1 /* 2 asb100.c - Part of lm_sensors, Linux kernel modules for hardware 3 monitoring 4 5 Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com> 6 7 (derived from w83781d.c) 8 9 Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>, 10 Philip Edelbrock <phil@netroedge.com>, and 11 Mark Studebaker <mdsxyz123@yahoo.com> 12 13 This program is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2 of the License, or 16 (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 28 /* 29 This driver supports the hardware sensor chips: Asus ASB100 and 30 ASB100-A "BACH". 31 32 ASB100-A supports pwm1, while plain ASB100 does not. There is no known 33 way for the driver to tell which one is there. 34 35 Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA 36 asb100 7 3 1 4 0x31 0x0694 yes no 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/slab.h> 43 #include <linux/i2c.h> 44 #include <linux/hwmon.h> 45 #include <linux/hwmon-sysfs.h> 46 #include <linux/hwmon-vid.h> 47 #include <linux/err.h> 48 #include <linux/init.h> 49 #include <linux/jiffies.h> 50 #include <linux/mutex.h> 51 #include "lm75.h" 52 53 /* I2C addresses to scan */ 54 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END }; 55 56 static unsigned short force_subclients[4]; 57 module_param_array(force_subclients, short, NULL, 0); 58 MODULE_PARM_DESC(force_subclients, "List of subclient addresses: " 59 "{bus, clientaddr, subclientaddr1, subclientaddr2}"); 60 61 /* Voltage IN registers 0-6 */ 62 #define ASB100_REG_IN(nr) (0x20 + (nr)) 63 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2)) 64 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2)) 65 66 /* FAN IN registers 1-3 */ 67 #define ASB100_REG_FAN(nr) (0x28 + (nr)) 68 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr)) 69 70 /* TEMPERATURE registers 1-4 */ 71 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17}; 72 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18}; 73 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19}; 74 75 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr]) 76 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr]) 77 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr]) 78 79 #define ASB100_REG_TEMP2_CONFIG 0x0152 80 #define ASB100_REG_TEMP3_CONFIG 0x0252 81 82 83 #define ASB100_REG_CONFIG 0x40 84 #define ASB100_REG_ALARM1 0x41 85 #define ASB100_REG_ALARM2 0x42 86 #define ASB100_REG_SMIM1 0x43 87 #define ASB100_REG_SMIM2 0x44 88 #define ASB100_REG_VID_FANDIV 0x47 89 #define ASB100_REG_I2C_ADDR 0x48 90 #define ASB100_REG_CHIPID 0x49 91 #define ASB100_REG_I2C_SUBADDR 0x4a 92 #define ASB100_REG_PIN 0x4b 93 #define ASB100_REG_IRQ 0x4c 94 #define ASB100_REG_BANK 0x4e 95 #define ASB100_REG_CHIPMAN 0x4f 96 97 #define ASB100_REG_WCHIPID 0x58 98 99 /* bit 7 -> enable, bits 0-3 -> duty cycle */ 100 #define ASB100_REG_PWM1 0x59 101 102 /* CONVERSIONS 103 Rounding and limit checking is only done on the TO_REG variants. */ 104 105 /* These constants are a guess, consistent w/ w83781d */ 106 #define ASB100_IN_MIN ( 0) 107 #define ASB100_IN_MAX (4080) 108 109 /* IN: 1/1000 V (0V to 4.08V) 110 REG: 16mV/bit */ 111 static u8 IN_TO_REG(unsigned val) 112 { 113 unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX); 114 return (nval + 8) / 16; 115 } 116 117 static unsigned IN_FROM_REG(u8 reg) 118 { 119 return reg * 16; 120 } 121 122 static u8 FAN_TO_REG(long rpm, int div) 123 { 124 if (rpm == -1) 125 return 0; 126 if (rpm == 0) 127 return 255; 128 rpm = SENSORS_LIMIT(rpm, 1, 1000000); 129 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 130 } 131 132 static int FAN_FROM_REG(u8 val, int div) 133 { 134 return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div); 135 } 136 137 /* These constants are a guess, consistent