xref: /openbmc/linux/drivers/hwmon/adm1031.c (revision e8e0929d)
1 /*
2   adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3   monitoring
4   Based on lm75.c and lm85.c
5   Supports adm1030 / adm1031
6   Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7   Reworked by Jean Delvare <khali@linux-fr.org>
8 
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13 
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18 
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23 
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-sysfs.h>
31 #include <linux/err.h>
32 #include <linux/mutex.h>
33 
34 /* Following macros takes channel parameter starting from 0 to 2 */
35 #define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
36 #define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
37 #define ADM1031_REG_PWM			(0x22)
38 #define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
39 
40 #define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
41 #define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
42 #define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
43 #define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
44 
45 #define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
46 #define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
47 
48 #define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
49 
50 #define ADM1031_REG_CONF1		0x00
51 #define ADM1031_REG_CONF2		0x01
52 #define ADM1031_REG_EXT_TEMP		0x06
53 
54 #define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
55 #define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
56 #define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
57 
58 #define ADM1031_CONF2_PWM1_ENABLE	0x01
59 #define ADM1031_CONF2_PWM2_ENABLE	0x02
60 #define ADM1031_CONF2_TACH1_ENABLE	0x04
61 #define ADM1031_CONF2_TACH2_ENABLE	0x08
62 #define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
63 
64 /* Addresses to scan */
65 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
66 
67 /* Insmod parameters */
68 I2C_CLIENT_INSMOD_2(adm1030, adm1031);
69 
70 typedef u8 auto_chan_table_t[8][2];
71 
72 /* Each client has this additional data */
73 struct adm1031_data {
74 	struct device *hwmon_dev;
75 	struct mutex update_lock;
76 	int chip_type;
77 	char valid;		/* !=0 if following fields are valid */
78 	unsigned long last_updated;	/* In jiffies */
79 	/* The chan_select_table contains the possible configurations for
80 	 * auto fan control.
81 	 */
82 	const auto_chan_table_t *chan_select_table;
83 	u16 alarm;
84 	u8 conf1;
85 	u8 conf2;
86 	u8 fan[2];
87 	u8 fan_div[2];
88 	u8 fan_min[2];
89 	u8 pwm[2];
90 	u8 old_pwm[2];
91 	s8 temp[3];
92 	u8 ext_temp[3];
93 	u8 auto_temp[3];
94 	u8 auto_temp_min[3];
95 	u8 auto_temp_off[3];
96 	u8 auto_temp_max[3];
97 	s8 temp_offset[3];
98 	s8 temp_min[3];
99 	s8 temp_max[3];
100 	s8 temp_crit[3];
101 };
102 
103 static int adm1031_probe(struct i2c_client *client,
104 			 const struct i2c_device_id *id);
105 static int adm1031_detect(struct i2c_client *client, int kind,
106 			  struct i2c_board_info *info);
107 static void adm1031_init_client(struct i2c_client *client);
108 static int adm1031_remove(struct i2c_client *client);
109 static struct adm1031_data *adm1031_update_device(struct device *dev);
110 
111 static const struct i2c_device_id adm1031_id[] = {
112 	{ "adm1030", adm1030 },
113 	{ "adm1031", adm1031 },
114 	{ }
115 };
116 MODULE_DEVICE_TABLE(i2c, adm1031_id);
117 
118 /* This is the driver that will be inserted */
119 static struct i2c_driver adm1031_driver = {
120 	.class		= I2C_CLASS_HWMON,
121 	.driver = {
122 		.name = "adm1031",
123 	},
124 	.probe		= adm1031_probe,
125 	.remove		= adm1031_remove,
126 	.id_table	= adm1031_id,
127 	.detect		= adm1031_detect,
128 	.address_data	= &addr_data,
129 };
130 
131 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
132 {
133 	return i2c_smbus_read_byte_data(client, reg);
134 }
135 
136 static inline int
137 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
138 {
139 	return i2c_smbus_write_byte_data(client, reg, value);
140 }
141 
142 
143 #define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
144 					((val + 500) / 1000)))
145 
146 #define TEMP_FROM_REG(val)		((val) * 1000)
147 
148 #define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
149 
150 #define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
151 #define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
