xref: /openbmc/linux/drivers/hwmon/asb100.c (revision 0980bb1f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * asb100.c - Part of lm_sensors, Linux kernel modules for hardware
4  *	      monitoring
5  *
6  * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
7  *
8  * (derived from w83781d.c)
9  *
10  * Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
11  *			      Philip Edelbrock <phil@netroedge.com>, and
12  *			      Mark Studebaker <mdsxyz123@yahoo.com>
13  */
14 
15 /*
16  * This driver supports the hardware sensor chips: Asus ASB100 and
17  * ASB100-A "BACH".
18  *
19  * ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
20  * way for the driver to tell which one is there.
21  *
22  * Chip		#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
23  * asb100	7	3	1	4	0x31	0x0694	yes	no
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/i2c.h>
31 #include <linux/hwmon.h>
32 #include <linux/hwmon-sysfs.h>
33 #include <linux/hwmon-vid.h>
34 #include <linux/err.h>
35 #include <linux/init.h>
36 #include <linux/jiffies.h>
37 #include <linux/mutex.h>
38 #include "lm75.h"
39 
40 /* I2C addresses to scan */
41 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
42 
43 static unsigned short force_subclients[4];
44 module_param_array(force_subclients, short, NULL, 0);
45 MODULE_PARM_DESC(force_subclients,
46 	"List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
47 
48 /* Voltage IN registers 0-6 */
49 #define ASB100_REG_IN(nr)	(0x20 + (nr))
50 #define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
51 #define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))
52 
53 /* FAN IN registers 1-3 */
54 #define ASB100_REG_FAN(nr)	(0x28 + (nr))
55 #define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))
56 
57 /* TEMPERATURE registers 1-4 */
58 static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
59 static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
60 static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};
61 
62 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
63 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
64 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
65 
66 #define ASB100_REG_TEMP2_CONFIG	0x0152
67 #define ASB100_REG_TEMP3_CONFIG	0x0252
68 
69 
70 #define ASB100_REG_CONFIG	0x40
71 #define ASB100_REG_ALARM1	0x41
72 #define ASB100_REG_ALARM2	0x42
73 #define ASB100_REG_SMIM1	0x43
74 #define ASB100_REG_SMIM2	0x44
75 #define ASB100_REG_VID_FANDIV	0x47
76 #define ASB100_REG_I2C_ADDR	0x48
77 #define ASB100_REG_CHIPID	0x49
78 #define ASB100_REG_I2C_SUBADDR	0x4a
79 #define ASB100_REG_PIN		0x4b
80 #define ASB100_REG_IRQ		0x4c
81 #define ASB100_REG_BANK		0x4e
82 #define ASB100_REG_CHIPMAN	0x4f
83 
84 #define ASB100_REG_WCHIPID	0x58
85 
86 /* bit 7 -> enable, bits 0-3 -> duty cycle */
87 #define ASB100_REG_PWM1		0x59
88 
89 /*
90  * CONVERSIONS
91  * Rounding and limit checking is only done on the TO_REG variants.
