xref: /openbmc/linux/drivers/hwmon/adm1031.c (revision 5d0e4d78)
1 /*
2  * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3  *	       monitoring
4  * Based on lm75.c and lm85.c
5  * Supports adm1030 / adm1031
6  * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7  * Reworked by Jean Delvare <jdelvare@suse.de>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-sysfs.h>
31 #include <linux/err.h>
32 #include <linux/mutex.h>
33 
34 /* Following macros takes channel parameter starting from 0 to 2 */
35 #define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
36 #define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
37 #define ADM1031_REG_PWM			(0x22)
38 #define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
39 #define ADM1031_REG_FAN_FILTER		(0x23)
40 
41 #define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
42 #define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
43 #define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
44 #define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
45 
46 #define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
47 #define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
48 
49 #define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
50 
51 #define ADM1031_REG_CONF1		0x00
52 #define ADM1031_REG_CONF2		0x01
53 #define ADM1031_REG_EXT_TEMP		0x06
54 
55 #define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
56 #define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
57 #define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
58 
59 #define ADM1031_CONF2_PWM1_ENABLE	0x01
60 #define ADM1031_CONF2_PWM2_ENABLE	0x02
61 #define ADM1031_CONF2_TACH1_ENABLE	0x04
62 #define ADM1031_CONF2_TACH2_ENABLE	0x08
63 #define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
64 
65 #define ADM1031_UPDATE_RATE_MASK	0x1c
66 #define ADM1031_UPDATE_RATE_SHIFT	2
67 
68 /* Addresses to scan */
69 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
70 
71 enum chips { adm1030, adm1031 };
72 
73 typedef u8 auto_chan_table_t[8][2];
74 
75 /* Each client has this additional data */
76 struct adm1031_data {
77 	struct i2c_client *client;
78 	const struct attribute_group *groups[3];
79 	struct mutex update_lock;
80 	int chip_type;
81 	char valid;		/* !=0 if following fields are valid */
82 	unsigned long last_updated;	/* In jiffies */
83 	unsigned int update_interval;	/* In milliseconds */
84 	/*
85 	 * The chan_select_table contains the possible configurations for
86 	 * auto fan control.
87 	 */
88 	const auto_chan_table_t *chan_select_table;
89 	u16 alarm;
90 	u8 conf1;
91 	u8 conf2;
92 	u8 fan[2];
93 	u8 fan_div[2];
94 	u8 fan_min[2];
95 	u8 pwm[2];
96 	u8 old_pwm[2];
97 	s8 temp[3];
98 	u8 ext_temp[3];
99 	u8 auto_temp[3];
100 	u8 auto_temp_min[3];
101 	u8 auto_temp_off[3];
102 	u8 auto_temp_max[3];
103 	s8 temp_offset[3];
104 	s8 temp_min[3];
105 	s8 temp_max[3];
106 	s8 temp_crit[3];
107 };
108 
109 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
110 {
111 	return i2c_smbus_read_byte_data(client, reg);
112 }
113 
114 static inline int
115 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
116 {
117 	return i2c_smbus_write_byte_data(client, reg, value);
118 }
119 
120 static struct adm1031_data *adm1031_update_device(struct device *dev)
121 {
122 	struct adm1031_data *data = dev_get_drvdata(dev);
123 	struct i2c_client *client = data->client;
124 	unsigned long next_update;
125 	int chan;
126 
127 	mutex_lock(&data->update_lock);
128 
129 	next_update = data->last_updated
130 	  + msecs_to_jiffies(data->update_interval);
131 	if (time_after(jiffies, next_update) || !data->valid) {
132 
133 		dev_dbg(&client->dev, "Starting adm1031 update\n");
134 		for (chan = 0;
135 		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
136 			u8 oldh, newh;
137 
138 			oldh =
139 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
140 			data->ext_temp[chan] =
141 			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
142 			newh =
143 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
144 			if (newh != oldh) {
145 				data->ext_temp[chan] =
146 				    adm1031_read_value(client,
147 						       ADM1031_REG_EXT_TEMP);
148 #ifdef DEBUG
149 				oldh =
150 				    adm1031_read_value(client,
151 						       ADM1031_REG_TEMP(chan));
152 
153 				/* oldh is actually newer */
154 				if (newh != oldh)
155 					dev_warn(&client->dev,
156 					  "Remote temperature may be wrong.\n");
157 #endif
158 			}
159 			data->temp[chan] = newh;
160 
161 			data->temp_offset[chan] =
162 			    adm1031_read_value(client,
163 					       ADM1031_REG_TEMP_OFFSET(chan));
