xref: /openbmc/linux/drivers/hwmon/adm1031.c (revision b34e08d5)
1 /*
2  * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3  *	       monitoring
4  * Based on lm75.c and lm85.c
5  * Supports adm1030 / adm1031
6  * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7  * Reworked by Jean Delvare <jdelvare@suse.de>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-sysfs.h>
31 #include <linux/err.h>
32 #include <linux/mutex.h>
33 
34 /* Following macros takes channel parameter starting from 0 to 2 */
35 #define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
36 #define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
37 #define ADM1031_REG_PWM			(0x22)
38 #define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
39 #define ADM1031_REG_FAN_FILTER		(0x23)
40 
41 #define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
42 #define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
43 #define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
44 #define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
45 
46 #define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
47 #define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
48 
49 #define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
50 
51 #define ADM1031_REG_CONF1		0x00
52 #define ADM1031_REG_CONF2		0x01
53 #define ADM1031_REG_EXT_TEMP		0x06
54 
55 #define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
56 #define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
57 #define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
58 
59 #define ADM1031_CONF2_PWM1_ENABLE	0x01
60 #define ADM1031_CONF2_PWM2_ENABLE	0x02
61 #define ADM1031_CONF2_TACH1_ENABLE	0x04
62 #define ADM1031_CONF2_TACH2_ENABLE	0x08
63 #define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
64 
65 #define ADM1031_UPDATE_RATE_MASK	0x1c
66 #define ADM1031_UPDATE_RATE_SHIFT	2
67 
68 /* Addresses to scan */
69 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
70 
71 enum chips { adm1030, adm1031 };
72 
73 typedef u8 auto_chan_table_t[8][2];
74 
75 /* Each client has this additional data */
76 struct adm1031_data {
77 	struct device *hwmon_dev;
78 	struct mutex update_lock;
79 	int chip_type;
80 	char valid;		/* !=0 if following fields are valid */
81 	unsigned long last_updated;	/* In jiffies */
82 	unsigned int update_interval;	/* In milliseconds */
83 	/*
84 	 * The chan_select_table contains the possible configurations for
85 	 * auto fan control.
86 	 */
87 	const auto_chan_table_t *chan_select_table;
88 	u16 alarm;
89 	u8 conf1;
90 	u8 conf2;
91 	u8 fan[2];
92 	u8 fan_div[2];
93 	u8 fan_min[2];
94 	u8 pwm[2];
95 	u8 old_pwm[2];
96 	s8 temp[3];
97 	u8 ext_temp[3];
98 	u8 auto_temp[3];
99 	u8 auto_temp_min[3];
100 	u8 auto_temp_off[3];
101 	u8 auto_temp_max[3];
102 	s8 temp_offset[3];
103 	s8 temp_min[3];
104 	s8 temp_max[3];
105 	s8 temp_crit[3];
106 };
107 
108 static int adm1031_probe(struct i2c_client *client,
109 			 const struct i2c_device_id *id);
110 static int adm1031_detect(struct i2c_client *client,
111 			  struct i2c_board_info *info);
112 static void adm1031_init_client(struct i2c_client *client);
113 static int adm1031_remove(struct i2c_client *client);
114 static struct adm1031_data *adm1031_update_device(struct device *dev);
115 
116 static const struct i2c_device_id adm1031_id[] = {
117 	{ "adm1030", adm1030 },
118 	{ "adm1031", adm1031 },
119 	{ }
120 };
121 MODULE_DEVICE_TABLE(i2c, adm1031_id);
122 
123 /* This is the driver that will be inserted */
124 static struct i2c_driver adm1031_driver = {
125 	.class		= I2C_CLASS_HWMON,
126 	.driver = {
127 		.name = "adm1031",
128 	},
129 	.probe		= adm1031_probe,
130 	.remove		= adm1031_remove,
131 	.id_table	= adm1031_id,
132 	.detect		= adm1031_detect,
133 	.address_list	= normal_i2c,
134 };
135 
136 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
137 {
138 	return i2c_smbus_read_byte_data(client, reg);
139 }
140 
141 static inline int
142 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
143 {
144 	return i2c_smbus_write_byte_data(client, reg, value);
145 }
146 
147 
148 #define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
149 					((val + 500) / 1000)))
150 
151 #define TEMP_FROM_REG(val)		((val) * 1000)
152 
153 #define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
154 
155 #define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
156 #define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
157 						      (val) | 0x70 : (val))
158 
159 #define FAN_FROM_REG(reg, div)		((reg) ? \