92  */
93 
94 /* These constants are a guess, consistent w/ w83781d */
95 #define ASB100_IN_MIN		0
96 #define ASB100_IN_MAX		4080
97 
98 /*
99  * IN: 1/1000 V (0V to 4.08V)
100  * REG: 16mV/bit
101  */
102 static u8 IN_TO_REG(unsigned val)
103 {
104 	unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX);
105 	return (nval + 8) / 16;
106 }
107 
108 static unsigned IN_FROM_REG(u8 reg)
109 {
110 	return reg * 16;
111 }
112 
113 static u8 FAN_TO_REG(long rpm, int div)
114 {
115 	if (rpm == -1)
116 		return 0;
117 	if (rpm == 0)
118 		return 255;
119 	rpm = clamp_val(rpm, 1, 1000000);
120 	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
121 }
122 
123 static int FAN_FROM_REG(u8 val, int div)
124 {
125 	return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div);
126 }
127 
128 /* These constants are a guess, consistent w/ w83781d */
129 #define ASB100_TEMP_MIN		-128000
130 #define ASB100_TEMP_MAX		127000
131 
132 /*
133  * TEMP: 0.001C/bit (-128C to +127C)
134  * REG: 1C/bit, two's complement
135  */
136 static u8 TEMP_TO_REG(long temp)
137 {
138 	int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
139 	ntemp += (ntemp < 0 ? -500 : 500);
140 	return (u8)(ntemp / 1000);
141 }
142 
143 static int TEMP_FROM_REG(u8 reg)
144 {
145 	return (s8)reg * 1000;
146 }
147 
148 /*
149  * PWM: 0 - 255 per sensors documentation
150  * REG: (6.25% duty cycle per bit)
151  */
152 static u8 ASB100_PWM_TO_REG(int pwm)
153 {
154 	pwm = clamp_val(pwm, 0, 255);
155 	return (u8)(pwm / 16);
156 }
157 
158 static int ASB100_PWM_FROM_REG(u8 reg)
159 {
160 	return reg * 16;
161 }
162 
163 #define DIV_FROM_REG(val) (1 << (val))
164 
165 /*
166  * FAN DIV: 1, 2, 4, or 8 (defaults to 2)
167  * REG: 0, 1, 2, or 3 (respectively) (defaults to 1)
168  */
169 static u8 DIV_TO_REG(long val)
170 {
171 	return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1;
172 }
173 
174 /*
175  * For each registered client, we need to keep some data in memory. That
176  * data is pointed to by client->data. The structure itself is
177  * dynamically allocated, at the same time the client itself is allocated.
178  */
179 struct asb100_data {
180 	struct device *hwmon_dev;
181 	struct mutex lock;
182 
183 	struct mutex update_lock;
184 	unsigned long last_updated;	/* In jiffies */
185 
186 	/* array of 2 pointers to subclients */
187 	struct i2c_client *lm75[2];
188 
189 	bool valid;		/* true if following fields are valid */
190 	u8 in[7];		/* Register value */
191 	u8 in_max[7];		/* Register value */
192 	u8 in_min[7];		/* Register value */
193 	u8 fan[3];		/* Register value */
194 	u8 fan_min[3];		/* Register value */
195 	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
196 	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
197 	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
198 	u8 fan_div[3];		/* Register encoding, right justified */
199 	u8 pwm;			/* Register encoding */
200 	u8 vid;			/* Register encoding, combined */
201 	u32 alarms;		/* Register encoding, combined */
202 	u8 vrm;
203 };
204 
205 static int asb100_read_value(struct i2c_client *client, u16 reg);
206 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
207 
208 static int asb100_probe(struct i2c_client *client);
209 static int asb100_detect(struct i2c_client *client,
210 			 struct i2c_board_info *info);
211 static int asb100_remove(struct i2c_client *client);
212 static struct asb100_data *asb100_update_device(struct device *dev);
213 static void asb100_init_client(struct i2c_client *client);
214 
215 static const struct i2c_device_id asb100_id[] = {
216 	{ "asb100", 0 },
217 	{ }
218 };
219 MODULE_DEVICE_TABLE(i2c, asb100_id);
220 
221 static struct i2c_driver asb100_driver = {
222 	.class		= I2C_CLASS_HWMON,
223 	.driver = {
224 		.name	= "asb100",
225 	},
226 	.probe_new	= asb100_probe,
227 	.remove		= asb100_remove,
228 	.id_table	= asb100_id,
229 	.detect		= asb100_detect,
230 	.address_list	= normal_i2c,
231 };
232 
233 /* 7 Voltages */
234 #define show_in_reg(reg) \
