xref: /openbmc/linux/drivers/hwmon/ads7871.c (revision 2c684d89)
1 /*
2  *  ads7871 - driver for TI ADS7871 A/D converter
3  *
4  *  Copyright (c) 2010 Paul Thomas <pthomas8589@gmail.com>
5  *
6  *  This program is distributed in the hope that it will be useful,
7  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
8  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9  *  GNU General Public License for more details.
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License version 2 or
13  *  later as publishhed by the Free Software Foundation.
14  *
15  *	You need to have something like this in struct spi_board_info
16  *	{
17  *		.modalias	= "ads7871",
18  *		.max_speed_hz	= 2*1000*1000,
19  *		.chip_select	= 0,
20  *		.bus_num	= 1,
21  *	},
22  */
23 
24 /*From figure 18 in the datasheet*/
25 /*Register addresses*/
26 #define REG_LS_BYTE	0 /*A/D Output Data, LS Byte*/
27 #define REG_MS_BYTE	1 /*A/D Output Data, MS Byte*/
28 #define REG_PGA_VALID	2 /*PGA Valid Register*/
29 #define REG_AD_CONTROL	3 /*A/D Control Register*/
30 #define REG_GAIN_MUX	4 /*Gain/Mux Register*/
31 #define REG_IO_STATE	5 /*Digital I/O State Register*/
32 #define REG_IO_CONTROL	6 /*Digital I/O Control Register*/
33 #define REG_OSC_CONTROL	7 /*Rev/Oscillator Control Register*/
34 #define REG_SER_CONTROL 24 /*Serial Interface Control Register*/
35 #define REG_ID		31 /*ID Register*/
36 
37 /*
38  * From figure 17 in the datasheet
39  * These bits get ORed with the address to form
40  * the instruction byte
41  */
42 /*Instruction Bit masks*/
43 #define INST_MODE_BM	(1 << 7)
44 #define INST_READ_BM	(1 << 6)
45 #define INST_16BIT_BM	(1 << 5)
46 
47 /*From figure 18 in the datasheet*/
48 /*bit masks for Rev/Oscillator Control Register*/
49 #define MUX_CNV_BV	7
50 #define MUX_CNV_BM	(1 << MUX_CNV_BV)
51 #define MUX_M3_BM	(1 << 3) /*M3 selects single ended*/
52 #define MUX_G_BV	4 /*allows for reg = (gain << MUX_G_BV) | ...*/
53 
54 /*From figure 18 in the datasheet*/
55 /*bit masks for Rev/Oscillator Control Register*/
56 #define OSC_OSCR_BM	(1 << 5)
57 #define OSC_OSCE_BM	(1 << 4)
58 #define OSC_REFE_BM	(1 << 3)
59 #define OSC_BUFE_BM	(1 << 2)
60 #define OSC_R2V_BM	(1 << 1)
61 #define OSC_RBG_BM	(1 << 0)
62 
63 #include <linux/module.h>
64 #include <linux/init.h>
65 #include <linux/spi/spi.h>
66 #include <linux/hwmon.h>
67 #include <linux/hwmon-sysfs.h>
68 #include <linux/err.h>
69 #include <linux/mutex.h>
70 #include <linux/delay.h>
71 
72 #define DEVICE_NAME	"ads7871"
73 
74 struct ads7871_data {
75 	struct device	*hwmon_dev;
76 	struct mutex	update_lock;
77 };
78 
79 static int ads7871_read_reg8(struct spi_device *spi, int reg)
80 {
81 	int ret;
82 	reg = reg | INST_READ_BM;
83 	ret = spi_w8r8(spi, reg);
84 	return ret;
85 }
86 
87 static int ads7871_read_reg16(struct spi_device *spi, int reg)
88 {
89 	int ret;
90 	reg = reg | INST_READ_BM | INST_16BIT_BM;
91 	ret = spi_w8r16(spi, reg);
92 	return ret;
93 }
94 
95 static int ads7871_write_reg8(struct spi_device *spi, int reg, u8 val)
96 {
97 	u8 tmp[2] = {reg, val};
98 	return spi_write(spi, tmp, sizeof(tmp));
99 }
100 
101 static ssize_t show_voltage(struct device *dev,
102 		struct device_attribute *da, char *buf)
103 {
104 	struct spi_device *spi = to_spi_device(dev);
105 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
106 	int ret, val, i = 0;
107 	uint8_t channel, mux_cnv;
108 
109 	channel = attr->index;
110 	/*
111 	 * TODO: add support for conversions
112 	 * other than single ended with a gain of 1
113 	 */
114 	/*MUX_M3_BM forces single ended*/
115 	/*This is also where the gain of the PGA would be set*/
116 	ads7871_write_reg8(spi, REG_GAIN_MUX,
117 		(MUX_CNV_BM | MUX_M3_BM | channel));
118 
119 	ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
120 	mux_cnv = ((ret & MUX_CNV_BM) >> MUX_CNV_BV);
121 	/*
122 	 * on 400MHz arm9 platform the conversion
123 	 * is already done when we do this test
124 	 */
125 	while ((i < 2) && mux_cnv) {