160 					 (11250 * 60) / ((reg) * (div)) : 0)
161 
162 static int FAN_TO_REG(int reg, int div)
163 {
164 	int tmp;
165 	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
166 	return tmp > 255 ? 255 : tmp;
167 }
168 
169 #define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
170 
171 #define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
172 #define PWM_FROM_REG(val)		((val) << 4)
173 
174 #define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
175 #define FAN_CHAN_TO_REG(val, reg)	\
176 	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
177 
178 #define AUTO_TEMP_MIN_TO_REG(val, reg)	\
179 	((((val) / 500) & 0xf8) | ((reg) & 0x7))
180 #define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
181 #define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
182 
183 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
184 
185 #define AUTO_TEMP_OFF_FROM_REG(reg)		\
186 	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
187 
188 #define AUTO_TEMP_MAX_FROM_REG(reg)		\
189 	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
190 	AUTO_TEMP_MIN_FROM_REG(reg))
191 
192 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
193 {
194 	int ret;
195 	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
196 
197 	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
198 	ret = ((reg & 0xf8) |
199 	       (range < 10000 ? 0 :
200 		range < 20000 ? 1 :
201 		range < 40000 ? 2 : range < 80000 ? 3 : 4));
202 	return ret;
203 }
204 
205 /* FAN auto control */
206 #define GET_FAN_AUTO_BITFIELD(data, idx)	\
207 	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
208 
209 /*
210  * The tables below contains the possible values for the auto fan
211  * control bitfields. the index in the table is the register value.
212  * MSb is the auto fan control enable bit, so the four first entries
213  * in the table disables auto fan control when both bitfields are zero.
214  */
215 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
216 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
217 	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
218 	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
219 	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
220 	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
221 };
222 
223 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
224 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
225 	{ 2 /* 0b10 */		, 0 },
226 	{ 0xff /* invalid */	, 0 },
227 	{ 0xff /* invalid */	, 0 },
228 	{ 3 /* 0b11 */		, 0 },
229 };
230 
231 /*
232  * That function checks if a bitfield is valid and returns the other bitfield
233  * nearest match if no exact match where found.
234  */
235 static int
236 get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
237 {
238 	int i;
239 	int first_match = -1, exact_match = -1;
240 	u8 other_reg_val =
241 	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
242 
243 	if (val == 0)
244 		return 0;
245 
246 	for (i = 0; i < 8; i++) {
247 		if ((val == (*data->chan_select_table)[i][chan]) &&
248 		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
249 		     other_reg_val)) {
250 			/* We found an exact match */
251 			exact_match = i;
252 			break;
253 		} else if (val == (*data->chan_select_table)[i][chan] &&
254 			   first_match == -1) {
255 			/*
256 			 * Save the first match in case of an exact match has
257 			 * not been found
258 			 */
259 			first_match = i;
260 		}
261 	}
262 
263 	if (exact_match >= 0)
264 		return exact_match;
265 	else if (first_match >= 0)
266 		return first_match;
267 
268 	return -EINVAL;
269 }
270 
271 static ssize_t show_fan_auto_channel(struct device *dev,
272 				     struct device_attribute *attr, char *buf)
273 {
274 	int nr = to_sensor_dev_attr(attr)->index;
275 	struct adm1031_data *data = adm1031_update_device(dev);
276 	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
277 }
278 
279 static ssize_t
280 set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
281 		     const char *buf, size_t count)
282 {
283 	struct i2c_client *client = to_i2c_client(dev);
284 	struct adm1031_data *data = i2c_get_clientdata(client);
285 	int nr = to_sensor_dev_attr(attr)->index;
286 	long val;
287 	u8 reg;
288 	int ret;
289 	u8 old_fan_mode;
290 
291 	ret = kstrtol(buf, 10, &val);
292 	if (ret)
293 		return ret;
294 
295 	old_fan_mode = data->conf1;
296 
297 	mutex_lock(&data->update_lock);
298 
299 	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
300 	if (ret < 0) {
301 		mutex_unlock(&data->update_lock);