164 			data->temp_min[chan] =
165 			    adm1031_read_value(client,
166 					       ADM1031_REG_TEMP_MIN(chan));
167 			data->temp_max[chan] =
168 			    adm1031_read_value(client,
169 					       ADM1031_REG_TEMP_MAX(chan));
170 			data->temp_crit[chan] =
171 			    adm1031_read_value(client,
172 					       ADM1031_REG_TEMP_CRIT(chan));
173 			data->auto_temp[chan] =
174 			    adm1031_read_value(client,
175 					       ADM1031_REG_AUTO_TEMP(chan));
176 
177 		}
178 
179 		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
180 		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
181 
182 		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
183 		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
184 		if (data->chip_type == adm1030)
185 			data->alarm &= 0xc0ff;
186 
187 		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
188 		     chan++) {
189 			data->fan_div[chan] =
190 			    adm1031_read_value(client,
191 					       ADM1031_REG_FAN_DIV(chan));
192 			data->fan_min[chan] =
193 			    adm1031_read_value(client,
194 					       ADM1031_REG_FAN_MIN(chan));
195 			data->fan[chan] =
196 			    adm1031_read_value(client,
197 					       ADM1031_REG_FAN_SPEED(chan));
198 			data->pwm[chan] =
199 			  (adm1031_read_value(client,
200 					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
201 		}
202 		data->last_updated = jiffies;
203 		data->valid = 1;
204 	}
205 
206 	mutex_unlock(&data->update_lock);
207 
208 	return data;
209 }
210 
211 #define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
212 					((val + 500) / 1000)))
213 
214 #define TEMP_FROM_REG(val)		((val) * 1000)
215 
216 #define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
217 
218 #define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
219 #define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
220 						      (val) | 0x70 : (val))
221 
222 #define FAN_FROM_REG(reg, div)		((reg) ? \
223 					 (11250 * 60) / ((reg) * (div)) : 0)
224 
225 static int FAN_TO_REG(int reg, int div)
226 {
227 	int tmp;
228 	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
229 	return tmp > 255 ? 255 : tmp;
230 }
231 
232 #define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
233 
234 #define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
235 #define PWM_FROM_REG(val)		((val) << 4)
236 
237 #define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
238 #define FAN_CHAN_TO_REG(val, reg)	\
239 	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
240 
241 #define AUTO_TEMP_MIN_TO_REG(val, reg)	\
242 	((((val) / 500) & 0xf8) | ((reg) & 0x7))
243 #define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
244 #define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
245 
246 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
247 
248 #define AUTO_TEMP_OFF_FROM_REG(reg)		\
249 	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
250 
251 #define AUTO_TEMP_MAX_FROM_REG(reg)		\
252 	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
253 	AUTO_TEMP_MIN_FROM_REG(reg))
254 
255 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
256 {
257 	int ret;
258 	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
259 
260 	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
261 	ret = ((reg & 0xf8) |
262 	       (range < 10000 ? 0 :
263 		range < 20000 ? 1 :
264 		range < 40000 ? 2 : range < 80000 ? 3 : 4));
265 	return ret;
266 }
267 
268 /* FAN auto control */
269 #define GET_FAN_AUTO_BITFIELD(data, idx)	\
270 	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
271 
272 /*
273  * The tables below contains the possible values for the auto fan
274  * control bitfields. the index in the table is the register value.
275  * MSb is the auto fan control enable bit, so the four first entries
276  * in the table disables auto fan control when both bitfields are zero.
277  */
278 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
279 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
280 	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
281 	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
282 	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
283 	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
284 };
285 
286 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
287 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
288 	{ 2 /* 0b10 */		, 0 },
289 	{ 0xff /* invalid */	, 0 },
290 	{ 0xff /* invalid */	, 0 },
291 	{ 3 /* 0b11 */		, 0 },
292 };
293 
294 /*
295  * That function checks if a bitfield is valid and returns the other bitfield
296  * nearest match if no exact match where found.
