1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * asb100.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 *
6 * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
7 *
8 * (derived from w83781d.c)
9 *
10 * Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
11 * Philip Edelbrock <phil@netroedge.com>, and
12 * Mark Studebaker <mdsxyz123@yahoo.com>
13 */
14
15 /*
16 * This driver supports the hardware sensor chips: Asus ASB100 and
17 * ASB100-A "BACH".
18 *
19 * ASB100-A supports pwm1, while plain ASB100 does not. There is no known
20 * way for the driver to tell which one is there.
21 *
22 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
23 * asb100 7 3 1 4 0x31 0x0694 yes no
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/i2c.h>
31 #include <linux/hwmon.h>
32 #include <linux/hwmon-sysfs.h>
33 #include <linux/hwmon-vid.h>
34 #include <linux/err.h>
35 #include <linux/init.h>
36 #include <linux/jiffies.h>
37 #include <linux/mutex.h>
38 #include "lm75.h"
39
40 /* I2C addresses to scan */
41 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
42
43 static unsigned short force_subclients[4];
44 module_param_array(force_subclients, short, NULL, 0);
45 MODULE_PARM_DESC(force_subclients,
46 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
47
48 /* Voltage IN registers 0-6 */
49 #define ASB100_REG_IN(nr) (0x20 + (nr))
50 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2))
51 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2))
52
53 /* FAN IN registers 1-3 */
54 #define ASB100_REG_FAN(nr) (0x28 + (nr))
55 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr))
56
57 /* TEMPERATURE registers 1-4 */
58 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17};
59 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18};
60 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
61
62 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
63 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
64 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
65
66 #define ASB100_REG_TEMP2_CONFIG 0x0152
67 #define ASB100_REG_TEMP3_CONFIG 0x0252
68
69
70 #define ASB100_REG_CONFIG 0x40
71 #define ASB100_REG_ALARM1 0x41
72 #define ASB100_REG_ALARM2 0x42
73 #define ASB100_REG_SMIM1 0x43
74 #define ASB100_REG_SMIM2 0x44
75 #define ASB100_REG_VID_FANDIV 0x47
76 #define ASB100_REG_I2C_ADDR 0x48
77 #define ASB100_REG_CHIPID 0x49
78 #define ASB100_REG_I2C_SUBADDR 0x4a
79 #define ASB100_REG_PIN 0x4b
80 #define ASB100_REG_IRQ 0x4c
81 #define ASB100_REG_BANK 0x4e
82 #define ASB100_REG_CHIPMAN 0x4f
83
84 #define ASB100_REG_WCHIPID 0x58
85
86 /* bit 7 -> enable, bits 0-3 -> duty cycle */
87 #define ASB100_REG_PWM1 0x59
88
89 /*
90 * CONVERSIONS
91 * Rounding and limit checking is only done on the TO_REG variants.
92 */
93
94 /* These constants are a guess, consistent w/ w83781d */
95 #define ASB100_IN_MIN 0
96 #define ASB100_IN_MAX 4080
97
98 /*
99 * IN: 1/1000 V (0V to 4.08V)
100 * REG: 16mV/bit
101 */
IN_TO_REG(unsigned val)102 static u8 IN_TO_REG(unsigned val)
103 {
104 unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX);
105 return (nval + 8) / 16;
106 }
107
IN_FROM_REG(u8 reg)108 static unsigned IN_FROM_REG(u8 reg)
109 {
110 return reg * 16;
111 }
112
FAN_TO_REG(long rpm,int div)113 static u8 FAN_TO_REG(long rpm, int div)
114 {
115 if (rpm == -1)
116 return 0;
117 if (rpm == 0)
118 return 255;
119 rpm = clamp_val(rpm, 1, 1000000);
120 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
121 }
122
FAN_FROM_REG(u8 val,int div)123 static int FAN_FROM_REG(u8 val, int div)
124 {
125 return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div);
126 }
127
128 /* These constants are a guess, consistent w/ w83781d */
129 #define ASB100_TEMP_MIN -128000
130 #define ASB100_TEMP_MAX 127000
131
132 /*
133 * TEMP: 0.001C/bit (-128C to +127C)
134 * REG: 1C/bit, two's complement
135 */
TEMP_TO_REG(long temp)136 static u8 TEMP_TO_REG(long temp)