w/ w83781d */ 138 #define ASB100_TEMP_MIN (-128000) 139 #define ASB100_TEMP_MAX ( 127000) 140 141 /* TEMP: 0.001C/bit (-128C to +127C) 142 REG: 1C/bit, two's complement */ 143 static u8 TEMP_TO_REG(long temp) 144 { 145 int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX); 146 ntemp += (ntemp<0 ? -500 : 500); 147 return (u8)(ntemp / 1000); 148 } 149 150 static int TEMP_FROM_REG(u8 reg) 151 { 152 return (s8)reg * 1000; 153 } 154 155 /* PWM: 0 - 255 per sensors documentation 156 REG: (6.25% duty cycle per bit) */ 157 static u8 ASB100_PWM_TO_REG(int pwm) 158 { 159 pwm = SENSORS_LIMIT(pwm, 0, 255); 160 return (u8)(pwm / 16); 161 } 162 163 static int ASB100_PWM_FROM_REG(u8 reg) 164 { 165 return reg * 16; 166 } 167 168 #define DIV_FROM_REG(val) (1 << (val)) 169 170 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2) 171 REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */ 172 static u8 DIV_TO_REG(long val) 173 { 174 return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1; 175 } 176 177 /* For each registered client, we need to keep some data in memory. That 178 data is pointed to by client->data. The structure itself is 179 dynamically allocated, at the same time the client itself is allocated. */ 180 struct asb100_data { 181 struct device *hwmon_dev; 182 struct mutex lock; 183 184 struct mutex update_lock; 185 unsigned long last_updated; /* In jiffies */ 186 187 /* array of 2 pointers to subclients */ 188 struct i2c_client *lm75[2]; 189 190 char valid; /* !=0 if following fields are valid */ 191 u8 in[7]; /* Register value */ 192 u8 in_max[7]; /* Register value */ 193 u8 in_min[7]; /* Register value */ 194 u8 fan[3]; /* Register value */ 195 u8 fan_min[3]; /* Register value */ 196 u16 temp[4]; /* Register value (0 and 3 are u8 only) */ 197 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */ 198 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */ 199 u8 fan_div[3]; /* Register encoding, right justified */ 200 u8 pwm; /* Register encoding */ 201 u8 vid; /* Register encoding, combined */ 202 u32 alarms; /* Register encoding, combined */ 203 u8 vrm; 204 }; 205 206 static int asb100_read_value(struct i2c_client *client, u16 reg); 207 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val); 208 209 static int asb100_probe(struct i2c_client *client, 210 const struct i2c_device_id *id); 211 static int asb100_detect(struct i2c_client *client, 212 struct i2c_board_info *info); 213 static int asb100_remove(struct i2c_client *client); 214 static struct asb100_data *asb100_update_device(struct device *dev); 215 static void asb100_init_client(struct i2c_client *client); 216 217 static const struct i2c_device_id asb100_id[] = { 218 { "asb100", 0 }, 219 { } 220 }; 221 MODULE_DEVICE_TABLE(i2c, asb100_id); 222 223 static struct i2c_driver asb100_driver = { 224 .class = I2C_CLASS_HWMON, 225 .driver = { 226 .name = "asb100", 227 }, 228 .probe = asb100_probe, 229 .remove = asb100_remove, 230 .id_table = asb100_id, 231 .detect = asb100_detect, 232 .address_list = normal_i2c, 233 }; 234 235 /* 7 Voltages */ 236 #define show_in_reg(reg) \ 237 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 238 char *buf) \ 239 { \ 240 int nr = to_sensor_dev_attr(attr)->index; \ 241 struct asb100_data *data = asb100_update_device(dev); \ 242 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ 243 } 244 245 show_in_reg(in) 246 show_in_reg(in_min) 247 show_in_reg(in_max) 248 249 #define set_in_reg(REG, reg) \ 250 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \ 251 const char *buf, size_t count) \ 252 { \ 253 int nr = to_sensor_dev_attr(attr)->index; \ 254 struct i2c_client *client = to_i2c_client(dev); \ 255 struct asb100_data *data = i2c_get_clientdata(client); \ 256 