xref: /openbmc/linux/drivers/hwmon/adm1031.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
4  *	       monitoring
5  * Based on lm75.c and lm85.c
6  * Supports adm1030 / adm1031
7  * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
8  * Reworked by Jean Delvare <jdelvare@suse.de>
9  */
10 
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/i2c.h>
16 #include <linux/hwmon.h>
17 #include <linux/hwmon-sysfs.h>
18 #include <linux/err.h>
19 #include <linux/mutex.h>
20 
21 /* Following macros takes channel parameter starting from 0 to 2 */
22 #define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
23 #define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
24 #define ADM1031_REG_PWM			(0x22)
25 #define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
26 #define ADM1031_REG_FAN_FILTER		(0x23)
27 
28 #define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
29 #define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
30 #define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
31 #define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
32 
33 #define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
34 #define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
35 
36 #define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
37 
38 #define ADM1031_REG_CONF1		0x00
39 #define ADM1031_REG_CONF2		0x01
40 #define ADM1031_REG_EXT_TEMP		0x06
41 
42 #define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
43 #define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
44 #define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
45 
46 #define ADM1031_CONF2_PWM1_ENABLE	0x01
47 #define ADM1031_CONF2_PWM2_ENABLE	0x02
48 #define ADM1031_CONF2_TACH1_ENABLE	0x04
49 #define ADM1031_CONF2_TACH2_ENABLE	0x08
50 #define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
51 
52 #define ADM1031_UPDATE_RATE_MASK	0x1c
53 #define ADM1031_UPDATE_RATE_SHIFT	2
54 
55 /* Addresses to scan */
56 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
57 
58 enum chips { adm1030, adm1031 };
59 
60 typedef u8 auto_chan_table_t[8][2];
61 
62 /* Each client has this additional data */
63 struct adm1031_data {
64 	struct i2c_client *client;
65 	const struct attribute_group *groups[3];
66 	struct mutex update_lock;
67 	int chip_type;
68 	bool valid;		/* true if following fields are valid */
69 	unsigned long last_updated;	/* In jiffies */
70 	unsigned int update_interval;	/* In milliseconds */
71 	/*
72 	 * The chan_select_table contains the possible configurations for
73 	 * auto fan control.
74 	 */
75 	const auto_chan_table_t *chan_select_table;
76 	u16 alarm;
77 	u8 conf1;
78 	u8 conf2;
79 	u8 fan[2];
80 	u8 fan_div[2];
81 	u8 fan_min[2];
82 	u8 pwm[2];
83 	u8 old_pwm[2];
84 	s8 temp[3];
85 	u8 ext_temp[3];
86 	u8 auto_temp[3];
87 	u8 auto_temp_min[3];
88 	u8 auto_temp_off[3];
89 	u8 auto_temp_max[3];
90 	s8 temp_offset[3];
91 	s8 temp_min[3];
92 	s8 temp_max[3];
93 	s8 temp_crit[3];
94 };
95 
96 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
97 {
98 	return i2c_smbus_read_byte_data(client, reg);
99 }
100 
101 static inline int
102 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
103 {
104 	return i2c_smbus_write_byte_data(client, reg, value);
105 }
106 
107 static struct adm1031_data *adm1031_update_device(struct device *dev)
108 {
109 	struct adm1031_data *data = dev_get_drvdata(dev);
110 	struct i2c_client *client = data->client;
111 	unsigned long next_update;
112 	int chan;
113 
114 	mutex_lock(&data->update_lock);
115 
116 	next_update = data->last_updated
117 	  + msecs_to_jiffies(data->update_interval);
118 	if (time_after(jiffies, next_update) || !data->valid) {
119 
120 		dev_dbg(&client->dev, "Starting adm1031 update\n");
121 		for (chan = 0;
122 		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
123 			u8 oldh, newh;
124 
125 			oldh =
126 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
127 			data->ext_temp[chan] =
128 			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
129 			newh =
130 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
131 			if (newh != oldh) {
132 				data->ext_temp[chan] =
133 				    adm1031_read_value(client,
134 						       ADM1031_REG_EXT_TEMP);
135 #ifdef DEBUG
