xref: /openbmc/linux/drivers/hwmon/adm1031.c (revision a1e58bbd)
1 /*
2   adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3   monitoring
4   Based on lm75.c and lm85.c
5   Supports adm1030 / adm1031
6   Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7   Reworked by Jean Delvare <khali@linux-fr.org>
8 
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13 
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18 
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23 
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-sysfs.h>
31 #include <linux/err.h>
32 #include <linux/mutex.h>
33 
34 /* Following macros takes channel parameter starting from 0 to 2 */
35 #define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
36 #define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
37 #define ADM1031_REG_PWM			(0x22)
38 #define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
39 
40 #define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
41 #define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
42 #define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
43 
44 #define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
45 #define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
46 
47 #define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
48 
49 #define ADM1031_REG_CONF1		0x00
50 #define ADM1031_REG_CONF2		0x01
51 #define ADM1031_REG_EXT_TEMP		0x06
52 
53 #define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
54 #define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
55 #define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
56 
57 #define ADM1031_CONF2_PWM1_ENABLE	0x01
58 #define ADM1031_CONF2_PWM2_ENABLE	0x02
59 #define ADM1031_CONF2_TACH1_ENABLE	0x04
60 #define ADM1031_CONF2_TACH2_ENABLE	0x08
61 #define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
62 
63 /* Addresses to scan */
64 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
65 
66 /* Insmod parameters */
67 I2C_CLIENT_INSMOD_2(adm1030, adm1031);
68 
69 typedef u8 auto_chan_table_t[8][2];
70 
71 /* Each client has this additional data */
72 struct adm1031_data {
73 	struct i2c_client client;
74 	struct device *hwmon_dev;
75 	struct mutex update_lock;
76 	int chip_type;
77 	char valid;		/* !=0 if following fields are valid */
78 	unsigned long last_updated;	/* In jiffies */
79 	/* The chan_select_table contains the possible configurations for
80 	 * auto fan control.
81 	 */
82 	const auto_chan_table_t *chan_select_table;
83 	u16 alarm;
84 	u8 conf1;
85 	u8 conf2;
86 	u8 fan[2];
87 	u8 fan_div[2];
88 	u8 fan_min[2];
89 	u8 pwm[2];
90 	u8 old_pwm[2];
91 	s8 temp[3];
92 	u8 ext_temp[3];
93 	u8 auto_temp[3];
94 	u8 auto_temp_min[3];
95 	u8 auto_temp_off[3];
96 	u8 auto_temp_max[3];
97 	s8 temp_min[3];
98 	s8 temp_max[3];
99 	s8 temp_crit[3];
100 };
101 
102 static int adm1031_attach_adapter(struct i2c_adapter *adapter);
103 static int adm1031_detect(struct i2c_adapter *adapter, int address, int kind);
104 static void adm1031_init_client(struct i2c_client *client);
105 static int adm1031_detach_client(struct i2c_client *client);
106 static struct adm1031_data *adm1031_update_device(struct device *dev);
107 
108 /* This is the driver that will be inserted */
109 static struct i2c_driver adm1031_driver = {
110 	.driver = {
111 		.name = "adm1031",
112 	},
113 	.attach_adapter = adm1031_attach_adapter,
114 	.detach_client = adm1031_detach_client,
115 };
116 
117 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
118 {
119 	return i2c_smbus_read_byte_data(client, reg);
120 }
121 
122 static inline int
123 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
124 {
125 	return i2c_smbus_write_byte_data(client, reg, value);
126 }
127 
128 
129 #define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
130 					((val + 500) / 1000)))
131 
132 #define TEMP_FROM_REG(val)		((val) * 1000)
133 
134 #define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
135 
136 #define FAN_FROM_REG(reg, div)		((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
137 
138 static int FAN_TO_REG(int reg, int div)
139 {
140 	int tmp;
141 	tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
142 	return tmp > 255 ? 255 : tmp;
143 }
144 
145 #define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