unsigned long val = simple_strtoul(buf, NULL, 10); \ 257 \ 258 mutex_lock(&data->update_lock); \ 259 data->in_##reg[nr] = IN_TO_REG(val); \ 260 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \ 261 data->in_##reg[nr]); \ 262 mutex_unlock(&data->update_lock); \ 263 return count; \ 264 } 265 266 set_in_reg(MIN, min) 267 set_in_reg(MAX, max) 268 269 #define sysfs_in(offset) \ 270 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 271 show_in, NULL, offset); \ 272 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 273 show_in_min, set_in_min, offset); \ 274 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 275 show_in_max, set_in_max, offset) 276 277 sysfs_in(0); 278 sysfs_in(1); 279 sysfs_in(2); 280 sysfs_in(3); 281 sysfs_in(4); 282 sysfs_in(5); 283 sysfs_in(6); 284 285 /* 3 Fans */ 286 static ssize_t show_fan(struct device *dev, struct device_attribute *attr, 287 char *buf) 288 { 289 int nr = to_sensor_dev_attr(attr)->index; 290 struct asb100_data *data = asb100_update_device(dev); 291 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 292 DIV_FROM_REG(data->fan_div[nr]))); 293 } 294 295 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 int nr = to_sensor_dev_attr(attr)->index; 299 struct asb100_data *data = asb100_update_device(dev); 300 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], 301 DIV_FROM_REG(data->fan_div[nr]))); 302 } 303 304 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, 305 char *buf) 306 { 307 int nr = to_sensor_dev_attr(attr)->index; 308 struct asb100_data *data = asb100_update_device(dev); 309 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); 310 } 311 312 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int nr = to_sensor_dev_attr(attr)->index; 316 struct i2c_client *client = to_i2c_client(dev); 317 struct asb100_data *data = i2c_get_clientdata(client); 318 u32 val = simple_strtoul(buf, NULL, 10); 319 320 mutex_lock(&data->update_lock); 321 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 322 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 323 mutex_unlock(&data->update_lock); 324 return count; 325 } 326 327 /* Note: we save and restore the fan minimum here, because its value is 328 determined in part by the fan divisor. This follows the principle of 329 least surprise; the user doesn't expect the fan minimum to change just 330 because the divisor changed. */ 331 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, 332 const char *buf, size_t count) 333 { 334 int nr = to_sensor_dev_attr(attr)->index; 335 struct i2c_client *client = to_i2c_client(dev); 336 struct asb100_data *data = i2c_get_clientdata(client); 337 unsigned long min; 338 unsigned long val = simple_strtoul(buf, NULL, 10); 339 int reg; 340 341 mutex_lock(&data->update_lock); 342 343 min = FAN_FROM_REG(data->fan_min[nr], 344 DIV_FROM_REG(data->fan_div[nr])); 345 data->fan_div[nr] = DIV_TO_REG(val); 346 347 switch (nr) { 348 case 0: /* fan 1 */ 349 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 350 reg = (reg & 0xcf) | (data->fan_div[0] << 4); 351 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 352 break; 353 354 case 1: /* fan 2 */ 355 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 356 reg = (reg & 0x3f) | (data->fan_div[1] << 6); 357 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 358 break; 359 360 case 2: /* fan 3 */ 361 reg = asb100_read_value(client, ASB100_REG_PIN); 362 reg = (reg & 0x3f) | (data->fan_div[2] << 6); 363 asb100_write_value(client, ASB100_REG_PIN, reg); 364 break; 365 } 366 367 data->fan_min[nr] = 368 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); 369 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 370 371 mutex_unlock(&data->update_lock); 372 373 return count; 374 } 375 376 #define