xref: /openbmc/linux/drivers/hwmon/asb100.c (revision 5a0e3ad6)
1 /*
2     asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 	        monitoring
4 
5     Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
6 
7 	(derived from w83781d.c)
8 
9     Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
10     Philip Edelbrock <phil@netroedge.com>, and
11     Mark Studebaker <mdsxyz123@yahoo.com>
12 
13     This program is free software; you can redistribute it and/or modify
14     it under the terms of the GNU General Public License as published by
15     the Free Software Foundation; either version 2 of the License, or
16     (at your option) any later version.
17 
18     This program is distributed in the hope that it will be useful,
19     but WITHOUT ANY WARRANTY; without even the implied warranty of
20     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21     GNU General Public License for more details.
22 
23     You should have received a copy of the GNU General Public License
24     along with this program; if not, write to the Free Software
25     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27 
28 /*
29     This driver supports the hardware sensor chips: Asus ASB100 and
30     ASB100-A "BACH".
31 
32     ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
33     way for the driver to tell which one is there.
34 
35     Chip	#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
36     asb100	7	3	1	4	0x31	0x0694	yes	no
37 */
38 
39 #include <linux/module.h>
40 #include <linux/slab.h>
41 #include <linux/i2c.h>
42 #include <linux/hwmon.h>
43 #include <linux/hwmon-sysfs.h>
44 #include <linux/hwmon-vid.h>
45 #include <linux/err.h>
46 #include <linux/init.h>
47 #include <linux/jiffies.h>
48 #include <linux/mutex.h>
49 #include "lm75.h"
50 
51 /* I2C addresses to scan */
52 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
53 
54 static unsigned short force_subclients[4];
55 module_param_array(force_subclients, short, NULL, 0);
56 MODULE_PARM_DESC(force_subclients, "List of subclient addresses: "
57 	"{bus, clientaddr, subclientaddr1, subclientaddr2}");
58 
59 /* Voltage IN registers 0-6 */
60 #define ASB100_REG_IN(nr)	(0x20 + (nr))
61 #define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
62 #define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))
63 
64 /* FAN IN registers 1-3 */
65 #define ASB100_REG_FAN(nr)	(0x28 + (nr))
66 #define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))
67 
68 /* TEMPERATURE registers 1-4 */
69 static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
70 static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
71 static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};
72 
73 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
74 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
75 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
76 
77 #define ASB100_REG_TEMP2_CONFIG	0x0152
78 #define ASB100_REG_TEMP3_CONFIG	0x0252
79 
80 
81 #define ASB100_REG_CONFIG	0x40
82 #define ASB100_REG_ALARM1	0x41
83 #define ASB100_REG_ALARM2	0x42
84 #define ASB100_REG_SMIM1	0x43
85 #define ASB100_REG_SMIM2	0x44
86 #define ASB100_REG_VID_FANDIV	0x47
87 #define ASB100_REG_I2C_ADDR	0x48
88 #define ASB100_REG_CHIPID	0x49
89 #define ASB100_REG_I2C_SUBADDR	0x4a
90 #define ASB100_REG_PIN		0x4b
91 #define ASB100_REG_IRQ		0x4c
92 #define ASB100_REG_BANK		0x4e
93 #define ASB100_REG_CHIPMAN	0x4f
94 
95 #define ASB100_REG_WCHIPID	0x58
96 
97 /* bit 7 -> enable, bits 0-3 -> duty cycle */
98 #define ASB100_REG_PWM1		0x59
99 
100 /* CONVERSIONS
101    Rounding and limit checking is only done on the TO_REG variants. */
102 
103 /* These constants are a guess, consistent w/ w83781d */
104 #define ASB100_IN_MIN (   0)
105 #define ASB100_IN_MAX (4080)
106 
107 /* IN: 1/1000 V (0V to 4.08V)
108    REG: 16mV/bit */
109 static u8 IN_TO_REG(unsigned val)
110 {
111 	unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