152 						      (val) | 0x70 : (val))
153 
154 #define FAN_FROM_REG(reg, div)		((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
155 
156 static int FAN_TO_REG(int reg, int div)
157 {
158 	int tmp;
159 	tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
160 	return tmp > 255 ? 255 : tmp;
161 }
162 
163 #define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
164 
165 #define PWM_TO_REG(val)			(SENSORS_LIMIT((val), 0, 255) >> 4)
166 #define PWM_FROM_REG(val)		((val) << 4)
167 
168 #define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
169 #define FAN_CHAN_TO_REG(val, reg)	\
170 	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
171 
172 #define AUTO_TEMP_MIN_TO_REG(val, reg)	\
173 	((((val)/500) & 0xf8)|((reg) & 0x7))
174 #define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1<< ((reg)&0x7)))
175 #define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
176 
177 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
178 
179 #define AUTO_TEMP_OFF_FROM_REG(reg)		\
180 	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
181 
182 #define AUTO_TEMP_MAX_FROM_REG(reg)		\
183 	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
184 	AUTO_TEMP_MIN_FROM_REG(reg))
185 
186 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
187 {
188 	int ret;
189 	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
190 
191 	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
192 	ret = ((reg & 0xf8) |
193 	       (range < 10000 ? 0 :
194 		range < 20000 ? 1 :
195 		range < 40000 ? 2 : range < 80000 ? 3 : 4));
196 	return ret;
197 }
198 
199 /* FAN auto control */
200 #define GET_FAN_AUTO_BITFIELD(data, idx)	\
201 	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
202 
203 /* The tables below contains the possible values for the auto fan
204  * control bitfields. the index in the table is the register value.
205  * MSb is the auto fan control enable bit, so the four first entries
206  * in the table disables auto fan control when both bitfields are zero.
207  */
208 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
209 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
210 	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
211 	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
212 	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
213 	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
214 };
215 
216 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
217 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
218 	{ 2 /* 0b10 */		, 0 },
219 	{ 0xff /* invalid */	, 0 },
220 	{ 0xff /* invalid */	, 0 },
221 	{ 3 /* 0b11 */		, 0 },
222 };
223 
224 /* That function checks if a bitfield is valid and returns the other bitfield
225  * nearest match if no exact match where found.
226  */
227 static int
228 get_fan_auto_nearest(struct adm1031_data *data,
229 		     int chan, u8 val, u8 reg, u8 * new_reg)
230 {
231 	int i;
232 	int first_match = -1, exact_match = -1;
233 	u8 other_reg_val =
234 	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
235 
236 	if (val == 0) {
237 		*new_reg = 0;
238 		return 0;
239 	}
240 
241 	for (i = 0; i < 8; i++) {
242 		if ((val == (*data->chan_select_table)[i][chan]) &&
243 		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
244 		     other_reg_val)) {
245 			/* We found an exact match */
246 			exact_match = i;
247 			break;
248 		} else if (val == (*data->chan_select_table)[i][chan] &&
249 			   first_match == -1) {
250 			/* Save the first match in case of an exact match has
251 			 * not been found
252 			 */
253 			first_match = i;
254 		}
255 	}
256 
257 	if (exact_match >= 0) {
258 		*new_reg = exact_match;
259 	} else if (first_match >= 0) {
260 		*new_reg = first_match;
261 	} else {
262 		return -EINVAL;
263 	}
264 	return 0;
265 }
266 
267 static ssize_t show_fan_auto_channel(struct device *dev,
268 				     struct device_attribute *attr, char *buf)
269 {
270 	int nr = to_sensor_dev_attr(attr)->index;
271 	struct adm1031_data *data = adm1031_update_device(dev);
272 	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
273 }
274 
275 static ssize_t
276 set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
277 		     const char *buf, size_t count)
278 {
279 	struct i2c_client *client = to_i2c_client(dev);
280 	struct adm1031_data *data = i2c_get_clientdata(client);
281 	int nr = to_sensor_dev_attr(attr)->index;
282 	int val = simple_strtol(buf, NULL, 10);
283 	u8 reg;
284 	int ret;