137 {
138 int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
139 ntemp += (ntemp < 0 ? -500 : 500);
140 return (u8)(ntemp / 1000);
141 }
142
TEMP_FROM_REG(u8 reg)143 static int TEMP_FROM_REG(u8 reg)
144 {
145 return (s8)reg * 1000;
146 }
147
148 /*
149 * PWM: 0 - 255 per sensors documentation
150 * REG: (6.25% duty cycle per bit)
151 */
ASB100_PWM_TO_REG(int pwm)152 static u8 ASB100_PWM_TO_REG(int pwm)
153 {
154 pwm = clamp_val(pwm, 0, 255);
155 return (u8)(pwm / 16);
156 }
157
ASB100_PWM_FROM_REG(u8 reg)158 static int ASB100_PWM_FROM_REG(u8 reg)
159 {
160 return reg * 16;
161 }
162
163 #define DIV_FROM_REG(val) (1 << (val))
164
165 /*
166 * FAN DIV: 1, 2, 4, or 8 (defaults to 2)
167 * REG: 0, 1, 2, or 3 (respectively) (defaults to 1)
168 */
DIV_TO_REG(long val)169 static u8 DIV_TO_REG(long val)
170 {
171 return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1;
172 }
173
174 /*
175 * For each registered client, we need to keep some data in memory. That
176 * data is pointed to by client->data. The structure itself is
177 * dynamically allocated, at the same time the client itself is allocated.
178 */
179 struct asb100_data {
180 struct device *hwmon_dev;
181 struct mutex lock;
182
183 struct mutex update_lock;
184 unsigned long last_updated; /* In jiffies */
185
186 /* array of 2 pointers to subclients */
187 struct i2c_client *lm75[2];
188
189 bool valid; /* true if following fields are valid */
190 u8 in[7]; /* Register value */
191 u8 in_max[7]; /* Register value */
192 u8 in_min[7]; /* Register value */
193 u8 fan[3]; /* Register value */
194 u8 fan_min[3]; /* Register value */
195 u16 temp[4]; /* Register value (0 and 3 are u8 only) */
196 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */
197 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */
198 u8 fan_div[3]; /* Register encoding, right justified */
199 u8 pwm; /* Register encoding */
200 u8 vid; /* Register encoding, combined */
201 u32 alarms; /* Register encoding, combined */
202 u8 vrm;
203 };
204
205 static int asb100_read_value(struct i2c_client *client, u16 reg);
206 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
207
208 static int asb100_probe(struct i2c_client *client);
209 static int asb100_detect(struct i2c_client *client,
210 struct i2c_board_info *info);
211 static void asb100_remove(struct i2c_client *client);
212 static struct asb100_data *asb100_update_device(struct device *dev);
213 static void asb100_init_client(struct i2c_client *client);
214
215 static const struct i2c_device_id asb100_id[] = {
216 { "asb100", 0 },
217 { }
218 };
219 MODULE_DEVICE_TABLE(i2c, asb100_id);
220
221 static struct i2c_driver asb100_driver = {
222 .class = I2C_CLASS_HWMON,
223 .driver = {
224 .name = "asb100",
225 },
226 .probe = asb100_probe,
227 .remove = asb100_remove,
228 .id_table = asb100_id,
229 .detect = asb100_detect,
230 .address_list = normal_i2c,
231 };
232
233 /* 7 Voltages */
234 #define show_in_reg(reg) \
235 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
236 char *buf) \
237 { \
238 int nr = to_sensor_dev_attr(attr)->index; \
239 struct asb100_data *data = asb100_update_device(dev); \
240 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
241 }
242
243 show_in_reg(in)
244 show_in_reg(in_min)
245 show_in_reg(in_max)
246
247 #define set_in_reg(REG, reg) \
248 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
249 const char *buf, size_t count) \
250 { \
251 int nr = to_sensor_dev_attr(attr)->index; \
252 struct i2c_client *client = to_i2c_client(dev); \
253 struct asb100_data *data = i2c_get_clientdata(client); \
254 unsigned long val; \
255 int err = kstrtoul(buf, 10, &val); \
256 if (err) \
257 return err; \
258 mutex_lock(&data->update_lock); \
259 data->in_##reg[nr] = IN_TO_REG(val); \
260 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
261 data->in_##reg[nr]); \
262 mutex_unlock(&data->update_lock); \
263 return count; \