112 	return (nval + 8) / 16;
113 }
114 
115 static unsigned IN_FROM_REG(u8 reg)
116 {
117 	return reg * 16;
118 }
119 
120 static u8 FAN_TO_REG(long rpm, int div)
121 {
122 	if (rpm == -1)
123 		return 0;
124 	if (rpm == 0)
125 		return 255;
126 	rpm = SENSORS_LIMIT(rpm, 1, 1000000);
127 	return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
128 }
129 
130 static int FAN_FROM_REG(u8 val, int div)
131 {
132 	return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
133 }
134 
135 /* These constants are a guess, consistent w/ w83781d */
136 #define ASB100_TEMP_MIN (-128000)
137 #define ASB100_TEMP_MAX ( 127000)
138 
139 /* TEMP: 0.001C/bit (-128C to +127C)
140    REG: 1C/bit, two's complement */
141 static u8 TEMP_TO_REG(long temp)
142 {
143 	int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
144 	ntemp += (ntemp<0 ? -500 : 500);
145 	return (u8)(ntemp / 1000);
146 }
147 
148 static int TEMP_FROM_REG(u8 reg)
149 {
150 	return (s8)reg * 1000;
151 }
152 
153 /* PWM: 0 - 255 per sensors documentation
154    REG: (6.25% duty cycle per bit) */
155 static u8 ASB100_PWM_TO_REG(int pwm)
156 {
157 	pwm = SENSORS_LIMIT(pwm, 0, 255);
158 	return (u8)(pwm / 16);
159 }
160 
161 static int ASB100_PWM_FROM_REG(u8 reg)
162 {
163 	return reg * 16;
164 }
165 
166 #define DIV_FROM_REG(val) (1 << (val))
167 
168 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
169    REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
170 static u8 DIV_TO_REG(long val)
171 {
172 	return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
173 }
174 
175 /* For each registered client, we need to keep some data in memory. That
176    data is pointed to by client->data. The structure itself is
177    dynamically allocated, at the same time the client itself is allocated. */
178 struct asb100_data {
179 	struct device *hwmon_dev;
180 	struct mutex lock;
181 
182 	struct mutex update_lock;
183 	unsigned long last_updated;	/* In jiffies */
184 
185 	/* array of 2 pointers to subclients */
186 	struct i2c_client *lm75[2];
187 
188 	char valid;		/* !=0 if following fields are valid */
189 	u8 in[7];		/* Register value */
190 	u8 in_max[7];		/* Register value */
191 	u8 in_min[7];		/* Register value */
192 	u8 fan[3];		/* Register value */
193 	u8 fan_min[3];		/* Register value */
194 	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
195 	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
196 	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
197 	u8 fan_div[3];		/* Register encoding, right justified */
198 	u8 pwm;			/* Register encoding */
199 	u8 vid;			/* Register encoding, combined */
200 	u32 alarms;		/* Register encoding, combined */
201 	u8 vrm;
202 };
203 
204 static int asb100_read_value(struct i2c_client *client, u16 reg);
205 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
206 
207 static int asb100_probe(struct i2c_client *client,
208 			const struct i2c_device_id *id);
209 static int asb100_detect(struct i2c_client *client,
210 			 struct i2c_board_info *info);
211 static int asb100_remove(struct i2c_client *client);
212 static struct asb100_data *asb100_update_device(struct device *dev);
213 static void asb100_init_client(struct i2c_client *client);
214 
215 static const struct i2c_device_id asb100_id[] = {
216 	{ "asb100", 0 },
217 	{ }
218 };
219 MODULE_DEVICE_TABLE(i2c, asb100_id);
220 
221 static struct i2c_driver asb100_driver = {
222 	.class		= I2C_CLASS_HWMON,
223 	.driver = {
224 		.name	= "asb100",
225 	},
226 	.probe		= asb100_probe,
227 	.remove		= asb100_remove,
228 	.id_table	= asb100_id,
229 	.detect		= asb100_detect,
230 	.address_list	= normal_i2c,
231 };
232 
233 /* 7 Voltages */
234 #define show_in_reg(reg) \
235 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
236 		char *buf) \
237 { \
238 	int nr = to_sensor_dev_attr(attr)->index; \
239 	struct asb100_data *data = asb100_update_device(dev); \
240 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
241 }
242 