146 
147 #define PWM_TO_REG(val)			(SENSORS_LIMIT((val), 0, 255) >> 4)
148 #define PWM_FROM_REG(val)		((val) << 4)
149 
150 #define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
151 #define FAN_CHAN_TO_REG(val, reg)	\
152 	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
153 
154 #define AUTO_TEMP_MIN_TO_REG(val, reg)	\
155 	((((val)/500) & 0xf8)|((reg) & 0x7))
156 #define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1<< ((reg)&0x7)))
157 #define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
158 
159 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
160 
161 #define AUTO_TEMP_OFF_FROM_REG(reg)		\
162 	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
163 
164 #define AUTO_TEMP_MAX_FROM_REG(reg)		\
165 	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
166 	AUTO_TEMP_MIN_FROM_REG(reg))
167 
168 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
169 {
170 	int ret;
171 	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
172 
173 	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
174 	ret = ((reg & 0xf8) |
175 	       (range < 10000 ? 0 :
176 		range < 20000 ? 1 :
177 		range < 40000 ? 2 : range < 80000 ? 3 : 4));
178 	return ret;
179 }
180 
181 /* FAN auto control */
182 #define GET_FAN_AUTO_BITFIELD(data, idx)	\
183 	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
184 
185 /* The tables below contains the possible values for the auto fan
186  * control bitfields. the index in the table is the register value.
187  * MSb is the auto fan control enable bit, so the four first entries
188  * in the table disables auto fan control when both bitfields are zero.
189  */
190 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
191 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
192 	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
193 	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
194 	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
195 	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
196 };
197 
198 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
199 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
200 	{ 2 /* 0b10 */		, 0 },
201 	{ 0xff /* invalid */	, 0 },
202 	{ 0xff /* invalid */	, 0 },
203 	{ 3 /* 0b11 */		, 0 },
204 };
205 
206 /* That function checks if a bitfield is valid and returns the other bitfield
207  * nearest match if no exact match where found.
208  */
209 static int
210 get_fan_auto_nearest(struct adm1031_data *data,
211 		     int chan, u8 val, u8 reg, u8 * new_reg)
212 {
213 	int i;
214 	int first_match = -1, exact_match = -1;
215 	u8 other_reg_val =
216 	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
217 
218 	if (val == 0) {
219 		*new_reg = 0;
220 		return 0;
221 	}
222 
223 	for (i = 0; i < 8; i++) {
224 		if ((val == (*data->chan_select_table)[i][chan]) &&
225 		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
226 		     other_reg_val)) {
227 			/* We found an exact match */
228 			exact_match = i;
229 			break;
230 		} else if (val == (*data->chan_select_table)[i][chan] &&
231 			   first_match == -1) {
232 			/* Save the first match in case of an exact match has
233 			 * not been found
234 			 */
235 			first_match = i;
236 		}
237 	}
238 
239 	if (exact_match >= 0) {
240 		*new_reg = exact_match;
241 	} else if (first_match >= 0) {
242 		*new_reg = first_match;
243 	} else {
244 		return -EINVAL;
245 	}
246 	return 0;
247 }
248 
249 static ssize_t show_fan_auto_channel(struct device *dev,
250 				     struct device_attribute *attr, char *buf)
251 {
252 	int nr = to_sensor_dev_attr(attr)->index;
253 	struct adm1031_data *data = adm1031_update_device(dev);
254 	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
255 }
256 
257 static ssize_t
258 set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
259 		     const char *buf, size_t count)
260 {
261 	struct i2c_client *client = to_i2c_client(dev);
262 	struct adm1031_data *data = i2c_get_clientdata(client);
263 	int nr = to_sensor_dev_attr(attr)->index;
264 	int val = simple_strtol(buf, NULL, 10);
265 	u8 reg;
266 	int ret;
267 	u8 old_fan_mode;
268 
269 	old_fan_mode = data->conf1;
270 
271 	mutex_lock(&data->update_lock);
272 
273 	if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
