xref: /openbmc/linux/drivers/hwmon/asb100.c (revision 29a36d4d)
1 /*
2     asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 	        monitoring
4 
5     Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
6 
7 	(derived from w83781d.c)
8 
9     Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
10     Philip Edelbrock <phil@netroedge.com>, and
11     Mark Studebaker <mdsxyz123@yahoo.com>
12 
13     This program is free software; you can redistribute it and/or modify
14     it under the terms of the GNU General Public License as published by
15     the Free Software Foundation; either version 2 of the License, or
16     (at your option) any later version.
17 
18     This program is distributed in the hope that it will be useful,
19     but WITHOUT ANY WARRANTY; without even the implied warranty of
20     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21     GNU General Public License for more details.
22 
23     You should have received a copy of the GNU General Public License
24     along with this program; if not, write to the Free Software
25     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27 
28 /*
29     This driver supports the hardware sensor chips: Asus ASB100 and
30     ASB100-A "BACH".
31 
32     ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
33     way for the driver to tell which one is there.
34 
35     Chip	#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
36     asb100	7	3	1	4	0x31	0x0694	yes	no
37 */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/slab.h>
43 #include <linux/i2c.h>
44 #include <linux/hwmon.h>
45 #include <linux/hwmon-sysfs.h>
46 #include <linux/hwmon-vid.h>
47 #include <linux/err.h>
48 #include <linux/init.h>
49 #include <linux/jiffies.h>
50 #include <linux/mutex.h>
51 #include "lm75.h"
52 
53 /* I2C addresses to scan */
54 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
55 
56 static unsigned short force_subclients[4];
57 module_param_array(force_subclients, short, NULL, 0);
58 MODULE_PARM_DESC(force_subclients, "List of subclient addresses: "
59 	"{bus, clientaddr, subclientaddr1, subclientaddr2}");
60 
61 /* Voltage IN registers 0-6 */
62 #define ASB100_REG_IN(nr)	(0x20 + (nr))
63 #define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
64 #define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))
65 
66 /* FAN IN registers 1-3 */
67 #define ASB100_REG_FAN(nr)	(0x28 + (nr))
68 #define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))
69 
70 /* TEMPERATURE registers 1-4 */
71 static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
72 static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
73 static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};
74 
75 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
76 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
77 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
78 
79 #define ASB100_REG_TEMP2_CONFIG	0x0152
80 #define ASB100_REG_TEMP3_CONFIG	0x0252
81 
82 
83 #define ASB100_REG_CONFIG	0x40
84 #define ASB100_REG_ALARM1	0x41
85 #define ASB100_REG_ALARM2	0x42
86 #define ASB100_REG_SMIM1	0x43
87 #define ASB100_REG_SMIM2	0x44
88 #define ASB100_REG_VID_FANDIV	0x47
89 #define ASB100_REG_I2C_ADDR	0x48
90 #define ASB100_REG_CHIPID	0x49
91 #define ASB100_REG_I2C_SUBADDR	0x4a
92 #define ASB100_REG_PIN		0x4b
93 #define ASB100_REG_IRQ		0x4c
94 #define ASB100_REG_BANK		0x4e
95 #define ASB100_REG_CHIPMAN	0x4f
96 
97 #define ASB100_REG_WCHIPID	0x58
98 
99 /* bit 7 -> enable, bits 0-3 -> duty cycle */
100 #define ASB100_REG_PWM1		0x59
101 
102 /* CONVERSIONS
103    Rounding and limit checking is only done on the TO_REG variants. */
104 
105 /* These constants are a guess, consistent w/ w83781d */
106 #define ASB100_IN_MIN (   0)
107 #define ASB100_IN_MAX (4080)
108 
109 /* IN: 1/1000 V (0V to 4.08V)
110    REG: 16mV/bit */
111 static u8 IN_TO_REG(unsigned val)
112 {
113 	unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