243 show_in_reg(in)
244 show_in_reg(in_min)
245 show_in_reg(in_max)
246 
247 #define set_in_reg(REG, reg) \
248 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
249 		const char *buf, size_t count) \
250 { \
251 	int nr = to_sensor_dev_attr(attr)->index; \
252 	struct i2c_client *client = to_i2c_client(dev); \
253 	struct asb100_data *data = i2c_get_clientdata(client); \
254 	unsigned long val = simple_strtoul(buf, NULL, 10); \
255  \
256 	mutex_lock(&data->update_lock); \
257 	data->in_##reg[nr] = IN_TO_REG(val); \
258 	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
259 		data->in_##reg[nr]); \
260 	mutex_unlock(&data->update_lock); \
261 	return count; \
262 }
263 
264 set_in_reg(MIN, min)
265 set_in_reg(MAX, max)
266 
267 #define sysfs_in(offset) \
268 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
269 		show_in, NULL, offset); \
270 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
271 		show_in_min, set_in_min, offset); \
272 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
273 		show_in_max, set_in_max, offset)
274 
275 sysfs_in(0);
276 sysfs_in(1);
277 sysfs_in(2);
278 sysfs_in(3);
279 sysfs_in(4);
280 sysfs_in(5);
281 sysfs_in(6);
282 
283 /* 3 Fans */
284 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
285 		char *buf)
286 {
287 	int nr = to_sensor_dev_attr(attr)->index;
288 	struct asb100_data *data = asb100_update_device(dev);
289 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
290 		DIV_FROM_REG(data->fan_div[nr])));
291 }
292 
293 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
294 		char *buf)
295 {
296 	int nr = to_sensor_dev_attr(attr)->index;
297 	struct asb100_data *data = asb100_update_device(dev);
298 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
299 		DIV_FROM_REG(data->fan_div[nr])));
300 }
301 
302 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
303 		char *buf)
304 {
305 	int nr = to_sensor_dev_attr(attr)->index;
306 	struct asb100_data *data = asb100_update_device(dev);
307 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
308 }
309 
310 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
311 		const char *buf, size_t count)
312 {
313 	int nr = to_sensor_dev_attr(attr)->index;
314 	struct i2c_client *client = to_i2c_client(dev);
315 	struct asb100_data *data = i2c_get_clientdata(client);
316 	u32 val = simple_strtoul(buf, NULL, 10);
317 
318 	mutex_lock(&data->update_lock);
319 	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
320 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
321 	mutex_unlock(&data->update_lock);
322 	return count;
323 }
324 
325 /* Note: we save and restore the fan minimum here, because its value is
326    determined in part by the fan divisor.  This follows the principle of
327    least surprise; the user doesn't expect the fan minimum to change just
328    because the divisor changed. */
329 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
330 		const char *buf, size_t count)
331 {
332 	int nr = to_sensor_dev_attr(attr)->index;
333 	struct i2c_client *client = to_i2c_client(dev);
334 	struct asb100_data *data = i2c_get_clientdata(client);
335 	unsigned long min;
336 	unsigned long val = simple_strtoul(buf, NULL, 10);
337 	int reg;
338 
339 	mutex_lock(&data->update_lock);
340 
341 	min = FAN_FROM_REG(data->fan_min[nr],
342 			DIV_FROM_REG(data->fan_div[nr]));
343 	data->fan_div[nr] = DIV_TO_REG(val);
344 
345 	switch (nr) {
346 	case 0:	/* fan 1 */
347 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
348 		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
349 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
350 		break;
351 
352 	case 1:	/* fan 2 */
353 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
354 		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
355 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
356 		break;
357 
358 	case 2:	/* fan 3 */
359 		reg = asb100_read_value(client, ASB100_REG_PIN);