297  */
298 static int
299 get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
300 {
301 	int i;
302 	int first_match = -1, exact_match = -1;
303 	u8 other_reg_val =
304 	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
305 
306 	if (val == 0)
307 		return 0;
308 
309 	for (i = 0; i < 8; i++) {
310 		if ((val == (*data->chan_select_table)[i][chan]) &&
311 		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
312 		     other_reg_val)) {
313 			/* We found an exact match */
314 			exact_match = i;
315 			break;
316 		} else if (val == (*data->chan_select_table)[i][chan] &&
317 			   first_match == -1) {
318 			/*
319 			 * Save the first match in case of an exact match has
320 			 * not been found
321 			 */
322 			first_match = i;
323 		}
324 	}
325 
326 	if (exact_match >= 0)
327 		return exact_match;
328 	else if (first_match >= 0)
329 		return first_match;
330 
331 	return -EINVAL;
332 }
333 
334 static ssize_t show_fan_auto_channel(struct device *dev,
335 				     struct device_attribute *attr, char *buf)
336 {
337 	int nr = to_sensor_dev_attr(attr)->index;
338 	struct adm1031_data *data = adm1031_update_device(dev);
339 	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
340 }
341 
342 static ssize_t
343 set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
344 		     const char *buf, size_t count)
345 {
346 	struct adm1031_data *data = dev_get_drvdata(dev);
347 	struct i2c_client *client = data->client;
348 	int nr = to_sensor_dev_attr(attr)->index;
349 	long val;
350 	u8 reg;
351 	int ret;
352 	u8 old_fan_mode;
353 
354 	ret = kstrtol(buf, 10, &val);
355 	if (ret)
356 		return ret;
357 
358 	old_fan_mode = data->conf1;
359 
360 	mutex_lock(&data->update_lock);
361 
362 	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
363 	if (ret < 0) {
364 		mutex_unlock(&data->update_lock);
365 		return ret;
366 	}
367 	reg = ret;
368 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
369 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
370 	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
371 		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
372 			/*
373 			 * Switch to Auto Fan Mode
374 			 * Save PWM registers
375 			 * Set PWM registers to 33% Both
376 			 */
377 			data->old_pwm[0] = data->pwm[0];
378 			data->old_pwm[1] = data->pwm[1];
379 			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
380 		} else {
381 			/* Switch to Manual Mode */
382 			data->pwm[0] = data->old_pwm[0];
383 			data->pwm[1] = data->old_pwm[1];
384 			/* Restore PWM registers */
385 			adm1031_write_value(client, ADM1031_REG_PWM,
386 					    data->pwm[0] | (data->pwm[1] << 4));
387 		}
388 	}
389 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
390 	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
391 	mutex_unlock(&data->update_lock);
392 	return count;
393 }
394 
395 static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
396 		show_fan_auto_channel, set_fan_auto_channel, 0);
397 static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
398 		show_fan_auto_channel, set_fan_auto_channel, 1);
399 
400 /* Auto Temps */
401 static ssize_t show_auto_temp_off(struct device *dev,
402 				  struct device_attribute *attr, char *buf)
403 {
404 	int nr = to_sensor_dev_attr(attr)->index;
405 	struct adm1031_data *data = adm1031_update_device(dev);
406 	return sprintf(buf, "%d\n",
407 		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
408 }
409 static ssize_t show_auto_temp_min(struct device *dev,
410 				  struct device_attribute *attr, char *buf)
411 {
412 	int nr = to_sensor_dev_attr(attr)->index;
413 	struct adm1031_data *data = adm1031_update_device(dev);
414 	return sprintf(buf, "%d\n",
415 		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
416 }
417 static ssize_t
418 set_auto_temp_min(struct device *dev, struct device_attribute *attr,
419 		  const char *buf, size_t count)
420 {
421 	struct adm1031_data *data = dev_get_drvdata(dev);
422 	struct i2c_client *client = data->client;
423 	int nr = to_sensor_dev_attr(attr)->index;
424 	long val;
425 	int ret;
426 
427 	ret = kstrtol(buf, 10, &val);
428 	if (ret)
429 		return ret;
430 
431 	val = clamp_val(val, 0, 127000);
432 	mutex_lock(&data->update_lock);
433 	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