274 		mutex_unlock(&data->update_lock);
275 		return ret;
276 	}
277 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
278 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
279 	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
280 		if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
281 			/* Switch to Auto Fan Mode
282 			 * Save PWM registers
283 			 * Set PWM registers to 33% Both */
284 			data->old_pwm[0] = data->pwm[0];
285 			data->old_pwm[1] = data->pwm[1];
286 			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
287 		} else {
288 			/* Switch to Manual Mode */
289 			data->pwm[0] = data->old_pwm[0];
290 			data->pwm[1] = data->old_pwm[1];
291 			/* Restore PWM registers */
292 			adm1031_write_value(client, ADM1031_REG_PWM,
293 					    data->pwm[0] | (data->pwm[1] << 4));
294 		}
295 	}
296 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
297 	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
298 	mutex_unlock(&data->update_lock);
299 	return count;
300 }
301 
302 static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
303 		show_fan_auto_channel, set_fan_auto_channel, 0);
304 static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
305 		show_fan_auto_channel, set_fan_auto_channel, 1);
306 
307 /* Auto Temps */
308 static ssize_t show_auto_temp_off(struct device *dev,
309 				  struct device_attribute *attr, char *buf)
310 {
311 	int nr = to_sensor_dev_attr(attr)->index;
312 	struct adm1031_data *data = adm1031_update_device(dev);
313 	return sprintf(buf, "%d\n",
314 		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
315 }
316 static ssize_t show_auto_temp_min(struct device *dev,
317 				  struct device_attribute *attr, char *buf)
318 {
319 	int nr = to_sensor_dev_attr(attr)->index;
320 	struct adm1031_data *data = adm1031_update_device(dev);
321 	return sprintf(buf, "%d\n",
322 		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
323 }
324 static ssize_t
325 set_auto_temp_min(struct device *dev, struct device_attribute *attr,
326 		  const char *buf, size_t count)
327 {
328 	struct i2c_client *client = to_i2c_client(dev);
329 	struct adm1031_data *data = i2c_get_clientdata(client);
330 	int nr = to_sensor_dev_attr(attr)->index;
331 	int val = simple_strtol(buf, NULL, 10);
332 
333 	mutex_lock(&data->update_lock);
334 	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
335 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
336 			    data->auto_temp[nr]);
337 	mutex_unlock(&data->update_lock);
338 	return count;
339 }
340 static ssize_t show_auto_temp_max(struct device *dev,
341 				  struct device_attribute *attr, char *buf)
342 {
343 	int nr = to_sensor_dev_attr(attr)->index;
344 	struct adm1031_data *data = adm1031_update_device(dev);
345 	return sprintf(buf, "%d\n",
346 		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
347 }
348 static ssize_t
349 set_auto_temp_max(struct device *dev, struct device_attribute *attr,
350 		  const char *buf, size_t count)
351 {
352 	struct i2c_client *client = to_i2c_client(dev);
353 	struct adm1031_data *data = i2c_get_clientdata(client);
354 	int nr = to_sensor_dev_attr(attr)->index;
355 	int val = simple_strtol(buf, NULL, 10);
356 
357 	mutex_lock(&data->update_lock);
358 	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
359 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
360 			    data->temp_max[nr]);
361 	mutex_unlock(&data->update_lock);
362 	return count;
363 }
364 
365 #define auto_temp_reg(offset)						\
366 static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
367 		show_auto_temp_off, NULL, offset - 1);			\
368 static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
369 		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
370 static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
371 		show_auto_temp_max, set_auto_temp_max, offset - 1)
372 
373 auto_temp_reg(1);
374 auto_temp_reg(2);
375 auto_temp_reg(3);
376 
377 /* pwm */
378 static ssize_t show_pwm(struct device *dev,
379 			struct device_attribute *attr, char *buf)
380 {
381 	int nr = to_sensor_dev_attr(attr)->index;
382 	struct adm1031_data *data = adm1031_update_device(dev);
383 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
384 }
