xref: /openbmc/linux/drivers/hwmon/ads7871.c (revision 1fa6ac37)
1 /*
2  *  ads7871 - driver for TI ADS7871 A/D converter
3  *
4  *  Copyright (c) 2010 Paul Thomas <pthomas8589@gmail.com>
5  *
6  *  This program is distributed in the hope that it will be useful,
7  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
8  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9  *  GNU General Public License for more details.
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License version 2 or
13  *  later as publishhed by the Free Software Foundation.
14  *
15  *	You need to have something like this in struct spi_board_info
16  *	{
17  *		.modalias	= "ads7871",
18  *		.max_speed_hz	= 2*1000*1000,
19  *		.chip_select	= 0,
20  *		.bus_num	= 1,
21  *	},
22  */
23 
24 /*From figure 18 in the datasheet*/
25 /*Register addresses*/
26 #define REG_LS_BYTE	0 /*A/D Output Data, LS Byte*/
27 #define REG_MS_BYTE	1 /*A/D Output Data, MS Byte*/
28 #define REG_PGA_VALID	2 /*PGA Valid Register*/
29 #define REG_AD_CONTROL	3 /*A/D Control Register*/
30 #define REG_GAIN_MUX	4 /*Gain/Mux Register*/
31 #define REG_IO_STATE	5 /*Digital I/O State Register*/
32 #define REG_IO_CONTROL	6 /*Digital I/O Control Register*/
33 #define REG_OSC_CONTROL	7 /*Rev/Oscillator Control Register*/
34 #define REG_SER_CONTROL 24 /*Serial Interface Control Register*/
35 #define REG_ID		31 /*ID Register*/
36 
37 /*From figure 17 in the datasheet
38 * These bits get ORed with the address to form
39 * the instruction byte */
40 /*Instruction Bit masks*/
41 #define INST_MODE_bm	(1<<7)
42 #define INST_READ_bm	(1<<6)
43 #define INST_16BIT_bm	(1<<5)
44 
45 /*From figure 18 in the datasheet*/
46 /*bit masks for Rev/Oscillator Control Register*/
47 #define MUX_CNV_bv	7
48 #define MUX_CNV_bm	(1<<MUX_CNV_bv)
49 #define MUX_M3_bm	(1<<3) /*M3 selects single ended*/
50 #define MUX_G_bv	4 /*allows for reg = (gain << MUX_G_bv) | ...*/
51 
52 /*From figure 18 in the datasheet*/
53 /*bit masks for Rev/Oscillator Control Register*/
54 #define OSC_OSCR_bm	(1<<5)
55 #define OSC_OSCE_bm	(1<<4)
56 #define OSC_REFE_bm	(1<<3)
57 #define OSC_BUFE_bm	(1<<2)
58 #define OSC_R2V_bm	(1<<1)
59 #define OSC_RBG_bm	(1<<0)
60 
61 #include <linux/module.h>
62 #include <linux/init.h>
63 #include <linux/spi/spi.h>
64 #include <linux/hwmon.h>
65 #include <linux/hwmon-sysfs.h>
66 #include <linux/err.h>
67 #include <linux/mutex.h>
68 #include <linux/delay.h>
69 
70 #define DEVICE_NAME	"ads7871"
71 
72 struct ads7871_data {
73 	struct device	*hwmon_dev;
74 	struct mutex	update_lock;
75 };
76 
77 static int ads7871_read_reg8(struct spi_device *spi, int reg)
78 {
79 	int ret;
80 	reg = reg | INST_READ_bm;
81 	ret = spi_w8r8(spi, reg);
82 	return ret;
83 }
84 
85 static int ads7871_read_reg16(struct spi_device *spi, int reg)
86 {
87 	int ret;
88 	reg = reg | INST_READ_bm | INST_16BIT_bm;
89 	ret = spi_w8r16(spi, reg);
90 	return ret;
91 }
92 
93 static int ads7871_write_reg8(struct spi_device *spi, int reg, u8 val)
94 {
95 	u8 tmp[2] = {reg, val};
96 	return spi_write(spi, tmp, sizeof(tmp));
97 }
98 
99 static ssize_t show_voltage(struct device *dev,
100 		struct device_attribute *da, char *buf)
101 {
102 	struct spi_device *spi = to_spi_device(dev);
103 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
104 	int ret, val, i = 0;
105 	uint8_t channel, mux_cnv;
106 
107 	channel = attr->index;
108 	/*TODO: add support for conversions
109 	 *other than single ended with a gain of 1*/
110 	/*MUX_M3_bm forces single ended*/
111 	/*This is also where the gain of the PGA would be set*/
112 	ads7871_write_reg8(spi, REG_GAIN_MUX,
113 		(MUX_CNV_bm | MUX_M3_bm | channel));
114 
115 	ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
116 	mux_cnv = ((ret & MUX_CNV_bm)>>MUX_CNV_bv);
117 	/*on 400MHz arm9 platform the conversion
118 	 *is already done when we do this test*/
119 	while ((i < 2) && mux_cnv) {
120 		i++;
121 		ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
122 		mux_cnv = ((ret & MUX_CNV_bm)>>MUX_CNV_bv);