235 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
236 		char *buf) \
237 { \
238 	int nr = to_sensor_dev_attr(attr)->index; \
239 	struct asb100_data *data = asb100_update_device(dev); \
240 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
241 }
242 
243 show_in_reg(in)
244 show_in_reg(in_min)
245 show_in_reg(in_max)
246 
247 #define set_in_reg(REG, reg) \
248 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
249 		const char *buf, size_t count) \
250 { \
251 	int nr = to_sensor_dev_attr(attr)->index; \
252 	struct i2c_client *client = to_i2c_client(dev); \
253 	struct asb100_data *data = i2c_get_clientdata(client); \
254 	unsigned long val; \
255 	int err = kstrtoul(buf, 10, &val); \
256 	if (err) \
257 		return err; \
258 	mutex_lock(&data->update_lock); \
259 	data->in_##reg[nr] = IN_TO_REG(val); \
260 	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
261 		data->in_##reg[nr]); \
262 	mutex_unlock(&data->update_lock); \
263 	return count; \
264 }
265 
266 set_in_reg(MIN, min)
267 set_in_reg(MAX, max)
268 
269 #define sysfs_in(offset) \
270 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
271 		show_in, NULL, offset); \
272 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
273 		show_in_min, set_in_min, offset); \
274 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
275 		show_in_max, set_in_max, offset)
276 
277 sysfs_in(0);
278 sysfs_in(1);
279 sysfs_in(2);
280 sysfs_in(3);
281 sysfs_in(4);
282 sysfs_in(5);
283 sysfs_in(6);
284 
285 /* 3 Fans */
286 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
287 		char *buf)
288 {
289 	int nr = to_sensor_dev_attr(attr)->index;
290 	struct asb100_data *data = asb100_update_device(dev);
291 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
292 		DIV_FROM_REG(data->fan_div[nr])));
293 }
294 
295 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
296 		char *buf)
297 {
298 	int nr = to_sensor_dev_attr(attr)->index;
299 	struct asb100_data *data = asb100_update_device(dev);
300 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
301 		DIV_FROM_REG(data->fan_div[nr])));
302 }
303 
304 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
305 		char *buf)
306 {
307 	int nr = to_sensor_dev_attr(attr)->index;
308 	struct asb100_data *data = asb100_update_device(dev);
309 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
310 }
311 
312 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
313 		const char *buf, size_t count)
314 {
315 	int nr = to_sensor_dev_attr(attr)->index;
316 	struct i2c_client *client = to_i2c_client(dev);
317 	struct asb100_data *data = i2c_get_clientdata(client);
318 	unsigned long val;
319 	int err;
320 
321 	err = kstrtoul(buf, 10, &val);
322 	if (err)
323 		return err;
324 
325 	mutex_lock(&data->update_lock);
326 	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
327 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
328 	mutex_unlock(&data->update_lock);
329 	return count;
330 }
331 
332 /*
333  * Note: we save and restore the fan minimum here, because its value is
334  * determined in part by the fan divisor.  This follows the principle of
335  * least surprise; the user doesn't expect the fan minimum to change just
336  * because the divisor changed.
337  */
338 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
339 		const char *buf, size_t count)
340 {
341 	int nr = to_sensor_dev_attr(attr)->index;
342 	struct i2c_client *client = to_i2c_client(dev);
343 	struct asb100_data *data = i2c_get_clientdata(client);
344 	unsigned long min;
345 	int reg;
346 	unsigned long val;
347 	int err;
348 
349 	err = kstrtoul(buf, 10, &val);
350 	if (err)
351 		return err;
352 
353 	mutex_lock(&data->update_lock);
354 
355 	min = FAN_FROM_REG(data->fan_min[nr],
356 			DIV_FROM_REG(data->fan_div[nr]));
357 	data->fan_div[nr] = DIV_TO_REG(val);
358 
359 	switch (nr) {
360 	case 0:	/* fan 1 */
361 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
362 		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