136 				oldh =
137 				    adm1031_read_value(client,
138 						       ADM1031_REG_TEMP(chan));
139 
140 				/* oldh is actually newer */
141 				if (newh != oldh)
142 					dev_warn(&client->dev,
143 					  "Remote temperature may be wrong.\n");
144 #endif
145 			}
146 			data->temp[chan] = newh;
147 
148 			data->temp_offset[chan] =
149 			    adm1031_read_value(client,
150 					       ADM1031_REG_TEMP_OFFSET(chan));
151 			data->temp_min[chan] =
152 			    adm1031_read_value(client,
153 					       ADM1031_REG_TEMP_MIN(chan));
154 			data->temp_max[chan] =
155 			    adm1031_read_value(client,
156 					       ADM1031_REG_TEMP_MAX(chan));
157 			data->temp_crit[chan] =
158 			    adm1031_read_value(client,
159 					       ADM1031_REG_TEMP_CRIT(chan));
160 			data->auto_temp[chan] =
161 			    adm1031_read_value(client,
162 					       ADM1031_REG_AUTO_TEMP(chan));
163 
164 		}
165 
166 		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
167 		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
168 
169 		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
170 		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
171 		if (data->chip_type == adm1030)
172 			data->alarm &= 0xc0ff;
173 
174 		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
175 		     chan++) {
176 			data->fan_div[chan] =
177 			    adm1031_read_value(client,
178 					       ADM1031_REG_FAN_DIV(chan));
179 			data->fan_min[chan] =
180 			    adm1031_read_value(client,
181 					       ADM1031_REG_FAN_MIN(chan));
182 			data->fan[chan] =
183 			    adm1031_read_value(client,
184 					       ADM1031_REG_FAN_SPEED(chan));
185 			data->pwm[chan] =
186 			  (adm1031_read_value(client,
187 					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
188 		}
189 		data->last_updated = jiffies;
190 		data->valid = true;
191 	}
192 
193 	mutex_unlock(&data->update_lock);
194 
195 	return data;
196 }
197 
198 #define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
199 					((val + 500) / 1000)))
200 
201 #define TEMP_FROM_REG(val)		((val) * 1000)
202 
203 #define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
204 
205 #define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
206 #define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
207 						      (val) | 0x70 : (val))
208 
209 #define FAN_FROM_REG(reg, div)		((reg) ? \
210 					 (11250 * 60) / ((reg) * (div)) : 0)
211 
212 static int FAN_TO_REG(int reg, int div)
213 {
214 	int tmp;
215 	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
216 	return tmp > 255 ? 255 : tmp;
217 }
218 
219 #define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
220 
221 #define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
222 #define PWM_FROM_REG(val)		((val) << 4)
223 
224 #define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
225 #define FAN_CHAN_TO_REG(val, reg)	\
226 	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
227 
228 #define AUTO_TEMP_MIN_TO_REG(val, reg)	\
229 	((((val) / 500) & 0xf8) | ((reg) & 0x7))
230 #define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
231 #define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
232 
233 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
234 
235 #define AUTO_TEMP_OFF_FROM_REG(reg)		\
236 	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
237 
238 #define AUTO_TEMP_MAX_FROM_REG(reg)		\
239 	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
240 	AUTO_TEMP_MIN_FROM_REG(reg))
241 
242 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
243 {
244 	int ret;
245 	int range = ((val - AUTO_TEMP_MIN_FROM_REG(reg)) * 10) / (16 - pwm);
246 
247 	ret = ((reg & 0xf8) |
248 	       (range < 10000 ? 0 :
249 		range < 20000 ? 1 :
250 		range < 40000 ? 2 : range < 80000 ? 3 : 4));
251 	return ret;
252 }
253 
254 /* FAN auto control */
255 #define GET_FAN_AUTO_BITFIELD(data, idx)	\
256 	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
257 
258 /*
259  * The tables below contains the possible values for the auto fan
260  * control bitfields. the index in the table is the register value.
261  * MSb is the auto fan control enable bit, so the four first entries
262  * in the table disables auto fan control when both bitfields are zero.
