xref: /openbmc/linux/drivers/hwmon/adm1031.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
4  *	       monitoring
5  * Based on lm75.c and lm85.c
6  * Supports adm1030 / adm1031
7  * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
8  * Reworked by Jean Delvare <jdelvare@suse.de>
9  */
10 
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/i2c.h>
16 #include <linux/hwmon.h>
17 #include <linux/hwmon-sysfs.h>
18 #include <linux/err.h>
19 #include <linux/mutex.h>
20 
21 /* Following macros takes channel parameter starting from 0 to 2 */
22 #define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
23 #define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
24 #define ADM1031_REG_PWM			(0x22)
25 #define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
26 #define ADM1031_REG_FAN_FILTER		(0x23)
27 
28 #define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
29 #define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
30 #define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
31 #define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
32 
33 #define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
34 #define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
35 
36 #define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
37 
38 #define ADM1031_REG_CONF1		0x00
39 #define ADM1031_REG_CONF2		0x01
40 #define ADM1031_REG_EXT_TEMP		0x06
41 
42 #define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
43 #define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
44 #define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
45 
46 #define ADM1031_CONF2_PWM1_ENABLE	0x01
47 #define ADM1031_CONF2_PWM2_ENABLE	0x02
48 #define ADM1031_CONF2_TACH1_ENABLE	0x04
49 #define ADM1031_CONF2_TACH2_ENABLE	0x08
50 #define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
51 
52 #define ADM1031_UPDATE_RATE_MASK	0x1c
53 #define ADM1031_UPDATE_RATE_SHIFT	2
54 
55 /* Addresses to scan */
56 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
57 
58 enum chips { adm1030, adm1031 };
59 
60 typedef u8 auto_chan_table_t[8][2];
61 
62 /* Each client has this additional data */
63 struct adm1031_data {
64 	struct i2c_client *client;
65 	const struct attribute_group *groups[3];
66 	struct mutex update_lock;
67 	int chip_type;
68 	char valid;		/* !=0 if following fields are valid */
69 	unsigned long last_updated;	/* In jiffies */
70 	unsigned int update_interval;	/* In milliseconds */
71 	/*
72 	 * The chan_select_table contains the possible configurations for
73 	 * auto fan control.
74 	 */
75 	const auto_chan_table_t *chan_select_table;
76 	u16 alarm;
77 	u8 conf1;
78 	u8 conf2;
79 	u8 fan[2];
80 	u8 fan_div[2];
81 	u8 fan_min[2];
82 	u8 pwm[2];
83 	u8 old_pwm[2];
84 	s8 temp[3];
85 	u8 ext_temp[3];
86 	u8 auto_temp[3];
87 	u8 auto_temp_min[3];
88 	u8 auto_temp_off[3];
89 	u8 auto_temp_max[3];
90 	s8 temp_offset[3];
91 	s8 temp_min[3];
92 	s8 temp_max[3];
93 	s8 temp_crit[3];
94 };
95 
96 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
97 {
98 	return i2c_smbus_read_byte_data(client, reg);
99 }
100 
101 static inline int
102 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
103 {
104 	return i2c_smbus_write_byte_data(client, reg, value);
105 }
106 
107 static struct adm1031_data *adm1031_update_device(struct device *dev)
108 {
109 	struct adm1031_data *data = dev_get_drvdata(dev);
110 	struct i2c_client *client = data->client;
111 	unsigned long next_update;
112 	int chan;
113 
114 	mutex_lock(&data->update_lock);
115 
116 	next_update = data->last_updated
117 	  + msecs_to_jiffies(data->update_interval);
118 	if (time_after(jiffies, next_update) || !data->valid) {
119 
120 		dev_dbg(&client->dev, "Starting adm1031 update\n");
121 		for (chan = 0;
122 		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
123 			u8 oldh, newh;
124 
125 			oldh =
126 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
127 			data->ext_temp[chan] =
128 			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
129 			newh =
130 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
131 			if (newh != oldh) {
132 				data->ext_temp[chan] =
133 				    adm1031_read_value(client,
134 						       ADM1031_REG_EXT_TEMP);
135 #ifdef DEBUG
136 				oldh =