385 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
386 		       const char *buf, size_t count)
387 {
388 	struct i2c_client *client = to_i2c_client(dev);
389 	struct adm1031_data *data = i2c_get_clientdata(client);
390 	int nr = to_sensor_dev_attr(attr)->index;
391 	int val = simple_strtol(buf, NULL, 10);
392 	int reg;
393 
394 	mutex_lock(&data->update_lock);
395 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
396 	    (((val>>4) & 0xf) != 5)) {
397 		/* In automatic mode, the only PWM accepted is 33% */
398 		mutex_unlock(&data->update_lock);
399 		return -EINVAL;
400 	}
401 	data->pwm[nr] = PWM_TO_REG(val);
402 	reg = adm1031_read_value(client, ADM1031_REG_PWM);
403 	adm1031_write_value(client, ADM1031_REG_PWM,
404 			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
405 			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
406 	mutex_unlock(&data->update_lock);
407 	return count;
408 }
409 
410 static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
411 static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
412 static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
413 		show_pwm, set_pwm, 0);
414 static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
415 		show_pwm, set_pwm, 1);
416 
417 /* Fans */
418 
419 /*
420  * That function checks the cases where the fan reading is not
421  * relevant.  It is used to provide 0 as fan reading when the fan is
422  * not supposed to run
423  */
424 static int trust_fan_readings(struct adm1031_data *data, int chan)
425 {
426 	int res = 0;
427 
428 	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
429 		switch (data->conf1 & 0x60) {
430 		case 0x00:	/* remote temp1 controls fan1 remote temp2 controls fan2 */
431 			res = data->temp[chan+1] >=
432 			      AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
433 			break;
434 		case 0x20:	/* remote temp1 controls both fans */
435 			res =
436 			    data->temp[1] >=
437 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
438 			break;
439 		case 0x40:	/* remote temp2 controls both fans */
440 			res =
441 			    data->temp[2] >=
442 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
443 			break;
444 		case 0x60:	/* max controls both fans */
445 			res =
446 			    data->temp[0] >=
447 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
448 			    || data->temp[1] >=
449 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
450 			    || (data->chip_type == adm1031
451 				&& data->temp[2] >=
452 				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
453 			break;
454 		}
455 	} else {
456 		res = data->pwm[chan] > 0;
457 	}
458 	return res;
459 }
460 
461 
462 static ssize_t show_fan(struct device *dev,
463 			struct device_attribute *attr, char *buf)
464 {
465 	int nr = to_sensor_dev_attr(attr)->index;
466 	struct adm1031_data *data = adm1031_update_device(dev);
467 	int value;
468 
469 	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
470 				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
471 	return sprintf(buf, "%d\n", value);
472 }
473 
474 static ssize_t show_fan_div(struct device *dev,
475 			    struct device_attribute *attr, char *buf)
476 {
477 	int nr = to_sensor_dev_attr(attr)->index;
478 	struct adm1031_data *data = adm1031_update_device(dev);
479 	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
480 }
481 static ssize_t show_fan_min(struct device *dev,
482 			    struct device_attribute *attr, char *buf)
483 {
484 	int nr = to_sensor_dev_attr(attr)->index;
485 	struct adm1031_data *data = adm1031_update_device(dev);
486 	return sprintf(buf, "%d\n",
487 		       FAN_FROM_REG(data->fan_min[nr],
488 				    FAN_DIV_FROM_REG(data->fan_div[nr])));
489 }
490 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
491 			   const char *buf, size_t count)
492 {
493 	struct i2c_client *client = to_i2c_client(dev);
494 	struct adm1031_data *data = i2c_get_clientdata(client);
495 	int nr = to_sensor_dev_attr(attr)->index;
496 	int val = simple_strtol(buf, NULL, 10);
497 
498 	mutex_lock(&data->update_lock);
499 	if (val) {
500 		data->fan_min[nr] =
501 			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
502 	} else {
503 		data->fan_min[nr] = 0xff;
504 	}
505 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