263  */
264 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
265 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
266 	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
267 	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
268 	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
269 	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
270 };
271 
272 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
273 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
274 	{ 2 /* 0b10 */		, 0 },
275 	{ 0xff /* invalid */	, 0 },
276 	{ 0xff /* invalid */	, 0 },
277 	{ 3 /* 0b11 */		, 0 },
278 };
279 
280 /*
281  * That function checks if a bitfield is valid and returns the other bitfield
282  * nearest match if no exact match where found.
283  */
284 static int
285 get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
286 {
287 	int i;
288 	int first_match = -1, exact_match = -1;
289 	u8 other_reg_val =
290 	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
291 
292 	if (val == 0)
293 		return 0;
294 
295 	for (i = 0; i < 8; i++) {
296 		if ((val == (*data->chan_select_table)[i][chan]) &&
297 		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
298 		     other_reg_val)) {
299 			/* We found an exact match */
300 			exact_match = i;
301 			break;
302 		} else if (val == (*data->chan_select_table)[i][chan] &&
303 			   first_match == -1) {
304 			/*
305 			 * Save the first match in case of an exact match has
306 			 * not been found
307 			 */
308 			first_match = i;
309 		}
310 	}
311 
312 	if (exact_match >= 0)
313 		return exact_match;
314 	else if (first_match >= 0)
315 		return first_match;
316 
317 	return -EINVAL;
318 }
319 
320 static ssize_t fan_auto_channel_show(struct device *dev,
321 				     struct device_attribute *attr, char *buf)
322 {
323 	int nr = to_sensor_dev_attr(attr)->index;
324 	struct adm1031_data *data = adm1031_update_device(dev);
325 	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
326 }
327 
328 static ssize_t
329 fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
330 		       const char *buf, size_t count)
331 {
332 	struct adm1031_data *data = dev_get_drvdata(dev);
333 	struct i2c_client *client = data->client;
334 	int nr = to_sensor_dev_attr(attr)->index;
335 	long val;
336 	u8 reg;
337 	int ret;
338 	u8 old_fan_mode;
339 
340 	ret = kstrtol(buf, 10, &val);
341 	if (ret)
342 		return ret;
343 
344 	old_fan_mode = data->conf1;
345 
346 	mutex_lock(&data->update_lock);
347 
348 	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
349 	if (ret < 0) {
350 		mutex_unlock(&data->update_lock);
351 		return ret;
352 	}
353 	reg = ret;
354 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
355 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
356 	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
357 		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
358 			/*
359 			 * Switch to Auto Fan Mode
360 			 * Save PWM registers
361 			 * Set PWM registers to 33% Both
362 			 */
363 			data->old_pwm[0] = data->pwm[0];
364 			data->old_pwm[1] = data->pwm[1];
365 			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
366 		} else {
367 			/* Switch to Manual Mode */
368 			data->pwm[0] = data->old_pwm[0];
369 			data->pwm[1] = data->old_pwm[1];
370 			/* Restore PWM registers */
371 			adm1031_write_value(client, ADM1031_REG_PWM,
372 					    data->pwm[0] | (data->pwm[1] << 4));
373 		}
374 	}
375 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
376 	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
377 	mutex_unlock(&data->update_lock);
378 	return count;
379 }
380 
381 static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
382 static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
383 
384 /* Auto Temps */
385 static ssize_t auto_temp_off_show(struct device *dev,
386 				  struct device_attribute *attr, char *buf)
387 {
388 	int nr = to_sensor_dev_attr(attr)->index;
389 	struct adm1031_data *data = adm1031_update_device(dev);
390 	return sprintf(buf, "%d\n",
391 		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
392 }
393 static ssize_t auto_temp_min_show(struct device *dev,
394 				  struct device_attribute *attr, char *buf)
395 {
396 	int nr = to_sensor_dev_attr(attr)->index;
397 	struct adm1031_data *data = adm1031_update_device(dev);
398 	return sprintf(buf, "%d\n",
399 		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
400 }
401 static ssize_t
402 auto_temp_min_store(struct device *dev, struct device_attribute *attr,