363 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
364 		break;
365 
366 	case 1:	/* fan 2 */
367 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
368 		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
369 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
370 		break;
371 
372 	case 2:	/* fan 3 */
373 		reg = asb100_read_value(client, ASB100_REG_PIN);
374 		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
375 		asb100_write_value(client, ASB100_REG_PIN, reg);
376 		break;
377 	}
378 
379 	data->fan_min[nr] =
380 		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
381 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
382 
383 	mutex_unlock(&data->update_lock);
384 
385 	return count;
386 }
387 
388 #define sysfs_fan(offset) \
389 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
390 		show_fan, NULL, offset - 1); \
391 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
392 		show_fan_min, set_fan_min, offset - 1); \
393 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
394 		show_fan_div, set_fan_div, offset - 1)
395 
396 sysfs_fan(1);
397 sysfs_fan(2);
398 sysfs_fan(3);
399 
400 /* 4 Temp. Sensors */
401 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
402 {
403 	int ret = 0;
404 
405 	switch (nr) {
406 	case 1: case 2:
407 		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
408 		break;
409 	case 0: case 3: default:
410 		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
411 		break;
412 	}
413 	return ret;
414 }
415 
416 #define show_temp_reg(reg) \
417 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
418 		char *buf) \
419 { \
420 	int nr = to_sensor_dev_attr(attr)->index; \
421 	struct asb100_data *data = asb100_update_device(dev); \
422 	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
423 }
424 
425 show_temp_reg(temp);
426 show_temp_reg(temp_max);
427 show_temp_reg(temp_hyst);
428 
429 #define set_temp_reg(REG, reg) \
430 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
431 		const char *buf, size_t count) \
432 { \
433 	int nr = to_sensor_dev_attr(attr)->index; \
434 	struct i2c_client *client = to_i2c_client(dev); \
435 	struct asb100_data *data = i2c_get_clientdata(client); \
436 	long val; \
437 	int err = kstrtol(buf, 10, &val); \
438 	if (err) \
439 		return err; \
440 	mutex_lock(&data->update_lock); \
441 	switch (nr) { \
442 	case 1: case 2: \
443 		data->reg[nr] = LM75_TEMP_TO_REG(val); \
444 		break; \
445 	case 0: case 3: default: \
446 		data->reg[nr] = TEMP_TO_REG(val); \
447 		break; \
448 	} \
449 	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
450 			data->reg[nr]); \
451 	mutex_unlock(&data->update_lock); \
452 	return count; \
453 }
454 
455 set_temp_reg(MAX, temp_max);
456 set_temp_reg(HYST, temp_hyst);
457 
458 #define sysfs_temp(num) \
459 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
460 		show_temp, NULL, num - 1); \
461 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
462 		show_temp_max, set_temp_max, num - 1); \
463 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
464 		show_temp_hyst, set_temp_hyst, num - 1)
465 
466 sysfs_temp(1);
467 sysfs_temp(2);
468 sysfs_temp(3);
469 sysfs_temp(4);
470 
471 /* VID */
472 static ssize_t cpu0_vid_show(struct device *dev,
473 			     struct device_attribute *attr, char *buf)
474 {
475 	struct asb100_data *data = asb100_update_device(dev);
476 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
477 }
478 
479 static DEVICE_ATTR_RO(cpu0_vid);
480 
481 /* VRM */
482 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
483 		char *buf)
484 {
485 	struct asb100_data *data = dev_get_drvdata(dev);
486 	return sprintf(buf, "%d\n", data->vrm);
487 }
488 
489 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
490 			 const char *buf, size_t count)
491 {
492 	struct asb100_data *data = dev_get_drvdata(dev);
493 	unsigned long val;
494 	int err;
495 
496 	err = kstrtoul(buf, 10, &val);
497 	if (err)
498 		return err;
499 
500 	if (val > 255)
501 		return -EINVAL;
502 