114 	return (nval + 8) / 16;
115 }
116 
117 static unsigned IN_FROM_REG(u8 reg)
118 {
119 	return reg * 16;
120 }
121 
122 static u8 FAN_TO_REG(long rpm, int div)
123 {
124 	if (rpm == -1)
125 		return 0;
126 	if (rpm == 0)
127 		return 255;
128 	rpm = SENSORS_LIMIT(rpm, 1, 1000000);
129 	return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
130 }
131 
132 static int FAN_FROM_REG(u8 val, int div)
133 {
134 	return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
135 }
136 
137 /* These constants are a guess, consistent w/ w83781d */
138 #define ASB100_TEMP_MIN (-128000)
139 #define ASB100_TEMP_MAX ( 127000)
140 
141 /* TEMP: 0.001C/bit (-128C to +127C)
142    REG: 1C/bit, two's complement */
143 static u8 TEMP_TO_REG(long temp)
144 {
145 	int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
146 	ntemp += (ntemp<0 ? -500 : 500);
147 	return (u8)(ntemp / 1000);
148 }
149 
150 static int TEMP_FROM_REG(u8 reg)
151 {
152 	return (s8)reg * 1000;
153 }
154 
155 /* PWM: 0 - 255 per sensors documentation
156    REG: (6.25% duty cycle per bit) */
157 static u8 ASB100_PWM_TO_REG(int pwm)
158 {
159 	pwm = SENSORS_LIMIT(pwm, 0, 255);
160 	return (u8)(pwm / 16);
161 }
162 
163 static int ASB100_PWM_FROM_REG(u8 reg)
164 {
165 	return reg * 16;
166 }
167 
168 #define DIV_FROM_REG(val) (1 << (val))
169 
170 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
171    REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
172 static u8 DIV_TO_REG(long val)
173 {
174 	return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
175 }
176 
177 /* For each registered client, we need to keep some data in memory. That
178    data is pointed to by client->data. The structure itself is
179    dynamically allocated, at the same time the client itself is allocated. */
180 struct asb100_data {
181 	struct device *hwmon_dev;
182 	struct mutex lock;
183 
184 	struct mutex update_lock;
185 	unsigned long last_updated;	/* In jiffies */
186 
187 	/* array of 2 pointers to subclients */
188 	struct i2c_client *lm75[2];
189 
190 	char valid;		/* !=0 if following fields are valid */
191 	u8 in[7];		/* Register value */
192 	u8 in_max[7];		/* Register value */
193 	u8 in_min[7];		/* Register value */
194 	u8 fan[3];		/* Register value */
195 	u8 fan_min[3];		/* Register value */
196 	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
197 	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
198 	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
199 	u8 fan_div[3];		/* Register encoding, right justified */
200 	u8 pwm;			/* Register encoding */
201 	u8 vid;			/* Register encoding, combined */
202 	u32 alarms;		/* Register encoding, combined */
203 	u8 vrm;
204 };
205 
206 static int asb100_read_value(struct i2c_client *client, u16 reg);
207 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
208 
209 static int asb100_probe(struct i2c_client *client,
210 			const struct i2c_device_id *id);
211 static int asb100_detect(struct i2c_client *client,
212 			 struct i2c_board_info *info);
213 static int asb100_remove(struct i2c_client *client);
214 static struct asb100_data *asb100_update_device(struct device *dev);
215 static void asb100_init_client(struct i2c_client *client);
216 
217 static const struct i2c_device_id asb100_id[] = {
218 	{ "asb100", 0 },
219 	{ }
220 };
221 MODULE_DEVICE_TABLE(i2c, asb100_id);
222 
223 static struct i2c_driver asb100_driver = {
224 	.class		= I2C_CLASS_HWMON,
225 	.driver = {
226 		.name	= "asb100",
227 	},
228 	.probe		= asb100_probe,
229 	.remove		= asb100_remove,
230 	.id_table	= asb100_id,
231 	.detect		= asb100_detect,
232 	.address_list	= normal_i2c,
233 };
234 
235 /* 7 Voltages */
236 #define show_in_reg(reg) \
237 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
238 		char *buf) \
239 { \
240 	int nr = to_sensor_dev_attr(attr)->index; \
241 	struct asb100_data *data = asb100_update_device(dev); \
242 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