302 		return ret;
303 	}
304 	reg = ret;
305 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
306 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
307 	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
308 		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
309 			/*
310 			 * Switch to Auto Fan Mode
311 			 * Save PWM registers
312 			 * Set PWM registers to 33% Both
313 			 */
314 			data->old_pwm[0] = data->pwm[0];
315 			data->old_pwm[1] = data->pwm[1];
316 			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
317 		} else {
318 			/* Switch to Manual Mode */
319 			data->pwm[0] = data->old_pwm[0];
320 			data->pwm[1] = data->old_pwm[1];
321 			/* Restore PWM registers */
322 			adm1031_write_value(client, ADM1031_REG_PWM,
323 					    data->pwm[0] | (data->pwm[1] << 4));
324 		}
325 	}
326 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
327 	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
328 	mutex_unlock(&data->update_lock);
329 	return count;
330 }
331 
332 static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
333 		show_fan_auto_channel, set_fan_auto_channel, 0);
334 static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
335 		show_fan_auto_channel, set_fan_auto_channel, 1);
336 
337 /* Auto Temps */
338 static ssize_t show_auto_temp_off(struct device *dev,
339 				  struct device_attribute *attr, char *buf)
340 {
341 	int nr = to_sensor_dev_attr(attr)->index;
342 	struct adm1031_data *data = adm1031_update_device(dev);
343 	return sprintf(buf, "%d\n",
344 		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
345 }
346 static ssize_t show_auto_temp_min(struct device *dev,
347 				  struct device_attribute *attr, char *buf)
348 {
349 	int nr = to_sensor_dev_attr(attr)->index;
350 	struct adm1031_data *data = adm1031_update_device(dev);
351 	return sprintf(buf, "%d\n",
352 		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
353 }
354 static ssize_t
355 set_auto_temp_min(struct device *dev, struct device_attribute *attr,
356 		  const char *buf, size_t count)
357 {
358 	struct i2c_client *client = to_i2c_client(dev);
359 	struct adm1031_data *data = i2c_get_clientdata(client);
360 	int nr = to_sensor_dev_attr(attr)->index;
361 	long val;
362 	int ret;
363 
364 	ret = kstrtol(buf, 10, &val);
365 	if (ret)
366 		return ret;
367 
368 	mutex_lock(&data->update_lock);
369 	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
370 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
371 			    data->auto_temp[nr]);
372 	mutex_unlock(&data->update_lock);
373 	return count;
374 }
375 static ssize_t show_auto_temp_max(struct device *dev,
376 				  struct device_attribute *attr, char *buf)
377 {
378 	int nr = to_sensor_dev_attr(attr)->index;
379 	struct adm1031_data *data = adm1031_update_device(dev);
380 	return sprintf(buf, "%d\n",
381 		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
382 }
383 static ssize_t
384 set_auto_temp_max(struct device *dev, struct device_attribute *attr,
385 		  const char *buf, size_t count)
386 {
387 	struct i2c_client *client = to_i2c_client(dev);
388 	struct adm1031_data *data = i2c_get_clientdata(client);
389 	int nr = to_sensor_dev_attr(attr)->index;
390 	long val;
391 	int ret;
392 
393 	ret = kstrtol(buf, 10, &val);
394 	if (ret)
395 		return ret;
396 
397 	mutex_lock(&data->update_lock);
398 	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
399 						  data->pwm[nr]);
400 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
401 			    data->temp_max[nr]);
402 	mutex_unlock(&data->update_lock);
403 	return count;
404 }
405 
406 #define auto_temp_reg(offset)						\
407 static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
408 		show_auto_temp_off, NULL, offset - 1);			\
409 static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
410 		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
411 static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
412 		show_auto_temp_max, set_auto_temp_max, offset - 1)
413 
414 auto_temp_reg(1);
415 auto_temp_reg(2);
416 auto_temp_reg(3);
417 
418 /* pwm */
419 static ssize_t show_pwm(struct device *dev,
420 			struct device_attribute *attr, char *buf)
421 {
422 	int nr = to_sensor_dev_attr(attr)->index;
423 	struct adm1031_data *data = adm1031_update_device(dev);
424 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
425 }
426 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
427 		       const char *buf, size_t count)
428 {
429 	struct i2c_client *client = to_i2c_client(dev);
