xref: /openbmc/linux/drivers/hwmon/adm1031.c (revision 2c64e9cb)
1 /*
2  * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3  *	       monitoring
4  * Based on lm75.c and lm85.c
5  * Supports adm1030 / adm1031
6  * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7  * Reworked by Jean Delvare <jdelvare@suse.de>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-sysfs.h>
31 #include <linux/err.h>
32 #include <linux/mutex.h>
33 
34 /* Following macros takes channel parameter starting from 0 to 2 */
35 #define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
36 #define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
37 #define ADM1031_REG_PWM			(0x22)
38 #define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
39 #define ADM1031_REG_FAN_FILTER		(0x23)
40 
41 #define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
42 #define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
43 #define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
44 #define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
45 
46 #define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
47 #define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
48 
49 #define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
50 
51 #define ADM1031_REG_CONF1		0x00
52 #define ADM1031_REG_CONF2		0x01
53 #define ADM1031_REG_EXT_TEMP		0x06
54 
55 #define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
56 #define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
57 #define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
58 
59 #define ADM1031_CONF2_PWM1_ENABLE	0x01
60 #define ADM1031_CONF2_PWM2_ENABLE	0x02
61 #define ADM1031_CONF2_TACH1_ENABLE	0x04
62 #define ADM1031_CONF2_TACH2_ENABLE	0x08
63 #define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
64 
65 #define ADM1031_UPDATE_RATE_MASK	0x1c
66 #define ADM1031_UPDATE_RATE_SHIFT	2
67 
68 /* Addresses to scan */
69 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
70 
71 enum chips { adm1030, adm1031 };
72 
73 typedef u8 auto_chan_table_t[8][2];
74 
75 /* Each client has this additional data */
76 struct adm1031_data {
77 	struct i2c_client *client;
78 	const struct attribute_group *groups[3];
79 	struct mutex update_lock;
80 	int chip_type;
81 	char valid;		/* !=0 if following fields are valid */
82 	unsigned long last_updated;	/* In jiffies */
83 	unsigned int update_interval;	/* In milliseconds */
84 	/*
85 	 * The chan_select_table contains the possible configurations for
86 	 * auto fan control.
87 	 */
88 	const auto_chan_table_t *chan_select_table;
89 	u16 alarm;
90 	u8 conf1;
91 	u8 conf2;
92 	u8 fan[2];
93 	u8 fan_div[2];
94 	u8 fan_min[2];
95 	u8 pwm[2];
96 	u8 old_pwm[2];
97 	s8 temp[3];
98 	u8 ext_temp[3];
99 	u8 auto_temp[3];
100 	u8 auto_temp_min[3];
101 	u8 auto_temp_off[3];
102 	u8 auto_temp_max[3];
103 	s8 temp_offset[3];
104 	s8 temp_min[3];
105 	s8 temp_max[3];
106 	s8 temp_crit[3];
107 };
108 
109 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
110 {
111 	return i2c_smbus_read_byte_data(client, reg);
112 }
113 
114 static inline int
115 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
116 {
117 	return i2c_smbus_write_byte_data(client, reg, value);
118 }
119 
120 static struct adm1031_data *adm1031_update_device(struct device *dev)
121 {
122 	struct adm1031_data *data = dev_get_drvdata(dev);
123 	struct i2c_client *client = data->client;
124 	unsigned long next_update;
125 	int chan;
126 
127 	mutex_lock(&data->update_lock);
128 
129 	next_update = data->last_updated
130 	  + msecs_to_jiffies(data->update_interval);
131 	if (time_after(jiffies, next_update) || !data->valid) {
132 
133 		dev_dbg(&client->dev, "Starting adm1031 update\n");
134 		for (chan = 0;
135 		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
136 			u8 oldh, newh;
137 
138 			oldh =
139 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
140 			data->ext_temp[chan] =
141 			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
142 			newh =
143 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
144 			if (newh != oldh) {
145 				data->ext_temp[chan] =
146 				    adm1031_read_value(client,
147 						       ADM1031_REG_EXT_TEMP);
148 #ifdef DEBUG
149 				oldh =