243 }
244 
245 show_in_reg(in)
246 show_in_reg(in_min)
247 show_in_reg(in_max)
248 
249 #define set_in_reg(REG, reg) \
250 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
251 		const char *buf, size_t count) \
252 { \
253 	int nr = to_sensor_dev_attr(attr)->index; \
254 	struct i2c_client *client = to_i2c_client(dev); \
255 	struct asb100_data *data = i2c_get_clientdata(client); \
256 	unsigned long val = simple_strtoul(buf, NULL, 10); \
257  \
258 	mutex_lock(&data->update_lock); \
259 	data->in_##reg[nr] = IN_TO_REG(val); \
260 	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
261 		data->in_##reg[nr]); \
262 	mutex_unlock(&data->update_lock); \
263 	return count; \
264 }
265 
266 set_in_reg(MIN, min)
267 set_in_reg(MAX, max)
268 
269 #define sysfs_in(offset) \
270 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
271 		show_in, NULL, offset); \
272 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
273 		show_in_min, set_in_min, offset); \
274 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
275 		show_in_max, set_in_max, offset)
276 
277 sysfs_in(0);
278 sysfs_in(1);
279 sysfs_in(2);
280 sysfs_in(3);
281 sysfs_in(4);
282 sysfs_in(5);
283 sysfs_in(6);
284 
285 /* 3 Fans */
286 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
287 		char *buf)
288 {
289 	int nr = to_sensor_dev_attr(attr)->index;
290 	struct asb100_data *data = asb100_update_device(dev);
291 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
292 		DIV_FROM_REG(data->fan_div[nr])));
293 }
294 
295 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
296 		char *buf)
297 {
298 	int nr = to_sensor_dev_attr(attr)->index;
299 	struct asb100_data *data = asb100_update_device(dev);
300 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
301 		DIV_FROM_REG(data->fan_div[nr])));
302 }
303 
304 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
305 		char *buf)
306 {
307 	int nr = to_sensor_dev_attr(attr)->index;
308 	struct asb100_data *data = asb100_update_device(dev);
309 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
310 }
311 
312 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
313 		const char *buf, size_t count)
314 {
315 	int nr = to_sensor_dev_attr(attr)->index;
316 	struct i2c_client *client = to_i2c_client(dev);
317 	struct asb100_data *data = i2c_get_clientdata(client);
318 	u32 val = simple_strtoul(buf, NULL, 10);
319 
320 	mutex_lock(&data->update_lock);
321 	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
322 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
323 	mutex_unlock(&data->update_lock);
324 	return count;
325 }
326 
327 /* Note: we save and restore the fan minimum here, because its value is
328    determined in part by the fan divisor.  This follows the principle of
329    least surprise; the user doesn't expect the fan minimum to change just
330    because the divisor changed. */
331 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
332 		const char *buf, size_t count)
333 {
334 	int nr = to_sensor_dev_attr(attr)->index;
335 	struct i2c_client *client = to_i2c_client(dev);
336 	struct asb100_data *data = i2c_get_clientdata(client);
337 	unsigned long min;
338 	unsigned long val = simple_strtoul(buf, NULL, 10);
339 	int reg;
340 
341 	mutex_lock(&data->update_lock);
342 
343 	min = FAN_FROM_REG(data->fan_min[nr],
344 			DIV_FROM_REG(data->fan_div[nr]));
345 	data->fan_div[nr] = DIV_TO_REG(val);
346 
347 	switch (nr) {
348 	case 0:	/* fan 1 */
349 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
350 		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
351 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
352 		break;
353 
354 	case 1:	/* fan 2 */
355 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
356 		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
357 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
358 		break;
359 
360 	case 2:	/* fan 3 */
361 		reg = asb100_read_value(client, ASB100_REG_PIN);