430 	struct adm1031_data *data = i2c_get_clientdata(client);
431 	int nr = to_sensor_dev_attr(attr)->index;
432 	long val;
433 	int ret, reg;
434 
435 	ret = kstrtol(buf, 10, &val);
436 	if (ret)
437 		return ret;
438 
439 	mutex_lock(&data->update_lock);
440 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
441 	    (((val>>4) & 0xf) != 5)) {
442 		/* In automatic mode, the only PWM accepted is 33% */
443 		mutex_unlock(&data->update_lock);
444 		return -EINVAL;
445 	}
446 	data->pwm[nr] = PWM_TO_REG(val);
447 	reg = adm1031_read_value(client, ADM1031_REG_PWM);
448 	adm1031_write_value(client, ADM1031_REG_PWM,
449 			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
450 			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
451 	mutex_unlock(&data->update_lock);
452 	return count;
453 }
454 
455 static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
456 static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
457 static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
458 		show_pwm, set_pwm, 0);
459 static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
460 		show_pwm, set_pwm, 1);
461 
462 /* Fans */
463 
464 /*
465  * That function checks the cases where the fan reading is not
466  * relevant.  It is used to provide 0 as fan reading when the fan is
467  * not supposed to run
468  */
469 static int trust_fan_readings(struct adm1031_data *data, int chan)
470 {
471 	int res = 0;
472 
473 	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
474 		switch (data->conf1 & 0x60) {
475 		case 0x00:
476 			/*
477 			 * remote temp1 controls fan1,
478 			 * remote temp2 controls fan2
479 			 */
480 			res = data->temp[chan+1] >=
481 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
482 			break;
483 		case 0x20:	/* remote temp1 controls both fans */
484 			res =
485 			    data->temp[1] >=
486 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
487 			break;
488 		case 0x40:	/* remote temp2 controls both fans */
489 			res =
490 			    data->temp[2] >=
491 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
492 			break;
493 		case 0x60:	/* max controls both fans */
494 			res =
495 			    data->temp[0] >=
496 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
497 			    || data->temp[1] >=
498 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
499 			    || (data->chip_type == adm1031
500 				&& data->temp[2] >=
501 				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
502 			break;
503 		}
504 	} else {
505 		res = data->pwm[chan] > 0;
506 	}
507 	return res;
508 }
509 
510 
511 static ssize_t show_fan(struct device *dev,
512 			struct device_attribute *attr, char *buf)
513 {
514 	int nr = to_sensor_dev_attr(attr)->index;
515 	struct adm1031_data *data = adm1031_update_device(dev);
516 	int value;
517 
518 	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
519 				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
520 	return sprintf(buf, "%d\n", value);
521 }
522 
523 static ssize_t show_fan_div(struct device *dev,
524 			    struct device_attribute *attr, char *buf)
525 {
526 	int nr = to_sensor_dev_attr(attr)->index;
527 	struct adm1031_data *data = adm1031_update_device(dev);
528 	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
529 }
530 static ssize_t show_fan_min(struct device *dev,
531 			    struct device_attribute *attr, char *buf)
532 {
533 	int nr = to_sensor_dev_attr(attr)->index;
534 	struct adm1031_data *data = adm1031_update_device(dev);
535 	return sprintf(buf, "%d\n",
536 		       FAN_FROM_REG(data->fan_min[nr],
537 				    FAN_DIV_FROM_REG(data->fan_div[nr])));
538 }
539 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
540 			   const char *buf, size_t count)
541 {
542 	struct i2c_client *client = to_i2c_client(dev);
543 	struct adm1031_data *data = i2c_get_clientdata(client);
544 	int nr = to_sensor_dev_attr(attr)->index;
545 	long val;
546 	int ret;
547 
548 	ret = kstrtol(buf, 10, &val);
549 	if (ret)
550 		return ret;
551 
552 	mutex_lock(&data->update_lock);
553 	if (val) {
554 		data->fan_min[nr] =
555 			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
556 	} else {
557 		data->fan_min[nr] = 0xff;
558 	}
559 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
560 	mutex_unlock(&data->update_lock);
561 	return count;
562 }
563 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
564 			   const char *buf, size_t count)
565 {
566 	struct i2c_client *client = to_i2c_client(dev);
567 	struct adm1031_data *data = i2c_get_clientdata(client);
568 	int nr = to_sensor_dev_attr(attr)->index;