360 		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
361 		asb100_write_value(client, ASB100_REG_PIN, reg);
362 		break;
363 	}
364 
365 	data->fan_min[nr] =
366 		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
367 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
368 
369 	mutex_unlock(&data->update_lock);
370 
371 	return count;
372 }
373 
374 #define sysfs_fan(offset) \
375 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
376 		show_fan, NULL, offset - 1); \
377 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
378 		show_fan_min, set_fan_min, offset - 1); \
379 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
380 		show_fan_div, set_fan_div, offset - 1)
381 
382 sysfs_fan(1);
383 sysfs_fan(2);
384 sysfs_fan(3);
385 
386 /* 4 Temp. Sensors */
387 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
388 {
389 	int ret = 0;
390 
391 	switch (nr) {
392 	case 1: case 2:
393 		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
394 		break;
395 	case 0: case 3: default:
396 		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
397 		break;
398 	}
399 	return ret;
400 }
401 
402 #define show_temp_reg(reg) \
403 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
404 		char *buf) \
405 { \
406 	int nr = to_sensor_dev_attr(attr)->index; \
407 	struct asb100_data *data = asb100_update_device(dev); \
408 	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
409 }
410 
411 show_temp_reg(temp);
412 show_temp_reg(temp_max);
413 show_temp_reg(temp_hyst);
414 
415 #define set_temp_reg(REG, reg) \
416 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
417 		const char *buf, size_t count) \
418 { \
419 	int nr = to_sensor_dev_attr(attr)->index; \
420 	struct i2c_client *client = to_i2c_client(dev); \
421 	struct asb100_data *data = i2c_get_clientdata(client); \
422 	long val = simple_strtol(buf, NULL, 10); \
423  \
424 	mutex_lock(&data->update_lock); \
425 	switch (nr) { \
426 	case 1: case 2: \
427 		data->reg[nr] = LM75_TEMP_TO_REG(val); \
428 		break; \
429 	case 0: case 3: default: \
430 		data->reg[nr] = TEMP_TO_REG(val); \
431 		break; \
432 	} \
433 	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
434 			data->reg[nr]); \
435 	mutex_unlock(&data->update_lock); \
436 	return count; \
437 }
438 
439 set_temp_reg(MAX, temp_max);
440 set_temp_reg(HYST, temp_hyst);
441 
442 #define sysfs_temp(num) \
443 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
444 		show_temp, NULL, num - 1); \
445 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
446 		show_temp_max, set_temp_max, num - 1); \
447 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
448 		show_temp_hyst, set_temp_hyst, num - 1)
449 
450 sysfs_temp(1);
451 sysfs_temp(2);
452 sysfs_temp(3);
453 sysfs_temp(4);
454 
455 /* VID */
456 static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
457 		char *buf)
458 {
459 	struct asb100_data *data = asb100_update_device(dev);
460 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
461 }
462 
463 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
464 
465 /* VRM */
466 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr,
467 		char *buf)
468 {
469 	struct asb100_data *data = dev_get_drvdata(dev);
470 	return sprintf(buf, "%d\n", data->vrm);
471 }
472 
473 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
474 		const char *buf, size_t count)
475 {
476 	struct asb100_data *data = dev_get_drvdata(dev);
477 	data->vrm = simple_strtoul(buf, NULL, 10);
478 	return count;
479 }
480 
481 /* Alarms */
482 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
483 
484 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
485 		char *buf)
486 {
487 	struct asb100_data *data = asb100_update_device(dev);
488 	return sprintf(buf, "%u\n", data->alarms);
489 }
490 
491 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
492 
493 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
494 		char *buf)
495 {
496 	int bitnr = to_sensor_dev_attr(attr)->index;