137 				    adm1031_read_value(client,
138 						       ADM1031_REG_TEMP(chan));
139 
140 				/* oldh is actually newer */
141 				if (newh != oldh)
142 					dev_warn(&client->dev,
143 					  "Remote temperature may be wrong.\n");
144 #endif
145 			}
146 			data->temp[chan] = newh;
147 
148 			data->temp_offset[chan] =
149 			    adm1031_read_value(client,
150 					       ADM1031_REG_TEMP_OFFSET(chan));
151 			data->temp_min[chan] =
152 			    adm1031_read_value(client,
153 					       ADM1031_REG_TEMP_MIN(chan));
154 			data->temp_max[chan] =
155 			    adm1031_read_value(client,
156 					       ADM1031_REG_TEMP_MAX(chan));
157 			data->temp_crit[chan] =
158 			    adm1031_read_value(client,
159 					       ADM1031_REG_TEMP_CRIT(chan));
160 			data->auto_temp[chan] =
161 			    adm1031_read_value(client,
162 					       ADM1031_REG_AUTO_TEMP(chan));
163 
164 		}
165 
166 		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
167 		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
168 
169 		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
170 		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
171 		if (data->chip_type == adm1030)
172 			data->alarm &= 0xc0ff;
173 
174 		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
175 		     chan++) {
176 			data->fan_div[chan] =
177 			    adm1031_read_value(client,
178 					       ADM1031_REG_FAN_DIV(chan));
179 			data->fan_min[chan] =
180 			    adm1031_read_value(client,
181 					       ADM1031_REG_FAN_MIN(chan));
182 			data->fan[chan] =
183 			    adm1031_read_value(client,
184 					       ADM1031_REG_FAN_SPEED(chan));
185 			data->pwm[chan] =
186 			  (adm1031_read_value(client,
187 					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
188 		}
189 		data->last_updated = jiffies;
190 		data->valid = 1;
191 	}
192 
193 	mutex_unlock(&data->update_lock);
194 
195 	return data;
196 }
197 
198 #define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
199 					((val + 500) / 1000)))
200 
201 #define TEMP_FROM_REG(val)		((val) * 1000)
202 
203 #define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
204 
205 #define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
206 #define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
207 						      (val) | 0x70 : (val))
208 
209 #define FAN_FROM_REG(reg, div)		((reg) ? \
210 					 (11250 * 60) / ((reg) * (div)) : 0)
211 
212 static int FAN_TO_REG(int reg, int div)
213 {
214 	int tmp;
215 	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
216 	return tmp > 255 ? 255 : tmp;
217 }
218 
219 #define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
220 
221 #define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
222 #define PWM_FROM_REG(val)		((val) << 4)
223 
224 #define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
225 #define FAN_CHAN_TO_REG(val, reg)	\
226 	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
227 
228 #define AUTO_TEMP_MIN_TO_REG(val, reg)	\
229 	((((val) / 500) & 0xf8) | ((reg) & 0x7))
230 #define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
231 #define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
232 
233 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
234 
235 #define AUTO_TEMP_OFF_FROM_REG(reg)		\
236 	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
237 
238 #define AUTO_TEMP_MAX_FROM_REG(reg)		\
239 	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
240 	AUTO_TEMP_MIN_FROM_REG(reg))
241 
242 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
243 {
244 	int ret;
245 	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
246 
247 	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
248 	ret = ((reg & 0xf8) |
249 	       (range < 10000 ? 0 :
250 		range < 20000 ? 1 :
251 		range < 40000 ? 2 : range < 80000 ? 3 : 4));
252 	return ret;
253 }
254 
255 /* FAN auto control */
256 #define GET_FAN_AUTO_BITFIELD(data, idx)	\
257 	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
258 
259 /*
260  * The tables below contains the possible values for the auto fan
261  * control bitfields. the index in the table is the register value.
262  * MSb is the auto fan control enable bit, so the four first entries
263  * in the table disables auto fan control when both bitfields are zero.