285 	u8 old_fan_mode;
286 
287 	old_fan_mode = data->conf1;
288 
289 	mutex_lock(&data->update_lock);
290 
291 	if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
292 		mutex_unlock(&data->update_lock);
293 		return ret;
294 	}
295 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
296 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
297 	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
298 		if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
299 			/* Switch to Auto Fan Mode
300 			 * Save PWM registers
301 			 * Set PWM registers to 33% Both */
302 			data->old_pwm[0] = data->pwm[0];
303 			data->old_pwm[1] = data->pwm[1];
304 			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
305 		} else {
306 			/* Switch to Manual Mode */
307 			data->pwm[0] = data->old_pwm[0];
308 			data->pwm[1] = data->old_pwm[1];
309 			/* Restore PWM registers */
310 			adm1031_write_value(client, ADM1031_REG_PWM,
311 					    data->pwm[0] | (data->pwm[1] << 4));
312 		}
313 	}
314 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
315 	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
316 	mutex_unlock(&data->update_lock);
317 	return count;
318 }
319 
320 static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
321 		show_fan_auto_channel, set_fan_auto_channel, 0);
322 static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
323 		show_fan_auto_channel, set_fan_auto_channel, 1);
324 
325 /* Auto Temps */
326 static ssize_t show_auto_temp_off(struct device *dev,
327 				  struct device_attribute *attr, char *buf)
328 {
329 	int nr = to_sensor_dev_attr(attr)->index;
330 	struct adm1031_data *data = adm1031_update_device(dev);
331 	return sprintf(buf, "%d\n",
332 		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
333 }
334 static ssize_t show_auto_temp_min(struct device *dev,
335 				  struct device_attribute *attr, char *buf)
336 {
337 	int nr = to_sensor_dev_attr(attr)->index;
338 	struct adm1031_data *data = adm1031_update_device(dev);
339 	return sprintf(buf, "%d\n",
340 		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
341 }
342 static ssize_t
343 set_auto_temp_min(struct device *dev, struct device_attribute *attr,
344 		  const char *buf, size_t count)
345 {
346 	struct i2c_client *client = to_i2c_client(dev);
347 	struct adm1031_data *data = i2c_get_clientdata(client);
348 	int nr = to_sensor_dev_attr(attr)->index;
349 	int val = simple_strtol(buf, NULL, 10);
350 
351 	mutex_lock(&data->update_lock);
352 	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
353 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
354 			    data->auto_temp[nr]);
355 	mutex_unlock(&data->update_lock);
356 	return count;
357 }
358 static ssize_t show_auto_temp_max(struct device *dev,
359 				  struct device_attribute *attr, char *buf)
360 {
361 	int nr = to_sensor_dev_attr(attr)->index;
362 	struct adm1031_data *data = adm1031_update_device(dev);
363 	return sprintf(buf, "%d\n",
364 		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
365 }
366 static ssize_t
367 set_auto_temp_max(struct device *dev, struct device_attribute *attr,
368 		  const char *buf, size_t count)
369 {
370 	struct i2c_client *client = to_i2c_client(dev);
371 	struct adm1031_data *data = i2c_get_clientdata(client);
372 	int nr = to_sensor_dev_attr(attr)->index;
373 	int val = simple_strtol(buf, NULL, 10);
374 
375 	mutex_lock(&data->update_lock);
376 	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
377 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
378 			    data->temp_max[nr]);
379 	mutex_unlock(&data->update_lock);
380 	return count;
381 }
382 
383 #define auto_temp_reg(offset)						\
384 static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
385 		show_auto_temp_off, NULL, offset - 1);			\
386 static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
387 		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
388 static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
389 		show_auto_temp_max, set_auto_temp_max, offset - 1)
390 
391 auto_temp_reg(1);
392 auto_temp_reg(2);
393 auto_temp_reg(3);
394 
395 /* pwm */
396 static ssize_t show_pwm(struct device *dev,
397 			struct device_attribute *attr, char *buf)
398 {
399 	int nr = to_sensor_dev_attr(attr)->index;
400 	struct adm1031_data *data = adm1031_update_device(dev);
401 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
402 }
403 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