497 	struct asb100_data *data = asb100_update_device(dev);
498 	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
499 }
500 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
501 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
502 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
503 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
504 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
505 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
506 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
507 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
508 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
509 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
510 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
511 
512 /* 1 PWM */
513 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr,
514 		char *buf)
515 {
516 	struct asb100_data *data = asb100_update_device(dev);
517 	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
518 }
519 
520 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr,
521 		const char *buf, size_t count)
522 {
523 	struct i2c_client *client = to_i2c_client(dev);
524 	struct asb100_data *data = i2c_get_clientdata(client);
525 	unsigned long val = simple_strtoul(buf, NULL, 10);
526 
527 	mutex_lock(&data->update_lock);
528 	data->pwm &= 0x80; /* keep the enable bit */
529 	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
530 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
531 	mutex_unlock(&data->update_lock);
532 	return count;
533 }
534 
535 static ssize_t show_pwm_enable1(struct device *dev,
536 		struct device_attribute *attr, char *buf)
537 {
538 	struct asb100_data *data = asb100_update_device(dev);
539 	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
540 }
541 
542 static ssize_t set_pwm_enable1(struct device *dev,
543 		struct device_attribute *attr, const char *buf, size_t count)
544 {
545 	struct i2c_client *client = to_i2c_client(dev);
546 	struct asb100_data *data = i2c_get_clientdata(client);
547 	unsigned long val = simple_strtoul(buf, NULL, 10);
548 
549 	mutex_lock(&data->update_lock);
550 	data->pwm &= 0x0f; /* keep the duty cycle bits */
551 	data->pwm |= (val ? 0x80 : 0x00);
552 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
553 	mutex_unlock(&data->update_lock);
554 	return count;
555 }
556 
557 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
558 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
559 		show_pwm_enable1, set_pwm_enable1);
560 
561 static struct attribute *asb100_attributes[] = {
562 	&sensor_dev_attr_in0_input.dev_attr.attr,
563 	&sensor_dev_attr_in0_min.dev_attr.attr,
564 	&sensor_dev_attr_in0_max.dev_attr.attr,
565 	&sensor_dev_attr_in1_input.dev_attr.attr,
566 	&sensor_dev_attr_in1_min.dev_attr.attr,
567 	&sensor_dev_attr_in1_max.dev_attr.attr,
568 	&sensor_dev_attr_in2_input.dev_attr.attr,
569 	&sensor_dev_attr_in2_min.dev_attr.attr,
570 	&sensor_dev_attr_in2_max.dev_attr.attr,
571 	&sensor_dev_attr_in3_input.dev_attr.attr,
572 	&sensor_dev_attr_in3_min.dev_attr.attr,
573 	&sensor_dev_attr_in3_max.dev_attr.attr,
574 	&sensor_dev_attr_in4_input.dev_attr.attr,
575 	&sensor_dev_attr_in4_min.dev_attr.attr,
576 	&sensor_dev_attr_in4_max.dev_attr.attr,
577 	&sensor_dev_attr_in5_input.dev_attr.attr,
578 	&sensor_dev_attr_in5_min.dev_attr.attr,
579 	&sensor_dev_attr_in5_max.dev_attr.attr,
580 	&sensor_dev_attr_in6_input.dev_attr.attr,
581 	&sensor_dev_attr_in6_min.dev_attr.attr,
582 	&sensor_dev_attr_in6_max.dev_attr.attr,
583 
584 	&sensor_dev_attr_fan1_input.dev_attr.attr,
585 	&sensor_dev_attr_fan1_min.dev_attr.attr,
586 	&sensor_dev_attr_fan1_div.dev_attr.attr,
587 	&sensor_dev_attr_fan2_input.dev_attr.attr,
588 	&sensor_dev_attr_fan2_min.dev_attr.attr,
589 	&sensor_dev_attr_fan2_div.dev_attr.attr,
590 	&sensor_dev_attr_fan3_input.dev_attr.attr,
591 	&sensor_dev_attr_fan3_min.dev_attr.attr,
592 	&sensor_dev_attr_fan3_div.dev_attr.attr,
593 