362 		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
363 		asb100_write_value(client, ASB100_REG_PIN, reg);
364 		break;
365 	}
366 
367 	data->fan_min[nr] =
368 		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
369 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
370 
371 	mutex_unlock(&data->update_lock);
372 
373 	return count;
374 }
375 
376 #define sysfs_fan(offset) \
377 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
378 		show_fan, NULL, offset - 1); \
379 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
380 		show_fan_min, set_fan_min, offset - 1); \
381 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
382 		show_fan_div, set_fan_div, offset - 1)
383 
384 sysfs_fan(1);
385 sysfs_fan(2);
386 sysfs_fan(3);
387 
388 /* 4 Temp. Sensors */
389 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
390 {
391 	int ret = 0;
392 
393 	switch (nr) {
394 	case 1: case 2:
395 		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
396 		break;
397 	case 0: case 3: default:
398 		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
399 		break;
400 	}
401 	return ret;
402 }
403 
404 #define show_temp_reg(reg) \
405 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
406 		char *buf) \
407 { \
408 	int nr = to_sensor_dev_attr(attr)->index; \
409 	struct asb100_data *data = asb100_update_device(dev); \
410 	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
411 }
412 
413 show_temp_reg(temp);
414 show_temp_reg(temp_max);
415 show_temp_reg(temp_hyst);
416 
417 #define set_temp_reg(REG, reg) \
418 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
419 		const char *buf, size_t count) \
420 { \
421 	int nr = to_sensor_dev_attr(attr)->index; \
422 	struct i2c_client *client = to_i2c_client(dev); \
423 	struct asb100_data *data = i2c_get_clientdata(client); \
424 	long val = simple_strtol(buf, NULL, 10); \
425  \
426 	mutex_lock(&data->update_lock); \
427 	switch (nr) { \
428 	case 1: case 2: \
429 		data->reg[nr] = LM75_TEMP_TO_REG(val); \
430 		break; \
431 	case 0: case 3: default: \
432 		data->reg[nr] = TEMP_TO_REG(val); \
433 		break; \
434 	} \
435 	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
436 			data->reg[nr]); \
437 	mutex_unlock(&data->update_lock); \
438 	return count; \
439 }
440 
441 set_temp_reg(MAX, temp_max);
442 set_temp_reg(HYST, temp_hyst);
443 
444 #define sysfs_temp(num) \
445 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
446 		show_temp, NULL, num - 1); \
447 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
448 		show_temp_max, set_temp_max, num - 1); \
449 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
450 		show_temp_hyst, set_temp_hyst, num - 1)
451 
452 sysfs_temp(1);
453 sysfs_temp(2);
454 sysfs_temp(3);
455 sysfs_temp(4);
456 
457 /* VID */
458 static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
459 		char *buf)
460 {
461 	struct asb100_data *data = asb100_update_device(dev);
462 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
463 }
464 
465 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
466 
467 /* VRM */
468 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr,
469 		char *buf)
470 {
471 	struct asb100_data *data = dev_get_drvdata(dev);
472 	return sprintf(buf, "%d\n", data->vrm);
473 }
474 
475 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
476 		const char *buf, size_t count)
477 {
478 	struct asb100_data *data = dev_get_drvdata(dev);
479 	data->vrm = simple_strtoul(buf, NULL, 10);
480 	return count;
481 }
482 
483 /* Alarms */
484 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
485 
486 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
487 		char *buf)
488 {
489 	struct asb100_data *data = asb100_update_device(dev);
490 	return sprintf(buf, "%u\n", data->alarms);
491 }
492 
493 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
494 
495 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
496 		char *buf)
497 {
498 	int bitnr = to_sensor_dev_attr(attr)->index;