403 		    const char *buf, size_t count)
404 {
405 	struct adm1031_data *data = dev_get_drvdata(dev);
406 	struct i2c_client *client = data->client;
407 	int nr = to_sensor_dev_attr(attr)->index;
408 	long val;
409 	int ret;
410 
411 	ret = kstrtol(buf, 10, &val);
412 	if (ret)
413 		return ret;
414 
415 	val = clamp_val(val, 0, 127000);
416 	mutex_lock(&data->update_lock);
417 	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
418 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
419 			    data->auto_temp[nr]);
420 	mutex_unlock(&data->update_lock);
421 	return count;
422 }
423 static ssize_t auto_temp_max_show(struct device *dev,
424 				  struct device_attribute *attr, char *buf)
425 {
426 	int nr = to_sensor_dev_attr(attr)->index;
427 	struct adm1031_data *data = adm1031_update_device(dev);
428 	return sprintf(buf, "%d\n",
429 		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
430 }
431 static ssize_t
432 auto_temp_max_store(struct device *dev, struct device_attribute *attr,
433 		    const char *buf, size_t count)
434 {
435 	struct adm1031_data *data = dev_get_drvdata(dev);
436 	struct i2c_client *client = data->client;
437 	int nr = to_sensor_dev_attr(attr)->index;
438 	long val;
439 	int ret;
440 
441 	ret = kstrtol(buf, 10, &val);
442 	if (ret)
443 		return ret;
444 
445 	val = clamp_val(val, 0, 127000);
446 	mutex_lock(&data->update_lock);
447 	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
448 						  data->pwm[nr]);
449 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
450 			    data->temp_max[nr]);
451 	mutex_unlock(&data->update_lock);
452 	return count;
453 }
454 
455 static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
456 static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
457 static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
458 static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
459 static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
460 static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
461 static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
462 static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
463 static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
464 
465 /* pwm */
466 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
467 			char *buf)
468 {
469 	int nr = to_sensor_dev_attr(attr)->index;
470 	struct adm1031_data *data = adm1031_update_device(dev);
471 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
472 }
473 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
474 			 const char *buf, size_t count)
475 {
476 	struct adm1031_data *data = dev_get_drvdata(dev);
477 	struct i2c_client *client = data->client;
478 	int nr = to_sensor_dev_attr(attr)->index;
479 	long val;
480 	int ret, reg;
481 
482 	ret = kstrtol(buf, 10, &val);
483 	if (ret)
484 		return ret;
485 
486 	mutex_lock(&data->update_lock);
487 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
488 	    (((val>>4) & 0xf) != 5)) {
489 		/* In automatic mode, the only PWM accepted is 33% */
490 		mutex_unlock(&data->update_lock);
491 		return -EINVAL;
492 	}
493 	data->pwm[nr] = PWM_TO_REG(val);
494 	reg = adm1031_read_value(client, ADM1031_REG_PWM);
495 	adm1031_write_value(client, ADM1031_REG_PWM,
496 			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
497 			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
498 	mutex_unlock(&data->update_lock);
499 	return count;
500 }
501 
502 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
503 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
504 static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
505 static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
506 
507 /* Fans */
508 
509 /*
510  * That function checks the cases where the fan reading is not
511  * relevant.  It is used to provide 0 as fan reading when the fan is
512  * not supposed to run
513  */
514 static int trust_fan_readings(struct adm1031_data *data, int chan)
515 {
516 	int res = 0;
517 
518 	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
519 		switch (data->conf1 & 0x60) {
520 		case 0x00:
521 			/*
522 			 * remote temp1 controls fan1,
523 			 * remote temp2 controls fan2
524 			 */
525 			res = data->temp[chan+1] >=
526 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
527 			break;
528 		case 0x20:	/* remote temp1 controls both fans */
529 			res =
530 			    data->temp[1] >=
531 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