404 		       const char *buf, size_t count)
405 {
406 	struct i2c_client *client = to_i2c_client(dev);
407 	struct adm1031_data *data = i2c_get_clientdata(client);
408 	int nr = to_sensor_dev_attr(attr)->index;
409 	int val = simple_strtol(buf, NULL, 10);
410 	int reg;
411 
412 	mutex_lock(&data->update_lock);
413 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
414 	    (((val>>4) & 0xf) != 5)) {
415 		/* In automatic mode, the only PWM accepted is 33% */
416 		mutex_unlock(&data->update_lock);
417 		return -EINVAL;
418 	}
419 	data->pwm[nr] = PWM_TO_REG(val);
420 	reg = adm1031_read_value(client, ADM1031_REG_PWM);
421 	adm1031_write_value(client, ADM1031_REG_PWM,
422 			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
423 			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
424 	mutex_unlock(&data->update_lock);
425 	return count;
426 }
427 
428 static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
429 static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
430 static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
431 		show_pwm, set_pwm, 0);
432 static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
433 		show_pwm, set_pwm, 1);
434 
435 /* Fans */
436 
437 /*
438  * That function checks the cases where the fan reading is not
439  * relevant.  It is used to provide 0 as fan reading when the fan is
440  * not supposed to run
441  */
442 static int trust_fan_readings(struct adm1031_data *data, int chan)
443 {
444 	int res = 0;
445 
446 	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
447 		switch (data->conf1 & 0x60) {
448 		case 0x00:	/* remote temp1 controls fan1 remote temp2 controls fan2 */
449 			res = data->temp[chan+1] >=
450 			      AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
451 			break;
452 		case 0x20:	/* remote temp1 controls both fans */
453 			res =
454 			    data->temp[1] >=
455 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
456 			break;
457 		case 0x40:	/* remote temp2 controls both fans */
458 			res =
459 			    data->temp[2] >=
460 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
461 			break;
462 		case 0x60:	/* max controls both fans */
463 			res =
464 			    data->temp[0] >=
465 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
466 			    || data->temp[1] >=
467 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
468 			    || (data->chip_type == adm1031
469 				&& data->temp[2] >=
470 				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
471 			break;
472 		}
473 	} else {
474 		res = data->pwm[chan] > 0;
475 	}
476 	return res;
477 }
478 
479 
480 static ssize_t show_fan(struct device *dev,
481 			struct device_attribute *attr, char *buf)
482 {
483 	int nr = to_sensor_dev_attr(attr)->index;
484 	struct adm1031_data *data = adm1031_update_device(dev);
485 	int value;
486 
487 	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
488 				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
489 	return sprintf(buf, "%d\n", value);
490 }
491 
492 static ssize_t show_fan_div(struct device *dev,
493 			    struct device_attribute *attr, char *buf)
494 {
495 	int nr = to_sensor_dev_attr(attr)->index;
496 	struct adm1031_data *data = adm1031_update_device(dev);
497 	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
498 }
499 static ssize_t show_fan_min(struct device *dev,
500 			    struct device_attribute *attr, char *buf)
501 {
502 	int nr = to_sensor_dev_attr(attr)->index;
503 	struct adm1031_data *data = adm1031_update_device(dev);
504 	return sprintf(buf, "%d\n",
505 		       FAN_FROM_REG(data->fan_min[nr],
506 				    FAN_DIV_FROM_REG(data->fan_div[nr])));
507 }
508 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
509 			   const char *buf, size_t count)
510 {
511 	struct i2c_client *client = to_i2c_client(dev);
512 	struct adm1031_data *data = i2c_get_clientdata(client);
513 	int nr = to_sensor_dev_attr(attr)->index;
514 	int val = simple_strtol(buf, NULL, 10);
515 
516 	mutex_lock(&data->update_lock);
517 	if (val) {
518 		data->fan_min[nr] =
519 			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
520 	} else {
521 		data->fan_min[nr] = 0xff;
522 	}
523 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
524 	mutex_unlock(&data->update_lock);
525 	return count;
526 }
527 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
528 			   const char *buf, size_t count)
529 {
530 	struct i2c_client *client = to_i2c_client(dev);
531 	struct adm1031_data *data = i2c_get_clientdata(client);