150 				    adm1031_read_value(client,
151 						       ADM1031_REG_TEMP(chan));
152 
153 				/* oldh is actually newer */
154 				if (newh != oldh)
155 					dev_warn(&client->dev,
156 					  "Remote temperature may be wrong.\n");
157 #endif
158 			}
159 			data->temp[chan] = newh;
160 
161 			data->temp_offset[chan] =
162 			    adm1031_read_value(client,
163 					       ADM1031_REG_TEMP_OFFSET(chan));
164 			data->temp_min[chan] =
165 			    adm1031_read_value(client,
166 					       ADM1031_REG_TEMP_MIN(chan));
167 			data->temp_max[chan] =
168 			    adm1031_read_value(client,
169 					       ADM1031_REG_TEMP_MAX(chan));
170 			data->temp_crit[chan] =
171 			    adm1031_read_value(client,
172 					       ADM1031_REG_TEMP_CRIT(chan));
173 			data->auto_temp[chan] =
174 			    adm1031_read_value(client,
175 					       ADM1031_REG_AUTO_TEMP(chan));
176 
177 		}
178 
179 		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
180 		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
181 
182 		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
183 		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
184 		if (data->chip_type == adm1030)
185 			data->alarm &= 0xc0ff;
186 
187 		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
188 		     chan++) {
189 			data->fan_div[chan] =
190 			    adm1031_read_value(client,
191 					       ADM1031_REG_FAN_DIV(chan));
192 			data->fan_min[chan] =
193 			    adm1031_read_value(client,
194 					       ADM1031_REG_FAN_MIN(chan));
195 			data->fan[chan] =
196 			    adm1031_read_value(client,
197 					       ADM1031_REG_FAN_SPEED(chan));
198 			data->pwm[chan] =
199 			  (adm1031_read_value(client,
200 					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
201 		}
202 		data->last_updated = jiffies;
203 		data->valid = 1;
204 	}
205 
206 	mutex_unlock(&data->update_lock);
207 
208 	return data;
209 }
210 
211 #define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
212 					((val + 500) / 1000)))
213 
214 #define TEMP_FROM_REG(val)		((val) * 1000)
215 
216 #define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
217 
218 #define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
219 #define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
220 						      (val) | 0x70 : (val))
221 
222 #define FAN_FROM_REG(reg, div)		((reg) ? \
223 					 (11250 * 60) / ((reg) * (div)) : 0)
224 
225 static int FAN_TO_REG(int reg, int div)
226 {
227 	int tmp;
228 	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
229 	return tmp > 255 ? 255 : tmp;
230 }
231 
232 #define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
233 
234 #define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
235 #define PWM_FROM_REG(val)		((val) << 4)
236 
237 #define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
238 #define FAN_CHAN_TO_REG(val, reg)	\
239 	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
240 
241 #define AUTO_TEMP_MIN_TO_REG(val, reg)	\
242 	((((val) / 500) & 0xf8) | ((reg) & 0x7))
243 #define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
244 #define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
245 
246 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
247 
248 #define AUTO_TEMP_OFF_FROM_REG(reg)		\
249 	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
250 
251 #define AUTO_TEMP_MAX_FROM_REG(reg)		\
252 	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
253 	AUTO_TEMP_MIN_FROM_REG(reg))
254 
255 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
256 {
257 	int ret;
258 	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
259 
260 	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
261 	ret = ((reg & 0xf8) |
262 	       (range < 10000 ? 0 :
263 		range < 20000 ? 1 :
264 		range < 40000 ? 2 : range < 80000 ? 3 : 4));
265 	return ret;
266 }
267 
268 /* FAN auto control */
269 #define GET_FAN_AUTO_BITFIELD(data, idx)	\
270 	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
271 
272 /*
273  * The tables below contains the possible values for the auto fan
274  * control bitfields. the index in the table is the register value.
275  * MSb is the auto fan control enable bit, so the four first entries
276  * in the table disables auto fan control when both bitfields are zero.