532 			break;
533 		case 0x40:	/* remote temp2 controls both fans */
534 			res =
535 			    data->temp[2] >=
536 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
537 			break;
538 		case 0x60:	/* max controls both fans */
539 			res =
540 			    data->temp[0] >=
541 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
542 			    || data->temp[1] >=
543 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
544 			    || (data->chip_type == adm1031
545 				&& data->temp[2] >=
546 				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
547 			break;
548 		}
549 	} else {
550 		res = data->pwm[chan] > 0;
551 	}
552 	return res;
553 }
554 
555 static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
556 			char *buf)
557 {
558 	int nr = to_sensor_dev_attr(attr)->index;
559 	struct adm1031_data *data = adm1031_update_device(dev);
560 	int value;
561 
562 	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
563 				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
564 	return sprintf(buf, "%d\n", value);
565 }
566 
567 static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
568 			    char *buf)
569 {
570 	int nr = to_sensor_dev_attr(attr)->index;
571 	struct adm1031_data *data = adm1031_update_device(dev);
572 	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
573 }
574 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
575 			    char *buf)
576 {
577 	int nr = to_sensor_dev_attr(attr)->index;
578 	struct adm1031_data *data = adm1031_update_device(dev);
579 	return sprintf(buf, "%d\n",
580 		       FAN_FROM_REG(data->fan_min[nr],
581 				    FAN_DIV_FROM_REG(data->fan_div[nr])));
582 }
583 static ssize_t fan_min_store(struct device *dev,
584 			     struct device_attribute *attr, const char *buf,
585 			     size_t count)
586 {
587 	struct adm1031_data *data = dev_get_drvdata(dev);
588 	struct i2c_client *client = data->client;
589 	int nr = to_sensor_dev_attr(attr)->index;
590 	long val;
591 	int ret;
592 
593 	ret = kstrtol(buf, 10, &val);
594 	if (ret)
595 		return ret;
596 
597 	mutex_lock(&data->update_lock);
598 	if (val) {
599 		data->fan_min[nr] =
600 			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
601 	} else {
602 		data->fan_min[nr] = 0xff;
603 	}
604 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
605 	mutex_unlock(&data->update_lock);
606 	return count;
607 }
608 static ssize_t fan_div_store(struct device *dev,
609 			     struct device_attribute *attr, const char *buf,
610 			     size_t count)
611 {
612 	struct adm1031_data *data = dev_get_drvdata(dev);
613 	struct i2c_client *client = data->client;
614 	int nr = to_sensor_dev_attr(attr)->index;
615 	long val;
616 	u8 tmp;
617 	int old_div;
618 	int new_min;
619 	int ret;
620 
621 	ret = kstrtol(buf, 10, &val);
622 	if (ret)
623 		return ret;
624 
625 	tmp = val == 8 ? 0xc0 :
626 	      val == 4 ? 0x80 :
627 	      val == 2 ? 0x40 :
628 	      val == 1 ? 0x00 :
629 	      0xff;
630 	if (tmp == 0xff)
631 		return -EINVAL;
632 
633 	mutex_lock(&data->update_lock);
634 	/* Get fresh readings */
635 	data->fan_div[nr] = adm1031_read_value(client,
636 					       ADM1031_REG_FAN_DIV(nr));
637 	data->fan_min[nr] = adm1031_read_value(client,
638 					       ADM1031_REG_FAN_MIN(nr));
639 
640 	/* Write the new clock divider and fan min */
641 	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
642 	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
643 	new_min = data->fan_min[nr] * old_div / val;
644 	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
645 
646 	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
647 			    data->fan_div[nr]);
648 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
649 			    data->fan_min[nr]);
650 
651 	/* Invalidate the cache: fan speed is no longer valid */
652 	data->valid = false;
653 	mutex_unlock(&data->update_lock);
654 	return count;
655 }
656 
657 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
658 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
659 static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
660 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
661 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
662 static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
663 
664 /* Temps */
665 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
666 			 char *buf)
667 {
668 	int nr = to_sensor_dev_attr(attr)->index;
669 	struct adm1031_data *data = adm1031_update_device(dev);
670 	int ext;
671 	ext = nr == 0 ?