sysfs_fan(offset) \ 377 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 378 show_fan, NULL, offset - 1); \ 379 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 380 show_fan_min, set_fan_min, offset - 1); \ 381 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ 382 show_fan_div, set_fan_div, offset - 1) 383 384 sysfs_fan(1); 385 sysfs_fan(2); 386 sysfs_fan(3); 387 388 /* 4 Temp. Sensors */ 389 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr) 390 { 391 int ret = 0; 392 393 switch (nr) { 394 case 1: case 2: 395 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg)); 396 break; 397 case 0: case 3: default: 398 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg)); 399 break; 400 } 401 return ret; 402 } 403 404 #define show_temp_reg(reg) \ 405 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 406 char *buf) \ 407 { \ 408 int nr = to_sensor_dev_attr(attr)->index; \ 409 struct asb100_data *data = asb100_update_device(dev); \ 410 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \ 411 } 412 413 show_temp_reg(temp); 414 show_temp_reg(temp_max); 415 show_temp_reg(temp_hyst); 416 417 #define set_temp_reg(REG, reg) \ 418 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \ 419 const char *buf, size_t count) \ 420 { \ 421 int nr = to_sensor_dev_attr(attr)->index; \ 422 struct i2c_client *client = to_i2c_client(dev); \ 423 struct asb100_data *data = i2c_get_clientdata(client); \ 424 long val = simple_strtol(buf, NULL, 10); \ 425 \ 426 mutex_lock(&data->update_lock); \ 427 switch (nr) { \ 428 case 1: case 2: \ 429 data->reg[nr] = LM75_TEMP_TO_REG(val); \ 430 break; \ 431 case 0: case 3: default: \ 432 data->reg[nr] = TEMP_TO_REG(val); \ 433 break; \ 434 } \ 435 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \ 436 data->reg[nr]); \ 437 mutex_unlock(&data->update_lock); \ 438 return count; \ 439 } 440 441 set_temp_reg(MAX, temp_max); 442 set_temp_reg(HYST, temp_hyst); 443 444 #define sysfs_temp(num) \ 445 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \ 446 show_temp, NULL, num - 1); \ 447 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \ 448 show_temp_max, set_temp_max, num - 1); \ 449 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \ 450 show_temp_hyst, set_temp_hyst, num - 1) 451 452 sysfs_temp(1); 453 sysfs_temp(2); 454 sysfs_temp(3); 455 sysfs_temp(4); 456 457 /* VID */ 458 static ssize_t show_vid(struct device *dev, struct device_attribute *attr, 459 char *buf) 460 { 461 struct asb100_data *data = asb100_update_device(dev); 462 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); 463 } 464 465 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL); 466 467 /* VRM */ 468 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, 469 char *buf) 470 { 471 struct asb100_data *data = dev_get_drvdata(dev); 472 return sprintf(buf, "%d\n", data->vrm); 473 } 474 475 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, 476 const char *buf, size_t count) 477 { 478 struct asb100_data *data = dev_get_drvdata(dev); 479 data->vrm = simple_strtoul(buf, NULL, 10); 480 return count; 481 } 482 483 /* Alarms */ 484 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm); 485 486 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, 487 char *buf) 488 { 489 struct asb100_data *data = asb100_update_device(dev); 490 return sprintf(buf, "%u\n", data->alarms); 491 } 492 493 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); 494 495 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 496 char *buf) 497 { 498 int bitnr = to_sensor_dev_attr(attr)->index; 499 struct asb100_data *data = asb100_update_device(dev); 500 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); 501 } 502 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 503 