126 		i++;
127 		ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
128 		mux_cnv = ((ret & MUX_CNV_BM) >> MUX_CNV_BV);
129 		msleep_interruptible(1);
130 	}
131 
132 	if (mux_cnv == 0) {
133 		val = ads7871_read_reg16(spi, REG_LS_BYTE);
134 		/*result in volts*10000 = (val/8192)*2.5*10000*/
135 		val = ((val >> 2) * 25000) / 8192;
136 		return sprintf(buf, "%d\n", val);
137 	} else {
138 		return -1;
139 	}
140 }
141 
142 static ssize_t ads7871_show_name(struct device *dev,
143 				 struct device_attribute *devattr, char *buf)
144 {
145 	return sprintf(buf, "%s\n", to_spi_device(dev)->modalias);
146 }
147 
148 static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_voltage, NULL, 0);
149 static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_voltage, NULL, 1);
150 static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_voltage, NULL, 2);
151 static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_voltage, NULL, 3);
152 static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_voltage, NULL, 4);
153 static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_voltage, NULL, 5);
154 static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_voltage, NULL, 6);
155 static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_voltage, NULL, 7);
156 
157 static DEVICE_ATTR(name, S_IRUGO, ads7871_show_name, NULL);
158 
159 static struct attribute *ads7871_attributes[] = {
160 	&sensor_dev_attr_in0_input.dev_attr.attr,
161 	&sensor_dev_attr_in1_input.dev_attr.attr,
162 	&sensor_dev_attr_in2_input.dev_attr.attr,
163 	&sensor_dev_attr_in3_input.dev_attr.attr,
164 	&sensor_dev_attr_in4_input.dev_attr.attr,
165 	&sensor_dev_attr_in5_input.dev_attr.attr,
166 	&sensor_dev_attr_in6_input.dev_attr.attr,
167 	&sensor_dev_attr_in7_input.dev_attr.attr,
168 	&dev_attr_name.attr,
169 	NULL
170 };
171 
172 static const struct attribute_group ads7871_group = {
173 	.attrs = ads7871_attributes,
174 };
175 
176 static int ads7871_probe(struct spi_device *spi)
177 {
178 	int ret, err;
179 	uint8_t val;
180 	struct ads7871_data *pdata;
181 
182 	dev_dbg(&spi->dev, "probe\n");
183 
184 	/* Configure the SPI bus */
185 	spi->mode = (SPI_MODE_0);
186 	spi->bits_per_word = 8;
187 	spi_setup(spi);
188 
189 	ads7871_write_reg8(spi, REG_SER_CONTROL, 0);
190 	ads7871_write_reg8(spi, REG_AD_CONTROL, 0);
191 
192 	val = (OSC_OSCR_BM | OSC_OSCE_BM | OSC_REFE_BM | OSC_BUFE_BM);
193 	ads7871_write_reg8(spi, REG_OSC_CONTROL, val);
194 	ret = ads7871_read_reg8(spi, REG_OSC_CONTROL);
195 
196 	dev_dbg(&spi->dev, "REG_OSC_CONTROL write:%x, read:%x\n", val, ret);
197 	/*
198 	 * because there is no other error checking on an SPI bus
199 	 * we need to make sure we really have a chip
200 	 */
201 	if (val != ret)
202 		return -ENODEV;
203 
204 	pdata = devm_kzalloc(&spi->dev, sizeof(struct ads7871_data),
205 			     GFP_KERNEL);
206 	if (!pdata)
207 		return -ENOMEM;
208 
209 	err = sysfs_create_group(&spi->dev.kobj, &ads7871_group);
210 	if (err < 0)
211 		return err;
212 
213 	spi_set_drvdata(spi, pdata);
214 
215 	pdata->hwmon_dev = hwmon_device_register(&spi->dev);
216 	if (IS_ERR(pdata->hwmon_dev)) {
217 		err = PTR_ERR(pdata->hwmon_dev);
218 		goto error_remove;
219 	}
220 
221 	return 0;
222 
223 error_remove:
224 	sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
225 	return err;
226 }
227 
228 static int ads7871_remove(struct spi_device *spi)
229 {
230 	struct ads7871_data *pdata = spi_get_drvdata(spi);
231 
232 	hwmon_device_unregister(pdata->hwmon_dev);
233 	sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
234 	return 0;
235 }
236 
237 static struct spi_driver ads7871_driver = {
238 	.driver = {
239 		.name = DEVICE_NAME,
240 	},
241 
242 	.probe = ads7871_probe,
243 	.remove = ads7871_remove,
244 };
245 
246 module_spi_driver(ads7871_driver);
247 
248 MODULE_AUTHOR("Paul Thomas <pthomas8589@gmail.com>");
249 MODULE_DESCRIPTION("TI ADS7871 A/D driver");
250 MODULE_LICENSE("GPL");
251