672 	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
673 	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
674 	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
675 }
676 static ssize_t temp_offset_show(struct device *dev,
677 				struct device_attribute *attr, char *buf)
678 {
679 	int nr = to_sensor_dev_attr(attr)->index;
680 	struct adm1031_data *data = adm1031_update_device(dev);
681 	return sprintf(buf, "%d\n",
682 		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
683 }
684 static ssize_t temp_min_show(struct device *dev,
685 			     struct device_attribute *attr, char *buf)
686 {
687 	int nr = to_sensor_dev_attr(attr)->index;
688 	struct adm1031_data *data = adm1031_update_device(dev);
689 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
690 }
691 static ssize_t temp_max_show(struct device *dev,
692 			     struct device_attribute *attr, char *buf)
693 {
694 	int nr = to_sensor_dev_attr(attr)->index;
695 	struct adm1031_data *data = adm1031_update_device(dev);
696 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
697 }
698 static ssize_t temp_crit_show(struct device *dev,
699 			      struct device_attribute *attr, char *buf)
700 {
701 	int nr = to_sensor_dev_attr(attr)->index;
702 	struct adm1031_data *data = adm1031_update_device(dev);
703 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
704 }
705 static ssize_t temp_offset_store(struct device *dev,
706 				 struct device_attribute *attr,
707 				 const char *buf, size_t count)
708 {
709 	struct adm1031_data *data = dev_get_drvdata(dev);
710 	struct i2c_client *client = data->client;
711 	int nr = to_sensor_dev_attr(attr)->index;
712 	long val;
713 	int ret;
714 
715 	ret = kstrtol(buf, 10, &val);
716 	if (ret)
717 		return ret;
718 
719 	val = clamp_val(val, -15000, 15000);
720 	mutex_lock(&data->update_lock);
721 	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
722 	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
723 			    data->temp_offset[nr]);
724 	mutex_unlock(&data->update_lock);
725 	return count;
726 }
727 static ssize_t temp_min_store(struct device *dev,
728 			      struct device_attribute *attr, const char *buf,
729 			      size_t count)
730 {
731 	struct adm1031_data *data = dev_get_drvdata(dev);
732 	struct i2c_client *client = data->client;
733 	int nr = to_sensor_dev_attr(attr)->index;
734 	long val;
735 	int ret;
736 
737 	ret = kstrtol(buf, 10, &val);
738 	if (ret)
739 		return ret;
740 
741 	val = clamp_val(val, -55000, 127000);
742 	mutex_lock(&data->update_lock);
743 	data->temp_min[nr] = TEMP_TO_REG(val);
744 	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
745 			    data->temp_min[nr]);
746 	mutex_unlock(&data->update_lock);
747 	return count;
748 }
749 static ssize_t temp_max_store(struct device *dev,
750 			      struct device_attribute *attr, const char *buf,
751 			      size_t count)
752 {
753 	struct adm1031_data *data = dev_get_drvdata(dev);
754 	struct i2c_client *client = data->client;
755 	int nr = to_sensor_dev_attr(attr)->index;
756 	long val;
757 	int ret;
758 
759 	ret = kstrtol(buf, 10, &val);
760 	if (ret)
761 		return ret;
762 
763 	val = clamp_val(val, -55000, 127000);
764 	mutex_lock(&data->update_lock);
765 	data->temp_max[nr] = TEMP_TO_REG(val);
766 	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
767 			    data->temp_max[nr]);
768 	mutex_unlock(&data->update_lock);
769 	return count;
770 }
771 static ssize_t temp_crit_store(struct device *dev,
772 			       struct device_attribute *attr, const char *buf,
773 			       size_t count)
774 {
775 	struct adm1031_data *data = dev_get_drvdata(dev);
776 	struct i2c_client *client = data->client;
777 	int nr = to_sensor_dev_attr(attr)->index;
778 	long val;
779 	int ret;
780 
781 	ret = kstrtol(buf, 10, &val);
782 	if (ret)
783 		return ret;
784 
785 	val = clamp_val(val, -55000, 127000);
786 	mutex_lock(&data->update_lock);
787 	data->temp_crit[nr] = TEMP_TO_REG(val);
788 	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
789 			    data->temp_crit[nr]);
790 	mutex_unlock(&data->update_lock);
791 	return count;
792 }
793 
794 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
795 static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
796 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
797 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
798 static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
799 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
800 static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
801 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
802 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
803 static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
804 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
805 static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
806 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
807 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