264  */
265 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
266 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
267 	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
268 	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
269 	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
270 	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
271 };
272 
273 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
274 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
275 	{ 2 /* 0b10 */		, 0 },
276 	{ 0xff /* invalid */	, 0 },
277 	{ 0xff /* invalid */	, 0 },
278 	{ 3 /* 0b11 */		, 0 },
279 };
280 
281 /*
282  * That function checks if a bitfield is valid and returns the other bitfield
283  * nearest match if no exact match where found.
284  */
285 static int
286 get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
287 {
288 	int i;
289 	int first_match = -1, exact_match = -1;
290 	u8 other_reg_val =
291 	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
292 
293 	if (val == 0)
294 		return 0;
295 
296 	for (i = 0; i < 8; i++) {
297 		if ((val == (*data->chan_select_table)[i][chan]) &&
298 		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
299 		     other_reg_val)) {
300 			/* We found an exact match */
301 			exact_match = i;
302 			break;
303 		} else if (val == (*data->chan_select_table)[i][chan] &&
304 			   first_match == -1) {
305 			/*
306 			 * Save the first match in case of an exact match has
307 			 * not been found
308 			 */
309 			first_match = i;
310 		}
311 	}
312 
313 	if (exact_match >= 0)
314 		return exact_match;
315 	else if (first_match >= 0)
316 		return first_match;
317 
318 	return -EINVAL;
319 }
320 
321 static ssize_t fan_auto_channel_show(struct device *dev,
322 				     struct device_attribute *attr, char *buf)
323 {
324 	int nr = to_sensor_dev_attr(attr)->index;
325 	struct adm1031_data *data = adm1031_update_device(dev);
326 	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
327 }
328 
329 static ssize_t
330 fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
331 		       const char *buf, size_t count)
332 {
333 	struct adm1031_data *data = dev_get_drvdata(dev);
334 	struct i2c_client *client = data->client;
335 	int nr = to_sensor_dev_attr(attr)->index;
336 	long val;
337 	u8 reg;
338 	int ret;
339 	u8 old_fan_mode;
340 
341 	ret = kstrtol(buf, 10, &val);
342 	if (ret)
343 		return ret;
344 
345 	old_fan_mode = data->conf1;
346 
347 	mutex_lock(&data->update_lock);
348 
349 	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
350 	if (ret < 0) {
351 		mutex_unlock(&data->update_lock);
352 		return ret;
353 	}
354 	reg = ret;
355 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
356 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
357 	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
358 		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
359 			/*
360 			 * Switch to Auto Fan Mode
361 			 * Save PWM registers
362 			 * Set PWM registers to 33% Both
363 			 */
364 			data->old_pwm[0] = data->pwm[0];
365 			data->old_pwm[1] = data->pwm[1];
366 			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
367 		} else {
368 			/* Switch to Manual Mode */
369 			data->pwm[0] = data->old_pwm[0];
370 			data->pwm[1] = data->old_pwm[1];
371 			/* Restore PWM registers */
372 			adm1031_write_value(client, ADM1031_REG_PWM,
373 					    data->pwm[0] | (data->pwm[1] << 4));
374 		}
375 	}
376 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
377 	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
378 	mutex_unlock(&data->update_lock);
379 	return count;
380 }
381 
382 static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
383 static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
384 
385 /* Auto Temps */
386 static ssize_t auto_temp_off_show(struct device *dev,
387 				  struct device_attribute *attr, char *buf)
388 {
389 	int nr = to_sensor_dev_attr(attr)->index;
390 	struct adm1031_data *data = adm1031_update_device(dev);
391 	return sprintf(buf, "%d\n",
392 		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
393 }
394 static ssize_t auto_temp_min_show(struct device *dev,
395 				  struct device_attribute *attr, char *buf)
396 {
397 	int nr = to_sensor_dev_attr(attr)->index;
398 	struct adm1031_data *data = adm1031_update_device(dev);
399 	return sprintf(buf, "%d\n",
400 		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
401 }
402 static ssize_t
403 auto_temp_min_store(struct device *dev, struct device_attribute *attr,
