
744 	struct asb100_data *data;
745 
746 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
747 		pr_debug("asb100.o: detect failed, "
748 				"smbus byte data not supported!\n");
749 		err = -ENODEV;
750 		goto ERROR0;
751 	}
752 
753 	/* OK. For now, we presume we have a valid client. We now create the
754 	   client structure, even though we cannot fill it completely yet.
755 	   But it allows us to access asb100_{read,write}_value. */
756 
757 	if (!(data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL))) {
758 		pr_debug("asb100.o: detect failed, kzalloc failed!\n");
759 		err = -ENOMEM;
760 		goto ERROR0;
761 	}
762 
763 	new_client = &data->client;
764 	mutex_init(&data->lock);
765 	i2c_set_clientdata(new_client, data);
766 	new_client->addr = address;
767 	new_client->adapter = adapter;
768 	new_client->driver = &asb100_driver;
769 	new_client->flags = 0;
770 
771 	/* Now, we do the remaining detection. */
772 
773 	/* The chip may be stuck in some other bank than bank 0. This may
774 	   make reading other information impossible. Specify a force=... or
775 	   force_*=... parameter, and the chip will be reset to the right
776 	   bank. */
777 	if (kind < 0) {
778 
779 		int val1 = asb100_read_value(new_client, ASB100_REG_BANK);
780 		int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN);
781 
782 		/* If we're in bank 0 */
783 		if ( (!(val1 & 0x07)) &&
784 				/* Check for ASB100 ID (low byte) */
785 				( ((!(val1 & 0x80)) && (val2 != 0x94)) ||
786 				/* Check for ASB100 ID (high byte ) */
787 				((val1 & 0x80) && (val2 != 0x06)) ) ) {
788 			pr_debug("asb100.o: detect failed, "
789 					"bad chip id 0x%02x!\n", val2);
790 			err = -ENODEV;
791 			goto ERROR1;
792 		}
793 
794 	} /* kind < 0 */
795 
796 	/* We have either had a force parameter, or we have already detected
797 	   Winbond. Put it now into bank 0 and Vendor ID High Byte */
798 	asb100_write_value(new_client, ASB100_REG_BANK,
799 		(asb100_read_value(new_client, ASB100_REG_BANK) & 0x78) | 0x80);
800 
801 	/* Determine the chip type. */
802 	if (kind <= 0) {
803 		int val1 = asb100_read_value(new_client, ASB100_REG_WCHIPID);
804 		int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN);
805 
806 		if ((val1 == 0x31) && (val2 == 0x06))
807 			kind = asb100;
808 		else {
809 			if (kind == 0)
810 				dev_warn(&new_client->dev, "ignoring "
811 					"'force' parameter for unknown chip "
812 					"at adapter %d, address 0x%02x.\n",
813 					i2c_adapter_id(adapter), address);
814 			err = -ENODEV;
815 			goto ERROR1;
816 		}
817 	}
818 
819 	/* Fill in remaining client fields and put it into the global list */
820 	strlcpy(new_client->name, "asb100", I2C_NAME_SIZE);
821 	data->type = kind;
822 
823 	data->valid = 0;
824 	mutex_init(&data->update_lock);
825 
826 	/* Tell the I2C layer a new client has arrived */
827 	if ((err = i2c_attach_client(new_client)))
828 		goto ERROR1;
829 
830 	/* Attach secondary lm75 clients */
831 	if ((err = asb100_detect_subclients(adapter, address, kind,
832 			new_client)))
833 		goto ERROR2;
834 
835 	/* Initialize the chip */
836 	asb100_init_client(new_client);
837 
838 	/* A few vars need to be filled upon startup */
839 	data->fan_min[0] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(0));
840 	data->fan_min[1] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(1));