594 	&sensor_dev_attr_temp1_input.dev_attr.attr,
595 	&sensor_dev_attr_temp1_max.dev_attr.attr,
596 	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
597 	&sensor_dev_attr_temp2_input.dev_attr.attr,
598 	&sensor_dev_attr_temp2_max.dev_attr.attr,
599 	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
600 	&sensor_dev_attr_temp3_input.dev_attr.attr,
601 	&sensor_dev_attr_temp3_max.dev_attr.attr,
602 	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
603 	&sensor_dev_attr_temp4_input.dev_attr.attr,
604 	&sensor_dev_attr_temp4_max.dev_attr.attr,
605 	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
606 
607 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
608 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
609 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
610 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
611 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
612 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
613 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
614 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
615 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
616 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
617 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
618 
619 	&dev_attr_cpu0_vid.attr,
620 	&dev_attr_vrm.attr,
621 	&dev_attr_alarms.attr,
622 	&dev_attr_pwm1.attr,
623 	&dev_attr_pwm1_enable.attr,
624 
625 	NULL
626 };
627 
628 static const struct attribute_group asb100_group = {
629 	.attrs = asb100_attributes,
630 };
631 
632 static int asb100_detect_subclients(struct i2c_client *client)
633 {
634 	int i, id, err;
635 	int address = client->addr;
636 	unsigned short sc_addr[2];
637 	struct asb100_data *data = i2c_get_clientdata(client);
638 	struct i2c_adapter *adapter = client->adapter;
639 
640 	id = i2c_adapter_id(adapter);
641 
642 	if (force_subclients[0] == id && force_subclients[1] == address) {
643 		for (i = 2; i <= 3; i++) {
644 			if (force_subclients[i] < 0x48 ||
645 			    force_subclients[i] > 0x4f) {
646 				dev_err(&client->dev, "invalid subclient "
647 					"address %d; must be 0x48-0x4f\n",
648 					force_subclients[i]);
649 				err = -ENODEV;
650 				goto ERROR_SC_2;
651 			}
652 		}
653 		asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
654 					(force_subclients[2] & 0x07) |
655 					((force_subclients[3] & 0x07) << 4));
656 		sc_addr[0] = force_subclients[2];
657 		sc_addr[1] = force_subclients[3];
658 	} else {
659 		int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
660 		sc_addr[0] = 0x48 + (val & 0x07);
661 		sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
662 	}
663 
664 	if (sc_addr[0] == sc_addr[1]) {
665 		dev_err(&client->dev, "duplicate addresses 0x%x "
666 				"for subclients\n", sc_addr[0]);
667 		err = -ENODEV;
668 		goto ERROR_SC_2;
669 	}
670 
671 	data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
672 	if (!data->lm75[0]) {
673 		dev_err(&client->dev, "subclient %d registration "
674 			"at address 0x%x failed.\n", 1, sc_addr[0]);
675 		err = -ENOMEM;
676 		goto ERROR_SC_2;
677 	}
678 
679 	data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
680 	if (!data->lm75[1]) {
681 		dev_err(&client->dev, "subclient %d registration "
682 			"at address 0x%x failed.\n", 2, sc_addr[1]);
683 		err = -ENOMEM;
684 		goto ERROR_SC_3;
685 	}
686 
687 	return 0;
688 
689 /* Undo inits in case of errors */
690 ERROR_SC_3:
691 	i2c_unregister_device(data->lm75[0]);
692 ERROR_SC_2:
693 	return err;
694 }
695 
696 /* Return 0 if detection is successful, -ENODEV otherwise */
697 static int asb100_detect(struct i2c_client *client,
698 			 struct i2c_board_info *info)
699 {
700 	struct i2c_adapter *adapter = client->adapter;
701 	int val1, val2;
702 
703 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
704 		pr_debug("asb100.o: detect failed, "
705 				"smbus byte data not supported!\n");
706 		return -ENODEV;
707 	}
708 
709 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