503 	data->vrm = val;
504 	return count;
505 }
506 
507 /* Alarms */
508 static DEVICE_ATTR_RW(vrm);
509 
510 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
511 		char *buf)
512 {
513 	struct asb100_data *data = asb100_update_device(dev);
514 	return sprintf(buf, "%u\n", data->alarms);
515 }
516 
517 static DEVICE_ATTR_RO(alarms);
518 
519 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
520 		char *buf)
521 {
522 	int bitnr = to_sensor_dev_attr(attr)->index;
523 	struct asb100_data *data = asb100_update_device(dev);
524 	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
525 }
526 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
527 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
528 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
529 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
530 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
531 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
532 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
533 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
534 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
535 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
536 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
537 
538 /* 1 PWM */
539 static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr,
540 		char *buf)
541 {
542 	struct asb100_data *data = asb100_update_device(dev);
543 	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
544 }
545 
546 static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr,
547 			  const char *buf, size_t count)
548 {
549 	struct i2c_client *client = to_i2c_client(dev);
550 	struct asb100_data *data = i2c_get_clientdata(client);
551 	unsigned long val;
552 	int err;
553 
554 	err = kstrtoul(buf, 10, &val);
555 	if (err)
556 		return err;
557 
558 	mutex_lock(&data->update_lock);
559 	data->pwm &= 0x80; /* keep the enable bit */
560 	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
561 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
562 	mutex_unlock(&data->update_lock);
563 	return count;
564 }
565 
566 static ssize_t pwm1_enable_show(struct device *dev,
567 		struct device_attribute *attr, char *buf)
568 {
569 	struct asb100_data *data = asb100_update_device(dev);
570 	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
571 }
572 
573 static ssize_t pwm1_enable_store(struct device *dev,
574 				 struct device_attribute *attr,
575 				 const char *buf, size_t count)
576 {
577 	struct i2c_client *client = to_i2c_client(dev);
578 	struct asb100_data *data = i2c_get_clientdata(client);
579 	unsigned long val;
580 	int err;
581 
582 	err = kstrtoul(buf, 10, &val);
583 	if (err)
584 		return err;
585 
586 	mutex_lock(&data->update_lock);
587 	data->pwm &= 0x0f; /* keep the duty cycle bits */
588 	data->pwm |= (val ? 0x80 : 0x00);
589 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
590 	mutex_unlock(&data->update_lock);
591 	return count;
592 }
593 
594 static DEVICE_ATTR_RW(pwm1);
595 static DEVICE_ATTR_RW(pwm1_enable);
596 
597 static struct attribute *asb100_attributes[] = {
598 	&sensor_dev_attr_in0_input.dev_attr.attr,
599 	&sensor_dev_attr_in0_min.dev_attr.attr,
600 	&sensor_dev_attr_in0_max.dev_attr.attr,
601 	&sensor_dev_attr_in1_input.dev_attr.attr,
602 	&sensor_dev_attr_in1_min.dev_attr.attr,
603 	&sensor_dev_attr_in1_max.dev_attr.attr,
604 	&sensor_dev_attr_in2_input.dev_attr.attr,
605 	&sensor_dev_attr_in2_min.dev_attr.attr,
606 	&sensor_dev_attr_in2_max.dev_attr.attr,
607 	&sensor_dev_attr_in3_input.dev_attr.attr,
608 	&sensor_dev_attr_in3_min.dev_attr.attr,
609 	&sensor_dev_attr_in3_max.dev_attr.attr,
610 	&sensor_dev_attr_in4_input.dev_attr.attr,
611 	&sensor_dev_attr_in4_min.dev_attr.attr,
612 	&sensor_dev_attr_in4_max.dev_attr.attr,
613 	&sensor_dev_attr_in5_input.dev_attr.attr,
614 	&sensor_dev_attr_in5_min.dev_attr.attr,
615 	&sensor_dev_attr_in5_max.dev_attr.attr,
616 	&sensor_dev_attr_in6_input.dev_attr.attr,
617 	&sensor_dev_attr_in6_min.dev_attr.attr,