264 }
265
266 set_in_reg(MIN, min)
267 set_in_reg(MAX, max)
268
269 #define sysfs_in(offset) \
270 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
271 show_in, NULL, offset); \
272 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
273 show_in_min, set_in_min, offset); \
274 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
275 show_in_max, set_in_max, offset)
276
277 sysfs_in(0);
278 sysfs_in(1);
279 sysfs_in(2);
280 sysfs_in(3);
281 sysfs_in(4);
282 sysfs_in(5);
283 sysfs_in(6);
284
285 /* 3 Fans */
show_fan(struct device * dev,struct device_attribute * attr,char * buf)286 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
287 char *buf)
288 {
289 int nr = to_sensor_dev_attr(attr)->index;
290 struct asb100_data *data = asb100_update_device(dev);
291 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
292 DIV_FROM_REG(data->fan_div[nr])));
293 }
294
show_fan_min(struct device * dev,struct device_attribute * attr,char * buf)295 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
296 char *buf)
297 {
298 int nr = to_sensor_dev_attr(attr)->index;
299 struct asb100_data *data = asb100_update_device(dev);
300 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
301 DIV_FROM_REG(data->fan_div[nr])));
302 }
303
show_fan_div(struct device * dev,struct device_attribute * attr,char * buf)304 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
305 char *buf)
306 {
307 int nr = to_sensor_dev_attr(attr)->index;
308 struct asb100_data *data = asb100_update_device(dev);
309 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
310 }
311
set_fan_min(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)312 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
313 const char *buf, size_t count)
314 {
315 int nr = to_sensor_dev_attr(attr)->index;
316 struct i2c_client *client = to_i2c_client(dev);
317 struct asb100_data *data = i2c_get_clientdata(client);
318 unsigned long val;
319 int err;
320
321 err = kstrtoul(buf, 10, &val);
322 if (err)
323 return err;
324
325 mutex_lock(&data->update_lock);
326 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
327 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
328 mutex_unlock(&data->update_lock);
329 return count;
330 }
331
332 /*
333 * Note: we save and restore the fan minimum here, because its value is
334 * determined in part by the fan divisor. This follows the principle of
335 * least surprise; the user doesn't expect the fan minimum to change just
336 * because the divisor changed.
337 */
set_fan_div(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)338 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
339 const char *buf, size_t count)
340 {
341 int nr = to_sensor_dev_attr(attr)->index;
342 struct i2c_client *client = to_i2c_client(dev);
343 struct asb100_data *data = i2c_get_clientdata(client);
344 unsigned long min;
345 int reg;
346 unsigned long val;
347 int err;
348
349 err = kstrtoul(buf, 10, &val);
350 if (err)
351 return err;
352
353 mutex_lock(&data->update_lock);
354
355 min = FAN_FROM_REG(data->fan_min[nr],
356 DIV_FROM_REG(data->fan_div[nr]));
357 data->fan_div[nr] = DIV_TO_REG(val);
358
359 switch (nr) {
360 case 0: /* fan 1 */
361 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
362 reg = (reg & 0xcf) | (data->fan_div[0] << 4);
363 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
364 break;
365
366 case 1: /* fan 2 */
367 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
368 reg = (reg & 0x3f) | (data->fan_div[1] << 6);
369 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
370 break;
371
372 case 2: /* fan 3 */
373 reg = asb100_read_value(client, ASB100_REG_PIN);
374 reg = (reg & 0x3f) | (data->fan_div[2] << 6);
375 asb100_write_value(client, ASB100_REG_PIN, reg);
376 break;
377 }
378
379 data->fan_min[nr] =
380 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
381 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
382