710 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
711 
712 	/* If we're in bank 0 */
713 	if ((!(val1 & 0x07)) &&
714 			/* Check for ASB100 ID (low byte) */
715 			(((!(val1 & 0x80)) && (val2 != 0x94)) ||
716 			/* Check for ASB100 ID (high byte ) */
717 			((val1 & 0x80) && (val2 != 0x06)))) {
718 		pr_debug("asb100: detect failed, bad chip id 0x%02x!\n", val2);
719 		return -ENODEV;
720 	}
721 
722 	/* Put it now into bank 0 and Vendor ID High Byte */
723 	i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
724 		(i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
725 		| 0x80);
726 
727 	/* Determine the chip type. */
728 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
729 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
730 
731 	if (val1 != 0x31 || val2 != 0x06)
732 		return -ENODEV;
733 
734 	strlcpy(info->type, "asb100", I2C_NAME_SIZE);
735 
736 	return 0;
737 }
738 
739 static int asb100_probe(struct i2c_client *client,
740 			const struct i2c_device_id *id)
741 {
742 	int err;
743 	struct asb100_data *data;
744 
745 	data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL);
746 	if (!data) {
747 		pr_debug("asb100.o: probe failed, kzalloc failed!\n");
748 		err = -ENOMEM;
749 		goto ERROR0;
750 	}
751 
752 	i2c_set_clientdata(client, data);
753 	mutex_init(&data->lock);
754 	mutex_init(&data->update_lock);
755 
756 	/* Attach secondary lm75 clients */
757 	err = asb100_detect_subclients(client);
758 	if (err)
759 		goto ERROR1;
760 
761 	/* Initialize the chip */
762 	asb100_init_client(client);
763 
764 	/* A few vars need to be filled upon startup */
765 	data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
766 	data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
767 	data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
768 
769 	/* Register sysfs hooks */
770 	if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group)))
771 		goto ERROR3;
772 
773 	data->hwmon_dev = hwmon_device_register(&client->dev);
774 	if (IS_ERR(data->hwmon_dev)) {
775 		err = PTR_ERR(data->hwmon_dev);
776 		goto ERROR4;
777 	}
778 
779 	return 0;
780 
781 ERROR4:
782 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
783 ERROR3:
784 	i2c_unregister_device(data->lm75[1]);
785 	i2c_unregister_device(data->lm75[0]);
786 ERROR1:
787 	kfree(data);
788 ERROR0:
789 	return err;
790 }
791 
792 static int asb100_remove(struct i2c_client *client)
793 {
794 	struct asb100_data *data = i2c_get_clientdata(client);
795 
796 	hwmon_device_unregister(data->hwmon_dev);
797 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
798 
799 	i2c_unregister_device(data->lm75[1]);
800 	i2c_unregister_device(data->lm75[0]);
801 
802 	kfree(data);
803 
804 	return 0;
805 }
806 
807 /* The SMBus locks itself, usually, but nothing may access the chip between
808    bank switches. */
809 static int asb100_read_value(struct i2c_client *client, u16 reg)
810 {
811 	struct asb100_data *data = i2c_get_clientdata(client);
812 	struct i2c_client *cl;
813 	int res, bank;
814 
815 	mutex_lock(&data->lock);
816 
817 	bank = (reg >> 8) & 0x0f;
818 	if (bank > 2)
819 		/* switch banks */
820 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
821 
822 	if (bank == 0 || bank > 2) {
823 		res = i2c_smbus_read_byte_data(client, reg & 0xff);
824 	} else {
825 		/* switch to subclient */
826 		cl = data->lm75[bank - 1];
827 
828 		/* convert from ISA to LM75 I2C addresses */
829 		switch (reg & 0xff) {
830 		case 0x50: /* TEMP */
831 			res = swab16(i2c_smbus_read_word_data(cl, 0));
832 			break;
833 		case 0x52: /* CONFIG */
834 			res = i2c_smbus_read_byte_data(cl, 1);
835 			break;
836 		case 0x53: /* HYST */
837 			res = swab16(i2c_smbus_read_word_data(cl, 2));
838 			break;
839 		case 0x55: /* MAX */
840 		default:
841 			res = swab16(i2c_smbus_read_word_data(cl, 3));
842 			break;
843 		}
844 	}
845 
846 	if (bank > 2)
847 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