532 	int nr = to_sensor_dev_attr(attr)->index;
533 	int val = simple_strtol(buf, NULL, 10);
534 	u8 tmp;
535 	int old_div;
536 	int new_min;
537 
538 	tmp = val == 8 ? 0xc0 :
539 	      val == 4 ? 0x80 :
540 	      val == 2 ? 0x40 :
541 	      val == 1 ? 0x00 :
542 	      0xff;
543 	if (tmp == 0xff)
544 		return -EINVAL;
545 
546 	mutex_lock(&data->update_lock);
547 	/* Get fresh readings */
548 	data->fan_div[nr] = adm1031_read_value(client,
549 					       ADM1031_REG_FAN_DIV(nr));
550 	data->fan_min[nr] = adm1031_read_value(client,
551 					       ADM1031_REG_FAN_MIN(nr));
552 
553 	/* Write the new clock divider and fan min */
554 	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
555 	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
556 	new_min = data->fan_min[nr] * old_div / val;
557 	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
558 
559 	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
560 			    data->fan_div[nr]);
561 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
562 			    data->fan_min[nr]);
563 
564 	/* Invalidate the cache: fan speed is no longer valid */
565 	data->valid = 0;
566 	mutex_unlock(&data->update_lock);
567 	return count;
568 }
569 
570 #define fan_offset(offset)						\
571 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
572 		show_fan, NULL, offset - 1);				\
573 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
574 		show_fan_min, set_fan_min, offset - 1);			\
575 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
576 		show_fan_div, set_fan_div, offset - 1)
577 
578 fan_offset(1);
579 fan_offset(2);
580 
581 
582 /* Temps */
583 static ssize_t show_temp(struct device *dev,
584 			 struct device_attribute *attr, char *buf)
585 {
586 	int nr = to_sensor_dev_attr(attr)->index;
587 	struct adm1031_data *data = adm1031_update_device(dev);
588 	int ext;
589 	ext = nr == 0 ?
590 	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
591 	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
592 	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
593 }
594 static ssize_t show_temp_offset(struct device *dev,
595 				struct device_attribute *attr, char *buf)
596 {
597 	int nr = to_sensor_dev_attr(attr)->index;
598 	struct adm1031_data *data = adm1031_update_device(dev);
599 	return sprintf(buf, "%d\n",
600 		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
601 }
602 static ssize_t show_temp_min(struct device *dev,
603 			     struct device_attribute *attr, char *buf)
604 {
605 	int nr = to_sensor_dev_attr(attr)->index;
606 	struct adm1031_data *data = adm1031_update_device(dev);
607 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
608 }
609 static ssize_t show_temp_max(struct device *dev,
610 			     struct device_attribute *attr, char *buf)
611 {
612 	int nr = to_sensor_dev_attr(attr)->index;
613 	struct adm1031_data *data = adm1031_update_device(dev);
614 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
615 }
616 static ssize_t show_temp_crit(struct device *dev,
617 			      struct device_attribute *attr, char *buf)
618 {
619 	int nr = to_sensor_dev_attr(attr)->index;
620 	struct adm1031_data *data = adm1031_update_device(dev);
621 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
622 }
623 static ssize_t set_temp_offset(struct device *dev,
624 			       struct device_attribute *attr, const char *buf,
625 			       size_t count)
626 {
627 	struct i2c_client *client = to_i2c_client(dev);
628 	struct adm1031_data *data = i2c_get_clientdata(client);
629 	int nr = to_sensor_dev_attr(attr)->index;
630 	int val;
631 
632 	val = simple_strtol(buf, NULL, 10);
633 	val = SENSORS_LIMIT(val, -15000, 15000);
634 	mutex_lock(&data->update_lock);
635 	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
636 	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
637 			    data->temp_offset[nr]);
638 	mutex_unlock(&data->update_lock);
639 	return count;
640 }
641 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
642 			    const char *buf, size_t count)
643 {
644 	struct i2c_client *client = to_i2c_client(dev);
645 	struct adm1031_data *data = i2c_get_clientdata(client);
646 	int nr = to_sensor_dev_attr(attr)->index;
647 	int val;
648 
649 	val = simple_strtol(buf, NULL, 10);
650 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
651 	mutex_lock(&data->update_lock);
652 	data->temp_min[nr] = TEMP_TO_REG(val);
653 	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
654 			    data->temp_min[nr]);