808 static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
809 
810 /* Alarms */
811 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
812 			   char *buf)
813 {
814 	struct adm1031_data *data = adm1031_update_device(dev);
815 	return sprintf(buf, "%d\n", data->alarm);
816 }
817 
818 static DEVICE_ATTR_RO(alarms);
819 
820 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
821 			  char *buf)
822 {
823 	int bitnr = to_sensor_dev_attr(attr)->index;
824 	struct adm1031_data *data = adm1031_update_device(dev);
825 	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
826 }
827 
828 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
829 static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
830 static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
831 static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
832 static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
833 static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
834 static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
835 static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
836 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
837 static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
838 static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
839 static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
840 static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
841 static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
842 static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
843 
844 /* Update Interval */
845 static const unsigned int update_intervals[] = {
846 	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
847 };
848 
849 static ssize_t update_interval_show(struct device *dev,
850 				    struct device_attribute *attr, char *buf)
851 {
852 	struct adm1031_data *data = dev_get_drvdata(dev);
853 
854 	return sprintf(buf, "%u\n", data->update_interval);
855 }
856 
857 static ssize_t update_interval_store(struct device *dev,
858 				     struct device_attribute *attr,
859 				     const char *buf, size_t count)
860 {
861 	struct adm1031_data *data = dev_get_drvdata(dev);
862 	struct i2c_client *client = data->client;
863 	unsigned long val;
864 	int i, err;
865 	u8 reg;
866 
867 	err = kstrtoul(buf, 10, &val);
868 	if (err)
869 		return err;
870 
871 	/*
872 	 * Find the nearest update interval from the table.
873 	 * Use it to determine the matching update rate.
874 	 */
875 	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
876 		if (val >= update_intervals[i])
877 			break;
878 	}
879 	/* if not found, we point to the last entry (lowest update interval) */
880 
881 	/* set the new update rate while preserving other settings */
882 	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
883 	reg &= ~ADM1031_UPDATE_RATE_MASK;
884 	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
885 	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
886 
887 	mutex_lock(&data->update_lock);
888 	data->update_interval = update_intervals[i];
889 	mutex_unlock(&data->update_lock);
890 
891 	return count;
892 }
893 
894 static DEVICE_ATTR_RW(update_interval);
895 
896 static struct attribute *adm1031_attributes[] = {
897 	&sensor_dev_attr_fan1_input.dev_attr.attr,
898 	&sensor_dev_attr_fan1_div.dev_attr.attr,
899 	&sensor_dev_attr_fan1_min.dev_attr.attr,
900 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
901 	&sensor_dev_attr_fan1_fault.dev_attr.attr,
902 	&sensor_dev_attr_pwm1.dev_attr.attr,
903 	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
904 	&sensor_dev_attr_temp1_input.dev_attr.attr,
905 	&sensor_dev_attr_temp1_offset.dev_attr.attr,
906 	&sensor_dev_attr_temp1_min.dev_attr.attr,
907 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
908 	&sensor_dev_attr_temp1_max.dev_attr.attr,
909 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
910 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
911 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
912 	&sensor_dev_attr_temp2_input.dev_attr.attr,
913 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
914 	&sensor_dev_attr_temp2_min.dev_attr.attr,
915 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
916 	&sensor_dev_attr_temp2_max.dev_attr.attr,
917 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
918 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
919 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
920 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
921 
922 	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
923 	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
924 	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
925 
926 	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
927 	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
928 	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
929 
930 	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
931 
932 	&dev_attr_update_interval.attr,
933 	&dev_attr_alarms.attr,
934 