277  */
278 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
279 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
280 	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
281 	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
282 	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
283 	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
284 };
285 
286 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
287 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
288 	{ 2 /* 0b10 */		, 0 },
289 	{ 0xff /* invalid */	, 0 },
290 	{ 0xff /* invalid */	, 0 },
291 	{ 3 /* 0b11 */		, 0 },
292 };
293 
294 /*
295  * That function checks if a bitfield is valid and returns the other bitfield
296  * nearest match if no exact match where found.
297  */
298 static int
299 get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
300 {
301 	int i;
302 	int first_match = -1, exact_match = -1;
303 	u8 other_reg_val =
304 	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
305 
306 	if (val == 0)
307 		return 0;
308 
309 	for (i = 0; i < 8; i++) {
310 		if ((val == (*data->chan_select_table)[i][chan]) &&
311 		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
312 		     other_reg_val)) {
313 			/* We found an exact match */
314 			exact_match = i;
315 			break;
316 		} else if (val == (*data->chan_select_table)[i][chan] &&
317 			   first_match == -1) {
318 			/*
319 			 * Save the first match in case of an exact match has
320 			 * not been found
321 			 */
322 			first_match = i;
323 		}
324 	}
325 
326 	if (exact_match >= 0)
327 		return exact_match;
328 	else if (first_match >= 0)
329 		return first_match;
330 
331 	return -EINVAL;
332 }
333 
334 static ssize_t fan_auto_channel_show(struct device *dev,
335 				     struct device_attribute *attr, char *buf)
336 {
337 	int nr = to_sensor_dev_attr(attr)->index;
338 	struct adm1031_data *data = adm1031_update_device(dev);
339 	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
340 }
341 
342 static ssize_t
343 fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
344 		       const char *buf, size_t count)
345 {
346 	struct adm1031_data *data = dev_get_drvdata(dev);
347 	struct i2c_client *client = data->client;
348 	int nr = to_sensor_dev_attr(attr)->index;
349 	long val;
350 	u8 reg;
351 	int ret;
352 	u8 old_fan_mode;
353 
354 	ret = kstrtol(buf, 10, &val);
355 	if (ret)
356 		return ret;
357 
358 	old_fan_mode = data->conf1;
359 
360 	mutex_lock(&data->update_lock);
361 
362 	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
363 	if (ret < 0) {
364 		mutex_unlock(&data->update_lock);
365 		return ret;
366 	}
367 	reg = ret;
368 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
369 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
370 	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
371 		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
372 			/*
373 			 * Switch to Auto Fan Mode
374 			 * Save PWM registers
375 			 * Set PWM registers to 33% Both
376 			 */
377 			data->old_pwm[0] = data->pwm[0];
378 			data->old_pwm[1] = data->pwm[1];
379 			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
380 		} else {
381 			/* Switch to Manual Mode */
382 			data->pwm[0] = data->old_pwm[0];
383 			data->pwm[1] = data->old_pwm[1];
384 			/* Restore PWM registers */
385 			adm1031_write_value(client, ADM1031_REG_PWM,
386 					    data->pwm[0] | (data->pwm[1] << 4));
387 		}
388 	}
389 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
390 	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
391 	mutex_unlock(&data->update_lock);
392 	return count;
393 }
394 
395 static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
396 static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
397 
398 /* Auto Temps */
399 static ssize_t auto_temp_off_show(struct device *dev,
400 				  struct device_attribute *attr, char *buf)
401 {
402 	int nr = to_sensor_dev_attr(attr)->index;
403 	struct adm1031_data *data = adm1031_update_device(dev);
404 	return sprintf(buf, "%d\n",
405 		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
406 }
407 static ssize_t auto_temp_min_show(struct device *dev,
408 				  struct device_attribute *attr, char *buf)
409 {
410 	int nr = to_sensor_dev_attr(attr)->index;
411 	struct adm1031_data *data = adm1031_update_device(dev);
412 	return sprintf(buf, "%d\n",
413 		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
414 }
415 static ssize_t
416 auto_temp_min_store(struct device *dev, struct device_attribute *attr,