499 	struct asb100_data *data = asb100_update_device(dev);
500 	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
501 }
502 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
503 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
504 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
505 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
506 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
507 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
508 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
509 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
510 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
511 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
512 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
513 
514 /* 1 PWM */
515 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr,
516 		char *buf)
517 {
518 	struct asb100_data *data = asb100_update_device(dev);
519 	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
520 }
521 
522 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr,
523 		const char *buf, size_t count)
524 {
525 	struct i2c_client *client = to_i2c_client(dev);
526 	struct asb100_data *data = i2c_get_clientdata(client);
527 	unsigned long val = simple_strtoul(buf, NULL, 10);
528 
529 	mutex_lock(&data->update_lock);
530 	data->pwm &= 0x80; /* keep the enable bit */
531 	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
532 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
533 	mutex_unlock(&data->update_lock);
534 	return count;
535 }
536 
537 static ssize_t show_pwm_enable1(struct device *dev,
538 		struct device_attribute *attr, char *buf)
539 {
540 	struct asb100_data *data = asb100_update_device(dev);
541 	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
542 }
543 
544 static ssize_t set_pwm_enable1(struct device *dev,
545 		struct device_attribute *attr, const char *buf, size_t count)
546 {
547 	struct i2c_client *client = to_i2c_client(dev);
548 	struct asb100_data *data = i2c_get_clientdata(client);
549 	unsigned long val = simple_strtoul(buf, NULL, 10);
550 
551 	mutex_lock(&data->update_lock);
552 	data->pwm &= 0x0f; /* keep the duty cycle bits */
553 	data->pwm |= (val ? 0x80 : 0x00);
554 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
555 	mutex_unlock(&data->update_lock);
556 	return count;
557 }
558 
559 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
560 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
561 		show_pwm_enable1, set_pwm_enable1);
562 
563 static struct attribute *asb100_attributes[] = {
564 	&sensor_dev_attr_in0_input.dev_attr.attr,
565 	&sensor_dev_attr_in0_min.dev_attr.attr,
566 	&sensor_dev_attr_in0_max.dev_attr.attr,
567 	&sensor_dev_attr_in1_input.dev_attr.attr,
568 	&sensor_dev_attr_in1_min.dev_attr.attr,
569 	&sensor_dev_attr_in1_max.dev_attr.attr,
570 	&sensor_dev_attr_in2_input.dev_attr.attr,
571 	&sensor_dev_attr_in2_min.dev_attr.attr,
572 	&sensor_dev_attr_in2_max.dev_attr.attr,
573 	&sensor_dev_attr_in3_input.dev_attr.attr,
574 	&sensor_dev_attr_in3_min.dev_attr.attr,
575 	&sensor_dev_attr_in3_max.dev_attr.attr,
576 	&sensor_dev_attr_in4_input.dev_attr.attr,
577 	&sensor_dev_attr_in4_min.dev_attr.attr,
578 	&sensor_dev_attr_in4_max.dev_attr.attr,
579 	&sensor_dev_attr_in5_input.dev_attr.attr,
580 	&sensor_dev_attr_in5_min.dev_attr.attr,
581 	&sensor_dev_attr_in5_max.dev_attr.attr,
582 	&sensor_dev_attr_in6_input.dev_attr.attr,
583 	&sensor_dev_attr_in6_min.dev_attr.attr,
584 	&sensor_dev_attr_in6_max.dev_attr.attr,
585 
586 	&sensor_dev_attr_fan1_input.dev_attr.attr,
587 	&sensor_dev_attr_fan1_min.dev_attr.attr,
588 	&sensor_dev_attr_fan1_div.dev_attr.attr,
589 	&sensor_dev_attr_fan2_input.dev_attr.attr,
590 	&sensor_dev_attr_fan2_min.dev_attr.attr,
591 	&sensor_dev_attr_fan2_div.dev_attr.attr,
592 	&sensor_dev_attr_fan3_input.dev_attr.attr,
593 	&sensor_dev_attr_fan3_min.dev_attr.attr,
594 	&sensor_dev_attr_fan3_div.dev_attr.attr,