655 	mutex_unlock(&data->update_lock);
656 	return count;
657 }
658 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
659 			    const char *buf, size_t count)
660 {
661 	struct i2c_client *client = to_i2c_client(dev);
662 	struct adm1031_data *data = i2c_get_clientdata(client);
663 	int nr = to_sensor_dev_attr(attr)->index;
664 	int val;
665 
666 	val = simple_strtol(buf, NULL, 10);
667 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
668 	mutex_lock(&data->update_lock);
669 	data->temp_max[nr] = TEMP_TO_REG(val);
670 	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
671 			    data->temp_max[nr]);
672 	mutex_unlock(&data->update_lock);
673 	return count;
674 }
675 static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
676 			     const char *buf, size_t count)
677 {
678 	struct i2c_client *client = to_i2c_client(dev);
679 	struct adm1031_data *data = i2c_get_clientdata(client);
680 	int nr = to_sensor_dev_attr(attr)->index;
681 	int val;
682 
683 	val = simple_strtol(buf, NULL, 10);
684 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
685 	mutex_lock(&data->update_lock);
686 	data->temp_crit[nr] = TEMP_TO_REG(val);
687 	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
688 			    data->temp_crit[nr]);
689 	mutex_unlock(&data->update_lock);
690 	return count;
691 }
692 
693 #define temp_reg(offset)						\
694 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
695 		show_temp, NULL, offset - 1);				\
696 static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
697 		show_temp_offset, set_temp_offset, offset - 1);		\
698 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
699 		show_temp_min, set_temp_min, offset - 1);		\
700 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
701 		show_temp_max, set_temp_max, offset - 1);		\
702 static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
703 		show_temp_crit, set_temp_crit, offset - 1)
704 
705 temp_reg(1);
706 temp_reg(2);
707 temp_reg(3);
708 
709 /* Alarms */
710 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
711 {
712 	struct adm1031_data *data = adm1031_update_device(dev);
713 	return sprintf(buf, "%d\n", data->alarm);
714 }
715 
716 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
717 
718 static ssize_t show_alarm(struct device *dev,
719 			  struct device_attribute *attr, char *buf)
720 {
721 	int bitnr = to_sensor_dev_attr(attr)->index;
722 	struct adm1031_data *data = adm1031_update_device(dev);
723 	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
724 }
725 
726 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
727 static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
728 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
729 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
730 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
731 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
732 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
733 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
734 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
735 static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
736 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
737 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
738 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
739 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
740 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
741 
742 static struct attribute *adm1031_attributes[] = {
743 	&sensor_dev_attr_fan1_input.dev_attr.attr,
744 	&sensor_dev_attr_fan1_div.dev_attr.attr,
745 	&sensor_dev_attr_fan1_min.dev_attr.attr,
746 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
747 	&sensor_dev_attr_fan1_fault.dev_attr.attr,
748 	&sensor_dev_attr_pwm1.dev_attr.attr,
749 	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
750 	&sensor_dev_attr_temp1_input.dev_attr.attr,
751 	&sensor_dev_attr_temp1_offset.dev_attr.attr,
752 	&sensor_dev_attr_temp1_min.dev_attr.attr,
753 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
754 	&sensor_dev_attr_temp1_max.dev_attr.attr,
755 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
756 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
757 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
758 	&sensor_dev_attr_temp2_input.dev_attr.attr,
759 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
760 	&sensor_dev_attr_temp2_min.dev_attr.attr,
761 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