383 mutex_unlock(&data->update_lock);
384
385 return count;
386 }
387
388 #define sysfs_fan(offset) \
389 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
390 show_fan, NULL, offset - 1); \
391 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
392 show_fan_min, set_fan_min, offset - 1); \
393 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
394 show_fan_div, set_fan_div, offset - 1)
395
396 sysfs_fan(1);
397 sysfs_fan(2);
398 sysfs_fan(3);
399
400 /* 4 Temp. Sensors */
sprintf_temp_from_reg(u16 reg,char * buf,int nr)401 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
402 {
403 int ret = 0;
404
405 switch (nr) {
406 case 1: case 2:
407 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
408 break;
409 case 0: case 3: default:
410 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
411 break;
412 }
413 return ret;
414 }
415
416 #define show_temp_reg(reg) \
417 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
418 char *buf) \
419 { \
420 int nr = to_sensor_dev_attr(attr)->index; \
421 struct asb100_data *data = asb100_update_device(dev); \
422 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
423 }
424
425 show_temp_reg(temp);
426 show_temp_reg(temp_max);
427 show_temp_reg(temp_hyst);
428
429 #define set_temp_reg(REG, reg) \
430 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
431 const char *buf, size_t count) \
432 { \
433 int nr = to_sensor_dev_attr(attr)->index; \
434 struct i2c_client *client = to_i2c_client(dev); \
435 struct asb100_data *data = i2c_get_clientdata(client); \
436 long val; \
437 int err = kstrtol(buf, 10, &val); \
438 if (err) \
439 return err; \
440 mutex_lock(&data->update_lock); \
441 switch (nr) { \
442 case 1: case 2: \
443 data->reg[nr] = LM75_TEMP_TO_REG(val); \
444 break; \
445 case 0: case 3: default: \
446 data->reg[nr] = TEMP_TO_REG(val); \
447 break; \
448 } \
449 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
450 data->reg[nr]); \
451 mutex_unlock(&data->update_lock); \
452 return count; \
453 }
454
455 set_temp_reg(MAX, temp_max);
456 set_temp_reg(HYST, temp_hyst);
457
458 #define sysfs_temp(num) \
459 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
460 show_temp, NULL, num - 1); \
461 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
462 show_temp_max, set_temp_max, num - 1); \
463 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
464 show_temp_hyst, set_temp_hyst, num - 1)
465
466 sysfs_temp(1);
467 sysfs_temp(2);
468 sysfs_temp(3);
469 sysfs_temp(4);
470
471 /* VID */
cpu0_vid_show(struct device * dev,struct device_attribute * attr,char * buf)472 static ssize_t cpu0_vid_show(struct device *dev,
473 struct device_attribute *attr, char *buf)
474 {
475 struct asb100_data *data = asb100_update_device(dev);
476 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
477 }
478
479 static DEVICE_ATTR_RO(cpu0_vid);
480
481 /* VRM */
vrm_show(struct device * dev,struct device_attribute * attr,char * buf)482 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
483 char *buf)
484 {
485 struct asb100_data *data = dev_get_drvdata(dev);
486 return sprintf(buf, "%d\n", data->vrm);
487 }
488
vrm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)489 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
490 const char *buf, size_t count)
491 {
492 struct asb100_data *data = dev_get_drvdata(dev);
493 unsigned long val;
494 int err;
495
496 err = kstrtoul(buf, 10, &val);
497 if (err)
498 return err;
499
500 if (val > 255)
501 return -EINVAL;
502
503 data->vrm = val;
504 return count;
505 }
506
507 /* Alarms */
508 static DEVICE_ATTR_RW(vrm);
509
alarms_show(struct device * dev,struct device_attribute * attr,char * buf)510 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
511 char *buf)
512 {
513 struct asb100_data *data = asb100_update_device(dev);
514 return sprintf(buf, "%u\n", data->alarms);
515 }
516
517 static DEVICE_ATTR_RO(alarms);
518