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 504 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 505 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 506 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); 507 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); 508 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); 509 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11); 510 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); 511 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); 512 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13); 513 514 /* 1 PWM */ 515 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr, 516 char *buf) 517 { 518 struct asb100_data *data = asb100_update_device(dev); 519 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f)); 520 } 521 522 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr, 523 const char *buf, size_t count) 524 { 525 struct i2c_client *client = to_i2c_client(dev); 526 struct asb100_data *data = i2c_get_clientdata(client); 527 unsigned long val = simple_strtoul(buf, NULL, 10); 528 529 mutex_lock(&data->update_lock); 530 data->pwm &= 0x80; /* keep the enable bit */ 531 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val)); 532 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 533 mutex_unlock(&data->update_lock); 534 return count; 535 } 536 537 static ssize_t show_pwm_enable1(struct device *dev, 538 struct device_attribute *attr, char *buf) 539 { 540 struct asb100_data *data = asb100_update_device(dev); 541 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0); 542 } 543 544 static ssize_t set_pwm_enable1(struct device *dev, 545 struct device_attribute *attr, const char *buf, size_t count) 546 { 547 struct i2c_client *client = to_i2c_client(dev); 548 struct asb100_data *data = i2c_get_clientdata(client); 549 unsigned long val = simple_strtoul(buf, NULL, 10); 550 551 mutex_lock(&data->update_lock); 552 data->pwm &= 0x0f; /* keep the duty cycle bits */ 553 data->pwm |= (val ? 0x80 : 0x00); 554 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 555 mutex_unlock(&data->update_lock); 556 return count; 557 } 558 559 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1); 560 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, 561 show_pwm_enable1, set_pwm_enable1); 562 563 static struct attribute *asb100_attributes[] = { 564 &sensor_dev_attr_in0_input.dev_attr.attr, 565 &sensor_dev_attr_in0_min.dev_attr.attr, 566 &sensor_dev_attr_in0_max.dev_attr.attr, 567 &sensor_dev_attr_in1_input.dev_attr.attr, 568 &sensor_dev_attr_in1_min.dev_attr.attr, 569 &sensor_dev_attr_in1_max.dev_attr.attr, 570 &sensor_dev_attr_in2_input.dev_attr.attr, 571 &sensor_dev_attr_in2_min.dev_attr.attr, 572 &sensor_dev_attr_in2_max.dev_attr.attr, 573 &sensor_dev_attr_in3_input.dev_attr.attr, 574 &sensor_dev_attr_in3_min.dev_attr.attr, 575 &sensor_dev_attr_in3_max.dev_attr.attr, 576 &sensor_dev_attr_in4_input.dev_attr.attr, 577 &sensor_dev_attr_in4_min.dev_attr.attr, 578 &sensor_dev_attr_in4_max.dev_attr.attr, 579 &sensor_dev_attr_in5_input.dev_attr.attr, 580 &sensor_dev_attr_in5_min.dev_attr.attr, 581 &sensor_dev_attr_in5_max.dev_attr.attr, 582 &sensor_dev_attr_in6_input.dev_attr.attr, 583 &sensor_dev_attr_in6_min.dev_attr.attr, 584 &sensor_dev_attr_in6_max.dev_attr.attr, 585 586 &sensor_dev_attr_fan1_input.dev_attr.attr, 587 &sensor_dev_attr_fan1_min.dev_attr.attr, 588 &sensor_dev_attr_fan1_div.dev_attr.attr, 589 &sensor_dev_attr_fan2_input.dev_attr.attr, 590 &sensor_dev_attr_fan2_min.dev_attr.attr, 591 &sensor_dev_attr_fan2_div.dev_attr.attr, 592 &sensor_dev_attr_fan3_input.dev_attr.attr, 593 &sensor_dev_attr_fan3_min.dev_attr.attr, 594 &sensor_dev_attr_fan3_div.dev_attr.attr, 595 596 &sensor_dev_attr_temp1_input.dev_attr.attr, 597 &sensor_dev_attr_temp1_max.dev_attr.attr, 598 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, 599 &sensor_dev_attr_temp2_input.dev_attr.attr, 600 &sensor_dev_attr_temp2_max.dev_attr.attr, 601 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, 602 &sensor_dev_attr_temp3_input.dev_attr.attr, 603 &sensor_dev_attr_temp3_max.dev_attr.attr, 604 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, 605 &sensor_dev_attr_temp4_input.dev_attr.attr, 606 &sensor_dev_attr_temp4_max.dev_attr.attr, 607 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr, 608 609 &sensor_dev_attr_in0_alarm.dev_attr.attr, 610 &sensor_dev_attr_in1_alarm.dev_attr.attr, 611 &sensor_dev_attr_in2_alarm.dev_attr.attr, 612 &sensor_dev_attr_in3_alarm.dev_attr.attr, 613 &sensor_dev_attr_in4_alarm.dev_attr.attr, 614 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 615 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 616 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 617 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 618 &sensor_dev_attr_temp2_alarm.dev_attr.attr, 619 &sensor_dev_attr_temp3_alarm.dev_attr.attr, 620 621 &dev_attr_cpu0_vid.attr, 622 &dev_attr_vrm.attr, 623 &dev_attr_alarms.attr, 624 &dev_attr_pwm1.attr, 625 &dev_attr_pwm1_enable.attr, 626 627 NULL 628 }; 629 630 static const struct attribute_group asb100_group = { 631 .attrs = asb100_attributes, 632 }; 633 634 static int asb100_detect_subclients(struct i2c_client *client) 635 { 636 int i, id, err; 637 int address = client->addr; 638 unsigned short sc_addr[2]; 639 struct asb100_data *data = i2c_get_clientdata(client); 640 struct i2c_adapter *adapter = client->adapter; 641 642 id = i2c_adapter_id(adapter); 643 644 if (force_subclients[0] == id && force_subclients[1] == address) { 645 for (i = 2; i <= 3; i++) { 646 if (force_subclients[i] < 0x48 || 647 force_subclients[i] > 0x4f) { 648 dev_err(&client->dev, "invalid subclient " 649 "address %d; must be 0x48-0x4f\n", 650 force_subclients[i]); 651 err = -ENODEV; 652 goto ERROR_SC_2; 653 } 654 } 655 asb100_write_value(client, ASB100_REG_I2C_SUBADDR, 656 (force_subclients[2] & 0x07) | 657 ((force_subclients[3] & 0x07) << 4)); 658 sc_addr[0] = force_subclients[2]; 659 sc_addr[1] = force_subclients[3]; 660 } else { 661 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR); 662 sc_addr[0] = 0x48 + (val & 0x07); 663 sc_addr[1] = 0x48 + ((val >> 4) & 0x07); 664 } 665 666 if (sc_addr[0] == sc_addr[1]) { 667 dev_err(&client->dev, "duplicate addresses 0x%x " 668 "for subclients\n", sc_addr[0]); 669 err = -ENODEV; 670 goto ERROR_SC_2; 671 } 672 673 data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]); 674 if (!data->lm75[0]) { 675 dev_err(&client->dev, "subclient %d registration " 676 "at address 0x%x failed.\n", 1, sc_addr[0]); 677 err = -ENOMEM; 678 goto ERROR_SC_2; 679 } 680 681 data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]); 682 if (!data->lm75[1]) { 683 dev_err(&client->dev, "subclient %d registration " 684 "at address 0x%x failed.\n", 2, sc_addr[1]); 685 err = -ENOMEM; 686 goto ERROR_SC_3; 687 } 688 689 return 0; 690 691 /* Undo inits in case of errors */ 692 ERROR_SC_3: 693 i2c_unregister_device(data->lm75[0]); 694 ERROR_SC_2: 695 return err; 696 } 697 698 /* Return 0 if detection is successful, -ENODEV otherwise */ 699 static int asb100_detect(struct i2c_client *client, 700 struct i2c_board_info *info) 701 { 702 struct i2c_adapter *adapter = client->adapter; 703 int val1, val2; 704 705 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { 706 pr_debug("detect failed, smbus byte data not supported!\n"); 707 return -ENODEV; 708 } 709 710 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK); 711 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); 712 713 /* If we're in bank 0 */ 714 if ((!