434 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
435 			    data->auto_temp[nr]);
436 	mutex_unlock(&data->update_lock);
437 	return count;
438 }
439 static ssize_t show_auto_temp_max(struct device *dev,
440 				  struct device_attribute *attr, char *buf)
441 {
442 	int nr = to_sensor_dev_attr(attr)->index;
443 	struct adm1031_data *data = adm1031_update_device(dev);
444 	return sprintf(buf, "%d\n",
445 		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
446 }
447 static ssize_t
448 set_auto_temp_max(struct device *dev, struct device_attribute *attr,
449 		  const char *buf, size_t count)
450 {
451 	struct adm1031_data *data = dev_get_drvdata(dev);
452 	struct i2c_client *client = data->client;
453 	int nr = to_sensor_dev_attr(attr)->index;
454 	long val;
455 	int ret;
456 
457 	ret = kstrtol(buf, 10, &val);
458 	if (ret)
459 		return ret;
460 
461 	val = clamp_val(val, 0, 127000);
462 	mutex_lock(&data->update_lock);
463 	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
464 						  data->pwm[nr]);
465 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
466 			    data->temp_max[nr]);
467 	mutex_unlock(&data->update_lock);
468 	return count;
469 }
470 
471 #define auto_temp_reg(offset)						\
472 static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
473 		show_auto_temp_off, NULL, offset - 1);			\
474 static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
475 		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
476 static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
477 		show_auto_temp_max, set_auto_temp_max, offset - 1)
478 
479 auto_temp_reg(1);
480 auto_temp_reg(2);
481 auto_temp_reg(3);
482 
483 /* pwm */
484 static ssize_t show_pwm(struct device *dev,
485 			struct device_attribute *attr, char *buf)
486 {
487 	int nr = to_sensor_dev_attr(attr)->index;
488 	struct adm1031_data *data = adm1031_update_device(dev);
489 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
490 }
491 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
492 		       const char *buf, size_t count)
493 {
494 	struct adm1031_data *data = dev_get_drvdata(dev);
495 	struct i2c_client *client = data->client;
496 	int nr = to_sensor_dev_attr(attr)->index;
497 	long val;
498 	int ret, reg;
499 
500 	ret = kstrtol(buf, 10, &val);
501 	if (ret)
502 		return ret;
503 
504 	mutex_lock(&data->update_lock);
505 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
506 	    (((val>>4) & 0xf) != 5)) {
507 		/* In automatic mode, the only PWM accepted is 33% */
508 		mutex_unlock(&data->update_lock);
509 		return -EINVAL;
510 	}
511 	data->pwm[nr] = PWM_TO_REG(val);
512 	reg = adm1031_read_value(client, ADM1031_REG_PWM);
513 	adm1031_write_value(client, ADM1031_REG_PWM,
514 			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
515 			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
516 	mutex_unlock(&data->update_lock);
517 	return count;
518 }
519 
520 static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
521 static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
522 static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
523 		show_pwm, set_pwm, 0);
524 static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
525 		show_pwm, set_pwm, 1);
526 
527 /* Fans */
528 
529 /*
530  * That function checks the cases where the fan reading is not
531  * relevant.  It is used to provide 0 as fan reading when the fan is
532  * not supposed to run
533  */
534 static int trust_fan_readings(struct adm1031_data *data, int chan)
535 {
536 	int res = 0;
537 
538 	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
539 		switch (data->conf1 & 0x60) {
540 		case 0x00:
541 			/*
542 			 * remote temp1 controls fan1,
543 			 * remote temp2 controls fan2
544 			 */
545 			res = data->temp[chan+1] >=
546 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
547 			break;
548 		case 0x20:	/* remote temp1 controls both fans */
549 			res =
550 			    data->temp[1] >=
551 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
552 			break;
553 		case 0x40:	/* remote temp2 controls both fans */
554 			res =
555 			    data->temp[2] >=
556 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
557 			break;
558 		case 0x60:	/* max controls both fans */
559 			res =