506 	mutex_unlock(&data->update_lock);
507 	return count;
508 }
509 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
510 			   const char *buf, size_t count)
511 {
512 	struct i2c_client *client = to_i2c_client(dev);
513 	struct adm1031_data *data = i2c_get_clientdata(client);
514 	int nr = to_sensor_dev_attr(attr)->index;
515 	int val = simple_strtol(buf, NULL, 10);
516 	u8 tmp;
517 	int old_div;
518 	int new_min;
519 
520 	tmp = val == 8 ? 0xc0 :
521 	      val == 4 ? 0x80 :
522 	      val == 2 ? 0x40 :
523 	      val == 1 ? 0x00 :
524 	      0xff;
525 	if (tmp == 0xff)
526 		return -EINVAL;
527 
528 	mutex_lock(&data->update_lock);
529 	/* Get fresh readings */
530 	data->fan_div[nr] = adm1031_read_value(client,
531 					       ADM1031_REG_FAN_DIV(nr));
532 	data->fan_min[nr] = adm1031_read_value(client,
533 					       ADM1031_REG_FAN_MIN(nr));
534 
535 	/* Write the new clock divider and fan min */
536 	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
537 	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
538 	new_min = data->fan_min[nr] * old_div / val;
539 	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
540 
541 	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
542 			    data->fan_div[nr]);
543 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
544 			    data->fan_min[nr]);
545 
546 	/* Invalidate the cache: fan speed is no longer valid */
547 	data->valid = 0;
548 	mutex_unlock(&data->update_lock);
549 	return count;
550 }
551 
552 #define fan_offset(offset)						\
553 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
554 		show_fan, NULL, offset - 1);				\
555 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
556 		show_fan_min, set_fan_min, offset - 1);			\
557 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
558 		show_fan_div, set_fan_div, offset - 1)
559 
560 fan_offset(1);
561 fan_offset(2);
562 
563 
564 /* Temps */
565 static ssize_t show_temp(struct device *dev,
566 			 struct device_attribute *attr, char *buf)
567 {
568 	int nr = to_sensor_dev_attr(attr)->index;
569 	struct adm1031_data *data = adm1031_update_device(dev);
570 	int ext;
571 	ext = nr == 0 ?
572 	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
573 	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
574 	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
575 }
576 static ssize_t show_temp_min(struct device *dev,
577 			     struct device_attribute *attr, char *buf)
578 {
579 	int nr = to_sensor_dev_attr(attr)->index;
580 	struct adm1031_data *data = adm1031_update_device(dev);
581 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
582 }
583 static ssize_t show_temp_max(struct device *dev,
584 			     struct device_attribute *attr, char *buf)
585 {
586 	int nr = to_sensor_dev_attr(attr)->index;
587 	struct adm1031_data *data = adm1031_update_device(dev);
588 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
589 }
590 static ssize_t show_temp_crit(struct device *dev,
591 			      struct device_attribute *attr, char *buf)
592 {
593 	int nr = to_sensor_dev_attr(attr)->index;
594 	struct adm1031_data *data = adm1031_update_device(dev);
595 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
596 }
597 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
598 			    const char *buf, size_t count)
599 {
600 	struct i2c_client *client = to_i2c_client(dev);
601 	struct adm1031_data *data = i2c_get_clientdata(client);
602 	int nr = to_sensor_dev_attr(attr)->index;
603 	int val;
604 
605 	val = simple_strtol(buf, NULL, 10);
606 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
607 	mutex_lock(&data->update_lock);
608 	data->temp_min[nr] = TEMP_TO_REG(val);
609 	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
610 			    data->temp_min[nr]);
611 	mutex_unlock(&data->update_lock);
612 	return count;
613 }
614 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
615 			    const char *buf, size_t count)
616 {
617 	struct i2c_client *client = to_i2c_client(dev);
618 	struct adm1031_data *data = i2c_get_clientdata(client);
619 	int nr = to_sensor_dev_attr(attr)->index;
620 	int val;
621 
622 	val = simple_strtol(buf, NULL, 10);
623 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
624 	mutex_lock(&data->update_lock);