569 	long val;
570 	u8 tmp;
571 	int old_div;
572 	int new_min;
573 	int ret;
574 
575 	ret = kstrtol(buf, 10, &val);
576 	if (ret)
577 		return ret;
578 
579 	tmp = val == 8 ? 0xc0 :
580 	      val == 4 ? 0x80 :
581 	      val == 2 ? 0x40 :
582 	      val == 1 ? 0x00 :
583 	      0xff;
584 	if (tmp == 0xff)
585 		return -EINVAL;
586 
587 	mutex_lock(&data->update_lock);
588 	/* Get fresh readings */
589 	data->fan_div[nr] = adm1031_read_value(client,
590 					       ADM1031_REG_FAN_DIV(nr));
591 	data->fan_min[nr] = adm1031_read_value(client,
592 					       ADM1031_REG_FAN_MIN(nr));
593 
594 	/* Write the new clock divider and fan min */
595 	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
596 	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
597 	new_min = data->fan_min[nr] * old_div / val;
598 	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
599 
600 	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
601 			    data->fan_div[nr]);
602 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
603 			    data->fan_min[nr]);
604 
605 	/* Invalidate the cache: fan speed is no longer valid */
606 	data->valid = 0;
607 	mutex_unlock(&data->update_lock);
608 	return count;
609 }
610 
611 #define fan_offset(offset)						\
612 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
613 		show_fan, NULL, offset - 1);				\
614 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
615 		show_fan_min, set_fan_min, offset - 1);			\
616 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
617 		show_fan_div, set_fan_div, offset - 1)
618 
619 fan_offset(1);
620 fan_offset(2);
621 
622 
623 /* Temps */
624 static ssize_t show_temp(struct device *dev,
625 			 struct device_attribute *attr, char *buf)
626 {
627 	int nr = to_sensor_dev_attr(attr)->index;
628 	struct adm1031_data *data = adm1031_update_device(dev);
629 	int ext;
630 	ext = nr == 0 ?
631 	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
632 	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
633 	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
634 }
635 static ssize_t show_temp_offset(struct device *dev,
636 				struct device_attribute *attr, char *buf)
637 {
638 	int nr = to_sensor_dev_attr(attr)->index;
639 	struct adm1031_data *data = adm1031_update_device(dev);
640 	return sprintf(buf, "%d\n",
641 		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
642 }
643 static ssize_t show_temp_min(struct device *dev,
644 			     struct device_attribute *attr, char *buf)
645 {
646 	int nr = to_sensor_dev_attr(attr)->index;
647 	struct adm1031_data *data = adm1031_update_device(dev);
648 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
649 }
650 static ssize_t show_temp_max(struct device *dev,
651 			     struct device_attribute *attr, char *buf)
652 {
653 	int nr = to_sensor_dev_attr(attr)->index;
654 	struct adm1031_data *data = adm1031_update_device(dev);
655 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
656 }
657 static ssize_t show_temp_crit(struct device *dev,
658 			      struct device_attribute *attr, char *buf)
659 {
660 	int nr = to_sensor_dev_attr(attr)->index;
661 	struct adm1031_data *data = adm1031_update_device(dev);
662 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
663 }
664 static ssize_t set_temp_offset(struct device *dev,
665 			       struct device_attribute *attr, const char *buf,
666 			       size_t count)
667 {
668 	struct i2c_client *client = to_i2c_client(dev);
669 	struct adm1031_data *data = i2c_get_clientdata(client);
670 	int nr = to_sensor_dev_attr(attr)->index;
671 	long val;
672 	int ret;
673 
674 	ret = kstrtol(buf, 10, &val);
675 	if (ret)
676 		return ret;
677 
678 	val = clamp_val(val, -15000, 15000);
679 	mutex_lock(&data->update_lock);
680 	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
681 	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
682 			    data->temp_offset[nr]);
683 	mutex_unlock(&data->update_lock);
684 	return count;
685 }
686 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
687 			    const char *buf, size_t count)
688 {
689 	struct i2c_client *client = to_i2c_client(dev);
690 	struct adm1031_data *data = i2c_get_clientdata(client);
691 	int nr = to_sensor_dev_attr(attr)->index;
692 	long val;
693 	int ret;
694 
695 	ret = kstrtol(buf, 10, &val);
696 	if (ret)
697 		return ret;
698 
699 	val = clamp_val(val, -55000, nr == 0 ? 127750 : 127875);
700 	mutex_lock(&data->update_lock);
701 	data->temp_min[nr] = TEMP_TO_REG(val);
702 	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