(val1 & 0x07)) && 715 /* Check for ASB100 ID (low byte) */ 716 (((!(val1 & 0x80)) && (val2 != 0x94)) || 717 /* Check for ASB100 ID (high byte ) */ 718 ((val1 & 0x80) && (val2 != 0x06)))) { 719 pr_debug("detect failed, bad chip id 0x%02x!\n", val2); 720 return -ENODEV; 721 } 722 723 /* Put it now into bank 0 and Vendor ID High Byte */ 724 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 725 (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78) 726 | 0x80); 727 728 /* Determine the chip type. */ 729 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID); 730 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); 731 732 if (val1 != 0x31 || val2 != 0x06) 733 return -ENODEV; 734 735 strlcpy(info->type, "asb100", I2C_NAME_SIZE); 736 737 return 0; 738 } 739 740 static int asb100_probe(struct i2c_client *client, 741 const struct i2c_device_id *id) 742 { 743 int err; 744 struct asb100_data *data; 745 746 data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL); 747 if (!data) { 748 pr_debug("probe failed, kzalloc failed!\n"); 749 err = -ENOMEM; 750 goto ERROR0; 751 } 752 753 i2c_set_clientdata(client, data); 754 mutex_init(&data->lock); 755 mutex_init(&data->update_lock); 756 757 /* Attach secondary lm75 clients */ 758 err = asb100_detect_subclients(client); 759 if (err) 760 goto ERROR1; 761 762 /* Initialize the chip */ 763 asb100_init_client(client); 764 765 /* A few vars need to be filled upon startup */ 766 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0)); 767 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1)); 768 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2)); 769 770 /* Register sysfs hooks */ 771 if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group))) 772 goto ERROR3; 773 774 data->hwmon_dev = hwmon_device_register(&client->dev); 775 if (IS_ERR(data->hwmon_dev)) { 776 err = PTR_ERR(data->hwmon_dev); 777 goto ERROR4; 778 } 779 780 return 0; 781 782 ERROR4: 783 sysfs_remove_group(&client->dev.kobj, &asb100_group); 784 ERROR3: 785 i2c_unregister_device(data->lm75[1]); 786 i2c_unregister_device(data->lm75[0]); 787 ERROR1: 788 kfree(data); 789 ERROR0: 790 return err; 791 } 792 793 static int asb100_remove(struct i2c_client *client) 794 { 795 struct asb100_data *data = i2c_get_clientdata(client); 796 797 hwmon_device_unregister(data->hwmon_dev); 798 sysfs_remove_group(&client->dev.kobj, &asb100_group); 799 800 i2c_unregister_device(data->lm75[1]); 801 i2c_unregister_device(data->lm75[0]); 802 803 kfree(data); 804 805 return 0; 806 } 807 808 /* The SMBus locks itself, usually, but nothing may access the chip between 809 bank switches. */ 810 static int asb100_read_value(struct i2c_client *client, u16 reg) 811 { 812 struct asb100_data *data = i2c_get_clientdata(client); 813 struct i2c_client *cl; 814 int res, bank; 815 816 mutex_lock(&data->lock); 817 818 bank = (reg >> 8) & 0x0f; 819 if (bank > 2) 820 /* switch banks */ 821 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 822 823 if (bank == 0 || bank > 2) { 824 res = i2c_smbus_read_byte_data(client, reg & 0xff); 825 } else { 826 /* switch to subclient */ 827 cl = data->lm75[bank - 1]; 828 829 /* convert from ISA to LM75 I2C addresses */ 830 switch (reg & 0xff) { 831 case 0x50: /* TEMP */ 832 res = swab16(i2c_smbus_read_word_data(cl, 0)); 833 break; 834 case 0x52: /* CONFIG */ 835 res = i2c_smbus_read_byte_data(cl, 1); 836 break; 837 case 0x53: /* HYST */ 838 res = swab16(i2c_smbus_read_word_data(cl, 2)); 839 break; 840 case 0x55: /* MAX */ 841 default: 842 res = swab16(i2c_smbus_read_word_data(cl, 3)); 843 break; 844 } 845 } 846 847 if (bank > 2) 848 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 