417 		    const char *buf, size_t count)
418 {
419 	struct adm1031_data *data = dev_get_drvdata(dev);
420 	struct i2c_client *client = data->client;
421 	int nr = to_sensor_dev_attr(attr)->index;
422 	long val;
423 	int ret;
424 
425 	ret = kstrtol(buf, 10, &val);
426 	if (ret)
427 		return ret;
428 
429 	val = clamp_val(val, 0, 127000);
430 	mutex_lock(&data->update_lock);
431 	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
432 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
433 			    data->auto_temp[nr]);
434 	mutex_unlock(&data->update_lock);
435 	return count;
436 }
437 static ssize_t auto_temp_max_show(struct device *dev,
438 				  struct device_attribute *attr, char *buf)
439 {
440 	int nr = to_sensor_dev_attr(attr)->index;
441 	struct adm1031_data *data = adm1031_update_device(dev);
442 	return sprintf(buf, "%d\n",
443 		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
444 }
445 static ssize_t
446 auto_temp_max_store(struct device *dev, struct device_attribute *attr,
447 		    const char *buf, size_t count)
448 {
449 	struct adm1031_data *data = dev_get_drvdata(dev);
450 	struct i2c_client *client = data->client;
451 	int nr = to_sensor_dev_attr(attr)->index;
452 	long val;
453 	int ret;
454 
455 	ret = kstrtol(buf, 10, &val);
456 	if (ret)
457 		return ret;
458 
459 	val = clamp_val(val, 0, 127000);
460 	mutex_lock(&data->update_lock);
461 	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
462 						  data->pwm[nr]);
463 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
464 			    data->temp_max[nr]);
465 	mutex_unlock(&data->update_lock);
466 	return count;
467 }
468 
469 static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
470 static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
471 static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
472 static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
473 static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
474 static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
475 static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
476 static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
477 static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
478 
479 /* pwm */
480 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
481 			char *buf)
482 {
483 	int nr = to_sensor_dev_attr(attr)->index;
484 	struct adm1031_data *data = adm1031_update_device(dev);
485 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
486 }
487 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
488 			 const char *buf, size_t count)
489 {
490 	struct adm1031_data *data = dev_get_drvdata(dev);
491 	struct i2c_client *client = data->client;
492 	int nr = to_sensor_dev_attr(attr)->index;
493 	long val;
494 	int ret, reg;
495 
496 	ret = kstrtol(buf, 10, &val);
497 	if (ret)
498 		return ret;
499 
500 	mutex_lock(&data->update_lock);
501 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
502 	    (((val>>4) & 0xf) != 5)) {
503 		/* In automatic mode, the only PWM accepted is 33% */
504 		mutex_unlock(&data->update_lock);
505 		return -EINVAL;
506 	}
507 	data->pwm[nr] = PWM_TO_REG(val);
508 	reg = adm1031_read_value(client, ADM1031_REG_PWM);
509 	adm1031_write_value(client, ADM1031_REG_PWM,
510 			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
511 			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
512 	mutex_unlock(&data->update_lock);
513 	return count;
514 }
515 
516 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
517 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
518 static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
519 static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
520 
521 /* Fans */
522 
523 /*
524  * That function checks the cases where the fan reading is not
525  * relevant.  It is used to provide 0 as fan reading when the fan is
526  * not supposed to run
527  */
528 static int trust_fan_readings(struct adm1031_data *data, int chan)
529 {
530 	int res = 0;
531 
532 	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
533 		switch (data->conf1 & 0x60) {
534 		case 0x00:
535 			/*
536 			 * remote temp1 controls fan1,
537 			 * remote temp2 controls fan2
538 			 */
539 			res = data->temp[chan+1] >=
540 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
541 			break;
542 		case 0x20:	/* remote temp1 controls both fans */
543 			res =
544 			    data->temp[1] >=
545 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