841 	data->fan_min[2] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(2));
842 
843 	/* Register sysfs hooks */
844 	if ((err = sysfs_create_group(&new_client->dev.kobj, &asb100_group)))
845 		goto ERROR3;
846 
847 	data->class_dev = hwmon_device_register(&new_client->dev);
848 	if (IS_ERR(data->class_dev)) {
849 		err = PTR_ERR(data->class_dev);
850 		goto ERROR4;
851 	}
852 
853 	return 0;
854 
855 ERROR4:
856 	sysfs_remove_group(&new_client->dev.kobj, &asb100_group);
857 ERROR3:
858 	i2c_detach_client(data->lm75[1]);
859 	i2c_detach_client(data->lm75[0]);
860 	kfree(data->lm75[1]);
861 	kfree(data->lm75[0]);
862 ERROR2:
863 	i2c_detach_client(new_client);
864 ERROR1:
865 	kfree(data);
866 ERROR0:
867 	return err;
868 }
869 
870 static int asb100_detach_client(struct i2c_client *client)
871 {
872 	struct asb100_data *data = i2c_get_clientdata(client);
873 	int err;
874 
875 	/* main client */
876 	if (data) {
877 		hwmon_device_unregister(data->class_dev);
878 		sysfs_remove_group(&client->dev.kobj, &asb100_group);
879 	}
880 
881 	if ((err = i2c_detach_client(client)))
882 		return err;
883 
884 	/* main client */
885 	if (data)
886 		kfree(data);
887 
888 	/* subclient */
889 	else
890 		kfree(client);
891 
892 	return 0;
893 }
894 
895 /* The SMBus locks itself, usually, but nothing may access the chip between
896    bank switches. */
897 static int asb100_read_value(struct i2c_client *client, u16 reg)
898 {
899 	struct asb100_data *data = i2c_get_clientdata(client);
900 	struct i2c_client *cl;
901 	int res, bank;
902 
903 	mutex_lock(&data->lock);
904 
905 	bank = (reg >> 8) & 0x0f;
906 	if (bank > 2)
907 		/* switch banks */
908 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
909 
910 	if (bank == 0 || bank > 2) {
911 		res = i2c_smbus_read_byte_data(client, reg & 0xff);
912 	} else {
913 		/* switch to subclient */
914 		cl = data->lm75[bank - 1];
915 
916 		/* convert from ISA to LM75 I2C addresses */
917 		switch (reg & 0xff) {
918 		case 0x50: /* TEMP */
919 			res = swab16(i2c_smbus_read_word_data (cl, 0));
920 			break;
921 		case 0x52: /* CONFIG */
922 			res = i2c_smbus_read_byte_data(cl, 1);
923 			break;
924 		case 0x53: /* HYST */
925 			res = swab16(i2c_smbus_read_word_data (cl, 2));
926 			break;
927 		case 0x55: /* MAX */
928 		default:
929 			res = swab16(i2c_smbus_read_word_data (cl, 3));
930 			break;
931 		}
932 	}
933 
934 	if (bank > 2)
935 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
936 
937 	mutex_unlock(&data->lock);
938 
939 	return res;
940 }
941 
942 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
943 {
944 	struct asb100_data *data = i2c_get_clientdata(client);
945 	struct i2c_client *cl;
946 	int bank;
947 
948 	mutex_lock(&data->lock);
949 
950 	bank = (reg >> 8) & 0x0f;
951 	if (bank > 2)
952 		/* switch banks */
953 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
954 
955 	if (bank == 0 || bank > 2) {
956 		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
957 	} else {
958 		/* switch to subclient */
959 		cl = data->lm75[bank - 1];
960 
961 		/* convert from ISA to LM75 I2C addresses */
962 		switch (reg & 0xff) {
963 		case 0x52: /* CONFIG */
964 			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
965 			break;
966 		case 0x53: /* HYST */
967 			i2c_smbus_write_word_data(cl, 2, swab16(value));
968 			break;
