1 /* 2 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware 3 * monitoring 4 * Based on lm75.c and lm85.c 5 * Supports adm1030 / adm1031 6 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org> 7 * Reworked by Jean Delvare <jdelvare@suse.de> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/init.h> 26 #include <linux/slab.h> 27 #include <linux/jiffies.h> 28 #include <linux/i2c.h> 29 #include <linux/hwmon.h> 30 #include <linux/hwmon-sysfs.h> 31 #include <linux/err.h> 32 #include <linux/mutex.h> 33 34 /* Following macros takes channel parameter starting from 0 to 2 */ 35 #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr)) 36 #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr)) 37 #define ADM1031_REG_PWM (0x22) 38 #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr)) 39 #define ADM1031_REG_FAN_FILTER (0x23) 40 41 #define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr)) 42 #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr)) 43 #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr)) 44 #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr)) 45 46 #define ADM1031_REG_TEMP(nr) (0x0a + (nr)) 47 #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr)) 48 49 #define ADM1031_REG_STATUS(nr) (0x2 + (nr)) 50 51 #define ADM1031_REG_CONF1 0x00 52 #define ADM1031_REG_CONF2 0x01 53 #define ADM1031_REG_EXT_TEMP 0x06 54 55 #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */ 56 #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */ 57 #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */ 58 59 #define ADM1031_CONF2_PWM1_ENABLE 0x01 60 #define ADM1031_CONF2_PWM2_ENABLE 0x02 61 #define ADM1031_CONF2_TACH1_ENABLE 0x04 62 #define ADM1031_CONF2_TACH2_ENABLE 0x08 63 #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan)) 64 65 #define ADM1031_UPDATE_RATE_MASK 0x1c 66 #define ADM1031_UPDATE_RATE_SHIFT 2 67 68 /* Addresses to scan */ 69 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; 70 71 enum chips { adm1030, adm1031 }; 72 73 typedef u8 auto_chan_table_t[8][2]; 74 75 /* Each client has this additional data */ 76 struct adm1031_data { 77 struct i2c_client *client; 78 const struct attribute_group *groups[3]; 79 struct mutex update_lock; 80 int chip_type; 81 char valid; /* !=0 if following fields are valid */ 82 unsigned long last_updated; /* In jiffies */ 83 unsigned int update_interval; /* In milliseconds */ 84 /* 85 * The chan_select_table contains the possible configurations for 86 * auto fan control. 87 */ 88 const auto_chan_table_t *chan_select_table; 89 u16 alarm; 90 u8 conf1; 91 u8 conf2; 92 u8 fan[2]; 93 u8 fan_div[2]; 94 u8 fan_min[2]; 95 u8 pwm[2]; 96 u8 old_pwm[2]; 97 s8 temp[3]; 98 u8 ext_temp[3]; 99 u8 auto_temp[3]; 100 u8 auto_temp_min[3]; 101 u8 auto_temp_off[3]; 102 u8 auto_temp_max[3]; 103 s8 temp_offset[3]; 104 s8 temp_min[3]; 105 s8 temp_max[3]; 106 s8 temp_crit[3]; 107 }; 108 109 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg) 110 { 111 return i2c_smbus_read_byte_data(client, reg); 112 } 113 114 static inline int 115 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value) 116 { 117 return i2c_smbus_write_byte_data(client, reg, value); 118 } 119 120 static struct adm1031_data *adm1031_update_device(struct device *dev) 121 { 122 struct adm1031_data *data = dev_get_drvdata(dev); 123 struct i2c_client *client = data->client; 124 unsigned long next_update; 125 int chan; 126 127 mutex_lock(&data->update_lock); 128 129 next_update = data->last_updated 130 + msecs_to_jiffies(data->update_interval); 131 if (time_after(jiffies, next_update) || !data->valid) { 132 133 dev_dbg(&client->dev, "Starting adm1031 update\n"); 134 for (chan = 0; 135 chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) { 136 u8 oldh, newh; 137 138 oldh = 139 adm1031_read_value(client, ADM1031_REG_TEMP(chan)); 140 data->ext_temp[chan] = 141 adm1031_read_value(client, ADM1031_REG_EXT_TEMP); 142 newh = 143 adm1031_read_value(client, ADM1031_REG_TEMP(chan)); 144 if (newh != oldh) { 145 data->ext_temp[chan] = 146 adm1031_read_value(client, 147 ADM1031_REG_EXT_TEMP); 148 #ifdef DEBUG 149 oldh = 150 adm1031_read_value(client, 151 ADM1031_REG_TEMP(chan)); 152 153 /* oldh is actually newer */ 154 if (newh != oldh) 155 dev_warn(&client->dev, 156 "Remote temperature may be wrong.