625 	data->temp_max[nr] = TEMP_TO_REG(val);
626 	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
627 			    data->temp_max[nr]);
628 	mutex_unlock(&data->update_lock);
629 	return count;
630 }
631 static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
632 			     const char *buf, size_t count)
633 {
634 	struct i2c_client *client = to_i2c_client(dev);
635 	struct adm1031_data *data = i2c_get_clientdata(client);
636 	int nr = to_sensor_dev_attr(attr)->index;
637 	int val;
638 
639 	val = simple_strtol(buf, NULL, 10);
640 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
641 	mutex_lock(&data->update_lock);
642 	data->temp_crit[nr] = TEMP_TO_REG(val);
643 	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
644 			    data->temp_crit[nr]);
645 	mutex_unlock(&data->update_lock);
646 	return count;
647 }
648 
649 #define temp_reg(offset)						\
650 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
651 		show_temp, NULL, offset - 1);				\
652 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
653 		show_temp_min, set_temp_min, offset - 1);		\
654 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
655 		show_temp_max, set_temp_max, offset - 1);		\
656 static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
657 		show_temp_crit, set_temp_crit, offset - 1)
658 
659 temp_reg(1);
660 temp_reg(2);
661 temp_reg(3);
662 
663 /* Alarms */
664 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
665 {
666 	struct adm1031_data *data = adm1031_update_device(dev);
667 	return sprintf(buf, "%d\n", data->alarm);
668 }
669 
670 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
671 
672 static ssize_t show_alarm(struct device *dev,
673 			  struct device_attribute *attr, char *buf)
674 {
675 	int bitnr = to_sensor_dev_attr(attr)->index;
676 	struct adm1031_data *data = adm1031_update_device(dev);
677 	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
678 }
679 
680 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
681 static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
682 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
683 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
684 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
685 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
686 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
687 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
688 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
689 static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
690 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
691 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
692 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
693 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
694 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
695 
696 static int adm1031_attach_adapter(struct i2c_adapter *adapter)
697 {
698 	if (!(adapter->class & I2C_CLASS_HWMON))
699 		return 0;
700 	return i2c_probe(adapter, &addr_data, adm1031_detect);
701 }
702 
703 static struct attribute *adm1031_attributes[] = {
704 	&sensor_dev_attr_fan1_input.dev_attr.attr,
705 	&sensor_dev_attr_fan1_div.dev_attr.attr,
706 	&sensor_dev_attr_fan1_min.dev_attr.attr,
707 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
708 	&sensor_dev_attr_fan1_fault.dev_attr.attr,
709 	&sensor_dev_attr_pwm1.dev_attr.attr,
710 	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
711 	&sensor_dev_attr_temp1_input.dev_attr.attr,
712 	&sensor_dev_attr_temp1_min.dev_attr.attr,
713 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
714 	&sensor_dev_attr_temp1_max.dev_attr.attr,
715 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
716 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
717 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
718 	&sensor_dev_attr_temp2_input.dev_attr.attr,
719 	&sensor_dev_attr_temp2_min.dev_attr.attr,
720 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
721 	&sensor_dev_attr_temp2_max.dev_attr.attr,
722 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
723 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
724 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
725 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
726 
727 	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