849 850 mutex_unlock(&data->lock); 851 852 return res; 853 } 854 855 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value) 856 { 857 struct asb100_data *data = i2c_get_clientdata(client); 858 struct i2c_client *cl; 859 int bank; 860 861 mutex_lock(&data->lock); 862 863 bank = (reg >> 8) & 0x0f; 864 if (bank > 2) 865 /* switch banks */ 866 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 867 868 if (bank == 0 || bank > 2) { 869 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff); 870 } else { 871 /* switch to subclient */ 872 cl = data->lm75[bank - 1]; 873 874 /* convert from ISA to LM75 I2C addresses */ 875 switch (reg & 0xff) { 876 case 0x52: /* CONFIG */ 877 i2c_smbus_write_byte_data(cl, 1, value & 0xff); 878 break; 879 case 0x53: /* HYST */ 880 i2c_smbus_write_word_data(cl, 2, swab16(value)); 881 break; 882 case 0x55: /* MAX */ 883 i2c_smbus_write_word_data(cl, 3, swab16(value)); 884 break; 885 } 886 } 887 888 if (bank > 2) 889 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 890 891 mutex_unlock(&data->lock); 892 } 893 894 static void asb100_init_client(struct i2c_client *client) 895 { 896 struct asb100_data *data = i2c_get_clientdata(client); 897 898 data->vrm = vid_which_vrm(); 899 900 /* Start monitoring */ 901 asb100_write_value(client, ASB100_REG_CONFIG, 902 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01); 903 } 904 905 static struct asb100_data *asb100_update_device(struct device *dev) 906 { 907 struct i2c_client *client = to_i2c_client(dev); 908 struct asb100_data *data = i2c_get_clientdata(client); 909 int i; 910 911 mutex_lock(&data->update_lock); 912 913 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 914 || !data->valid) { 915 916 dev_dbg(&client->dev, "starting device update...\n"); 917 918 /* 7 voltage inputs */ 919 for (i = 0; i < 7; i++) { 920 data->in[i] = asb100_read_value(client, 921 ASB100_REG_IN(i)); 922 data->in_min[i] = asb100_read_value(client, 923 ASB100_REG_IN_MIN(i)); 924 data->in_max[i] = asb100_read_value(client, 925 ASB100_REG_IN_MAX(i)); 926 } 927 928 /* 3 fan inputs */ 929 for (i = 0; i < 3; i++) { 930 data->fan[i] = asb100_read_value(client, 931 ASB100_REG_FAN(i)); 932 data->fan_min[i] = asb100_read_value(client, 933 ASB100_REG_FAN_MIN(i)); 934 } 935 936 /* 4 temperature inputs */ 937 for (i = 1; i <= 4; i++) { 938 data->temp[i-1] = asb100_read_value(client, 939 ASB100_REG_TEMP(i)); 940 data->temp_max[i-1] = asb100_read_value(client, 941 ASB100_REG_TEMP_MAX(i)); 942 data->temp_hyst[i-1] = asb100_read_value(client, 943 ASB100_REG_TEMP_HYST(i)); 944 } 945 946 /* VID and fan divisors */ 947 i = asb100_read_value(client, ASB100_REG_VID_FANDIV); 948 data->vid = i & 0x0f; 949 data->vid |= (asb100_read_value(client, 950 ASB100_REG_CHIPID) & 0x01) << 4; 951 data->fan_div[0] = (i >> 4) & 0x03; 952 data->fan_div[1] = (i >> 6) & 0x03; 953 data->fan_div[2] = (asb100_read_value(client, 954 ASB100_REG_PIN) >> 6) & 0x03; 955 956 /* PWM */ 957 data->pwm = asb100_read_value(client, ASB100_REG_PWM1); 958 959 /* alarms */ 960 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) + 961 (asb100_read_value(client, ASB100_REG_ALARM2) << 8); 962 963 data->last_updated = jiffies; 964 data->valid = 1; 965 966 dev_dbg(&client->dev, "... device update complete\n"); 967 } 968 969 mutex_unlock(&data->update_lock); 970 971 return data; 972 } 973 974 static int __init asb100_init(void) 975 { 976 return i2c_add_driver(&asb100_driver); 977 } 978 979 static void __exit asb100_exit(void) 980 { 981 i2c_del_driver(&asb100_driver); 982 } 983 984 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>"); 985 MODULE_DESCRIPTION("ASB100 Bach driver"); 986 MODULE_LICENSE("GPL"); 987 988 module_init(asb100_init); 989 module_exit(asb100_exit); 990