969 		case 0x55: /* MAX */
970 			i2c_smbus_write_word_data(cl, 3, swab16(value));
971 			break;
972 		}
973 	}
974 
975 	if (bank > 2)
976 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
977 
978 	mutex_unlock(&data->lock);
979 }
980 
981 static void asb100_init_client(struct i2c_client *client)
982 {
983 	struct asb100_data *data = i2c_get_clientdata(client);
984 	int vid = 0;
985 
986 	vid = asb100_read_value(client, ASB100_REG_VID_FANDIV) & 0x0f;
987 	vid |= (asb100_read_value(client, ASB100_REG_CHIPID) & 0x01) << 4;
988 	data->vrm = vid_which_vrm();
989 	vid = vid_from_reg(vid, data->vrm);
990 
991 	/* Start monitoring */
992 	asb100_write_value(client, ASB100_REG_CONFIG,
993 		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
994 }
995 
996 static struct asb100_data *asb100_update_device(struct device *dev)
997 {
998 	struct i2c_client *client = to_i2c_client(dev);
999 	struct asb100_data *data = i2c_get_clientdata(client);
1000 	int i;
1001 
1002 	mutex_lock(&data->update_lock);
1003 
1004 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
1005 		|| !data->valid) {
1006 
1007 		dev_dbg(&client->dev, "starting device update...\n");
1008 
1009 		/* 7 voltage inputs */
1010 		for (i = 0; i < 7; i++) {
1011 			data->in[i] = asb100_read_value(client,
1012 				ASB100_REG_IN(i));
1013 			data->in_min[i] = asb100_read_value(client,
1014 				ASB100_REG_IN_MIN(i));
1015 			data->in_max[i] = asb100_read_value(client,
1016 				ASB100_REG_IN_MAX(i));
1017 		}
1018 
1019 		/* 3 fan inputs */
1020 		for (i = 0; i < 3; i++) {
1021 			data->fan[i] = asb100_read_value(client,
1022 					ASB100_REG_FAN(i));
1023 			data->fan_min[i] = asb100_read_value(client,
1024 					ASB100_REG_FAN_MIN(i));
1025 		}
1026 
1027 		/* 4 temperature inputs */
1028 		for (i = 1; i <= 4; i++) {
1029 			data->temp[i-1] = asb100_read_value(client,
1030 					ASB100_REG_TEMP(i));
1031 			data->temp_max[i-1] = asb100_read_value(client,
1032 					ASB100_REG_TEMP_MAX(i));
1033 			data->temp_hyst[i-1] = asb100_read_value(client,
1034 					ASB100_REG_TEMP_HYST(i));
1035 		}
1036 
1037 		/* VID and fan divisors */
1038 		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
1039 		data->vid = i & 0x0f;
1040 		data->vid |= (asb100_read_value(client,
1041 				ASB100_REG_CHIPID) & 0x01) << 4;
1042 		data->fan_div[0] = (i >> 4) & 0x03;
1043 		data->fan_div[1] = (i >> 6) & 0x03;
1044 		data->fan_div[2] = (asb100_read_value(client,
1045 				ASB100_REG_PIN) >> 6) & 0x03;
1046 
1047 		/* PWM */
1048 		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
1049 
1050 		/* alarms */
1051 		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
1052 			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);
1053 
1054 		data->last_updated = jiffies;
1055 		data->valid = 1;
1056 
1057 		dev_dbg(&client->dev, "... device update complete\n");
1058 	}
1059 
1060 	mutex_unlock(&data->update_lock);
1061 
1062 	return data;
1063 }
1064 
1065 static int __init asb100_init(void)
1066 {
1067 	return i2c_add_driver(&asb100_driver);
1068 }
1069 
1070 static void __exit asb100_exit(void)
1071 {
1072 	i2c_del_driver(&asb100_driver);
1073 }
1074 
1075 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1076 MODULE_DESCRIPTION("ASB100 Bach driver");
1077 MODULE_LICENSE("GPL");
1078 
1079 module_init(asb100_init);
1080 module_exit(asb100_exit);
1081 
1082