762 	&sensor_dev_attr_temp2_max.dev_attr.attr,
763 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
764 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
765 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
766 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
767 
768 	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
769 	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
770 	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
771 
772 	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
773 	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
774 	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
775 
776 	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
777 
778 	&dev_attr_alarms.attr,
779 
780 	NULL
781 };
782 
783 static const struct attribute_group adm1031_group = {
784 	.attrs = adm1031_attributes,
785 };
786 
787 static struct attribute *adm1031_attributes_opt[] = {
788 	&sensor_dev_attr_fan2_input.dev_attr.attr,
789 	&sensor_dev_attr_fan2_div.dev_attr.attr,
790 	&sensor_dev_attr_fan2_min.dev_attr.attr,
791 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
792 	&sensor_dev_attr_fan2_fault.dev_attr.attr,
793 	&sensor_dev_attr_pwm2.dev_attr.attr,
794 	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
795 	&sensor_dev_attr_temp3_input.dev_attr.attr,
796 	&sensor_dev_attr_temp3_offset.dev_attr.attr,
797 	&sensor_dev_attr_temp3_min.dev_attr.attr,
798 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
799 	&sensor_dev_attr_temp3_max.dev_attr.attr,
800 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
801 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
802 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
803 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
804 	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
805 	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
806 	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
807 	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
808 	NULL
809 };
810 
811 static const struct attribute_group adm1031_group_opt = {
812 	.attrs = adm1031_attributes_opt,
813 };
814 
815 /* Return 0 if detection is successful, -ENODEV otherwise */
816 static int adm1031_detect(struct i2c_client *client, int kind,
817 			  struct i2c_board_info *info)
818 {
819 	struct i2c_adapter *adapter = client->adapter;
820 	const char *name = "";
821 
822 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
823 		return -ENODEV;
824 
825 	if (kind < 0) {
826 		int id, co;
827 		id = i2c_smbus_read_byte_data(client, 0x3d);
828 		co = i2c_smbus_read_byte_data(client, 0x3e);
829 
830 		if (!((id == 0x31 || id == 0x30) && co == 0x41))
831 			return -ENODEV;
832 		kind = (id == 0x30) ? adm1030 : adm1031;
833 	}
834 
835 	if (kind <= 0)
836 		kind = adm1031;
837 
838 	/* Given the detected chip type, set the chip name and the
839 	 * auto fan control helper table. */
840 	if (kind == adm1030) {
841 		name = "adm1030";
842 	} else if (kind == adm1031) {
843 		name = "adm1031";
844 	}
845 	strlcpy(info->type, name, I2C_NAME_SIZE);
846 
847 	return 0;
848 }
849 
850 static int adm1031_probe(struct i2c_client *client,
851 			 const struct i2c_device_id *id)
852 {
853 	struct adm1031_data *data;
854 	int err;
855 
856 	data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL);
857 	if (!data) {
858 		err = -ENOMEM;
859 		goto exit;
860 	}
861 
862 	i2c_set_clientdata(client, data);
863 	data->chip_type = id->driver_data;
864 	mutex_init(&data->update_lock);
865 
866 	if (data->chip_type == adm1030)
867 		data->chan_select_table = &auto_channel_select_table_adm1030;
868 	else
869 		data->chan_select_table = &auto_channel_select_table_adm1031;
870 
871 	/* Initialize the ADM1031 chip */
872 	adm1031_init_client(client);
873 
874 	/* Register sysfs hooks */
875 	if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group)))
876 		goto exit_free;
877 
878 	if (data->chip_type == adm1031) {
879 		if ((err = sysfs_create_group(&client->dev.kobj,
880 						&adm1031_group_opt)))
881 			goto exit_remove;
882 	}
883 
884 	data->hwmon_dev = hwmon_device_register(&client->dev);
885 	if (IS_ERR(data->hwmon_dev)) {
886 		err = PTR_ERR(data->hwmon_dev);
887 		goto exit_remove;
888 	}
889 
890 	return 0;
891 
892 exit_remove:
893 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
894 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
895 exit_free:
896 	kfree(data);
897 exit:
898 	return err;
899 }
900 