\n"); 157 #endif 158 } 159 data->temp[chan] = newh; 160 161 data->temp_offset[chan] = 162 adm1031_read_value(client, 163 ADM1031_REG_TEMP_OFFSET(chan)); 164 data->temp_min[chan] = 165 adm1031_read_value(client, 166 ADM1031_REG_TEMP_MIN(chan)); 167 data->temp_max[chan] = 168 adm1031_read_value(client, 169 ADM1031_REG_TEMP_MAX(chan)); 170 data->temp_crit[chan] = 171 adm1031_read_value(client, 172 ADM1031_REG_TEMP_CRIT(chan)); 173 data->auto_temp[chan] = 174 adm1031_read_value(client, 175 ADM1031_REG_AUTO_TEMP(chan)); 176 177 } 178 179 data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1); 180 data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2); 181 182 data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0)) 183 | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8); 184 if (data->chip_type == adm1030) 185 data->alarm &= 0xc0ff; 186 187 for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2); 188 chan++) { 189 data->fan_div[chan] = 190 adm1031_read_value(client, 191 ADM1031_REG_FAN_DIV(chan)); 192 data->fan_min[chan] = 193 adm1031_read_value(client, 194 ADM1031_REG_FAN_MIN(chan)); 195 data->fan[chan] = 196 adm1031_read_value(client, 197 ADM1031_REG_FAN_SPEED(chan)); 198 data->pwm[chan] = 199 (adm1031_read_value(client, 200 ADM1031_REG_PWM) >> (4 * chan)) & 0x0f; 201 } 202 data->last_updated = jiffies; 203 data->valid = 1; 204 } 205 206 mutex_unlock(&data->update_lock); 207 208 return data; 209 } 210 211 #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \ 212 ((val + 500) / 1000))) 213 214 #define TEMP_FROM_REG(val) ((val) * 1000) 215 216 #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125) 217 218 #define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f) 219 #define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \ 220 (val) | 0x70 : (val)) 221 222 #define FAN_FROM_REG(reg, div) ((reg) ? \ 223 (11250 * 60) / ((reg) * (div)) : 0) 224 225 static int FAN_TO_REG(int reg, int div) 226 { 227 int tmp; 228 tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div); 229 return tmp > 255 ? 255 : tmp; 230 } 231 232 #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6)) 233 234 #define PWM_TO_REG(val) (clamp_val((val), 0, 255) >> 4) 235 #define PWM_FROM_REG(val) ((val) << 4) 236 237 #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7) 238 #define FAN_CHAN_TO_REG(val, reg) \ 239 (((reg) & 0x1F) | (((val) << 5) & 0xe0)) 240 241 #define AUTO_TEMP_MIN_TO_REG(val, reg) \ 242 ((((val) / 500) & 0xf8) | ((reg) & 0x7)) 243 #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1 << ((reg) & 0x7))) 244 #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2)) 245 246 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2) 247 248 #define AUTO_TEMP_OFF_FROM_REG(reg) \ 249 (AUTO_TEMP_MIN_FROM_REG(reg) - 5000) 250 251 #define AUTO_TEMP_MAX_FROM_REG(reg) \ 252 (AUTO_TEMP_RANGE_FROM_REG(reg) + \ 253 AUTO_TEMP_MIN_FROM_REG(reg)) 254 255 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm) 256 { 257 int ret; 258 int range = val - AUTO_TEMP_MIN_FROM_REG(reg); 259 260 range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm); 261 ret = ((reg & 0xf8) | 262 (range < 10000 ? 0 : 263 range < 20000 ? 1 : 264 range < 40000 ? 2 : range < 80000 ? 3 : 4)); 265 return ret; 266 } 267 268 /* FAN auto control */ 269 #define GET_FAN_AUTO_BITFIELD(data, idx) \ 270 (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2] 271 272 /* 273 * The tables below contains the possible values for the auto fan 274 * control bitfields. the index in the table is the register value. 275 * MSb is the auto fan control enable bit, so the four first entries 276 * in the table disables auto fan control when both bitfields are zero. 277 */ 278 static const auto_chan_table_t auto_channel_select_table_adm1031 = { 279 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, 280 { 2 /* 0b010 */ , 4 /* 0b100 */ }, 281 { 2 /* 0b010 */ , 2 /* 0b010 */ }, 282 { 4 /* 0b100 */ , 4 /* 0b100 */ }, 283 { 7 /* 0b111 */ , 7 /* 0b111 */ }, 284 }; 285 286 static const auto_chan_table_t auto_channel_select_table_adm1030 = { 287 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, 288 { 2 /* 0b10 */ , 0 }, 289 { 0xff /* invalid */ , 0 }, 290 { 0xff /* invalid */ , 0 }, 291 { 3 /* 0b11 */ , 0 }, 292 }; 293 294 /* 295 * That function checks if a bitfield is valid and returns the other bitfield 296 * nearest match if no exact match where found. 