546 			break;
547 		case 0x40:	/* remote temp2 controls both fans */
548 			res =
549 			    data->temp[2] >=
550 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
551 			break;
552 		case 0x60:	/* max controls both fans */
553 			res =
554 			    data->temp[0] >=
555 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
556 			    || data->temp[1] >=
557 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
558 			    || (data->chip_type == adm1031
559 				&& data->temp[2] >=
560 				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
561 			break;
562 		}
563 	} else {
564 		res = data->pwm[chan] > 0;
565 	}
566 	return res;
567 }
568 
569 static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
570 			char *buf)
571 {
572 	int nr = to_sensor_dev_attr(attr)->index;
573 	struct adm1031_data *data = adm1031_update_device(dev);
574 	int value;
575 
576 	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
577 				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
578 	return sprintf(buf, "%d\n", value);
579 }
580 
581 static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
582 			    char *buf)
583 {
584 	int nr = to_sensor_dev_attr(attr)->index;
585 	struct adm1031_data *data = adm1031_update_device(dev);
586 	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
587 }
588 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
589 			    char *buf)
590 {
591 	int nr = to_sensor_dev_attr(attr)->index;
592 	struct adm1031_data *data = adm1031_update_device(dev);
593 	return sprintf(buf, "%d\n",
594 		       FAN_FROM_REG(data->fan_min[nr],
595 				    FAN_DIV_FROM_REG(data->fan_div[nr])));
596 }
597 static ssize_t fan_min_store(struct device *dev,
598 			     struct device_attribute *attr, const char *buf,
599 			     size_t count)
600 {
601 	struct adm1031_data *data = dev_get_drvdata(dev);
602 	struct i2c_client *client = data->client;
603 	int nr = to_sensor_dev_attr(attr)->index;
604 	long val;
605 	int ret;
606 
607 	ret = kstrtol(buf, 10, &val);
608 	if (ret)
609 		return ret;
610 
611 	mutex_lock(&data->update_lock);
612 	if (val) {
613 		data->fan_min[nr] =
614 			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
615 	} else {
616 		data->fan_min[nr] = 0xff;
617 	}
618 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
619 	mutex_unlock(&data->update_lock);
620 	return count;
621 }
622 static ssize_t fan_div_store(struct device *dev,
623 			     struct device_attribute *attr, const char *buf,
624 			     size_t count)
625 {
626 	struct adm1031_data *data = dev_get_drvdata(dev);
627 	struct i2c_client *client = data->client;
628 	int nr = to_sensor_dev_attr(attr)->index;
629 	long val;
630 	u8 tmp;
631 	int old_div;
632 	int new_min;
633 	int ret;
634 
635 	ret = kstrtol(buf, 10, &val);
636 	if (ret)
637 		return ret;
638 
639 	tmp = val == 8 ? 0xc0 :
640 	      val == 4 ? 0x80 :
641 	      val == 2 ? 0x40 :
642 	      val == 1 ? 0x00 :
643 	      0xff;
644 	if (tmp == 0xff)
645 		return -EINVAL;
646 
647 	mutex_lock(&data->update_lock);
648 	/* Get fresh readings */
649 	data->fan_div[nr] = adm1031_read_value(client,
650 					       ADM1031_REG_FAN_DIV(nr));
651 	data->fan_min[nr] = adm1031_read_value(client,
652 					       ADM1031_REG_FAN_MIN(nr));
653 
654 	/* Write the new clock divider and fan min */
655 	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
656 	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
657 	new_min = data->fan_min[nr] * old_div / val;
658 	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
659 
660 	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
661 			    data->fan_div[nr]);
662 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
663 			    data->fan_min[nr]);
664 
665 	/* Invalidate the cache: fan speed is no longer valid */
666 	data->valid = 0;
667 	mutex_unlock(&data->update_lock);
668 	return count;
669 }
670 
671 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
672 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
673 static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
674 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
675 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
676 static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
677 
678 /* Temps */
679 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
680 			 char *buf)
681 {
682 	int nr = to_sensor_dev_attr(attr)->index;
683 	struct adm1031_data *data = adm1031_update_device(dev);
684 	int ext;
685 	ext = nr == 0 ?