560 			    data->temp[0] >=
561 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
562 			    || data->temp[1] >=
563 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
564 			    || (data->chip_type == adm1031
565 				&& data->temp[2] >=
566 				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
567 			break;
568 		}
569 	} else {
570 		res = data->pwm[chan] > 0;
571 	}
572 	return res;
573 }
574 
575 
576 static ssize_t show_fan(struct device *dev,
577 			struct device_attribute *attr, char *buf)
578 {
579 	int nr = to_sensor_dev_attr(attr)->index;
580 	struct adm1031_data *data = adm1031_update_device(dev);
581 	int value;
582 
583 	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
584 				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
585 	return sprintf(buf, "%d\n", value);
586 }
587 
588 static ssize_t show_fan_div(struct device *dev,
589 			    struct device_attribute *attr, char *buf)
590 {
591 	int nr = to_sensor_dev_attr(attr)->index;
592 	struct adm1031_data *data = adm1031_update_device(dev);
593 	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
594 }
595 static ssize_t show_fan_min(struct device *dev,
596 			    struct device_attribute *attr, char *buf)
597 {
598 	int nr = to_sensor_dev_attr(attr)->index;
599 	struct adm1031_data *data = adm1031_update_device(dev);
600 	return sprintf(buf, "%d\n",
601 		       FAN_FROM_REG(data->fan_min[nr],
602 				    FAN_DIV_FROM_REG(data->fan_div[nr])));
603 }
604 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
605 			   const char *buf, size_t count)
606 {
607 	struct adm1031_data *data = dev_get_drvdata(dev);
608 	struct i2c_client *client = data->client;
609 	int nr = to_sensor_dev_attr(attr)->index;
610 	long val;
611 	int ret;
612 
613 	ret = kstrtol(buf, 10, &val);
614 	if (ret)
615 		return ret;
616 
617 	mutex_lock(&data->update_lock);
618 	if (val) {
619 		data->fan_min[nr] =
620 			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
621 	} else {
622 		data->fan_min[nr] = 0xff;
623 	}
624 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
625 	mutex_unlock(&data->update_lock);
626 	return count;
627 }
628 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
629 			   const char *buf, size_t count)
630 {
631 	struct adm1031_data *data = dev_get_drvdata(dev);
632 	struct i2c_client *client = data->client;
633 	int nr = to_sensor_dev_attr(attr)->index;
634 	long val;
635 	u8 tmp;
636 	int old_div;
637 	int new_min;
638 	int ret;
639 
640 	ret = kstrtol(buf, 10, &val);
641 	if (ret)
642 		return ret;
643 
644 	tmp = val == 8 ? 0xc0 :
645 	      val == 4 ? 0x80 :
646 	      val == 2 ? 0x40 :
647 	      val == 1 ? 0x00 :
648 	      0xff;
649 	if (tmp == 0xff)
650 		return -EINVAL;
651 
652 	mutex_lock(&data->update_lock);
653 	/* Get fresh readings */
654 	data->fan_div[nr] = adm1031_read_value(client,
655 					       ADM1031_REG_FAN_DIV(nr));
656 	data->fan_min[nr] = adm1031_read_value(client,
657 					       ADM1031_REG_FAN_MIN(nr));
658 
659 	/* Write the new clock divider and fan min */
660 	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
661 	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
662 	new_min = data->fan_min[nr] * old_div / val;
663 	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
664 
665 	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
666 			    data->fan_div[nr]);
667 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
668 			    data->fan_min[nr]);
669 
670 	/* Invalidate the cache: fan speed is no longer valid */
671 	data->valid = 0;
672 	mutex_unlock(&data->update_lock);
673 	return count;
674 }
675 
676 #define fan_offset(offset)						\
677 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
678 		show_fan, NULL, offset - 1);				\
679 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
680 		show_fan_min, set_fan_min, offset - 1);			\
681 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
682 		show_fan_div, set_fan_div, offset - 1)
683 
684 fan_offset(1);
685 fan_offset(2);
686 
687 
688 /* Temps */
689 static ssize_t show_temp(struct device *dev,
690 			 struct device_attribute *attr, char *buf)
691 {
692 	int nr = to_sensor_dev_attr(attr)->index;
693 	struct adm1031_data *data = adm1031_update_device(dev);
694 	int ext;
695 	ext = nr == 0 ?