618 	&sensor_dev_attr_in6_max.dev_attr.attr,
619 
620 	&sensor_dev_attr_fan1_input.dev_attr.attr,
621 	&sensor_dev_attr_fan1_min.dev_attr.attr,
622 	&sensor_dev_attr_fan1_div.dev_attr.attr,
623 	&sensor_dev_attr_fan2_input.dev_attr.attr,
624 	&sensor_dev_attr_fan2_min.dev_attr.attr,
625 	&sensor_dev_attr_fan2_div.dev_attr.attr,
626 	&sensor_dev_attr_fan3_input.dev_attr.attr,
627 	&sensor_dev_attr_fan3_min.dev_attr.attr,
628 	&sensor_dev_attr_fan3_div.dev_attr.attr,
629 
630 	&sensor_dev_attr_temp1_input.dev_attr.attr,
631 	&sensor_dev_attr_temp1_max.dev_attr.attr,
632 	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
633 	&sensor_dev_attr_temp2_input.dev_attr.attr,
634 	&sensor_dev_attr_temp2_max.dev_attr.attr,
635 	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
636 	&sensor_dev_attr_temp3_input.dev_attr.attr,
637 	&sensor_dev_attr_temp3_max.dev_attr.attr,
638 	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
639 	&sensor_dev_attr_temp4_input.dev_attr.attr,
640 	&sensor_dev_attr_temp4_max.dev_attr.attr,
641 	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
642 
643 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
644 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
645 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
646 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
647 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
648 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
649 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
650 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
651 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
652 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
653 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
654 
655 	&dev_attr_cpu0_vid.attr,
656 	&dev_attr_vrm.attr,
657 	&dev_attr_alarms.attr,
658 	&dev_attr_pwm1.attr,
659 	&dev_attr_pwm1_enable.attr,
660 
661 	NULL
662 };
663 
664 static const struct attribute_group asb100_group = {
665 	.attrs = asb100_attributes,
666 };
667 
668 static int asb100_detect_subclients(struct i2c_client *client)
669 {
670 	int i, id, err;
671 	int address = client->addr;
672 	unsigned short sc_addr[2];
673 	struct asb100_data *data = i2c_get_clientdata(client);
674 	struct i2c_adapter *adapter = client->adapter;
675 
676 	id = i2c_adapter_id(adapter);
677 
678 	if (force_subclients[0] == id && force_subclients[1] == address) {
679 		for (i = 2; i <= 3; i++) {
680 			if (force_subclients[i] < 0x48 ||
681 			    force_subclients[i] > 0x4f) {
682 				dev_err(&client->dev,
683 					"invalid subclient address %d; must be 0x48-0x4f\n",
684 					force_subclients[i]);
685 				err = -ENODEV;
686 				goto ERROR_SC_2;
687 			}
688 		}
689 		asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
690 					(force_subclients[2] & 0x07) |
691 					((force_subclients[3] & 0x07) << 4));
692 		sc_addr[0] = force_subclients[2];
693 		sc_addr[1] = force_subclients[3];
694 	} else {
695 		int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
696 		sc_addr[0] = 0x48 + (val & 0x07);
697 		sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
698 	}
699 
700 	if (sc_addr[0] == sc_addr[1]) {
701 		dev_err(&client->dev,
702 			"duplicate addresses 0x%x for subclients\n",
703 			sc_addr[0]);
704 		err = -ENODEV;
705 		goto ERROR_SC_2;
706 	}
707 
708 	data->lm75[0] = i2c_new_dummy_device(adapter, sc_addr[0]);
709 	if (IS_ERR(data->lm75[0])) {
710 		dev_err(&client->dev,
711 			"subclient %d registration at address 0x%x failed.\n",
712 			1, sc_addr[0]);
713 		err = PTR_ERR(data->lm75[0]);
714 		goto ERROR_SC_2;
715 	}
716 
717 	data->lm75[1] = i2c_new_dummy_device(adapter, sc_addr[1]);
718 	if (IS_ERR(data->lm75[1])) {
719 		dev_err(&client->dev,
720 			"subclient %d registration at address 0x%x failed.\n",
721 			2, sc_addr[1]);
722 		err = PTR_ERR(data->lm75[1]);
723 		goto ERROR_SC_3;
724 	}
725 
726 	return 0;
727 
728 /* Undo inits in case of errors */
729 ERROR_SC_3:
730 	i2c_unregister_device(data->lm75[0]);
731 ERROR_SC_2:
732 	return err;
733 }
734 
735 /* Return 0 if detection is successful, -ENODEV otherwise */
736 static int asb100_detect(struct i2c_client *client,
737 			 struct i2c_board_info *info)
738 {
739 	struct i2c_adapter *adapter = client->adapter;
740 	int val1, val2;
741 
742 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
743 		pr_debug("detect failed, smbus byte data not supported!\n");
744 		return -ENODEV;
745 	}
746 
747 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
748 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
749 
750 	/* If we're in bank 0 */
751 	if ((!(val1 & 0x07)) &&
752 			/* Check for ASB100 ID (low byte) */
753 			(((!(val1 & 0x80)) && (val2 != 0x94)) ||
754 			/* Check for ASB100 ID (high byte ) */
755 			((val1 & 0x80) && (val2 != 0x06)))) {
756 		pr_debug("detect failed, bad chip id 0x%02x!\n", val2);
757 		return -ENODEV;
758 	}
759 
760 	/* Put it now into bank 0 and Vendor ID High Byte */
761 	i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
762 		(i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
763 		| 0x80);
764 
765 	/* Determine the chip type. */
766 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
767 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
768 
769 	if (val1 != 0x31 || val2 != 0x06)
770 		return -ENODEV;
771 
772 	strlcpy(info->type, "asb100", I2C_NAME_SIZE);
773 
774 	return 0;
775 }
776 
777 static int asb100_probe(struct i2c_client *client)
778 {
779 	int err;
780 	struct asb100_data *data;
781 
782 	data = devm_kzalloc(&client->dev, sizeof(struct asb100_data),
783 			    GFP_KERNEL);
784 	if (!data)
785 		return -ENOMEM;
786 
787 	i2c_set_clientdata(client, data);
788 	mutex_init(&data->lock);
789 	mutex_init(&data->update_lock);
790 
791 	/* Attach secondary lm75 clients */
792 	err = asb100_detect_subclients(client);
793 	if (err)
794 		return err;
795 
796 	/* Initialize the chip */
797 	asb100_init_client(client);
798 
799 	/* A few vars need to be filled upon startup */
800 	data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
801 	data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
802 	data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
803 
804 	/* Register sysfs hooks */
805 	err = sysfs_create_group(&client->dev.kobj, &asb100_group);
806 	if (err)
807 		goto ERROR3;
808 
809 	data->hwmon_dev = hwmon_device_register(&client->dev);
810 	if (IS_ERR(data->hwmon_dev)) {
811 		err = PTR_ERR(data->hwmon_dev);
812 		goto ERROR4;
813 	}
814 
815 	return 0;
816 
817 ERROR4:
818 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
819 ERROR3:
820 	i2c_unregister_device(data->lm75[1]);
821 	i2c_unregister_device(data->lm75[0]);
822 	return err;
823 }
824 
825 static int asb100_remove(struct i2c_client *client)
826 {
827 	struct asb100_data *data = i2c_get_clientdata(client);
828 
829 	hwmon_device_unregister(data->hwmon_dev);
830 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
831 
832 	i2c_unregister_device(data->lm75[1]);
833 	i2c_unregister_device(data->lm75[0]);
834 
835 	return 0;
836 }
837 
838 /*
839  * The SMBus locks itself, usually, but nothing may access the chip between
840  * bank switches.
841  */
842 static int asb100_read_value(struct i2c_client *client, u16 reg)
843 {
844 	struct asb100_data *data = i2c_get_clientdata(client);
845 	struct i2c_client *cl;
846 	int res, bank;
847 
848 	mutex_lock(&data->lock);
849 
850 	bank = (reg >> 8) & 0x0f;
851 	if (bank > 2)
852 		/* switch banks */
853 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
854 
855 	if (bank == 0 || bank > 2) {
856 		res = i2c_smbus_read_byte_data(client, reg & 0xff);
857 	} else {
858 		/* switch to subclient */
859 		cl = data->lm75[bank - 1];
860 
861 		/* convert from ISA to LM75 I2C addresses */
862 		switch (reg & 0xff) {
863 		case 0x50: /* TEMP */
864 			res = i2c_smbus_read_word_swapped(cl, 0);
865 			break;
866 		case 0x52: /* CONFIG */
867 			res = i2c_smbus_read_byte_data(cl, 1);
868 			break;
869 		case 0x53: /* HYST */