show_alarm(struct device * dev,struct device_attribute * attr,char * buf)519 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
520 char *buf)
521 {
522 int bitnr = to_sensor_dev_attr(attr)->index;
523 struct asb100_data *data = asb100_update_device(dev);
524 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
525 }
526 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
527 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
528 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
529 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
530 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
531 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
532 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
533 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
534 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
535 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
536 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
537
538 /* 1 PWM */
pwm1_show(struct device * dev,struct device_attribute * attr,char * buf)539 static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr,
540 char *buf)
541 {
542 struct asb100_data *data = asb100_update_device(dev);
543 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
544 }
545
pwm1_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)546 static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr,
547 const char *buf, size_t count)
548 {
549 struct i2c_client *client = to_i2c_client(dev);
550 struct asb100_data *data = i2c_get_clientdata(client);
551 unsigned long val;
552 int err;
553
554 err = kstrtoul(buf, 10, &val);
555 if (err)
556 return err;
557
558 mutex_lock(&data->update_lock);
559 data->pwm &= 0x80; /* keep the enable bit */
560 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
561 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
562 mutex_unlock(&data->update_lock);
563 return count;
564 }
565
pwm1_enable_show(struct device * dev,struct device_attribute * attr,char * buf)566 static ssize_t pwm1_enable_show(struct device *dev,
567 struct device_attribute *attr, char *buf)
568 {
569 struct asb100_data *data = asb100_update_device(dev);
570 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
571 }
572
pwm1_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)573 static ssize_t pwm1_enable_store(struct device *dev,
574 struct device_attribute *attr,
575 const char *buf, size_t count)
576 {
577 struct i2c_client *client = to_i2c_client(dev);
578 struct asb100_data *data = i2c_get_clientdata(client);
579 unsigned long val;
580 int err;
581
582 err = kstrtoul(buf, 10, &val);
583 if (err)
584 return err;
585
586 mutex_lock(&data->update_lock);
587 data->pwm &= 0x0f; /* keep the duty cycle bits */
588 data->pwm |= (val ? 0x80 : 0x00);
589 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
590 mutex_unlock(&data->update_lock);
591 return count;
592 }
593
594 static DEVICE_ATTR_RW(pwm1);
595 static DEVICE_ATTR_RW(pwm1_enable);
596
597 static struct attribute *asb100_attributes[] = {
598 &sensor_dev_attr_in0_input.dev_attr.attr,
599 &sensor_dev_attr_in0_min.dev_attr.attr,
600 &sensor_dev_attr_in0_max.dev_attr.attr,
601 &sensor_dev_attr_in1_input.dev_attr.attr,
602 &sensor_dev_attr_in1_min.dev_attr.attr,
603 &sensor_dev_attr_in1_max.dev_attr.attr,
604 &sensor_dev_attr_in2_input.dev_attr.attr,
605 &sensor_dev_attr_in2_min.dev_attr.attr,
606 &sensor_dev_attr_in2_max.dev_attr.attr,
607 &sensor_dev_attr_in3_input.dev_attr.attr,
608 &sensor_dev_attr_in3_min.dev_attr.attr,
609 &sensor_dev_attr_in3_max.dev_attr.attr,
610 &sensor_dev_attr_in4_input.dev_attr.attr,
611 &sensor_dev_attr_in4_min.dev_attr.attr,
612 &sensor_dev_attr_in4_max.dev_attr.attr,
613 &sensor_dev_attr_in5_input.dev_attr.attr,
614 &sensor_dev_attr_in5_min.dev_attr.attr,
615 &sensor_dev_attr_in5_max.dev_attr.attr,
616 &sensor_dev_attr_in6_input.dev_attr.attr,
617 &sensor_dev_attr_in6_min.dev_attr.attr,
618 &sensor_dev_attr_in6_max.dev_attr.attr,