696 	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
697 	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
698 	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
699 }
700 static ssize_t show_temp_offset(struct device *dev,
701 				struct device_attribute *attr, char *buf)
702 {
703 	int nr = to_sensor_dev_attr(attr)->index;
704 	struct adm1031_data *data = adm1031_update_device(dev);
705 	return sprintf(buf, "%d\n",
706 		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
707 }
708 static ssize_t show_temp_min(struct device *dev,
709 			     struct device_attribute *attr, char *buf)
710 {
711 	int nr = to_sensor_dev_attr(attr)->index;
712 	struct adm1031_data *data = adm1031_update_device(dev);
713 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
714 }
715 static ssize_t show_temp_max(struct device *dev,
716 			     struct device_attribute *attr, char *buf)
717 {
718 	int nr = to_sensor_dev_attr(attr)->index;
719 	struct adm1031_data *data = adm1031_update_device(dev);
720 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
721 }
722 static ssize_t show_temp_crit(struct device *dev,
723 			      struct device_attribute *attr, char *buf)
724 {
725 	int nr = to_sensor_dev_attr(attr)->index;
726 	struct adm1031_data *data = adm1031_update_device(dev);
727 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
728 }
729 static ssize_t set_temp_offset(struct device *dev,
730 			       struct device_attribute *attr, const char *buf,
731 			       size_t count)
732 {
733 	struct adm1031_data *data = dev_get_drvdata(dev);
734 	struct i2c_client *client = data->client;
735 	int nr = to_sensor_dev_attr(attr)->index;
736 	long val;
737 	int ret;
738 
739 	ret = kstrtol(buf, 10, &val);
740 	if (ret)
741 		return ret;
742 
743 	val = clamp_val(val, -15000, 15000);
744 	mutex_lock(&data->update_lock);
745 	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
746 	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
747 			    data->temp_offset[nr]);
748 	mutex_unlock(&data->update_lock);
749 	return count;
750 }
751 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
752 			    const char *buf, size_t count)
753 {
754 	struct adm1031_data *data = dev_get_drvdata(dev);
755 	struct i2c_client *client = data->client;
756 	int nr = to_sensor_dev_attr(attr)->index;
757 	long val;
758 	int ret;
759 
760 	ret = kstrtol(buf, 10, &val);
761 	if (ret)
762 		return ret;
763 
764 	val = clamp_val(val, -55000, 127000);
765 	mutex_lock(&data->update_lock);
766 	data->temp_min[nr] = TEMP_TO_REG(val);
767 	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
768 			    data->temp_min[nr]);
769 	mutex_unlock(&data->update_lock);
770 	return count;
771 }
772 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
773 			    const char *buf, size_t count)
774 {
775 	struct adm1031_data *data = dev_get_drvdata(dev);
776 	struct i2c_client *client = data->client;
777 	int nr = to_sensor_dev_attr(attr)->index;
778 	long val;
779 	int ret;
780 
781 	ret = kstrtol(buf, 10, &val);
782 	if (ret)
783 		return ret;
784 
785 	val = clamp_val(val, -55000, 127000);
786 	mutex_lock(&data->update_lock);
787 	data->temp_max[nr] = TEMP_TO_REG(val);
788 	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
789 			    data->temp_max[nr]);
790 	mutex_unlock(&data->update_lock);
791 	return count;
792 }
793 static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
794 			     const char *buf, size_t count)
795 {
796 	struct adm1031_data *data = dev_get_drvdata(dev);
797 	struct i2c_client *client = data->client;
798 	int nr = to_sensor_dev_attr(attr)->index;
799 	long val;
800 	int ret;
801 
802 	ret = kstrtol(buf, 10, &val);
803 	if (ret)
804 		return ret;
805 
806 	val = clamp_val(val, -55000, 127000);
807 	mutex_lock(&data->update_lock);
808 	data->temp_crit[nr] = TEMP_TO_REG(val);
809 	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
810 			    data->temp_crit[nr]);
811 	mutex_unlock(&data->update_lock);
812 	return count;
813 }
814 
815 #define temp_reg(offset)						\
816 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
817 		show_temp, NULL, offset - 1);				\
818 static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
819 		show_temp_offset, set_temp_offset, offset - 1);		\
820 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
821 		show_temp_min, set_temp_min, offset - 1);		\
822 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
823 		show_temp_max, set_temp_max, offset - 1);		\
824 static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
825 		show_temp_crit, set_temp_crit, offset - 1)
826 
827 temp_reg(1);
828 temp_reg(2);
829 temp_reg(3);
830 
831 /* Alarms */
832 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
833 			   char *buf)
834 {
835 	struct adm1031_data *data = adm1031_update_device(dev);