595 
596 	&sensor_dev_attr_temp1_input.dev_attr.attr,
597 	&sensor_dev_attr_temp1_max.dev_attr.attr,
598 	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
599 	&sensor_dev_attr_temp2_input.dev_attr.attr,
600 	&sensor_dev_attr_temp2_max.dev_attr.attr,
601 	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
602 	&sensor_dev_attr_temp3_input.dev_attr.attr,
603 	&sensor_dev_attr_temp3_max.dev_attr.attr,
604 	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
605 	&sensor_dev_attr_temp4_input.dev_attr.attr,
606 	&sensor_dev_attr_temp4_max.dev_attr.attr,
607 	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
608 
609 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
610 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
611 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
612 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
613 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
614 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
615 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
616 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
617 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
618 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
619 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
620 
621 	&dev_attr_cpu0_vid.attr,
622 	&dev_attr_vrm.attr,
623 	&dev_attr_alarms.attr,
624 	&dev_attr_pwm1.attr,
625 	&dev_attr_pwm1_enable.attr,
626 
627 	NULL
628 };
629 
630 static const struct attribute_group asb100_group = {
631 	.attrs = asb100_attributes,
632 };
633 
634 static int asb100_detect_subclients(struct i2c_client *client)
635 {
636 	int i, id, err;
637 	int address = client->addr;
638 	unsigned short sc_addr[2];
639 	struct asb100_data *data = i2c_get_clientdata(client);
640 	struct i2c_adapter *adapter = client->adapter;
641 
642 	id = i2c_adapter_id(adapter);
643 
644 	if (force_subclients[0] == id && force_subclients[1] == address) {
645 		for (i = 2; i <= 3; i++) {
646 			if (force_subclients[i] < 0x48 ||
647 			    force_subclients[i] > 0x4f) {
648 				dev_err(&client->dev, "invalid subclient "
649 					"address %d; must be 0x48-0x4f\n",
650 					force_subclients[i]);
651 				err = -ENODEV;
652 				goto ERROR_SC_2;
653 			}
654 		}
655 		asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
656 					(force_subclients[2] & 0x07) |
657 					((force_subclients[3] & 0x07) << 4));
658 		sc_addr[0] = force_subclients[2];
659 		sc_addr[1] = force_subclients[3];
660 	} else {
661 		int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
662 		sc_addr[0] = 0x48 + (val & 0x07);
663 		sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
664 	}
665 
666 	if (sc_addr[0] == sc_addr[1]) {
667 		dev_err(&client->dev, "duplicate addresses 0x%x "
668 				"for subclients\n", sc_addr[0]);
669 		err = -ENODEV;
670 		goto ERROR_SC_2;
671 	}
672 
673 	data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
674 	if (!data->lm75[0]) {
675 		dev_err(&client->dev, "subclient %d registration "
676 			"at address 0x%x failed.\n", 1, sc_addr[0]);
677 		err = -ENOMEM;
678 		goto ERROR_SC_2;
679 	}
680 
681 	data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
682 	if (!data->lm75[1]) {
683 		dev_err(&client->dev, "subclient %d registration "
684 			"at address 0x%x failed.\n", 2, sc_addr[1]);
685 		err = -ENOMEM;
686 		goto ERROR_SC_3;
687 	}
688 
689 	return 0;
690 
691 /* Undo inits in case of errors */
692 ERROR_SC_3:
693 	i2c_unregister_device(data->lm75[0]);
694 ERROR_SC_2:
695 	return err;
696 }
697 
698 /* Return 0 if detection is successful, -ENODEV otherwise */
699 static int asb100_detect(struct i2c_client *client,
700 			 struct i2c_board_info *info)
701 {
702 	struct i2c_adapter *adapter = client->adapter;
703 	int val1, val2;
704 
705 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
706 		pr_debug("detect failed, smbus byte data not supported!\n");
707 		return -ENODEV;
708 	}
709 