901 static int adm1031_remove(struct i2c_client *client)
902 {
903 	struct adm1031_data *data = i2c_get_clientdata(client);
904 
905 	hwmon_device_unregister(data->hwmon_dev);
906 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
907 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
908 	kfree(data);
909 	return 0;
910 }
911 
912 static void adm1031_init_client(struct i2c_client *client)
913 {
914 	unsigned int read_val;
915 	unsigned int mask;
916 	struct adm1031_data *data = i2c_get_clientdata(client);
917 
918 	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
919 	if (data->chip_type == adm1031) {
920 		mask |= (ADM1031_CONF2_PWM2_ENABLE |
921 			ADM1031_CONF2_TACH2_ENABLE);
922 	}
923 	/* Initialize the ADM1031 chip (enables fan speed reading ) */
924 	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
925 	if ((read_val | mask) != read_val) {
926 	    adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
927 	}
928 
929 	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
930 	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
931 	    adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
932 				ADM1031_CONF1_MONITOR_ENABLE);
933 	}
934 
935 }
936 
937 static struct adm1031_data *adm1031_update_device(struct device *dev)
938 {
939 	struct i2c_client *client = to_i2c_client(dev);
940 	struct adm1031_data *data = i2c_get_clientdata(client);
941 	int chan;
942 
943 	mutex_lock(&data->update_lock);
944 
945 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
946 	    || !data->valid) {
947 
948 		dev_dbg(&client->dev, "Starting adm1031 update\n");
949 		for (chan = 0;
950 		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
951 			u8 oldh, newh;
952 
953 			oldh =
954 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
955 			data->ext_temp[chan] =
956 			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
957 			newh =
958 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
959 			if (newh != oldh) {
960 				data->ext_temp[chan] =
961 				    adm1031_read_value(client,
962 						       ADM1031_REG_EXT_TEMP);
963 #ifdef DEBUG
964 				oldh =
965 				    adm1031_read_value(client,
966 						       ADM1031_REG_TEMP(chan));
967 
968 				/* oldh is actually newer */
969 				if (newh != oldh)
970 					dev_warn(&client->dev,
971 						 "Remote temperature may be "
972 						 "wrong.\n");
973 #endif
974 			}
975 			data->temp[chan] = newh;
976 
977 			data->temp_offset[chan] =
978 			    adm1031_read_value(client,
979 					       ADM1031_REG_TEMP_OFFSET(chan));
980 			data->temp_min[chan] =
981 			    adm1031_read_value(client,
982 					       ADM1031_REG_TEMP_MIN(chan));
983 			data->temp_max[chan] =
984 			    adm1031_read_value(client,
985 					       ADM1031_REG_TEMP_MAX(chan));
986 			data->temp_crit[chan] =
987 			    adm1031_read_value(client,
988 					       ADM1031_REG_TEMP_CRIT(chan));
989 			data->auto_temp[chan] =
990 			    adm1031_read_value(client,
991 					       ADM1031_REG_AUTO_TEMP(chan));
992 
993 		}
994 
995 		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
996 		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
997 
998 		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
999 			     | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
1000 				<< 8);
1001 		if (data->chip_type == adm1030) {
1002 			data->alarm &= 0xc0ff;
1003 		}
1004 
1005 		for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
1006 			data->fan_div[chan] =
1007 			    adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
1008 			data->fan_min[chan] =
1009 			    adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
1010 			data->fan[chan] =
1011 			    adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
1012 			data->pwm[chan] =
1013 			    0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
1014 				   (4*chan));
1015 		}
1016 		data->last_updated = jiffies;
1017 		data->valid = 1;
1018 	}
1019 
1020 	mutex_unlock(&data->update_lock);
1021 
1022 	return data;
1023 }
1024 
1025 static int __init sensors_adm1031_init(void)
1026 {
1027 	return i2c_add_driver(&adm1031_driver);
1028 }
1029 
1030 static void __exit sensors_adm1031_exit(void)
1031 {
1032 	i2c_del_driver(&adm1031_driver);
1033 }
1034 
1035 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1036 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1037 MODULE_LICENSE("GPL");
1038 
1039 module_init(sensors_adm1031_init);
1040 module_exit(sensors_adm1031_exit);
1041