836 	return sprintf(buf, "%d\n", data->alarm);
837 }
838 
839 static DEVICE_ATTR_RO(alarms);
840 
841 static ssize_t show_alarm(struct device *dev,
842 			  struct device_attribute *attr, char *buf)
843 {
844 	int bitnr = to_sensor_dev_attr(attr)->index;
845 	struct adm1031_data *data = adm1031_update_device(dev);
846 	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
847 }
848 
849 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
850 static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
851 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
852 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
853 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
854 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
855 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
856 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
857 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
858 static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
859 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
860 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
861 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
862 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
863 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
864 
865 /* Update Interval */
866 static const unsigned int update_intervals[] = {
867 	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
868 };
869 
870 static ssize_t update_interval_show(struct device *dev,
871 				    struct device_attribute *attr, char *buf)
872 {
873 	struct adm1031_data *data = dev_get_drvdata(dev);
874 
875 	return sprintf(buf, "%u\n", data->update_interval);
876 }
877 
878 static ssize_t update_interval_store(struct device *dev,
879 				     struct device_attribute *attr,
880 				     const char *buf, size_t count)
881 {
882 	struct adm1031_data *data = dev_get_drvdata(dev);
883 	struct i2c_client *client = data->client;
884 	unsigned long val;
885 	int i, err;
886 	u8 reg;
887 
888 	err = kstrtoul(buf, 10, &val);
889 	if (err)
890 		return err;
891 
892 	/*
893 	 * Find the nearest update interval from the table.
894 	 * Use it to determine the matching update rate.
895 	 */
896 	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
897 		if (val >= update_intervals[i])
898 			break;
899 	}
900 	/* if not found, we point to the last entry (lowest update interval) */
901 
902 	/* set the new update rate while preserving other settings */
903 	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
904 	reg &= ~ADM1031_UPDATE_RATE_MASK;
905 	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
906 	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
907 
908 	mutex_lock(&data->update_lock);
909 	data->update_interval = update_intervals[i];
910 	mutex_unlock(&data->update_lock);
911 
912 	return count;
913 }
914 
915 static DEVICE_ATTR_RW(update_interval);
916 
917 static struct attribute *adm1031_attributes[] = {
918 	&sensor_dev_attr_fan1_input.dev_attr.attr,
919 	&sensor_dev_attr_fan1_div.dev_attr.attr,
920 	&sensor_dev_attr_fan1_min.dev_attr.attr,
921 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
922 	&sensor_dev_attr_fan1_fault.dev_attr.attr,
923 	&sensor_dev_attr_pwm1.dev_attr.attr,
924 	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
925 	&sensor_dev_attr_temp1_input.dev_attr.attr,
926 	&sensor_dev_attr_temp1_offset.dev_attr.attr,
927 	&sensor_dev_attr_temp1_min.dev_attr.attr,
928 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
929 	&sensor_dev_attr_temp1_max.dev_attr.attr,
930 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
931 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
932 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
933 	&sensor_dev_attr_temp2_input.dev_attr.attr,
934 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
935 	&sensor_dev_attr_temp2_min.dev_attr.attr,
936 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
937 	&sensor_dev_attr_temp2_max.dev_attr.attr,
938 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
939 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
940 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
941 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
942 
943 	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
944 	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
945 	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
946 
947 	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
948 	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
949 	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
950 
951 	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
952 
953 	&dev_attr_update_interval.attr,
954 	&dev_attr_alarms.attr,
955 
956 	NULL
957 };
958 
959 static const struct attribute_group adm1031_group = {
960 	.attrs = adm1031_attributes,
961 };
962 