935 	NULL
936 };
937 
938 static const struct attribute_group adm1031_group = {
939 	.attrs = adm1031_attributes,
940 };
941 
942 static struct attribute *adm1031_attributes_opt[] = {
943 	&sensor_dev_attr_fan2_input.dev_attr.attr,
944 	&sensor_dev_attr_fan2_div.dev_attr.attr,
945 	&sensor_dev_attr_fan2_min.dev_attr.attr,
946 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
947 	&sensor_dev_attr_fan2_fault.dev_attr.attr,
948 	&sensor_dev_attr_pwm2.dev_attr.attr,
949 	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
950 	&sensor_dev_attr_temp3_input.dev_attr.attr,
951 	&sensor_dev_attr_temp3_offset.dev_attr.attr,
952 	&sensor_dev_attr_temp3_min.dev_attr.attr,
953 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
954 	&sensor_dev_attr_temp3_max.dev_attr.attr,
955 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
956 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
957 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
958 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
959 	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
960 	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
961 	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
962 	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
963 	NULL
964 };
965 
966 static const struct attribute_group adm1031_group_opt = {
967 	.attrs = adm1031_attributes_opt,
968 };
969 
970 /* Return 0 if detection is successful, -ENODEV otherwise */
971 static int adm1031_detect(struct i2c_client *client,
972 			  struct i2c_board_info *info)
973 {
974 	struct i2c_adapter *adapter = client->adapter;
975 	const char *name;
976 	int id, co;
977 
978 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
979 		return -ENODEV;
980 
981 	id = i2c_smbus_read_byte_data(client, 0x3d);
982 	co = i2c_smbus_read_byte_data(client, 0x3e);
983 
984 	if (!((id == 0x31 || id == 0x30) && co == 0x41))
985 		return -ENODEV;
986 	name = (id == 0x30) ? "adm1030" : "adm1031";
987 
988 	strscpy(info->type, name, I2C_NAME_SIZE);
989 
990 	return 0;
991 }
992 
993 static void adm1031_init_client(struct i2c_client *client)
994 {
995 	unsigned int read_val;
996 	unsigned int mask;
997 	int i;
998 	struct adm1031_data *data = i2c_get_clientdata(client);
999 
1000 	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1001 	if (data->chip_type == adm1031) {
1002 		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1003 			ADM1031_CONF2_TACH2_ENABLE);
1004 	}
1005 	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1006 	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1007 	if ((read_val | mask) != read_val)
1008 		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1009 
1010 	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1011 	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1012 		adm1031_write_value(client, ADM1031_REG_CONF1,
1013 				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1014 	}
1015 
1016 	/* Read the chip's update rate */
1017 	mask = ADM1031_UPDATE_RATE_MASK;
1018 	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1019 	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1020 	/* Save it as update interval */
1021 	data->update_interval = update_intervals[i];
1022 }
1023 
1024 static const struct i2c_device_id adm1031_id[];
1025 
1026 static int adm1031_probe(struct i2c_client *client)
1027 {
1028 	struct device *dev = &client->dev;
1029 	struct device *hwmon_dev;
1030 	struct adm1031_data *data;
1031 
1032 	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1033 	if (!data)
1034 		return -ENOMEM;
1035 
1036 	i2c_set_clientdata(client, data);
1037 	data->client = client;
1038 	data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
1039 	mutex_init(&data->update_lock);
1040 
1041 	if (data->chip_type == adm1030)
1042 		data->chan_select_table = &auto_channel_select_table_adm1030;
1043 	else
1044 		data->chan_select_table = &auto_channel_select_table_adm1031;
1045 
1046 	/* Initialize the ADM1031 chip */
1047 	adm1031_init_client(client);
1048 
1049 	/* sysfs hooks */
1050 	data->groups[0] = &adm1031_group;
1051 	if (data->chip_type == adm1031)
1052 		data->groups[1] = &adm1031_group_opt;
1053 
1054 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1055 							   data, data->groups);
1056 	return PTR_ERR_OR_ZERO(hwmon_dev);
1057 }
1058 
1059 static const struct i2c_device_id adm1031_id[] = {
1060 	{ "adm1030", adm1030 },
1061 	{ "adm1031", adm1031 },
1062 	{ }
1063 };
1064 MODULE_DEVICE_TABLE(i2c, adm1031_id);
1065 
1066 static struct i2c_driver adm1031_driver = {
1067 	.class		= I2C_CLASS_HWMON,
1068 	.driver = {
1069 		.name = "adm1031",
1070 	},
1071 	.probe_new	= adm1031_probe,
1072 	.id_table	= adm1031_id,
1073 	.detect		= adm1031_detect,
1074 	.address_list	= normal_i2c,
1075 };
1076 
1077 module_i2c_driver(adm1031_driver);
1078 
1079 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1080 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1081 MODULE_LICENSE("GPL");
1082