123 		msleep_interruptible(1);
124 	}
125 
126 	if (mux_cnv == 0) {
127 		val = ads7871_read_reg16(spi, REG_LS_BYTE);
128 		/*result in volts*10000 = (val/8192)*2.5*10000*/
129 		val = ((val>>2) * 25000) / 8192;
130 		return sprintf(buf, "%d\n", val);
131 	} else {
132 		return -1;
133 	}
134 }
135 
136 static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_voltage, NULL, 0);
137 static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_voltage, NULL, 1);
138 static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_voltage, NULL, 2);
139 static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_voltage, NULL, 3);
140 static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_voltage, NULL, 4);
141 static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_voltage, NULL, 5);
142 static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_voltage, NULL, 6);
143 static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_voltage, NULL, 7);
144 
145 static struct attribute *ads7871_attributes[] = {
146 	&sensor_dev_attr_in0_input.dev_attr.attr,
147 	&sensor_dev_attr_in1_input.dev_attr.attr,
148 	&sensor_dev_attr_in2_input.dev_attr.attr,
149 	&sensor_dev_attr_in3_input.dev_attr.attr,
150 	&sensor_dev_attr_in4_input.dev_attr.attr,
151 	&sensor_dev_attr_in5_input.dev_attr.attr,
152 	&sensor_dev_attr_in6_input.dev_attr.attr,
153 	&sensor_dev_attr_in7_input.dev_attr.attr,
154 	NULL
155 };
156 
157 static const struct attribute_group ads7871_group = {
158 	.attrs = ads7871_attributes,
159 };
160 
161 static int __devinit ads7871_probe(struct spi_device *spi)
162 {
163 	int status, ret, err = 0;
164 	uint8_t val;
165 	struct ads7871_data *pdata;
166 
167 	dev_dbg(&spi->dev, "probe\n");
168 
169 	pdata = kzalloc(sizeof(struct ads7871_data), GFP_KERNEL);
170 	if (!pdata) {
171 		err = -ENOMEM;
172 		goto exit;
173 	}
174 
175 	status = sysfs_create_group(&spi->dev.kobj, &ads7871_group);
176 	if (status < 0)
177 		goto error_free;
178 
179 	pdata->hwmon_dev = hwmon_device_register(&spi->dev);
180 	if (IS_ERR(pdata->hwmon_dev)) {
181 		err = PTR_ERR(pdata->hwmon_dev);
182 		goto error_remove;
183 	}
184 
185 	spi_set_drvdata(spi, pdata);
186 
187 	/* Configure the SPI bus */
188 	spi->mode = (SPI_MODE_0);
189 	spi->bits_per_word = 8;
190 	spi_setup(spi);
191 
192 	ads7871_write_reg8(spi, REG_SER_CONTROL, 0);
193 	ads7871_write_reg8(spi, REG_AD_CONTROL, 0);
194 
195 	val = (OSC_OSCR_bm | OSC_OSCE_bm | OSC_REFE_bm | OSC_BUFE_bm);
196 	ads7871_write_reg8(spi, REG_OSC_CONTROL, val);
197 	ret = ads7871_read_reg8(spi, REG_OSC_CONTROL);
198 
199 	dev_dbg(&spi->dev, "REG_OSC_CONTROL write:%x, read:%x\n", val, ret);
200 	/*because there is no other error checking on an SPI bus
201 	we need to make sure we really have a chip*/
202 	if (val != ret) {
203 		err = -ENODEV;
204 		goto error_remove;
205 	}
206 
207 	return 0;
208 
209 error_remove:
210 	sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
211 error_free:
212 	kfree(pdata);
213 exit:
214 	return err;
215 }
216 
217 static int __devexit ads7871_remove(struct spi_device *spi)
218 {
219 	struct ads7871_data *pdata = spi_get_drvdata(spi);
220 
221 	hwmon_device_unregister(pdata->hwmon_dev);
222 	sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
223 	kfree(pdata);
224 	return 0;
225 }
226 
227 static struct spi_driver ads7871_driver = {
228 	.driver = {
229 		.name = DEVICE_NAME,
230 		.bus = &spi_bus_type,
231 		.owner = THIS_MODULE,
232 	},
233 
234 	.probe = ads7871_probe,
235 	.remove = __devexit_p(ads7871_remove),
236 };
237 
238 static int __init ads7871_init(void)
239 {
240 	return spi_register_driver(&ads7871_driver);
241 }
242 
243 static void __exit ads7871_exit(void)
244 {
245 	spi_unregister_driver(&ads7871_driver);
246 }
247 
248 module_init(ads7871_init);
249 module_exit(ads7871_exit);
250 
251 MODULE_AUTHOR("Paul Thomas <pthomas8589@gmail.com>");
252 MODULE_DESCRIPTION("TI ADS7871 A/D driver");
253 MODULE_LICENSE("GPL");
254