297 */ 298 static int 299 get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg) 300 { 301 int i; 302 int first_match = -1, exact_match = -1; 303 u8 other_reg_val = 304 (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1]; 305 306 if (val == 0) 307 return 0; 308 309 for (i = 0; i < 8; i++) { 310 if ((val == (*data->chan_select_table)[i][chan]) && 311 ((*data->chan_select_table)[i][chan ? 0 : 1] == 312 other_reg_val)) { 313 /* We found an exact match */ 314 exact_match = i; 315 break; 316 } else if (val == (*data->chan_select_table)[i][chan] && 317 first_match == -1) { 318 /* 319 * Save the first match in case of an exact match has 320 * not been found 321 */ 322 first_match = i; 323 } 324 } 325 326 if (exact_match >= 0) 327 return exact_match; 328 else if (first_match >= 0) 329 return first_match; 330 331 return -EINVAL; 332 } 333 334 static ssize_t fan_auto_channel_show(struct device *dev, 335 struct device_attribute *attr, char *buf) 336 { 337 int nr = to_sensor_dev_attr(attr)->index; 338 struct adm1031_data *data = adm1031_update_device(dev); 339 return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr)); 340 } 341 342 static ssize_t 343 fan_auto_channel_store(struct device *dev, struct device_attribute *attr, 344 const char *buf, size_t count) 345 { 346 struct adm1031_data *data = dev_get_drvdata(dev); 347 struct i2c_client *client = data->client; 348 int nr = to_sensor_dev_attr(attr)->index; 349 long val; 350 u8 reg; 351 int ret; 352 u8 old_fan_mode; 353 354 ret = kstrtol(buf, 10, &val); 355 if (ret) 356 return ret; 357 358 old_fan_mode = data->conf1; 359 360 mutex_lock(&data->update_lock); 361 362 ret = get_fan_auto_nearest(data, nr, val, data->conf1); 363 if (ret < 0) { 364 mutex_unlock(&data->update_lock); 365 return ret; 366 } 367 reg = ret; 368 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1); 369 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^ 370 (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) { 371 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) { 372 /* 373 * Switch to Auto Fan Mode 374 * Save PWM registers 375 * Set PWM registers to 33% Both 376 */ 377 data->old_pwm[0] = data->pwm[0]; 378 data->old_pwm[1] = data->pwm[1]; 379 adm1031_write_value(client, ADM1031_REG_PWM, 0x55); 380 } else { 381 /* Switch to Manual Mode */ 382 data->pwm[0] = data->old_pwm[0]; 383 data->pwm[1] = data->old_pwm[1]; 384 /* Restore PWM registers */ 385 adm1031_write_value(client, ADM1031_REG_PWM, 386 data->pwm[0] | (data->pwm[1] << 4)); 387 } 388 } 389 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1); 390 adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1); 391 mutex_unlock(&data->update_lock); 392 return count; 393 } 394 395 static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0); 396 static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1); 397 398 /* Auto Temps */ 399 static ssize_t auto_temp_off_show(struct device *dev, 400 struct device_attribute *attr, char *buf) 401 { 402 int nr = to_sensor_dev_attr(attr)->index; 403 struct adm1031_data *data = adm1031_update_device(dev); 404 return sprintf(buf, "%d\n", 405 AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr])); 406 } 407 static ssize_t auto_temp_min_show(struct device *dev, 408 struct device_attribute *attr, char *buf) 409 { 410 int nr = to_sensor_dev_attr(attr)->index; 411 struct adm1031_data *data = adm1031_update_device(dev); 412 return sprintf(buf, "%d\n", 413 AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr])); 414 } 415 static ssize_t 416 auto_temp_min_store(struct device *dev, struct device_attribute *attr, 417 const char *buf, size_t count) 418 { 419 struct adm1031_data *data = dev_get_drvdata(dev); 420 struct i2c_client *client = data->client; 421 int nr = to_sensor_dev_attr(attr)->index; 422 long val; 423 int ret; 424 425 ret = kstrtol(buf, 10, &val); 426 if (ret) 427 return ret; 428 429 val = clamp_val(val, 0, 127000); 430 mutex_lock(&data->update_lock); 431 data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]); 432 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr), 433 data->auto_temp[nr]); 434 mutex_unlock(&data->update_lock); 435 return count; 436 } 437 static ssize_t auto_temp_max_show(struct device *dev, 438 struct device_attribute *attr, char *buf) 439 { 440 int nr = to_sensor_dev_attr(attr)->index; 441 struct adm1031_data *data = adm1031_update_device(dev); 442 return sprintf(buf, "%d\n", 443 AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr])); 444 } 445 static ssize_t 446 auto_temp_max_store(struct device *dev, struct device_attribute *attr, 447 const char *buf, size_t count) 448 { 449 struct adm1031_data *data = dev_get_drvdata(dev); 450 struct i2c_client *client = data->client; 451 int nr = to_sensor_dev_attr(attr)->index; 452 long val; 453 int ret; 454 455 ret = kstrtol(buf, 10, &val); 456 if (ret) 457 return ret; 458 459 val = clamp_val(val, 0, 127000); 460 mutex_lock(&data->update_lock); 461 data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], 462 data->pwm[nr]); 463 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr), 464 data->temp_max[nr]); 465 mutex_unlock(&data->update_lock); 466 return count; 467 } 468 469 static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0); 470 static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0); 471 static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0); 472 static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1); 473 static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1); 474 static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1); 475 static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2); 476 static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2); 477 static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2); 478 479 /* pwm */ 480 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr, 481 char *buf) 482 { 483 int nr = to_sensor_dev_attr(attr)->index; 484 struct adm1031_data *data = adm1031_update_device(dev); 485 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr])); 486 } 487 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr, 488 const char *buf, size_t count) 489 { 490 struct adm1031_data *data = dev_get_drvdata(dev); 491 struct i2c_client *client = data->client; 492 int nr = to_sensor_dev_attr(attr)->index; 493 long val; 494 int ret, reg; 495 496 ret = kstrtol(buf, 10, &val); 497 if (ret) 498 return ret; 499 500 mutex_lock(&data->update_lock); 501 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) && 502 (((val>>4) & 0xf) != 5)) { 503 /* In automatic mode, the only PWM accepted is 33% */ 504 mutex_unlock(&data->update_lock); 505 return -EINVAL; 506 } 507 data->pwm[nr] = PWM_TO_REG(val); 508 reg = adm1031_read_value(client, ADM1031_REG_PWM); 509 adm1031_write_value(client, ADM1031_REG_PWM, 510 nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf) 511 : (data->pwm[nr] & 0xf) | (reg & 0xf0)); 512 mutex_unlock(&data->update_lock); 513 return count; 514 } 515 516 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0); 517 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1); 518 static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0); 519 static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1); 520 521 /* Fans */ 522 523 /* 524 * That function checks the cases where the fan reading is not 525 * relevant. It is used to provide 0 as fan reading when the fan is 526 * not supposed to run 527 */ 528 static int trust_fan_readings(struct adm1031_data *data, int chan) 529 { 530 int res = 0; 531 532 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) { 533 switch (data->conf1 & 0x60) { 534 case 0x00: 535 /* 536 * remote temp1 controls fan1, 537 * remote temp2 controls fan2 538 */ 539 res = data->temp[chan+1] >= 540 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]); 541 break; 542 case 0x20: /* remote temp1 controls both fans */ 543 res = 544 data->temp[1] >= 545 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]); 546 break; 547 case 0x40: /* remote temp2 controls both fans */ 548 res = 549 data->temp[2] >= 550 