686 	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
687 	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
688 	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
689 }
690 static ssize_t temp_offset_show(struct device *dev,
691 				struct device_attribute *attr, char *buf)
692 {
693 	int nr = to_sensor_dev_attr(attr)->index;
694 	struct adm1031_data *data = adm1031_update_device(dev);
695 	return sprintf(buf, "%d\n",
696 		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
697 }
698 static ssize_t temp_min_show(struct device *dev,
699 			     struct device_attribute *attr, char *buf)
700 {
701 	int nr = to_sensor_dev_attr(attr)->index;
702 	struct adm1031_data *data = adm1031_update_device(dev);
703 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
704 }
705 static ssize_t temp_max_show(struct device *dev,
706 			     struct device_attribute *attr, char *buf)
707 {
708 	int nr = to_sensor_dev_attr(attr)->index;
709 	struct adm1031_data *data = adm1031_update_device(dev);
710 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
711 }
712 static ssize_t temp_crit_show(struct device *dev,
713 			      struct device_attribute *attr, char *buf)
714 {
715 	int nr = to_sensor_dev_attr(attr)->index;
716 	struct adm1031_data *data = adm1031_update_device(dev);
717 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
718 }
719 static ssize_t temp_offset_store(struct device *dev,
720 				 struct device_attribute *attr,
721 				 const char *buf, size_t count)
722 {
723 	struct adm1031_data *data = dev_get_drvdata(dev);
724 	struct i2c_client *client = data->client;
725 	int nr = to_sensor_dev_attr(attr)->index;
726 	long val;
727 	int ret;
728 
729 	ret = kstrtol(buf, 10, &val);
730 	if (ret)
731 		return ret;
732 
733 	val = clamp_val(val, -15000, 15000);
734 	mutex_lock(&data->update_lock);
735 	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
736 	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
737 			    data->temp_offset[nr]);
738 	mutex_unlock(&data->update_lock);
739 	return count;
740 }
741 static ssize_t temp_min_store(struct device *dev,
742 			      struct device_attribute *attr, const char *buf,
743 			      size_t count)
744 {
745 	struct adm1031_data *data = dev_get_drvdata(dev);
746 	struct i2c_client *client = data->client;
747 	int nr = to_sensor_dev_attr(attr)->index;
748 	long val;
749 	int ret;
750 
751 	ret = kstrtol(buf, 10, &val);
752 	if (ret)
753 		return ret;
754 
755 	val = clamp_val(val, -55000, 127000);
756 	mutex_lock(&data->update_lock);
757 	data->temp_min[nr] = TEMP_TO_REG(val);
758 	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
759 			    data->temp_min[nr]);
760 	mutex_unlock(&data->update_lock);
761 	return count;
762 }
763 static ssize_t temp_max_store(struct device *dev,
764 			      struct device_attribute *attr, const char *buf,
765 			      size_t count)
766 {
767 	struct adm1031_data *data = dev_get_drvdata(dev);
768 	struct i2c_client *client = data->client;
769 	int nr = to_sensor_dev_attr(attr)->index;
770 	long val;
771 	int ret;
772 
773 	ret = kstrtol(buf, 10, &val);
774 	if (ret)
775 		return ret;
776 
777 	val = clamp_val(val, -55000, 127000);
778 	mutex_lock(&data->update_lock);
779 	data->temp_max[nr] = TEMP_TO_REG(val);
780 	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
781 			    data->temp_max[nr]);
782 	mutex_unlock(&data->update_lock);
783 	return count;
784 }
785 static ssize_t temp_crit_store(struct device *dev,
786 			       struct device_attribute *attr, const char *buf,
787 			       size_t count)
788 {
789 	struct adm1031_data *data = dev_get_drvdata(dev);
790 	struct i2c_client *client = data->client;
791 	int nr = to_sensor_dev_attr(attr)->index;
792 	long val;
793 	int ret;
794 
795 	ret = kstrtol(buf, 10, &val);
796 	if (ret)
797 		return ret;
798 
799 	val = clamp_val(val, -55000, 127000);
800 	mutex_lock(&data->update_lock);
801 	data->temp_crit[nr] = TEMP_TO_REG(val);
802 	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
803 			    data->temp_crit[nr]);
804 	mutex_unlock(&data->update_lock);
805 	return count;
806 }
807 
808 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
809 static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
810 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
811 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
812 static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
813 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
814 static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
815 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
816 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
817 static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
818 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
819 static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
820 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
821 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