619
620 &sensor_dev_attr_fan1_input.dev_attr.attr,
621 &sensor_dev_attr_fan1_min.dev_attr.attr,
622 &sensor_dev_attr_fan1_div.dev_attr.attr,
623 &sensor_dev_attr_fan2_input.dev_attr.attr,
624 &sensor_dev_attr_fan2_min.dev_attr.attr,
625 &sensor_dev_attr_fan2_div.dev_attr.attr,
626 &sensor_dev_attr_fan3_input.dev_attr.attr,
627 &sensor_dev_attr_fan3_min.dev_attr.attr,
628 &sensor_dev_attr_fan3_div.dev_attr.attr,
629
630 &sensor_dev_attr_temp1_input.dev_attr.attr,
631 &sensor_dev_attr_temp1_max.dev_attr.attr,
632 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
633 &sensor_dev_attr_temp2_input.dev_attr.attr,
634 &sensor_dev_attr_temp2_max.dev_attr.attr,
635 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
636 &sensor_dev_attr_temp3_input.dev_attr.attr,
637 &sensor_dev_attr_temp3_max.dev_attr.attr,
638 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
639 &sensor_dev_attr_temp4_input.dev_attr.attr,
640 &sensor_dev_attr_temp4_max.dev_attr.attr,
641 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
642
643 &sensor_dev_attr_in0_alarm.dev_attr.attr,
644 &sensor_dev_attr_in1_alarm.dev_attr.attr,
645 &sensor_dev_attr_in2_alarm.dev_attr.attr,
646 &sensor_dev_attr_in3_alarm.dev_attr.attr,
647 &sensor_dev_attr_in4_alarm.dev_attr.attr,
648 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
649 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
650 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
651 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
652 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
653 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
654
655 &dev_attr_cpu0_vid.attr,
656 &dev_attr_vrm.attr,
657 &dev_attr_alarms.attr,
658 &dev_attr_pwm1.attr,
659 &dev_attr_pwm1_enable.attr,
660
661 NULL
662 };
663
664 static const struct attribute_group asb100_group = {
665 .attrs = asb100_attributes,
666 };
667
asb100_detect_subclients(struct i2c_client * client)668 static int asb100_detect_subclients(struct i2c_client *client)
669 {
670 int i, id, err;
671 int address = client->addr;
672 unsigned short sc_addr[2];
673 struct asb100_data *data = i2c_get_clientdata(client);
674 struct i2c_adapter *adapter = client->adapter;
675
676 id = i2c_adapter_id(adapter);
677
678 if (force_subclients[0] == id && force_subclients[1] == address) {
679 for (i = 2; i <= 3; i++) {
680 if (force_subclients[i] < 0x48 ||
681 force_subclients[i] > 0x4f) {
682 dev_err(&client->dev,
683 "invalid subclient address %d; must be 0x48-0x4f\n",
684 force_subclients[i]);
685 err = -ENODEV;
686 goto ERROR_SC_2;
687 }
688 }
689 asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
690 (force_subclients[2] & 0x07) |
691 ((force_subclients[3] & 0x07) << 4));
692 sc_addr[0] = force_subclients[2];
693 sc_addr[1] = force_subclients[3];
694 } else {
695 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
696 sc_addr[0] = 0x48 + (val & 0x07);
697 sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
698 }
699
700 if (sc_addr[0] == sc_addr[1]) {
701 dev_err(&client->dev,
702 "duplicate addresses 0x%x for subclients\n",
703 sc_addr[0]);
704 err = -ENODEV;
705 goto ERROR_SC_2;
706 }
707
708 data->lm75[0] = i2c_new_dummy_device(adapter, sc_addr[0]);
709 if (IS_ERR(data->lm75[0])) {
710 dev_err(&client->dev,
711 "subclient %d registration at address 0x%x failed.\n",
712 1, sc_addr[0]);
713 err = PTR_ERR(data->lm75[0]);
714 goto ERROR_SC_2;
715 }
716
717 data->lm75[1] = i2c_new_dummy_device(adapter, sc_addr[1]);
718 if (IS_ERR(data->lm75[1])) {
719 dev_err(&client->dev,
720 "subclient %d registration at address 0x%x failed.\n",
721 2, sc_addr[1]);
722 err = PTR_ERR(data->lm75[1]);
723 goto ERROR_SC_3;
724 }
725
726 return 0;
727
728 /* Undo inits in case of errors */
729 ERROR_SC_3:
730 i2c_unregister_device(data->lm75[0]);
731 ERROR_SC_2:
732 return err;
733 }
734
735 /* Return 0 if detection is successful, -ENODEV otherwise */