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]); 551 break; 552 case 0x60: /* max controls both fans */ 553 res = 554 data->temp[0] >= 555 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0]) 556 || data->temp[1] >= 557 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]) 558 || (data->chip_type == adm1031 559 && data->temp[2] >= 560 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2])); 561 break; 562 } 563 } else { 564 res = data->pwm[chan] > 0; 565 } 566 return res; 567 } 568 569 static ssize_t fan_show(struct device *dev, struct device_attribute *attr, 570 char *buf) 571 { 572 int nr = to_sensor_dev_attr(attr)->index; 573 struct adm1031_data *data = adm1031_update_device(dev); 574 int value; 575 576 value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr], 577 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0; 578 return sprintf(buf, "%d\n", value); 579 } 580 581 static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr, 582 char *buf) 583 { 584 int nr = to_sensor_dev_attr(attr)->index; 585 struct adm1031_data *data = adm1031_update_device(dev); 586 return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr])); 587 } 588 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr, 589 char *buf) 590 { 591 int nr = to_sensor_dev_attr(attr)->index; 592 struct adm1031_data *data = adm1031_update_device(dev); 593 return sprintf(buf, "%d\n", 594 FAN_FROM_REG(data->fan_min[nr], 595 FAN_DIV_FROM_REG(data->fan_div[nr]))); 596 } 597 static ssize_t fan_min_store(struct device *dev, 598 struct device_attribute *attr, const char *buf, 599 size_t count) 600 { 601 struct adm1031_data *data = dev_get_drvdata(dev); 602 struct i2c_client *client = data->client; 603 int nr = to_sensor_dev_attr(attr)->index; 604 long val; 605 int ret; 606 607 ret = kstrtol(buf, 10, &val); 608 if (ret) 609 return ret; 610 611 mutex_lock(&data->update_lock); 612 if (val) { 613 data->fan_min[nr] = 614 FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr])); 615 } else { 616 data->fan_min[nr] = 0xff; 617 } 618 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]); 619 mutex_unlock(&data->update_lock); 620 return count; 621 } 622 static ssize_t fan_div_store(struct device *dev, 623 struct device_attribute *attr, const char *buf, 624 size_t count) 625 { 626 struct adm1031_data *data = dev_get_drvdata(dev); 627 struct i2c_client *client = data->client; 628 int nr = to_sensor_dev_attr(attr)->index; 629 long val; 630 u8 tmp; 631 int old_div; 632 int new_min; 633 int ret; 634 635 ret = kstrtol(buf, 10, &val); 636 if (ret) 637 return ret; 638 639 tmp = val == 8 ? 0xc0 : 640 val == 4 ? 0x80 : 641 val == 2 ? 0x40 : 642 val == 1 ? 0x00 : 643 0xff; 644 if (tmp == 0xff) 645 return -EINVAL; 646 647 mutex_lock(&data->update_lock); 648 /* Get fresh readings */ 649 data->fan_div[nr] = adm1031_read_value(client, 650 ADM1031_REG_FAN_DIV(nr)); 651 data->fan_min[nr] = adm1031_read_value(client, 652 ADM1031_REG_FAN_MIN(nr)); 653 654 /* Write the new clock divider and fan min */ 655 old_div = FAN_DIV_FROM_REG(data->fan_div[nr]); 656 data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]); 657 new_min = data->fan_min[nr] * old_div / val; 658 data->fan_min[nr] = new_min > 0xff ? 0xff : new_min; 659 660 adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr), 661 data->fan_div[nr]); 662 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), 663 data->fan_min[nr]); 664 665 /* Invalidate the cache: fan speed is no longer valid */ 666 data->valid = 0; 667 mutex_unlock(&data->update_lock); 668 return count; 669 } 670 671 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0); 672 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0); 673 static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0); 674 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1); 675 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1); 676 static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1); 677 678 /* Temps */ 679 static ssize_t temp_show(struct device *dev, struct device_attribute *attr, 680 char *buf) 681 { 682 int nr = to_sensor_dev_attr(attr)->index; 683 struct adm1031_data *data = adm1031_update_device(dev); 684 int ext; 685 ext = nr == 0 ? 