703 			    data->temp_min[nr]);
704 	mutex_unlock(&data->update_lock);
705 	return count;
706 }
707 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
708 			    const char *buf, size_t count)
709 {
710 	struct i2c_client *client = to_i2c_client(dev);
711 	struct adm1031_data *data = i2c_get_clientdata(client);
712 	int nr = to_sensor_dev_attr(attr)->index;
713 	long val;
714 	int ret;
715 
716 	ret = kstrtol(buf, 10, &val);
717 	if (ret)
718 		return ret;
719 
720 	val = clamp_val(val, -55000, nr == 0 ? 127750 : 127875);
721 	mutex_lock(&data->update_lock);
722 	data->temp_max[nr] = TEMP_TO_REG(val);
723 	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
724 			    data->temp_max[nr]);
725 	mutex_unlock(&data->update_lock);
726 	return count;
727 }
728 static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
729 			     const char *buf, size_t count)
730 {
731 	struct i2c_client *client = to_i2c_client(dev);
732 	struct adm1031_data *data = i2c_get_clientdata(client);
733 	int nr = to_sensor_dev_attr(attr)->index;
734 	long val;
735 	int ret;
736 
737 	ret = kstrtol(buf, 10, &val);
738 	if (ret)
739 		return ret;
740 
741 	val = clamp_val(val, -55000, nr == 0 ? 127750 : 127875);
742 	mutex_lock(&data->update_lock);
743 	data->temp_crit[nr] = TEMP_TO_REG(val);
744 	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
745 			    data->temp_crit[nr]);
746 	mutex_unlock(&data->update_lock);
747 	return count;
748 }
749 
750 #define temp_reg(offset)						\
751 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
752 		show_temp, NULL, offset - 1);				\
753 static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
754 		show_temp_offset, set_temp_offset, offset - 1);		\
755 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
756 		show_temp_min, set_temp_min, offset - 1);		\
757 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
758 		show_temp_max, set_temp_max, offset - 1);		\
759 static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
760 		show_temp_crit, set_temp_crit, offset - 1)
761 
762 temp_reg(1);
763 temp_reg(2);
764 temp_reg(3);
765 
766 /* Alarms */
767 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
768 			   char *buf)
769 {
770 	struct adm1031_data *data = adm1031_update_device(dev);
771 	return sprintf(buf, "%d\n", data->alarm);
772 }
773 
774 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
775 
776 static ssize_t show_alarm(struct device *dev,
777 			  struct device_attribute *attr, char *buf)
778 {
779 	int bitnr = to_sensor_dev_attr(attr)->index;
780 	struct adm1031_data *data = adm1031_update_device(dev);
781 	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
782 }
783 
784 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
785 static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
786 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
787 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
788 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
789 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
790 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
791 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
792 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
793 static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
794 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
795 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
796 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
797 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
798 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
799 
800 /* Update Interval */
801 static const unsigned int update_intervals[] = {
802 	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
803 };
804 
805 static ssize_t show_update_interval(struct device *dev,
806 				    struct device_attribute *attr, char *buf)
807 {
808 	struct i2c_client *client = to_i2c_client(dev);
809 	struct adm1031_data *data = i2c_get_clientdata(client);
810 
811 	return sprintf(buf, "%u\n", data->update_interval);
812 }
813 
814 static ssize_t set_update_interval(struct device *dev,
815 				   struct device_attribute *attr,
816 				   const char *buf, size_t count)
817 {
818 	struct i2c_client *client = to_i2c_client(dev);
819 	struct adm1031_data *data = i2c_get_clientdata(client);
820 	unsigned long val;
821 	int i, err;
822 	u8 reg;
823 
824 	err = kstrtoul(buf, 10, &val);
825 	if (err)
826 		return err;
827 
828 	/*
829 	 * Find the nearest update interval from the table.
830 	 * Use it to determine the matching update rate.