404 		    const char *buf, size_t count)
405 {
406 	struct adm1031_data *data = dev_get_drvdata(dev);
407 	struct i2c_client *client = data->client;
408 	int nr = to_sensor_dev_attr(attr)->index;
409 	long val;
410 	int ret;
411 
412 	ret = kstrtol(buf, 10, &val);
413 	if (ret)
414 		return ret;
415 
416 	val = clamp_val(val, 0, 127000);
417 	mutex_lock(&data->update_lock);
418 	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
419 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
420 			    data->auto_temp[nr]);
421 	mutex_unlock(&data->update_lock);
422 	return count;
423 }
424 static ssize_t auto_temp_max_show(struct device *dev,
425 				  struct device_attribute *attr, char *buf)
426 {
427 	int nr = to_sensor_dev_attr(attr)->index;
428 	struct adm1031_data *data = adm1031_update_device(dev);
429 	return sprintf(buf, "%d\n",
430 		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
431 }
432 static ssize_t
433 auto_temp_max_store(struct device *dev, struct device_attribute *attr,
434 		    const char *buf, size_t count)
435 {
436 	struct adm1031_data *data = dev_get_drvdata(dev);
437 	struct i2c_client *client = data->client;
438 	int nr = to_sensor_dev_attr(attr)->index;
439 	long val;
440 	int ret;
441 
442 	ret = kstrtol(buf, 10, &val);
443 	if (ret)
444 		return ret;
445 
446 	val = clamp_val(val, 0, 127000);
447 	mutex_lock(&data->update_lock);
448 	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
449 						  data->pwm[nr]);
450 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
451 			    data->temp_max[nr]);
452 	mutex_unlock(&data->update_lock);
453 	return count;
454 }
455 
456 static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
457 static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
458 static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
459 static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
460 static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
461 static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
462 static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
463 static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
464 static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
465 
466 /* pwm */
467 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
468 			char *buf)
469 {
470 	int nr = to_sensor_dev_attr(attr)->index;
471 	struct adm1031_data *data = adm1031_update_device(dev);
472 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
473 }
474 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
475 			 const char *buf, size_t count)
476 {
477 	struct adm1031_data *data = dev_get_drvdata(dev);
478 	struct i2c_client *client = data->client;
479 	int nr = to_sensor_dev_attr(attr)->index;
480 	long val;
481 	int ret, reg;
482 
483 	ret = kstrtol(buf, 10, &val);
484 	if (ret)
485 		return ret;
486 
487 	mutex_lock(&data->update_lock);
488 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
489 	    (((val>>4) & 0xf) != 5)) {
490 		/* In automatic mode, the only PWM accepted is 33% */
491 		mutex_unlock(&data->update_lock);
492 		return -EINVAL;
493 	}
494 	data->pwm[nr] = PWM_TO_REG(val);
495 	reg = adm1031_read_value(client, ADM1031_REG_PWM);
496 	adm1031_write_value(client, ADM1031_REG_PWM,
497 			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
498 			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
499 	mutex_unlock(&data->update_lock);
500 	return count;
501 }
502 
503 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
504 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
505 static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
506 static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
507 
508 /* Fans */
509 
510 /*
511  * That function checks the cases where the fan reading is not
512  * relevant.  It is used to provide 0 as fan reading when the fan is
513  * not supposed to run
514  */
515 static int trust_fan_readings(struct adm1031_data *data, int chan)
516 {
517 	int res = 0;
518 
519 	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
520 		switch (data->conf1 & 0x60) {
521 		case 0x00:
522 			/*
523 			 * remote temp1 controls fan1,
524 			 * remote temp2 controls fan2
525 			 */
526 			res = data->temp[chan+1] >=
527 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
528 			break;
529 		case 0x20:	/* remote temp1 controls both fans */
530 			res =
531 			    data->temp[1] >=
532 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