728 	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
729 	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
730 
731 	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
732 	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
733 	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
734 
735 	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
736 
737 	&dev_attr_alarms.attr,
738 
739 	NULL
740 };
741 
742 static const struct attribute_group adm1031_group = {
743 	.attrs = adm1031_attributes,
744 };
745 
746 static struct attribute *adm1031_attributes_opt[] = {
747 	&sensor_dev_attr_fan2_input.dev_attr.attr,
748 	&sensor_dev_attr_fan2_div.dev_attr.attr,
749 	&sensor_dev_attr_fan2_min.dev_attr.attr,
750 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
751 	&sensor_dev_attr_fan2_fault.dev_attr.attr,
752 	&sensor_dev_attr_pwm2.dev_attr.attr,
753 	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
754 	&sensor_dev_attr_temp3_input.dev_attr.attr,
755 	&sensor_dev_attr_temp3_min.dev_attr.attr,
756 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
757 	&sensor_dev_attr_temp3_max.dev_attr.attr,
758 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
759 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
760 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
761 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
762 	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
763 	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
764 	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
765 	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
766 	NULL
767 };
768 
769 static const struct attribute_group adm1031_group_opt = {
770 	.attrs = adm1031_attributes_opt,
771 };
772 
773 /* This function is called by i2c_probe */
774 static int adm1031_detect(struct i2c_adapter *adapter, int address, int kind)
775 {
776 	struct i2c_client *client;
777 	struct adm1031_data *data;
778 	int err = 0;
779 	const char *name = "";
780 
781 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
782 		goto exit;
783 
784 	if (!(data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL))) {
785 		err = -ENOMEM;
786 		goto exit;
787 	}
788 
789 	client = &data->client;
790 	i2c_set_clientdata(client, data);
791 	client->addr = address;
792 	client->adapter = adapter;
793 	client->driver = &adm1031_driver;
794 
795 	if (kind < 0) {
796 		int id, co;
797 		id = i2c_smbus_read_byte_data(client, 0x3d);
798 		co = i2c_smbus_read_byte_data(client, 0x3e);
799 
800 		if (!((id == 0x31 || id == 0x30) && co == 0x41))
801 			goto exit_free;
802 		kind = (id == 0x30) ? adm1030 : adm1031;
803 	}
804 
805 	if (kind <= 0)
806 		kind = adm1031;
807 
808 	/* Given the detected chip type, set the chip name and the
809 	 * auto fan control helper table. */
810 	if (kind == adm1030) {
811 		name = "adm1030";
812 		data->chan_select_table = &auto_channel_select_table_adm1030;
813 	} else if (kind == adm1031) {
814 		name = "adm1031";
815 		data->chan_select_table = &auto_channel_select_table_adm1031;
816 	}
817 	data->chip_type = kind;
818 
819 	strlcpy(client->name, name, I2C_NAME_SIZE);
820 	mutex_init(&data->update_lock);
821 
822 	/* Tell the I2C layer a new client has arrived */
823 	if ((err = i2c_attach_client(client)))
824 		goto exit_free;
825 
826 	/* Initialize the ADM1031 chip */
827 	adm1031_init_client(client);
828 
829 	/* Register sysfs hooks */
830 	if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group)))
831 		goto exit_detach;
832 
833 	if (kind == adm1031) {
834 		if ((err = sysfs_create_group(&client->dev.kobj,
835 						&adm1031_group_opt)))
836 			goto exit_remove;
837 	}
838 
839 	data->hwmon_dev = hwmon_device_register(&client->dev);
840 	if (IS_ERR(data->hwmon_dev)) {
841 		err = PTR_ERR(data->hwmon_dev);
842 		goto exit_remove;
843 	}
844 
845 	return 0;
846 
847 exit_remove:
848 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
849 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
850 exit_detach:
851 	i2c_detach_client(client);
852 exit_free:
853 	kfree(data);
854 exit:
855 	return err;
856 }
857 
858 static int adm1031_detach_client(struct i2c_client *client)
859 {
860 	struct adm1031_data *data = i2c_get_clientdata(client);
861 	int ret;