848 
849 	mutex_unlock(&data->lock);
850 
851 	return res;
852 }
853 
854 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
855 {
856 	struct asb100_data *data = i2c_get_clientdata(client);
857 	struct i2c_client *cl;
858 	int bank;
859 
860 	mutex_lock(&data->lock);
861 
862 	bank = (reg >> 8) & 0x0f;
863 	if (bank > 2)
864 		/* switch banks */
865 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
866 
867 	if (bank == 0 || bank > 2) {
868 		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
869 	} else {
870 		/* switch to subclient */
871 		cl = data->lm75[bank - 1];
872 
873 		/* convert from ISA to LM75 I2C addresses */
874 		switch (reg & 0xff) {
875 		case 0x52: /* CONFIG */
876 			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
877 			break;
878 		case 0x53: /* HYST */
879 			i2c_smbus_write_word_data(cl, 2, swab16(value));
880 			break;
881 		case 0x55: /* MAX */
882 			i2c_smbus_write_word_data(cl, 3, swab16(value));
883 			break;
884 		}
885 	}
886 
887 	if (bank > 2)
888 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
889 
890 	mutex_unlock(&data->lock);
891 }
892 
893 static void asb100_init_client(struct i2c_client *client)
894 {
895 	struct asb100_data *data = i2c_get_clientdata(client);
896 
897 	data->vrm = vid_which_vrm();
898 
899 	/* Start monitoring */
900 	asb100_write_value(client, ASB100_REG_CONFIG,
901 		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
902 }
903 
904 static struct asb100_data *asb100_update_device(struct device *dev)
905 {
906 	struct i2c_client *client = to_i2c_client(dev);
907 	struct asb100_data *data = i2c_get_clientdata(client);
908 	int i;
909 
910 	mutex_lock(&data->update_lock);
911 
912 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
913 		|| !data->valid) {
914 
915 		dev_dbg(&client->dev, "starting device update...\n");
916 
917 		/* 7 voltage inputs */
918 		for (i = 0; i < 7; i++) {
919 			data->in[i] = asb100_read_value(client,
920 				ASB100_REG_IN(i));
921 			data->in_min[i] = asb100_read_value(client,
922 				ASB100_REG_IN_MIN(i));
923 			data->in_max[i] = asb100_read_value(client,
924 				ASB100_REG_IN_MAX(i));
925 		}
926 
927 		/* 3 fan inputs */
928 		for (i = 0; i < 3; i++) {
929 			data->fan[i] = asb100_read_value(client,
930 					ASB100_REG_FAN(i));
931 			data->fan_min[i] = asb100_read_value(client,
932 					ASB100_REG_FAN_MIN(i));
933 		}
934 
935 		/* 4 temperature inputs */
936 		for (i = 1; i <= 4; i++) {
937 			data->temp[i-1] = asb100_read_value(client,
938 					ASB100_REG_TEMP(i));
939 			data->temp_max[i-1] = asb100_read_value(client,
940 					ASB100_REG_TEMP_MAX(i));
941 			data->temp_hyst[i-1] = asb100_read_value(client,
942 					ASB100_REG_TEMP_HYST(i));
943 		}
944 
945 		/* VID and fan divisors */
946 		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
947 		data->vid = i & 0x0f;
948 		data->vid |= (asb100_read_value(client,
949 				ASB100_REG_CHIPID) & 0x01) << 4;
950 		data->fan_div[0] = (i >> 4) & 0x03;
951 		data->fan_div[1] = (i >> 6) & 0x03;
952 		data->fan_div[2] = (asb100_read_value(client,
953 				ASB100_REG_PIN) >> 6) & 0x03;
954 
955 		/* PWM */
956 		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
957 
958 		/* alarms */
959 		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
960 			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);
961 
962 		data->last_updated = jiffies;
963 		data->valid = 1;
964 
965 		dev_dbg(&client->dev, "... device update complete\n");
966 	}
967 
968 	mutex_unlock(&data->update_lock);
969 
970 	return data;
971 }
972 
973 static int __init asb100_init(void)
974 {
975 	return i2c_add_driver(&asb100_driver);
976 }
977 
978 static void __exit asb100_exit(void)
979 {
980 	i2c_del_driver(&asb100_driver);
981 }
982 
983 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
984 MODULE_DESCRIPTION("ASB100 Bach driver");
985 MODULE_LICENSE("GPL");
986 
987 module_init(asb100_init);
988 module_exit(asb100_exit);
989