686 ((data->ext_temp[nr] >> 6) & 0x3) * 2 : 687 (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7)); 688 return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext)); 689 } 690 static ssize_t temp_offset_show(struct device *dev, 691 struct device_attribute *attr, char *buf) 692 { 693 int nr = to_sensor_dev_attr(attr)->index; 694 struct adm1031_data *data = adm1031_update_device(dev); 695 return sprintf(buf, "%d\n", 696 TEMP_OFFSET_FROM_REG(data->temp_offset[nr])); 697 } 698 static ssize_t temp_min_show(struct device *dev, 699 struct device_attribute *attr, char *buf) 700 { 701 int nr = to_sensor_dev_attr(attr)->index; 702 struct adm1031_data *data = adm1031_update_device(dev); 703 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr])); 704 } 705 static ssize_t temp_max_show(struct device *dev, 706 struct device_attribute *attr, char *buf) 707 { 708 int nr = to_sensor_dev_attr(attr)->index; 709 struct adm1031_data *data = adm1031_update_device(dev); 710 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr])); 711 } 712 static ssize_t temp_crit_show(struct device *dev, 713 struct device_attribute *attr, char *buf) 714 { 715 int nr = to_sensor_dev_attr(attr)->index; 716 struct adm1031_data *data = adm1031_update_device(dev); 717 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr])); 718 } 719 static ssize_t temp_offset_store(struct device *dev, 720 struct device_attribute *attr, 721 const char *buf, size_t count) 722 { 723 struct adm1031_data *data = dev_get_drvdata(dev); 724 struct i2c_client *client = data->client; 725 int nr = to_sensor_dev_attr(attr)->index; 726 long val; 727 int ret; 728 729 ret = kstrtol(buf, 10, &val); 730 if (ret) 731 return ret; 732 733 val = clamp_val(val, -15000, 15000); 734 mutex_lock(&data->update_lock); 735 data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val); 736 adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr), 737 data->temp_offset[nr]); 738 mutex_unlock(&data->update_lock); 739 return count; 740 } 741 static ssize_t temp_min_store(struct device *dev, 742 struct device_attribute *attr, const char *buf, 743 size_t count) 744 { 745 struct adm1031_data *data = dev_get_drvdata(dev); 746 struct i2c_client *client = data->client; 747 int nr = to_sensor_dev_attr(attr)->index; 748 long val; 749 int ret; 750 751 ret = kstrtol(buf, 10, &val); 752 if (ret) 753 return ret; 754 755 val = clamp_val(val, -55000, 127000); 756 mutex_lock(&data->update_lock); 757 data->temp_min[nr] = TEMP_TO_REG(val); 758 adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr), 759 data->temp_min[nr]); 760 mutex_unlock(&data->update_lock); 761 return count; 762 } 763 static ssize_t temp_max_store(struct device *dev, 764 struct device_attribute *attr, const char *buf, 765 size_t count) 766 { 767 struct adm1031_data *data = dev_get_drvdata(dev); 768 struct i2c_client *client = data->client; 769 int nr = to_sensor_dev_attr(attr)->index; 770 long val; 771 int ret; 772 773 ret = kstrtol(buf, 10, &val); 774 if (ret) 775 return ret; 776 777 val = clamp_val(val, -55000, 127000); 778 mutex_lock(&data->update_lock); 779 data->temp_max[nr] = TEMP_TO_REG(val); 780 adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr), 781 data->temp_max[nr]); 782 mutex_unlock(&data->update_lock); 783 return count; 784 } 785 static ssize_t temp_crit_store(struct device *dev, 786 struct device_attribute *attr, const char *buf, 787 size_t count) 788 { 789 struct adm1031_data *data = dev_get_drvdata(dev); 790 struct i2c_client *client = data->client; 791 int nr = to_sensor_dev_attr(attr)->index; 792 long val; 793 int ret; 794 795 ret = kstrtol(buf, 10, &val); 796 if (ret) 797 return ret; 798 799 val = clamp_val(val, -55000, 127000); 800 mutex_lock(&data->update_lock); 801 data->temp_crit[nr] = TEMP_TO_REG(val); 802 adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr), 803 data->temp_crit[nr]); 804 mutex_unlock(&data->update_lock); 805 return count; 806 } 807 808 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); 809 static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0); 810 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0); 811 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0); 812 