831 	 */
832 	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
833 		if (val >= update_intervals[i])
834 			break;
835 	}
836 	/* if not found, we point to the last entry (lowest update interval) */
837 
838 	/* set the new update rate while preserving other settings */
839 	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
840 	reg &= ~ADM1031_UPDATE_RATE_MASK;
841 	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
842 	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
843 
844 	mutex_lock(&data->update_lock);
845 	data->update_interval = update_intervals[i];
846 	mutex_unlock(&data->update_lock);
847 
848 	return count;
849 }
850 
851 static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
852 		   set_update_interval);
853 
854 static struct attribute *adm1031_attributes[] = {
855 	&sensor_dev_attr_fan1_input.dev_attr.attr,
856 	&sensor_dev_attr_fan1_div.dev_attr.attr,
857 	&sensor_dev_attr_fan1_min.dev_attr.attr,
858 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
859 	&sensor_dev_attr_fan1_fault.dev_attr.attr,
860 	&sensor_dev_attr_pwm1.dev_attr.attr,
861 	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
862 	&sensor_dev_attr_temp1_input.dev_attr.attr,
863 	&sensor_dev_attr_temp1_offset.dev_attr.attr,
864 	&sensor_dev_attr_temp1_min.dev_attr.attr,
865 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
866 	&sensor_dev_attr_temp1_max.dev_attr.attr,
867 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
868 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
869 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
870 	&sensor_dev_attr_temp2_input.dev_attr.attr,
871 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
872 	&sensor_dev_attr_temp2_min.dev_attr.attr,
873 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
874 	&sensor_dev_attr_temp2_max.dev_attr.attr,
875 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
876 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
877 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
878 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
879 
880 	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
881 	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
882 	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
883 
884 	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
885 	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
886 	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
887 
888 	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
889 
890 	&dev_attr_update_interval.attr,
891 	&dev_attr_alarms.attr,
892 
893 	NULL
894 };
895 
896 static const struct attribute_group adm1031_group = {
897 	.attrs = adm1031_attributes,
898 };
899 
900 static struct attribute *adm1031_attributes_opt[] = {
901 	&sensor_dev_attr_fan2_input.dev_attr.attr,
902 	&sensor_dev_attr_fan2_div.dev_attr.attr,
903 	&sensor_dev_attr_fan2_min.dev_attr.attr,
904 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
905 	&sensor_dev_attr_fan2_fault.dev_attr.attr,
906 	&sensor_dev_attr_pwm2.dev_attr.attr,
907 	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
908 	&sensor_dev_attr_temp3_input.dev_attr.attr,
909 	&sensor_dev_attr_temp3_offset.dev_attr.attr,
910 	&sensor_dev_attr_temp3_min.dev_attr.attr,
911 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
912 	&sensor_dev_attr_temp3_max.dev_attr.attr,
913 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
914 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
915 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
916 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
917 	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
918 	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
919 	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
920 	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
921 	NULL
922 };
923 
924 static const struct attribute_group adm1031_group_opt = {
925 	.attrs = adm1031_attributes_opt,
926 };
927 
928 /* Return 0 if detection is successful, -ENODEV otherwise */
929 static int adm1031_detect(struct i2c_client *client,
930 			  struct i2c_board_info *info)
931 {
932 	struct i2c_adapter *adapter = client->adapter;
933 	const char *name;
934 	int id, co;
935 
936 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
937 		return -ENODEV;
938 
939 	id = i2c_smbus_read_byte_data(client, 0x3d);
940 	co = i2c_smbus_read_byte_data(client, 0x3e);
941 
942 	if (!((id == 0x31 || id == 0x30) && co == 0x41))
943 		return -ENODEV;
944 	name = (id == 0x30) ? "adm1030" : "adm1031";
945 
946 	strlcpy(info->type, name, I2C_NAME_SIZE);
947 
948 	return 0;
949 }
950 
951 static int adm1031_probe(struct i2c_client *client,
952 			 const struct i2c_device_id *id)
953 {
954 	struct adm1031_data *data;
955 	int err;
956 
957 	data = devm_kzalloc(&client->dev, sizeof(struct adm1031_data),
958 			    GFP_KERNEL);
959 	if (!data)
960 		return -ENOMEM;
961 
962 	i2c_set_clientdata(client, data);
963 	data->chip_type = id->driver_data;
964 	mutex_init(&data->update_lock);
965 
966 	if (data->chip_type == adm1030)
967 		data->chan_select_table = &auto_channel_select_table_adm1030;
968 	else
969 		data->chan_select_table = &auto_channel_select_table_adm1031;
970 
971 	/* Initialize the ADM1031 chip */
972 	adm1031_init_client(client);
973 
974 	/* Register sysfs hooks */