862 
863 	hwmon_device_unregister(data->hwmon_dev);
864 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
865 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
866 	if ((ret = i2c_detach_client(client)) != 0) {
867 		return ret;
868 	}
869 	kfree(data);
870 	return 0;
871 }
872 
873 static void adm1031_init_client(struct i2c_client *client)
874 {
875 	unsigned int read_val;
876 	unsigned int mask;
877 	struct adm1031_data *data = i2c_get_clientdata(client);
878 
879 	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
880 	if (data->chip_type == adm1031) {
881 		mask |= (ADM1031_CONF2_PWM2_ENABLE |
882 			ADM1031_CONF2_TACH2_ENABLE);
883 	}
884 	/* Initialize the ADM1031 chip (enables fan speed reading ) */
885 	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
886 	if ((read_val | mask) != read_val) {
887 	    adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
888 	}
889 
890 	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
891 	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
892 	    adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
893 				ADM1031_CONF1_MONITOR_ENABLE);
894 	}
895 
896 }
897 
898 static struct adm1031_data *adm1031_update_device(struct device *dev)
899 {
900 	struct i2c_client *client = to_i2c_client(dev);
901 	struct adm1031_data *data = i2c_get_clientdata(client);
902 	int chan;
903 
904 	mutex_lock(&data->update_lock);
905 
906 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
907 	    || !data->valid) {
908 
909 		dev_dbg(&client->dev, "Starting adm1031 update\n");
910 		for (chan = 0;
911 		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
912 			u8 oldh, newh;
913 
914 			oldh =
915 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
916 			data->ext_temp[chan] =
917 			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
918 			newh =
919 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
920 			if (newh != oldh) {
921 				data->ext_temp[chan] =
922 				    adm1031_read_value(client,
923 						       ADM1031_REG_EXT_TEMP);
924 #ifdef DEBUG
925 				oldh =
926 				    adm1031_read_value(client,
927 						       ADM1031_REG_TEMP(chan));
928 
929 				/* oldh is actually newer */
930 				if (newh != oldh)
931 					dev_warn(&client->dev,
932 						 "Remote temperature may be "
933 						 "wrong.\n");
934 #endif
935 			}
936 			data->temp[chan] = newh;
937 
938 			data->temp_min[chan] =
939 			    adm1031_read_value(client,
940 					       ADM1031_REG_TEMP_MIN(chan));
941 			data->temp_max[chan] =
942 			    adm1031_read_value(client,
943 					       ADM1031_REG_TEMP_MAX(chan));
944 			data->temp_crit[chan] =
945 			    adm1031_read_value(client,
946 					       ADM1031_REG_TEMP_CRIT(chan));
947 			data->auto_temp[chan] =
948 			    adm1031_read_value(client,
949 					       ADM1031_REG_AUTO_TEMP(chan));
950 
951 		}
952 
953 		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
954 		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
955 
956 		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
957 			     | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
958 				<< 8);
959 		if (data->chip_type == adm1030) {
960 			data->alarm &= 0xc0ff;
961 		}
962 
963 		for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
964 			data->fan_div[chan] =
965 			    adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
966 			data->fan_min[chan] =
967 			    adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
968 			data->fan[chan] =
969 			    adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
970 			data->pwm[chan] =
971 			    0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
972 				   (4*chan));
973 		}
974 		data->last_updated = jiffies;
975 		data->valid = 1;
976 	}
977 
978 	mutex_unlock(&data->update_lock);
979 
980 	return data;
981 }
982 
983 static int __init sensors_adm1031_init(void)
984 {
985 	return i2c_add_driver(&adm1031_driver);
986 }
987 
988 static void __exit sensors_adm1031_exit(void)
989 {
990 	i2c_del_driver(&adm1031_driver);
991 }
992 
993 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
994 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
995 MODULE_LICENSE("GPL");
996 
997 module_init(sensors_adm1031_init);
998 module_exit(sensors_adm1031_exit);
999