static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0); 813 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); 814 static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1); 815 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1); 816 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1); 817 static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1); 818 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2); 819 static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2); 820 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2); 821 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2); 822 static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2); 823 824 /* Alarms */ 825 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, 826 char *buf) 827 { 828 struct adm1031_data *data = adm1031_update_device(dev); 829 return sprintf(buf, "%d\n", data->alarm); 830 } 831 832 static DEVICE_ATTR_RO(alarms); 833 834 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, 835 char *buf) 836 { 837 int bitnr = to_sensor_dev_attr(attr)->index; 838 struct adm1031_data *data = adm1031_update_device(dev); 839 return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1); 840 } 841 842 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0); 843 static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1); 844 static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2); 845 static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3); 846 static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4); 847 static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5); 848 static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6); 849 static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7); 850 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8); 851 static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9); 852 static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10); 853 static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11); 854 static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12); 855 static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13); 856 static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14); 857 858 /* Update Interval */ 859 static const unsigned int update_intervals[] = { 860 16000, 8000, 4000, 2000, 1000, 500, 250, 125, 861 }; 862 863 static ssize_t update_interval_show(struct device *dev, 864 struct device_attribute *attr, char *buf) 865 { 866 struct adm1031_data *data = dev_get_drvdata(dev); 867 868 return sprintf(buf, "%u\n", data->update_interval); 869 } 870 871 static ssize_t update_interval_store(struct device *dev, 872 struct device_attribute *attr, 873 const char *buf, size_t count) 874 { 875 struct adm1031_data *data = dev_get_drvdata(dev); 876 struct i2c_client *client = data->client; 877 unsigned long val; 878 int i, err; 879 u8 reg; 880 881 err = kstrtoul(buf, 10, &val); 882 if (err) 883 return err; 884 885 /* 886 * Find the nearest update interval from the table. 887 * Use it to determine the matching update rate. 888 */ 889 for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) { 890 if (val >= update_intervals[i]) 891 break; 892 } 893 /* if not found, we point to the last entry (lowest update interval) */ 894 895 /* set the new update rate while preserving other settings */ 896 reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER); 897 reg &= ~ADM1031_UPDATE_RATE_MASK; 898 reg |= i << ADM1031_UPDATE_RATE_SHIFT; 899 adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg); 900 901 mutex_lock(&data->update_lock); 902 data->update_interval = update_intervals[i]; 903 mutex_unlock(&data->update_lock); 904 905 return count; 906 } 907 908 static DEVICE_ATTR_RW(update_interval); 909 910 static struct attribute *adm1031_attributes[] = { 911 &sensor_dev_attr_fan1_input.dev_attr.attr, 912 &sensor_dev_attr_fan1_div.dev_attr.attr, 913 &sensor_dev_attr_fan1_min.dev_attr.attr, 914 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 915 &sensor_dev_attr_fan1_fault.dev_attr.attr, 916 &sensor_dev_attr_pwm1.dev_attr.attr, 917 &sensor_dev_attr_auto_fan1_channel.dev_attr.attr, 918 &sensor_dev_attr_temp1_input.dev_attr.attr, 