822 static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
823 
824 /* Alarms */
825 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
826 			   char *buf)
827 {
828 	struct adm1031_data *data = adm1031_update_device(dev);
829 	return sprintf(buf, "%d\n", data->alarm);
830 }
831 
832 static DEVICE_ATTR_RO(alarms);
833 
834 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
835 			  char *buf)
836 {
837 	int bitnr = to_sensor_dev_attr(attr)->index;
838 	struct adm1031_data *data = adm1031_update_device(dev);
839 	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
840 }
841 
842 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
843 static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
844 static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
845 static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
846 static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
847 static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
848 static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
849 static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
850 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
851 static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
852 static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
853 static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
854 static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
855 static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
856 static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
857 
858 /* Update Interval */
859 static const unsigned int update_intervals[] = {
860 	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
861 };
862 
863 static ssize_t update_interval_show(struct device *dev,
864 				    struct device_attribute *attr, char *buf)
865 {
866 	struct adm1031_data *data = dev_get_drvdata(dev);
867 
868 	return sprintf(buf, "%u\n", data->update_interval);
869 }
870 
871 static ssize_t update_interval_store(struct device *dev,
872 				     struct device_attribute *attr,
873 				     const char *buf, size_t count)
874 {
875 	struct adm1031_data *data = dev_get_drvdata(dev);
876 	struct i2c_client *client = data->client;
877 	unsigned long val;
878 	int i, err;
879 	u8 reg;
880 
881 	err = kstrtoul(buf, 10, &val);
882 	if (err)
883 		return err;
884 
885 	/*
886 	 * Find the nearest update interval from the table.
887 	 * Use it to determine the matching update rate.
888 	 */
889 	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
890 		if (val >= update_intervals[i])
891 			break;
892 	}
893 	/* if not found, we point to the last entry (lowest update interval) */
894 
895 	/* set the new update rate while preserving other settings */
896 	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
897 	reg &= ~ADM1031_UPDATE_RATE_MASK;
898 	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
899 	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
900 
901 	mutex_lock(&data->update_lock);
902 	data->update_interval = update_intervals[i];
903 	mutex_unlock(&data->update_lock);
904 
905 	return count;
906 }
907 
908 static DEVICE_ATTR_RW(update_interval);
909 
910 static struct attribute *adm1031_attributes[] = {
911 	&sensor_dev_attr_fan1_input.dev_attr.attr,
912 	&sensor_dev_attr_fan1_div.dev_attr.attr,
913 	&sensor_dev_attr_fan1_min.dev_attr.attr,
914 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
915 	&sensor_dev_attr_fan1_fault.dev_attr.attr,
916 	&sensor_dev_attr_pwm1.dev_attr.attr,
917 	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
918 	&sensor_dev_attr_temp1_input.dev_attr.attr,
919 	&sensor_dev_attr_temp1_offset.dev_attr.attr,
920 	&sensor_dev_attr_temp1_min.dev_attr.attr,
921 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
922 	&sensor_dev_attr_temp1_max.dev_attr.attr,
923 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
924 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
925 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
926 	&sensor_dev_attr_temp2_input.dev_attr.attr,
927 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
928 	&sensor_dev_attr_temp2_min.dev_attr.attr,
929 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
930 	&sensor_dev_attr_temp2_max.dev_attr.attr,
931 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
932 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
933 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
934 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
935 
936 	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
937 	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
938 	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
939 
940 	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
941 	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
942 	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
943 
944 	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
945 
946 	&dev_attr_update_interval.attr,
947 	&dev_attr_alarms.attr,