533 			break;
534 		case 0x40:	/* remote temp2 controls both fans */
535 			res =
536 			    data->temp[2] >=
537 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
538 			break;
539 		case 0x60:	/* max controls both fans */
540 			res =
541 			    data->temp[0] >=
542 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
543 			    || data->temp[1] >=
544 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
545 			    || (data->chip_type == adm1031
546 				&& data->temp[2] >=
547 				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
548 			break;
549 		}
550 	} else {
551 		res = data->pwm[chan] > 0;
552 	}
553 	return res;
554 }
555 
556 static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
557 			char *buf)
558 {
559 	int nr = to_sensor_dev_attr(attr)->index;
560 	struct adm1031_data *data = adm1031_update_device(dev);
561 	int value;
562 
563 	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
564 				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
565 	return sprintf(buf, "%d\n", value);
566 }
567 
568 static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
569 			    char *buf)
570 {
571 	int nr = to_sensor_dev_attr(attr)->index;
572 	struct adm1031_data *data = adm1031_update_device(dev);
573 	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
574 }
575 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
576 			    char *buf)
577 {
578 	int nr = to_sensor_dev_attr(attr)->index;
579 	struct adm1031_data *data = adm1031_update_device(dev);
580 	return sprintf(buf, "%d\n",
581 		       FAN_FROM_REG(data->fan_min[nr],
582 				    FAN_DIV_FROM_REG(data->fan_div[nr])));
583 }
584 static ssize_t fan_min_store(struct device *dev,
585 			     struct device_attribute *attr, const char *buf,
586 			     size_t count)
587 {
588 	struct adm1031_data *data = dev_get_drvdata(dev);
589 	struct i2c_client *client = data->client;
590 	int nr = to_sensor_dev_attr(attr)->index;
591 	long val;
592 	int ret;
593 
594 	ret = kstrtol(buf, 10, &val);
595 	if (ret)
596 		return ret;
597 
598 	mutex_lock(&data->update_lock);
599 	if (val) {
600 		data->fan_min[nr] =
601 			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
602 	} else {
603 		data->fan_min[nr] = 0xff;
604 	}
605 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
606 	mutex_unlock(&data->update_lock);
607 	return count;
608 }
609 static ssize_t fan_div_store(struct device *dev,
610 			     struct device_attribute *attr, const char *buf,
611 			     size_t count)
612 {
613 	struct adm1031_data *data = dev_get_drvdata(dev);
614 	struct i2c_client *client = data->client;
615 	int nr = to_sensor_dev_attr(attr)->index;
616 	long val;
617 	u8 tmp;
618 	int old_div;
619 	int new_min;
620 	int ret;
621 
622 	ret = kstrtol(buf, 10, &val);
623 	if (ret)
624 		return ret;
625 
626 	tmp = val == 8 ? 0xc0 :
627 	      val == 4 ? 0x80 :
628 	      val == 2 ? 0x40 :
629 	      val == 1 ? 0x00 :
630 	      0xff;
631 	if (tmp == 0xff)
632 		return -EINVAL;
633 
634 	mutex_lock(&data->update_lock);
635 	/* Get fresh readings */
636 	data->fan_div[nr] = adm1031_read_value(client,
637 					       ADM1031_REG_FAN_DIV(nr));
638 	data->fan_min[nr] = adm1031_read_value(client,
639 					       ADM1031_REG_FAN_MIN(nr));
640 
641 	/* Write the new clock divider and fan min */
642 	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
643 	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
644 	new_min = data->fan_min[nr] * old_div / val;
645 	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
646 
647 	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
648 			    data->fan_div[nr]);
649 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
650 			    data->fan_min[nr]);
651 
652 	/* Invalidate the cache: fan speed is no longer valid */
653 	data->valid = 0;
654 	mutex_unlock(&data->update_lock);
655 	return count;
656 }
657 
658 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
659 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
660 static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
661 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
662 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
663 static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
664 
665 /* Temps */
666 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
667 			 char *buf)
668 {
669 	int nr = to_sensor_dev_attr(attr)->index;
670 	struct adm1031_data *data = adm1031_update_device(dev);
671 	int ext;
672 	ext = nr == 0 ?