asb100_detect(struct i2c_client * client,struct i2c_board_info * info)736 static int asb100_detect(struct i2c_client *client,
737 struct i2c_board_info *info)
738 {
739 struct i2c_adapter *adapter = client->adapter;
740 int val1, val2;
741
742 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
743 pr_debug("detect failed, smbus byte data not supported!\n");
744 return -ENODEV;
745 }
746
747 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
748 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
749
750 /* If we're in bank 0 */
751 if ((!(val1 & 0x07)) &&
752 /* Check for ASB100 ID (low byte) */
753 (((!(val1 & 0x80)) && (val2 != 0x94)) ||
754 /* Check for ASB100 ID (high byte ) */
755 ((val1 & 0x80) && (val2 != 0x06)))) {
756 pr_debug("detect failed, bad chip id 0x%02x!\n", val2);
757 return -ENODEV;
758 }
759
760 /* Put it now into bank 0 and Vendor ID High Byte */
761 i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
762 (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
763 | 0x80);
764
765 /* Determine the chip type. */
766 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
767 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
768
769 if (val1 != 0x31 || val2 != 0x06)
770 return -ENODEV;
771
772 strscpy(info->type, "asb100", I2C_NAME_SIZE);
773
774 return 0;
775 }
776
asb100_probe(struct i2c_client * client)777 static int asb100_probe(struct i2c_client *client)
778 {
779 int err;
780 struct asb100_data *data;
781
782 data = devm_kzalloc(&client->dev, sizeof(struct asb100_data),
783 GFP_KERNEL);
784 if (!data)
785 return -ENOMEM;
786
787 i2c_set_clientdata(client, data);
788 mutex_init(&data->lock);
789 mutex_init(&data->update_lock);
790
791 /* Attach secondary lm75 clients */
792 err = asb100_detect_subclients(client);
793 if (err)
794 return err;
795
796 /* Initialize the chip */
797 asb100_init_client(client);
798
799 /* A few vars need to be filled upon startup */
800 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
801 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
802 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
803
804 /* Register sysfs hooks */
805 err = sysfs_create_group(&client->dev.kobj, &asb100_group);
806 if (err)
807 goto ERROR3;
808
809 data->hwmon_dev = hwmon_device_register(&client->dev);
810 if (IS_ERR(data->hwmon_dev)) {
811 err = PTR_ERR(data->hwmon_dev);
812 goto ERROR4;
813 }
814
815 return 0;
816
817 ERROR4:
818 sysfs_remove_group(&client->dev.kobj, &asb100_group);
819 ERROR3:
820 i2c_unregister_device(data->lm75[1]);
821 i2c_unregister_device(data->lm75[0]);
822 return err;
823 }
824
asb100_remove(struct i2c_client * client)825 static void asb100_remove(struct i2c_client *client)
826 {
827 struct asb100_data *data = i2c_get_clientdata(client);
828
829 hwmon_device_unregister(data->hwmon_dev);
830 sysfs_remove_group(&client->dev.kobj, &asb100_group);
831
832 i2c_unregister_device(data->lm75[1]);
833 i2c_unregister_device(data->lm75[0]);
834 }
835
836 /*
837 * The SMBus locks itself, usually, but nothing may access the chip between
838 * bank switches.
839 */
asb100_read_value(struct i2c_client * client,u16 reg)840 static int asb100_read_value(struct i2c_client *client, u16 reg)
841 {
842 struct asb100_data *data = i2c_get_clientdata(client);
843 struct i2c_client *cl;
844 int res, bank;
845
846 mutex_lock(&data->lock);
847
848 bank = (reg >> 8) & 0x0f;
849 if (bank > 2)
850 /* switch banks */
851 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
852
853 if (bank == 0 || bank > 2) {
854 res = i2c_smbus_read_byte_data(client, reg & 0xff);
855 } else {
856 /* switch to subclient */
857 cl = data->lm75[bank - 1];
858
859 /* convert from ISA to LM75 I2C addresses */
860 switch (reg & 0xff) {
861 case 0x50: /* TEMP */
862 res = i2c_smbus_read_word_swapped(cl, 0);
863 break;
864 case 0x52: /* CONFIG */
865 res = i2c_smbus_read_byte_data(cl, 1);
866 break;
867 case 0x53: /* HYST */