710 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
711 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
712 
713 	/* If we're in bank 0 */
714 	if ((!(val1 & 0x07)) &&
715 			/* Check for ASB100 ID (low byte) */
716 			(((!(val1 & 0x80)) && (val2 != 0x94)) ||
717 			/* Check for ASB100 ID (high byte ) */
718 			((val1 & 0x80) && (val2 != 0x06)))) {
719 		pr_debug("detect failed, bad chip id 0x%02x!\n", val2);
720 		return -ENODEV;
721 	}
722 
723 	/* Put it now into bank 0 and Vendor ID High Byte */
724 	i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
725 		(i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
726 		| 0x80);
727 
728 	/* Determine the chip type. */
729 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
730 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
731 
732 	if (val1 != 0x31 || val2 != 0x06)
733 		return -ENODEV;
734 
735 	strlcpy(info->type, "asb100", I2C_NAME_SIZE);
736 
737 	return 0;
738 }
739 
740 static int asb100_probe(struct i2c_client *client,
741 			const struct i2c_device_id *id)
742 {
743 	int err;
744 	struct asb100_data *data;
745 
746 	data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL);
747 	if (!data) {
748 		pr_debug("probe failed, kzalloc failed!\n");
749 		err = -ENOMEM;
750 		goto ERROR0;
751 	}
752 
753 	i2c_set_clientdata(client, data);
754 	mutex_init(&data->lock);
755 	mutex_init(&data->update_lock);
756 
757 	/* Attach secondary lm75 clients */
758 	err = asb100_detect_subclients(client);
759 	if (err)
760 		goto ERROR1;
761 
762 	/* Initialize the chip */
763 	asb100_init_client(client);
764 
765 	/* A few vars need to be filled upon startup */
766 	data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
767 	data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
768 	data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
769 
770 	/* Register sysfs hooks */
771 	if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group)))
772 		goto ERROR3;
773 
774 	data->hwmon_dev = hwmon_device_register(&client->dev);
775 	if (IS_ERR(data->hwmon_dev)) {
776 		err = PTR_ERR(data->hwmon_dev);
777 		goto ERROR4;
778 	}
779 
780 	return 0;
781 
782 ERROR4:
783 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
784 ERROR3:
785 	i2c_unregister_device(data->lm75[1]);
786 	i2c_unregister_device(data->lm75[0]);
787 ERROR1:
788 	kfree(data);
789 ERROR0:
790 	return err;
791 }
792 
793 static int asb100_remove(struct i2c_client *client)
794 {
795 	struct asb100_data *data = i2c_get_clientdata(client);
796 
797 	hwmon_device_unregister(data->hwmon_dev);
798 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
799 
800 	i2c_unregister_device(data->lm75[1]);
801 	i2c_unregister_device(data->lm75[0]);
802 
803 	kfree(data);
804 
805 	return 0;
806 }
807 
808 /* The SMBus locks itself, usually, but nothing may access the chip between
809    bank switches. */
810 static int asb100_read_value(struct i2c_client *client, u16 reg)
811 {
812 	struct asb100_data *data = i2c_get_clientdata(client);
813 	struct i2c_client *cl;
814 	int res, bank;
815 
816 	mutex_lock(&data->lock);
817 
818 	bank = (reg >> 8) & 0x0f;
819 	if (bank > 2)
820 		/* switch banks */
821 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
822 
823 	if (bank == 0 || bank > 2) {
824 		res = i2c_smbus_read_byte_data(client, reg & 0xff);
825 	} else {
826 		/* switch to subclient */
827 		cl = data->lm75[bank - 1];
828 
829 		/* convert from ISA to LM75 I2C addresses */
830 		switch (reg & 0xff) {
831 		case 0x50: /* TEMP */
832 			res = i2c_smbus_read_word_swapped(cl, 0);
833 			break;
834 		case 0x52: /* CONFIG */
835 			res = i2c_smbus_read_byte_data(cl, 1);
836 			break;
837 		case 0x53: /* HYST */
838 			res = i2c_smbus_read_word_swapped(cl, 2);
839 			break;
840 		case 0x55: /* MAX */
841 		default:
842 			res = i2c_smbus_read_word_swapped(cl, 3);
843 			break;
844 		}
845 	}
846 
847 	if (bank > 2)
848 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