948 
949 	NULL
950 };
951 
952 static const struct attribute_group adm1031_group = {
953 	.attrs = adm1031_attributes,
954 };
955 
956 static struct attribute *adm1031_attributes_opt[] = {
957 	&sensor_dev_attr_fan2_input.dev_attr.attr,
958 	&sensor_dev_attr_fan2_div.dev_attr.attr,
959 	&sensor_dev_attr_fan2_min.dev_attr.attr,
960 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
961 	&sensor_dev_attr_fan2_fault.dev_attr.attr,
962 	&sensor_dev_attr_pwm2.dev_attr.attr,
963 	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
964 	&sensor_dev_attr_temp3_input.dev_attr.attr,
965 	&sensor_dev_attr_temp3_offset.dev_attr.attr,
966 	&sensor_dev_attr_temp3_min.dev_attr.attr,
967 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
968 	&sensor_dev_attr_temp3_max.dev_attr.attr,
969 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
970 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
971 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
972 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
973 	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
974 	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
975 	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
976 	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
977 	NULL
978 };
979 
980 static const struct attribute_group adm1031_group_opt = {
981 	.attrs = adm1031_attributes_opt,
982 };
983 
984 /* Return 0 if detection is successful, -ENODEV otherwise */
985 static int adm1031_detect(struct i2c_client *client,
986 			  struct i2c_board_info *info)
987 {
988 	struct i2c_adapter *adapter = client->adapter;
989 	const char *name;
990 	int id, co;
991 
992 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
993 		return -ENODEV;
994 
995 	id = i2c_smbus_read_byte_data(client, 0x3d);
996 	co = i2c_smbus_read_byte_data(client, 0x3e);
997 
998 	if (!((id == 0x31 || id == 0x30) && co == 0x41))
999 		return -ENODEV;
1000 	name = (id == 0x30) ? "adm1030" : "adm1031";
1001 
1002 	strlcpy(info->type, name, I2C_NAME_SIZE);
1003 
1004 	return 0;
1005 }
1006 
1007 static void adm1031_init_client(struct i2c_client *client)
1008 {
1009 	unsigned int read_val;
1010 	unsigned int mask;
1011 	int i;
1012 	struct adm1031_data *data = i2c_get_clientdata(client);
1013 
1014 	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1015 	if (data->chip_type == adm1031) {
1016 		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1017 			ADM1031_CONF2_TACH2_ENABLE);
1018 	}
1019 	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1020 	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1021 	if ((read_val | mask) != read_val)
1022 		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1023 
1024 	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1025 	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1026 		adm1031_write_value(client, ADM1031_REG_CONF1,
1027 				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1028 	}
1029 
1030 	/* Read the chip's update rate */
1031 	mask = ADM1031_UPDATE_RATE_MASK;
1032 	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1033 	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1034 	/* Save it as update interval */
1035 	data->update_interval = update_intervals[i];
1036 }
1037 
1038 static int adm1031_probe(struct i2c_client *client,
1039 			 const struct i2c_device_id *id)
1040 {
1041 	struct device *dev = &client->dev;
1042 	struct device *hwmon_dev;
1043 	struct adm1031_data *data;
1044 
1045 	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1046 	if (!data)
1047 		return -ENOMEM;
1048 
1049 	i2c_set_clientdata(client, data);
1050 	data->client = client;
1051 	data->chip_type = id->driver_data;
1052 	mutex_init(&data->update_lock);
1053 
1054 	if (data->chip_type == adm1030)
1055 		data->chan_select_table = &auto_channel_select_table_adm1030;
1056 	else
1057 		data->chan_select_table = &auto_channel_select_table_adm1031;
1058 
1059 	/* Initialize the ADM1031 chip */
1060 	adm1031_init_client(client);
1061 
1062 	/* sysfs hooks */
1063 	data->groups[0] = &adm1031_group;
1064 	if (data->chip_type == adm1031)
1065 		data->groups[1] = &adm1031_group_opt;
1066 
1067 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1068 							   data, data->groups);
1069 	return PTR_ERR_OR_ZERO(hwmon_dev);
1070 }
1071 
1072 static const struct i2c_device_id adm1031_id[] = {
1073 	{ "adm1030", adm1030 },
1074 	{ "adm1031", adm1031 },
1075 	{ }
1076 };
1077 MODULE_DEVICE_TABLE(i2c, adm1031_id);
1078 
1079 static struct i2c_driver adm1031_driver = {
1080 	.class		= I2C_CLASS_HWMON,
1081 	.driver = {
1082 		.name = "adm1031",
1083 	},
1084 	.probe		= adm1031_probe,
1085 	.id_table	= adm1031_id,
1086 	.detect		= adm1031_detect,
1087 	.address_list	= normal_i2c,
1088 };
1089 
1090 module_i2c_driver(adm1031_driver);
1091 
1092 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1093 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1094 MODULE_LICENSE("GPL");
1095