975 	err = sysfs_create_group(&client->dev.kobj, &adm1031_group);
976 	if (err)
977 		return err;
978 
979 	if (data->chip_type == adm1031) {
980 		err = sysfs_create_group(&client->dev.kobj, &adm1031_group_opt);
981 		if (err)
982 			goto exit_remove;
983 	}
984 
985 	data->hwmon_dev = hwmon_device_register(&client->dev);
986 	if (IS_ERR(data->hwmon_dev)) {
987 		err = PTR_ERR(data->hwmon_dev);
988 		goto exit_remove;
989 	}
990 
991 	return 0;
992 
993 exit_remove:
994 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
995 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
996 	return err;
997 }
998 
999 static int adm1031_remove(struct i2c_client *client)
1000 {
1001 	struct adm1031_data *data = i2c_get_clientdata(client);
1002 
1003 	hwmon_device_unregister(data->hwmon_dev);
1004 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
1005 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
1006 	return 0;
1007 }
1008 
1009 static void adm1031_init_client(struct i2c_client *client)
1010 {
1011 	unsigned int read_val;
1012 	unsigned int mask;
1013 	int i;
1014 	struct adm1031_data *data = i2c_get_clientdata(client);
1015 
1016 	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1017 	if (data->chip_type == adm1031) {
1018 		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1019 			ADM1031_CONF2_TACH2_ENABLE);
1020 	}
1021 	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1022 	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1023 	if ((read_val | mask) != read_val)
1024 		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1025 
1026 	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1027 	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1028 		adm1031_write_value(client, ADM1031_REG_CONF1,
1029 				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1030 	}
1031 
1032 	/* Read the chip's update rate */
1033 	mask = ADM1031_UPDATE_RATE_MASK;
1034 	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1035 	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1036 	/* Save it as update interval */
1037 	data->update_interval = update_intervals[i];
1038 }
1039 
1040 static struct adm1031_data *adm1031_update_device(struct device *dev)
1041 {
1042 	struct i2c_client *client = to_i2c_client(dev);
1043 	struct adm1031_data *data = i2c_get_clientdata(client);
1044 	unsigned long next_update;
1045 	int chan;
1046 
1047 	mutex_lock(&data->update_lock);
1048 
1049 	next_update = data->last_updated
1050 	  + msecs_to_jiffies(data->update_interval);
1051 	if (time_after(jiffies, next_update) || !data->valid) {
1052 
1053 		dev_dbg(&client->dev, "Starting adm1031 update\n");
1054 		for (chan = 0;
1055 		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
1056 			u8 oldh, newh;
1057 
1058 			oldh =
1059 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1060 			data->ext_temp[chan] =
1061 			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
1062 			newh =
1063 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1064 			if (newh != oldh) {
1065 				data->ext_temp[chan] =
1066 				    adm1031_read_value(client,
1067 						       ADM1031_REG_EXT_TEMP);
1068 #ifdef DEBUG
1069 				oldh =
1070 				    adm1031_read_value(client,
1071 						       ADM1031_REG_TEMP(chan));
1072 
1073 				/* oldh is actually newer */
1074 				if (newh != oldh)
1075 					dev_warn(&client->dev,
1076 					  "Remote temperature may be wrong.\n");
1077 #endif
1078 			}
1079 			data->temp[chan] = newh;
1080 
1081 			data->temp_offset[chan] =
1082 			    adm1031_read_value(client,
1083 					       ADM1031_REG_TEMP_OFFSET(chan));
1084 			data->temp_min[chan] =
1085 			    adm1031_read_value(client,
1086 					       ADM1031_REG_TEMP_MIN(chan));
1087 			data->temp_max[chan] =
1088 			    adm1031_read_value(client,
1089 					       ADM1031_REG_TEMP_MAX(chan));
1090 			data->temp_crit[chan] =
1091 			    adm1031_read_value(client,
1092 					       ADM1031_REG_TEMP_CRIT(chan));
1093 			data->auto_temp[chan] =
1094 			    adm1031_read_value(client,
1095 					       ADM1031_REG_AUTO_TEMP(chan));
1096 
1097 		}
1098 
1099 		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
1100 		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
1101 
1102 		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
1103 		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
1104 		if (data->chip_type == adm1030)
1105 			data->alarm &= 0xc0ff;
1106 
1107 		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
1108 		     chan++) {
1109 			data->fan_div[chan] =
1110 			    adm1031_read_value(client,
1111 					       ADM1031_REG_FAN_DIV(chan));
1112 			data->fan_min[chan] =
1113 			    adm1031_read_value(client,
1114 					       ADM1031_REG_FAN_MIN(chan));
1115 			data->fan[chan] =
1116 			    adm1031_read_value(client,
1117 					       ADM1031_REG_FAN_SPEED(chan));
1118 			data->pwm[chan] =
1119 			  (adm1031_read_value(client,
1120 					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
1121 		}
1122 		data->last_updated = jiffies;
1123 		data->valid = 1;
1124 	}
1125 
1126 	mutex_unlock(&data->update_lock);
1127 
1128 	return data;
1129 }
1130 
1131 module_i2c_driver(adm1031_driver);
1132 
1133 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1134 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1135 MODULE_LICENSE("GPL");
1136