868 res = i2c_smbus_read_word_swapped(cl, 2);
869 break;
870 case 0x55: /* MAX */
871 default:
872 res = i2c_smbus_read_word_swapped(cl, 3);
873 break;
874 }
875 }
876
877 if (bank > 2)
878 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
879
880 mutex_unlock(&data->lock);
881
882 return res;
883 }
884
asb100_write_value(struct i2c_client * client,u16 reg,u16 value)885 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
886 {
887 struct asb100_data *data = i2c_get_clientdata(client);
888 struct i2c_client *cl;
889 int bank;
890
891 mutex_lock(&data->lock);
892
893 bank = (reg >> 8) & 0x0f;
894 if (bank > 2)
895 /* switch banks */
896 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
897
898 if (bank == 0 || bank > 2) {
899 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
900 } else {
901 /* switch to subclient */
902 cl = data->lm75[bank - 1];
903
904 /* convert from ISA to LM75 I2C addresses */
905 switch (reg & 0xff) {
906 case 0x52: /* CONFIG */
907 i2c_smbus_write_byte_data(cl, 1, value & 0xff);
908 break;
909 case 0x53: /* HYST */
910 i2c_smbus_write_word_swapped(cl, 2, value);
911 break;
912 case 0x55: /* MAX */
913 i2c_smbus_write_word_swapped(cl, 3, value);
914 break;
915 }
916 }
917
918 if (bank > 2)
919 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
920
921 mutex_unlock(&data->lock);
922 }
923
asb100_init_client(struct i2c_client * client)924 static void asb100_init_client(struct i2c_client *client)
925 {
926 struct asb100_data *data = i2c_get_clientdata(client);
927
928 data->vrm = vid_which_vrm();
929
930 /* Start monitoring */
931 asb100_write_value(client, ASB100_REG_CONFIG,
932 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
933 }
934
asb100_update_device(struct device * dev)935 static struct asb100_data *asb100_update_device(struct device *dev)
936 {
937 struct i2c_client *client = to_i2c_client(dev);
938 struct asb100_data *data = i2c_get_clientdata(client);
939 int i;
940
941 mutex_lock(&data->update_lock);
942
943 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
944 || !data->valid) {
945
946 dev_dbg(&client->dev, "starting device update...\n");
947
948 /* 7 voltage inputs */
949 for (i = 0; i < 7; i++) {
950 data->in[i] = asb100_read_value(client,
951 ASB100_REG_IN(i));
952 data->in_min[i] = asb100_read_value(client,
953 ASB100_REG_IN_MIN(i));
954 data->in_max[i] = asb100_read_value(client,
955 ASB100_REG_IN_MAX(i));
956 }
957
958 /* 3 fan inputs */
959 for (i = 0; i < 3; i++) {
960 data->fan[i] = asb100_read_value(client,
961 ASB100_REG_FAN(i));
962 data->fan_min[i] = asb100_read_value(client,
963 ASB100_REG_FAN_MIN(i));
964 }
965
966 /* 4 temperature inputs */
967 for (i = 1; i <= 4; i++) {
968 data->temp[i-1] = asb100_read_value(client,
969 ASB100_REG_TEMP(i));
970 data->temp_max[i-1] = asb100_read_value(client,
971 ASB100_REG_TEMP_MAX(i));
972 data->temp_hyst[i-1] = asb100_read_value(client,
973 ASB100_REG_TEMP_HYST(i));
974 }
975
976 /* VID and fan divisors */
977 i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
978 data->vid = i & 0x0f;
979 data->vid |= (asb100_read_value(client,
980 ASB100_REG_CHIPID) & 0x01) << 4;
981 data->fan_div[0] = (i >> 4) & 0x03;
982 data->fan_div[1] = (i >> 6) & 0x03;
983 data->fan_div[2] = (asb100_read_value(client,
984 ASB100_REG_PIN) >> 6) & 0x03;
985
986 /* PWM */
987 data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
988
989 /* alarms */
990 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
991 (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
992
993 data->last_updated = jiffies;
994 data->valid = true;
995
996 dev_dbg(&client->dev, "... device update complete\n");
997 }
998
999 mutex_unlock(&data->update_lock);
1000
1001 return data;
1002 }
1003
1004 module_i2c_driver(asb100_driver);
1005
1006 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1007 MODULE_DESCRIPTION("ASB100 Bach driver");
1008 MODULE_LICENSE("GPL");
1009