xref: /openbmc/linux/drivers/hwmon/ads7871.c (revision e7065e20)
1 /*
2  *  ads7871 - driver for TI ADS7871 A/D converter
3  *
4  *  Copyright (c) 2010 Paul Thomas <pthomas8589@gmail.com>
5  *
6  *  This program is distributed in the hope that it will be useful,
7  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
8  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9  *  GNU General Public License for more details.
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License version 2 or
13  *  later as publishhed by the Free Software Foundation.
14  *
15  *	You need to have something like this in struct spi_board_info
16  *	{
17  *		.modalias	= "ads7871",
18  *		.max_speed_hz	= 2*1000*1000,
19  *		.chip_select	= 0,
20  *		.bus_num	= 1,
21  *	},
22  */
23 
24 /*From figure 18 in the datasheet*/
25 /*Register addresses*/
26 #define REG_LS_BYTE	0 /*A/D Output Data, LS Byte*/
27 #define REG_MS_BYTE	1 /*A/D Output Data, MS Byte*/
28 #define REG_PGA_VALID	2 /*PGA Valid Register*/
29 #define REG_AD_CONTROL	3 /*A/D Control Register*/
30 #define REG_GAIN_MUX	4 /*Gain/Mux Register*/
31 #define REG_IO_STATE	5 /*Digital I/O State Register*/
32 #define REG_IO_CONTROL	6 /*Digital I/O Control Register*/
33 #define REG_OSC_CONTROL	7 /*Rev/Oscillator Control Register*/
34 #define REG_SER_CONTROL 24 /*Serial Interface Control Register*/
35 #define REG_ID		31 /*ID Register*/
36 
37 /*
38  * From figure 17 in the datasheet
39  * These bits get ORed with the address to form
40  * the instruction byte
41  */
42 /*Instruction Bit masks*/
43 #define INST_MODE_bm	(1<<7)
44 #define INST_READ_bm	(1<<6)
45 #define INST_16BIT_bm	(1<<5)
46 
47 /*From figure 18 in the datasheet*/
48 /*bit masks for Rev/Oscillator Control Register*/
49 #define MUX_CNV_bv	7
50 #define MUX_CNV_bm	(1<<MUX_CNV_bv)
51 #define MUX_M3_bm	(1<<3) /*M3 selects single ended*/
52 #define MUX_G_bv	4 /*allows for reg = (gain << MUX_G_bv) | ...*/
53 
54 /*From figure 18 in the datasheet*/
55 /*bit masks for Rev/Oscillator Control Register*/
56 #define OSC_OSCR_bm	(1<<5)
57 #define OSC_OSCE_bm	(1<<4)
58 #define OSC_REFE_bm	(1<<3)
59 #define OSC_BUFE_bm	(1<<2)
60 #define OSC_R2V_bm	(1<<1)
61 #define OSC_RBG_bm	(1<<0)
62 
63 #include <linux/module.h>
64 #include <linux/init.h>
65 #include <linux/spi/spi.h>
66 #include <linux/hwmon.h>
67 #include <linux/hwmon-sysfs.h>
68 #include <linux/err.h>
69 #include <linux/mutex.h>
70 #include <linux/delay.h>
71 
72 #define DEVICE_NAME	"ads7871"
73 
74 struct ads7871_data {
75 	struct device	*hwmon_dev;
76 	struct mutex	update_lock;
77 };
78 
79 static int ads7871_read_reg8(struct spi_device *spi, int reg)
80 {
81 	int ret;
82 	reg = reg | INST_READ_bm;
83 	ret = spi_w8r8(spi, reg);
84 	return ret;
85 }
86 
87 static int ads7871_read_reg16(struct spi_device *spi, int reg)
88 {
89 	int ret;
90 	reg = reg | INST_READ_bm | INST_16BIT_bm;
91 	ret = spi_w8r16(spi, reg);
92 	return ret;
93 }
94 
95 static int ads7871_write_reg8(struct spi_device *spi, int reg, u8 val)
96 {
97 	u8 tmp[2] = {reg, val};
98 	return spi_write(spi, tmp, sizeof(tmp));
99 }
100 
101 static ssize_t show_voltage(struct device *dev,
102 		struct device_attribute *da, char *buf)
103 {
104 	struct spi_device *spi = to_spi_device(dev);
105 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
106 	int ret, val, i = 0;
107 	uint8_t channel, mux_cnv;
108 
109 	channel = attr->index;
110 	/*
111 	 * TODO: add support for conversions
112 	 * other than single ended with a gain of 1
113 	 */
114 	/*MUX_M3_bm forces single ended*/
115 	/*This is also where the gain of the PGA would be set*/
116 	ads7871_write_reg8(spi, REG_GAIN_MUX,
117 		(MUX_CNV_bm | MUX_M3_bm | channel));
118 
119 	ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
120 	mux_cnv = ((ret & MUX_CNV_bm)>>MUX_CNV_bv);
121 	/*
122 	 * on 400MHz arm9 platform the conversion
123 	 * is already done when we do this test