673 	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
674 	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
675 	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
676 }
677 static ssize_t temp_offset_show(struct device *dev,
678 				struct device_attribute *attr, char *buf)
679 {
680 	int nr = to_sensor_dev_attr(attr)->index;
681 	struct adm1031_data *data = adm1031_update_device(dev);
682 	return sprintf(buf, "%d\n",
683 		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
684 }
685 static ssize_t temp_min_show(struct device *dev,
686 			     struct device_attribute *attr, char *buf)
687 {
688 	int nr = to_sensor_dev_attr(attr)->index;
689 	struct adm1031_data *data = adm1031_update_device(dev);
690 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
691 }
692 static ssize_t temp_max_show(struct device *dev,
693 			     struct device_attribute *attr, char *buf)
694 {
695 	int nr = to_sensor_dev_attr(attr)->index;
696 	struct adm1031_data *data = adm1031_update_device(dev);
697 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
698 }
699 static ssize_t temp_crit_show(struct device *dev,
700 			      struct device_attribute *attr, char *buf)
701 {
702 	int nr = to_sensor_dev_attr(attr)->index;
703 	struct adm1031_data *data = adm1031_update_device(dev);
704 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
705 }
706 static ssize_t temp_offset_store(struct device *dev,
707 				 struct device_attribute *attr,
708 				 const char *buf, size_t count)
709 {
710 	struct adm1031_data *data = dev_get_drvdata(dev);
711 	struct i2c_client *client = data->client;
712 	int nr = to_sensor_dev_attr(attr)->index;
713 	long val;
714 	int ret;
715 
716 	ret = kstrtol(buf, 10, &val);
717 	if (ret)
718 		return ret;
719 
720 	val = clamp_val(val, -15000, 15000);
721 	mutex_lock(&data->update_lock);
722 	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
723 	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
724 			    data->temp_offset[nr]);
725 	mutex_unlock(&data->update_lock);
726 	return count;
727 }
728 static ssize_t temp_min_store(struct device *dev,
729 			      struct device_attribute *attr, const char *buf,
730 			      size_t count)
731 {
732 	struct adm1031_data *data = dev_get_drvdata(dev);
733 	struct i2c_client *client = data->client;
734 	int nr = to_sensor_dev_attr(attr)->index;
735 	long val;
736 	int ret;
737 
738 	ret = kstrtol(buf, 10, &val);
739 	if (ret)
740 		return ret;
741 
742 	val = clamp_val(val, -55000, 127000);
743 	mutex_lock(&data->update_lock);
744 	data->temp_min[nr] = TEMP_TO_REG(val);
745 	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
746 			    data->temp_min[nr]);
747 	mutex_unlock(&data->update_lock);
748 	return count;
749 }
750 static ssize_t temp_max_store(struct device *dev,
751 			      struct device_attribute *attr, const char *buf,
752 			      size_t count)
753 {
754 	struct adm1031_data *data = dev_get_drvdata(dev);
755 	struct i2c_client *client = data->client;
756 	int nr = to_sensor_dev_attr(attr)->index;
757 	long val;
758 	int ret;
759 
760 	ret = kstrtol(buf, 10, &val);
761 	if (ret)
762 		return ret;
763 
764 	val = clamp_val(val, -55000, 127000);
765 	mutex_lock(&data->update_lock);
766 	data->temp_max[nr] = TEMP_TO_REG(val);
767 	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
768 			    data->temp_max[nr]);
769 	mutex_unlock(&data->update_lock);
770 	return count;
771 }
772 static ssize_t temp_crit_store(struct device *dev,
773 			       struct device_attribute *attr, const char *buf,
774 			       size_t count)
775 {
776 	struct adm1031_data *data = dev_get_drvdata(dev);
777 	struct i2c_client *client = data->client;
778 	int nr = to_sensor_dev_attr(attr)->index;
779 	long val;
780 	int ret;
781 
782 	ret = kstrtol(buf, 10, &val);
783 	if (ret)
784 		return ret;
785 
786 	val = clamp_val(val, -55000, 127000);
787 	mutex_lock(&data->update_lock);
788 	data->temp_crit[nr] = TEMP_TO_REG(val);
789 	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
790 			    data->temp_crit[nr]);
791 	mutex_unlock(&data->update_lock);
792 	return count;
793 }
794 
795 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
796 static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
797 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
798 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
799 static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
800 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
801 static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
802 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
803 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
804 static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
805 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
806 static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
807 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
808 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