870 			res = i2c_smbus_read_word_swapped(cl, 2);
871 			break;
872 		case 0x55: /* MAX */
873 		default:
874 			res = i2c_smbus_read_word_swapped(cl, 3);
875 			break;
876 		}
877 	}
878 
879 	if (bank > 2)
880 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
881 
882 	mutex_unlock(&data->lock);
883 
884 	return res;
885 }
886 
887 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
888 {
889 	struct asb100_data *data = i2c_get_clientdata(client);
890 	struct i2c_client *cl;
891 	int bank;
892 
893 	mutex_lock(&data->lock);
894 
895 	bank = (reg >> 8) & 0x0f;
896 	if (bank > 2)
897 		/* switch banks */
898 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
899 
900 	if (bank == 0 || bank > 2) {
901 		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
902 	} else {
903 		/* switch to subclient */
904 		cl = data->lm75[bank - 1];
905 
906 		/* convert from ISA to LM75 I2C addresses */
907 		switch (reg & 0xff) {
908 		case 0x52: /* CONFIG */
909 			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
910 			break;
911 		case 0x53: /* HYST */
912 			i2c_smbus_write_word_swapped(cl, 2, value);
913 			break;
914 		case 0x55: /* MAX */
915 			i2c_smbus_write_word_swapped(cl, 3, value);
916 			break;
917 		}
918 	}
919 
920 	if (bank > 2)
921 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
922 
923 	mutex_unlock(&data->lock);
924 }
925 
926 static void asb100_init_client(struct i2c_client *client)
927 {
928 	struct asb100_data *data = i2c_get_clientdata(client);
929 
930 	data->vrm = vid_which_vrm();
931 
932 	/* Start monitoring */
933 	asb100_write_value(client, ASB100_REG_CONFIG,
934 		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
935 }
936 
937 static struct asb100_data *asb100_update_device(struct device *dev)
938 {
939 	struct i2c_client *client = to_i2c_client(dev);
940 	struct asb100_data *data = i2c_get_clientdata(client);
941 	int i;
942 
943 	mutex_lock(&data->update_lock);
944 
945 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
946 		|| !data->valid) {
947 
948 		dev_dbg(&client->dev, "starting device update...\n");
949 
950 		/* 7 voltage inputs */
951 		for (i = 0; i < 7; i++) {
952 			data->in[i] = asb100_read_value(client,
953 				ASB100_REG_IN(i));
954 			data->in_min[i] = asb100_read_value(client,
955 				ASB100_REG_IN_MIN(i));
956 			data->in_max[i] = asb100_read_value(client,
957 				ASB100_REG_IN_MAX(i));
958 		}
959 
960 		/* 3 fan inputs */
961 		for (i = 0; i < 3; i++) {
962 			data->fan[i] = asb100_read_value(client,
963 					ASB100_REG_FAN(i));
964 			data->fan_min[i] = asb100_read_value(client,
965 					ASB100_REG_FAN_MIN(i));
966 		}
967 
968 		/* 4 temperature inputs */
969 		for (i = 1; i <= 4; i++) {
970 			data->temp[i-1] = asb100_read_value(client,
971 					ASB100_REG_TEMP(i));
972 			data->temp_max[i-1] = asb100_read_value(client,
973 					ASB100_REG_TEMP_MAX(i));
974 			data->temp_hyst[i-1] = asb100_read_value(client,
975 					ASB100_REG_TEMP_HYST(i));
976 		}
977 
978 		/* VID and fan divisors */
979 		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
980 		data->vid = i & 0x0f;
981 		data->vid |= (asb100_read_value(client,
982 				ASB100_REG_CHIPID) & 0x01) << 4;
983 		data->fan_div[0] = (i >> 4) & 0x03;
984 		data->fan_div[1] = (i >> 6) & 0x03;
985 		data->fan_div[2] = (asb100_read_value(client,
986 				ASB100_REG_PIN) >> 6) & 0x03;
987 
988 		/* PWM */
989 		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
990 
991 		/* alarms */
992 		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
993 			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);
994 
995 		data->last_updated = jiffies;
996 		data->valid = true;
997 
998 		dev_dbg(&client->dev, "... device update complete\n");
999 	}
1000 
1001 	mutex_unlock(&data->update_lock);
1002 
1003 	return data;
1004 }
1005 
1006 module_i2c_driver(asb100_driver);
1007 
1008 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1009 MODULE_DESCRIPTION("ASB100 Bach driver");
1010 MODULE_LICENSE("GPL");
1011