124 	 */
125 	while ((i < 2) && mux_cnv) {
126 		i++;
127 		ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
128 		mux_cnv = ((ret & MUX_CNV_bm)>>MUX_CNV_bv);
129 		msleep_interruptible(1);
130 	}
131 
132 	if (mux_cnv == 0) {
133 		val = ads7871_read_reg16(spi, REG_LS_BYTE);
134 		/*result in volts*10000 = (val/8192)*2.5*10000*/
135 		val = ((val>>2) * 25000) / 8192;
136 		return sprintf(buf, "%d\n", val);
137 	} else {
138 		return -1;
139 	}
140 }
141 
142 static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_voltage, NULL, 0);
143 static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_voltage, NULL, 1);
144 static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_voltage, NULL, 2);
145 static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_voltage, NULL, 3);
146 static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_voltage, NULL, 4);
147 static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_voltage, NULL, 5);
148 static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_voltage, NULL, 6);
149 static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_voltage, NULL, 7);
150 
151 static struct attribute *ads7871_attributes[] = {
152 	&sensor_dev_attr_in0_input.dev_attr.attr,
153 	&sensor_dev_attr_in1_input.dev_attr.attr,
154 	&sensor_dev_attr_in2_input.dev_attr.attr,
155 	&sensor_dev_attr_in3_input.dev_attr.attr,
156 	&sensor_dev_attr_in4_input.dev_attr.attr,
157 	&sensor_dev_attr_in5_input.dev_attr.attr,
158 	&sensor_dev_attr_in6_input.dev_attr.attr,
159 	&sensor_dev_attr_in7_input.dev_attr.attr,
160 	NULL
161 };
162 
163 static const struct attribute_group ads7871_group = {
164 	.attrs = ads7871_attributes,
165 };
166 
167 static int __devinit ads7871_probe(struct spi_device *spi)
168 {
169 	int ret, err;
170 	uint8_t val;
171 	struct ads7871_data *pdata;
172 
173 	dev_dbg(&spi->dev, "probe\n");
174 
175 	/* Configure the SPI bus */
176 	spi->mode = (SPI_MODE_0);
177 	spi->bits_per_word = 8;
178 	spi_setup(spi);
179 
180 	ads7871_write_reg8(spi, REG_SER_CONTROL, 0);
181 	ads7871_write_reg8(spi, REG_AD_CONTROL, 0);
182 
183 	val = (OSC_OSCR_bm | OSC_OSCE_bm | OSC_REFE_bm | OSC_BUFE_bm);
184 	ads7871_write_reg8(spi, REG_OSC_CONTROL, val);
185 	ret = ads7871_read_reg8(spi, REG_OSC_CONTROL);
186 
187 	dev_dbg(&spi->dev, "REG_OSC_CONTROL write:%x, read:%x\n", val, ret);
188 	/*
189 	 * because there is no other error checking on an SPI bus
190 	 * we need to make sure we really have a chip
191 	 */
192 	if (val != ret) {
193 		err = -ENODEV;
194 		goto exit;
195 	}
196 
197 	pdata = kzalloc(sizeof(struct ads7871_data), GFP_KERNEL);
198 	if (!pdata) {
199 		err = -ENOMEM;
200 		goto exit;
201 	}
202 
203 	err = sysfs_create_group(&spi->dev.kobj, &ads7871_group);
204 	if (err < 0)
205 		goto error_free;
206 
207 	spi_set_drvdata(spi, pdata);
208 
209 	pdata->hwmon_dev = hwmon_device_register(&spi->dev);
210 	if (IS_ERR(pdata->hwmon_dev)) {
211 		err = PTR_ERR(pdata->hwmon_dev);
212 		goto error_remove;
213 	}
214 
215 	return 0;
216 
217 error_remove:
218 	sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
219 error_free:
220 	kfree(pdata);
221 exit:
222 	return err;
223 }
224 
225 static int __devexit ads7871_remove(struct spi_device *spi)
226 {
227 	struct ads7871_data *pdata = spi_get_drvdata(spi);
228 
229 	hwmon_device_unregister(pdata->hwmon_dev);
230 	sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
231 	kfree(pdata);
232 	return 0;
233 }
234 
235 static struct spi_driver ads7871_driver = {
236 	.driver = {
237 		.name = DEVICE_NAME,
238 		.owner = THIS_MODULE,
239 	},
240 
241 	.probe = ads7871_probe,
242 	.remove = __devexit_p(ads7871_remove),
243 };
244 
245 module_spi_driver(ads7871_driver);
246 
247 MODULE_AUTHOR("Paul Thomas <pthomas8589@gmail.com>");
248 MODULE_DESCRIPTION("TI ADS7871 A/D driver");
249 MODULE_LICENSE("GPL");
250