849 
850 	mutex_unlock(&data->lock);
851 
852 	return res;
853 }
854 
855 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
856 {
857 	struct asb100_data *data = i2c_get_clientdata(client);
858 	struct i2c_client *cl;
859 	int bank;
860 
861 	mutex_lock(&data->lock);
862 
863 	bank = (reg >> 8) & 0x0f;
864 	if (bank > 2)
865 		/* switch banks */
866 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
867 
868 	if (bank == 0 || bank > 2) {
869 		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
870 	} else {
871 		/* switch to subclient */
872 		cl = data->lm75[bank - 1];
873 
874 		/* convert from ISA to LM75 I2C addresses */
875 		switch (reg & 0xff) {
876 		case 0x52: /* CONFIG */
877 			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
878 			break;
879 		case 0x53: /* HYST */
880 			i2c_smbus_write_word_swapped(cl, 2, value);
881 			break;
882 		case 0x55: /* MAX */
883 			i2c_smbus_write_word_swapped(cl, 3, value);
884 			break;
885 		}
886 	}
887 
888 	if (bank > 2)
889 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
890 
891 	mutex_unlock(&data->lock);
892 }
893 
894 static void asb100_init_client(struct i2c_client *client)
895 {
896 	struct asb100_data *data = i2c_get_clientdata(client);
897 
898 	data->vrm = vid_which_vrm();
899 
900 	/* Start monitoring */
901 	asb100_write_value(client, ASB100_REG_CONFIG,
902 		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
903 }
904 
905 static struct asb100_data *asb100_update_device(struct device *dev)
906 {
907 	struct i2c_client *client = to_i2c_client(dev);
908 	struct asb100_data *data = i2c_get_clientdata(client);
909 	int i;
910 
911 	mutex_lock(&data->update_lock);
912 
913 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
914 		|| !data->valid) {
915 
916 		dev_dbg(&client->dev, "starting device update...\n");
917 
918 		/* 7 voltage inputs */
919 		for (i = 0; i < 7; i++) {
920 			data->in[i] = asb100_read_value(client,
921 				ASB100_REG_IN(i));
922 			data->in_min[i] = asb100_read_value(client,
923 				ASB100_REG_IN_MIN(i));
924 			data->in_max[i] = asb100_read_value(client,
925 				ASB100_REG_IN_MAX(i));
926 		}
927 
928 		/* 3 fan inputs */
929 		for (i = 0; i < 3; i++) {
930 			data->fan[i] = asb100_read_value(client,
931 					ASB100_REG_FAN(i));
932 			data->fan_min[i] = asb100_read_value(client,
933 					ASB100_REG_FAN_MIN(i));
934 		}
935 
936 		/* 4 temperature inputs */
937 		for (i = 1; i <= 4; i++) {
938 			data->temp[i-1] = asb100_read_value(client,
939 					ASB100_REG_TEMP(i));
940 			data->temp_max[i-1] = asb100_read_value(client,
941 					ASB100_REG_TEMP_MAX(i));
942 			data->temp_hyst[i-1] = asb100_read_value(client,
943 					ASB100_REG_TEMP_HYST(i));
944 		}
945 
946 		/* VID and fan divisors */
947 		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
948 		data->vid = i & 0x0f;
949 		data->vid |= (asb100_read_value(client,
950 				ASB100_REG_CHIPID) & 0x01) << 4;
951 		data->fan_div[0] = (i >> 4) & 0x03;
952 		data->fan_div[1] = (i >> 6) & 0x03;
953 		data->fan_div[2] = (asb100_read_value(client,
954 				ASB100_REG_PIN) >> 6) & 0x03;
955 
956 		/* PWM */
957 		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
958 
959 		/* alarms */
960 		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
961 			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);
962 
963 		data->last_updated = jiffies;
964 		data->valid = 1;
965 
966 		dev_dbg(&client->dev, "... device update complete\n");
967 	}
968 
969 	mutex_unlock(&data->update_lock);
970 
971 	return data;
972 }
973 
974 static int __init asb100_init(void)
975 {
976 	return i2c_add_driver(&asb100_driver);
977 }
978 
979 static void __exit asb100_exit(void)
980 {
981 	i2c_del_driver(&asb100_driver);
982 }
983 
984 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
985 MODULE_DESCRIPTION("ASB100 Bach driver");
986 MODULE_LICENSE("GPL");
987 
988 module_init(asb100_init);
989 module_exit(asb100_exit);
990