809 static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
810 
811 /* Alarms */
812 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
813 			   char *buf)
814 {
815 	struct adm1031_data *data = adm1031_update_device(dev);
816 	return sprintf(buf, "%d\n", data->alarm);
817 }
818 
819 static DEVICE_ATTR_RO(alarms);
820 
821 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
822 			  char *buf)
823 {
824 	int bitnr = to_sensor_dev_attr(attr)->index;
825 	struct adm1031_data *data = adm1031_update_device(dev);
826 	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
827 }
828 
829 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
830 static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
831 static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
832 static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
833 static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
834 static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
835 static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
836 static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
837 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
838 static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
839 static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
840 static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
841 static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
842 static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
843 static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
844 
845 /* Update Interval */
846 static const unsigned int update_intervals[] = {
847 	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
848 };
849 
850 static ssize_t update_interval_show(struct device *dev,
851 				    struct device_attribute *attr, char *buf)
852 {
853 	struct adm1031_data *data = dev_get_drvdata(dev);
854 
855 	return sprintf(buf, "%u\n", data->update_interval);
856 }
857 
858 static ssize_t update_interval_store(struct device *dev,
859 				     struct device_attribute *attr,
860 				     const char *buf, size_t count)
861 {
862 	struct adm1031_data *data = dev_get_drvdata(dev);
863 	struct i2c_client *client = data->client;
864 	unsigned long val;
865 	int i, err;
866 	u8 reg;
867 
868 	err = kstrtoul(buf, 10, &val);
869 	if (err)
870 		return err;
871 
872 	/*
873 	 * Find the nearest update interval from the table.
874 	 * Use it to determine the matching update rate.
875 	 */
876 	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
877 		if (val >= update_intervals[i])
878 			break;
879 	}
880 	/* if not found, we point to the last entry (lowest update interval) */
881 
882 	/* set the new update rate while preserving other settings */
883 	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
884 	reg &= ~ADM1031_UPDATE_RATE_MASK;
885 	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
886 	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
887 
888 	mutex_lock(&data->update_lock);
889 	data->update_interval = update_intervals[i];
890 	mutex_unlock(&data->update_lock);
891 
892 	return count;
893 }
894 
895 static DEVICE_ATTR_RW(update_interval);
896 
897 static struct attribute *adm1031_attributes[] = {
898 	&sensor_dev_attr_fan1_input.dev_attr.attr,
899 	&sensor_dev_attr_fan1_div.dev_attr.attr,
900 	&sensor_dev_attr_fan1_min.dev_attr.attr,
901 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
902 	&sensor_dev_attr_fan1_fault.dev_attr.attr,
903 	&sensor_dev_attr_pwm1.dev_attr.attr,
904 	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
905 	&sensor_dev_attr_temp1_input.dev_attr.attr,
906 	&sensor_dev_attr_temp1_offset.dev_attr.attr,
907 	&sensor_dev_attr_temp1_min.dev_attr.attr,
908 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
909 	&sensor_dev_attr_temp1_max.dev_attr.attr,
910 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
911 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
912 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
913 	&sensor_dev_attr_temp2_input.dev_attr.attr,
914 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
915 	&sensor_dev_attr_temp2_min.dev_attr.attr,
916 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
917 	&sensor_dev_attr_temp2_max.dev_attr.attr,
918 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
919 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
920 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
921 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
922 
923 	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
924 	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
925 	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
926 
927 	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
928 	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
929 	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
930 
931 	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
932 
933 	&dev_attr_update_interval.attr,
934 	&dev_attr_alarms.attr,
935 