963 static struct attribute *adm1031_attributes_opt[] = {
964 	&sensor_dev_attr_fan2_input.dev_attr.attr,
965 	&sensor_dev_attr_fan2_div.dev_attr.attr,
966 	&sensor_dev_attr_fan2_min.dev_attr.attr,
967 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
968 	&sensor_dev_attr_fan2_fault.dev_attr.attr,
969 	&sensor_dev_attr_pwm2.dev_attr.attr,
970 	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
971 	&sensor_dev_attr_temp3_input.dev_attr.attr,
972 	&sensor_dev_attr_temp3_offset.dev_attr.attr,
973 	&sensor_dev_attr_temp3_min.dev_attr.attr,
974 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
975 	&sensor_dev_attr_temp3_max.dev_attr.attr,
976 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
977 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
978 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
979 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
980 	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
981 	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
982 	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
983 	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
984 	NULL
985 };
986 
987 static const struct attribute_group adm1031_group_opt = {
988 	.attrs = adm1031_attributes_opt,
989 };
990 
991 /* Return 0 if detection is successful, -ENODEV otherwise */
992 static int adm1031_detect(struct i2c_client *client,
993 			  struct i2c_board_info *info)
994 {
995 	struct i2c_adapter *adapter = client->adapter;
996 	const char *name;
997 	int id, co;
998 
999 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1000 		return -ENODEV;
1001 
1002 	id = i2c_smbus_read_byte_data(client, 0x3d);
1003 	co = i2c_smbus_read_byte_data(client, 0x3e);
1004 
1005 	if (!((id == 0x31 || id == 0x30) && co == 0x41))
1006 		return -ENODEV;
1007 	name = (id == 0x30) ? "adm1030" : "adm1031";
1008 
1009 	strlcpy(info->type, name, I2C_NAME_SIZE);
1010 
1011 	return 0;
1012 }
1013 
1014 static void adm1031_init_client(struct i2c_client *client)
1015 {
1016 	unsigned int read_val;
1017 	unsigned int mask;
1018 	int i;
1019 	struct adm1031_data *data = i2c_get_clientdata(client);
1020 
1021 	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1022 	if (data->chip_type == adm1031) {
1023 		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1024 			ADM1031_CONF2_TACH2_ENABLE);
1025 	}
1026 	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1027 	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1028 	if ((read_val | mask) != read_val)
1029 		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1030 
1031 	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1032 	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1033 		adm1031_write_value(client, ADM1031_REG_CONF1,
1034 				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1035 	}
1036 
1037 	/* Read the chip's update rate */
1038 	mask = ADM1031_UPDATE_RATE_MASK;
1039 	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1040 	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1041 	/* Save it as update interval */
1042 	data->update_interval = update_intervals[i];
1043 }
1044 
1045 static int adm1031_probe(struct i2c_client *client,
1046 			 const struct i2c_device_id *id)
1047 {
1048 	struct device *dev = &client->dev;
1049 	struct device *hwmon_dev;
1050 	struct adm1031_data *data;
1051 
1052 	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1053 	if (!data)
1054 		return -ENOMEM;
1055 
1056 	i2c_set_clientdata(client, data);
1057 	data->client = client;
1058 	data->chip_type = id->driver_data;
1059 	mutex_init(&data->update_lock);
1060 
1061 	if (data->chip_type == adm1030)
1062 		data->chan_select_table = &auto_channel_select_table_adm1030;
1063 	else
1064 		data->chan_select_table = &auto_channel_select_table_adm1031;
1065 
1066 	/* Initialize the ADM1031 chip */
1067 	adm1031_init_client(client);
1068 
1069 	/* sysfs hooks */
1070 	data->groups[0] = &adm1031_group;
1071 	if (data->chip_type == adm1031)
1072 		data->groups[1] = &adm1031_group_opt;
1073 
1074 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1075 							   data, data->groups);
1076 	return PTR_ERR_OR_ZERO(hwmon_dev);
1077 }
1078 
1079 static const struct i2c_device_id adm1031_id[] = {
1080 	{ "adm1030", adm1030 },
1081 	{ "adm1031", adm1031 },
1082 	{ }
1083 };
1084 MODULE_DEVICE_TABLE(i2c, adm1031_id);
1085 
1086 static struct i2c_driver adm1031_driver = {
1087 	.class		= I2C_CLASS_HWMON,
1088 	.driver = {
1089 		.name = "adm1031",
1090 	},
1091 	.probe		= adm1031_probe,
1092 	.id_table	= adm1031_id,
1093 	.detect		= adm1031_detect,
1094 	.address_list	= normal_i2c,
1095 };
1096 
1097 module_i2c_driver(adm1031_driver);
1098 
1099 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1100 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1101 MODULE_LICENSE("GPL");
1102