936 	NULL
937 };
938 
939 static const struct attribute_group adm1031_group = {
940 	.attrs = adm1031_attributes,
941 };
942 
943 static struct attribute *adm1031_attributes_opt[] = {
944 	&sensor_dev_attr_fan2_input.dev_attr.attr,
945 	&sensor_dev_attr_fan2_div.dev_attr.attr,
946 	&sensor_dev_attr_fan2_min.dev_attr.attr,
947 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
948 	&sensor_dev_attr_fan2_fault.dev_attr.attr,
949 	&sensor_dev_attr_pwm2.dev_attr.attr,
950 	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
951 	&sensor_dev_attr_temp3_input.dev_attr.attr,
952 	&sensor_dev_attr_temp3_offset.dev_attr.attr,
953 	&sensor_dev_attr_temp3_min.dev_attr.attr,
954 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
955 	&sensor_dev_attr_temp3_max.dev_attr.attr,
956 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
957 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
958 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
959 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
960 	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
961 	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
962 	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
963 	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
964 	NULL
965 };
966 
967 static const struct attribute_group adm1031_group_opt = {
968 	.attrs = adm1031_attributes_opt,
969 };
970 
971 /* Return 0 if detection is successful, -ENODEV otherwise */
972 static int adm1031_detect(struct i2c_client *client,
973 			  struct i2c_board_info *info)
974 {
975 	struct i2c_adapter *adapter = client->adapter;
976 	const char *name;
977 	int id, co;
978 
979 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
980 		return -ENODEV;
981 
982 	id = i2c_smbus_read_byte_data(client, 0x3d);
983 	co = i2c_smbus_read_byte_data(client, 0x3e);
984 
985 	if (!((id == 0x31 || id == 0x30) && co == 0x41))
986 		return -ENODEV;
987 	name = (id == 0x30) ? "adm1030" : "adm1031";
988 
989 	strlcpy(info->type, name, I2C_NAME_SIZE);
990 
991 	return 0;
992 }
993 
994 static void adm1031_init_client(struct i2c_client *client)
995 {
996 	unsigned int read_val;
997 	unsigned int mask;
998 	int i;
999 	struct adm1031_data *data = i2c_get_clientdata(client);
1000 
1001 	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1002 	if (data->chip_type == adm1031) {
1003 		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1004 			ADM1031_CONF2_TACH2_ENABLE);
1005 	}
1006 	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1007 	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1008 	if ((read_val | mask) != read_val)
1009 		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1010 
1011 	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1012 	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1013 		adm1031_write_value(client, ADM1031_REG_CONF1,
1014 				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1015 	}
1016 
1017 	/* Read the chip's update rate */
1018 	mask = ADM1031_UPDATE_RATE_MASK;
1019 	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1020 	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1021 	/* Save it as update interval */
1022 	data->update_interval = update_intervals[i];
1023 }
1024 
1025 static const struct i2c_device_id adm1031_id[];
1026 
1027 static int adm1031_probe(struct i2c_client *client)
1028 {
1029 	struct device *dev = &client->dev;
1030 	struct device *hwmon_dev;
1031 	struct adm1031_data *data;
1032 
1033 	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1034 	if (!data)
1035 		return -ENOMEM;
1036 
1037 	i2c_set_clientdata(client, data);
1038 	data->client = client;
1039 	data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
1040 	mutex_init(&data->update_lock);
1041 
1042 	if (data->chip_type == adm1030)
1043 		data->chan_select_table = &auto_channel_select_table_adm1030;
1044 	else
1045 		data->chan_select_table = &auto_channel_select_table_adm1031;
1046 
1047 	/* Initialize the ADM1031 chip */
1048 	adm1031_init_client(client);
1049 
1050 	/* sysfs hooks */
1051 	data->groups[0] = &adm1031_group;
1052 	if (data->chip_type == adm1031)
1053 		data->groups[1] = &adm1031_group_opt;
1054 
1055 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1056 							   data, data->groups);
1057 	return PTR_ERR_OR_ZERO(hwmon_dev);
1058 }
1059 
1060 static const struct i2c_device_id adm1031_id[] = {
1061 	{ "adm1030", adm1030 },
1062 	{ "adm1031", adm1031 },
1063 	{ }
1064 };
1065 MODULE_DEVICE_TABLE(i2c, adm1031_id);
1066 
1067 static struct i2c_driver adm1031_driver = {
1068 	.class		= I2C_CLASS_HWMON,
1069 	.driver = {
1070 		.name = "adm1031",
1071 	},
1072 	.probe_new	= adm1031_probe,
1073 	.id_table	= adm1031_id,
1074 	.detect		= adm1031_detect,
1075 	.address_list	= normal_i2c,
1076 };
1077 
1078 module_i2c_driver(adm1031_driver);
1079 
1080 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1081 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1082 MODULE_LICENSE("GPL");
1083