919 &sensor_dev_attr_temp1_offset.dev_attr.attr, 920 &sensor_dev_attr_temp1_min.dev_attr.attr, 921 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, 922 &sensor_dev_attr_temp1_max.dev_attr.attr, 923 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, 924 &sensor_dev_attr_temp1_crit.dev_attr.attr, 925 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, 926 &sensor_dev_attr_temp2_input.dev_attr.attr, 927 &sensor_dev_attr_temp2_offset.dev_attr.attr, 928 &sensor_dev_attr_temp2_min.dev_attr.attr, 929 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, 930 &sensor_dev_attr_temp2_max.dev_attr.attr, 931 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, 932 &sensor_dev_attr_temp2_crit.dev_attr.attr, 933 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, 934 &sensor_dev_attr_temp2_fault.dev_attr.attr, 935 936 &sensor_dev_attr_auto_temp1_off.dev_attr.attr, 937 &sensor_dev_attr_auto_temp1_min.dev_attr.attr, 938 &sensor_dev_attr_auto_temp1_max.dev_attr.attr, 939 940 &sensor_dev_attr_auto_temp2_off.dev_attr.attr, 941 &sensor_dev_attr_auto_temp2_min.dev_attr.attr, 942 &sensor_dev_attr_auto_temp2_max.dev_attr.attr, 943 944 &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr, 945 946 &dev_attr_update_interval.attr, 947 &dev_attr_alarms.attr, 948 949 NULL 950 }; 951 952 static const struct attribute_group adm1031_group = { 953 .attrs = adm1031_attributes, 954 }; 955 956 static struct attribute *adm1031_attributes_opt[] = { 957 &sensor_dev_attr_fan2_input.dev_attr.attr, 958 &sensor_dev_attr_fan2_div.dev_attr.attr, 959 &sensor_dev_attr_fan2_min.dev_attr.attr, 960 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 961 &sensor_dev_attr_fan2_fault.dev_attr.attr, 962 &sensor_dev_attr_pwm2.dev_attr.attr, 963 &sensor_dev_attr_auto_fan2_channel.dev_attr.attr, 964 &sensor_dev_attr_temp3_input.dev_attr.attr, 965 &sensor_dev_attr_temp3_offset.dev_attr.attr, 966 &sensor_dev_attr_temp3_min.dev_attr.attr, 967 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, 968 &sensor_dev_attr_temp3_max.dev_attr.attr, 969 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, 970 &sensor_dev_attr_temp3_crit.dev_attr.attr, 971 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, 972 &sensor_dev_attr_temp3_fault.dev_attr.attr, 973 &sensor_dev_attr_auto_temp3_off.dev_attr.attr, 974 &sensor_dev_attr_auto_temp3_min.dev_attr.attr, 975 &sensor_dev_attr_auto_temp3_max.dev_attr.attr, 976 &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr, 977 NULL 978 }; 979 980 static const struct attribute_group adm1031_group_opt = { 981 .attrs = adm1031_attributes_opt, 982 }; 983 984 /* Return 0 if detection is successful, -ENODEV otherwise */ 985 static int adm1031_detect(struct i2c_client *client, 986 struct i2c_board_info *info) 987 { 988 struct i2c_adapter *adapter = client->adapter; 989 const char *name; 990 int id, co; 991 992 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 993 return -ENODEV; 994 995 id = i2c_smbus_read_byte_data(client, 0x3d); 996 co = i2c_smbus_read_byte_data(client, 0x3e); 997 998 if (!((id == 0x31 || id == 0x30) && co == 0x41)) 999 return -ENODEV; 1000 name = (id == 0x30) ? "adm1030" : "adm1031"; 1001 1002 strlcpy(info->type, name, I2C_NAME_SIZE); 1003 1004 return 0; 1005 } 1006 1007 static void adm1031_init_client(struct i2c_client *client) 1008 { 1009 unsigned int read_val; 1010 unsigned int mask; 1011 int i; 1012 struct adm1031_data *data = i2c_get_clientdata(client); 1013 1014 mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE); 1015 if (data->chip_type == adm1031) { 1016 mask |= (ADM1031_CONF2_PWM2_ENABLE | 1017 ADM1031_CONF2_TACH2_ENABLE); 1018 } 1019 /* Initialize the ADM1031 chip (enables fan speed reading ) */ 1020 read_val = adm1031_read_value(client, ADM1031_REG_CONF2); 1021 if ((read_val | mask) != read_val) 1022 adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask); 1023 1024 read_val = adm1031_read_value(client, ADM1031_REG_CONF1); 1025 if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) { 1026 adm1031_write_value(client, ADM1031_REG_CONF1, 1027 read_val | ADM1031_CONF1_MONITOR_ENABLE); 1028 } 1029 1030 /* Read the chip's update rate */ 1031 mask = ADM1031_UPDATE_RATE_MASK; 1032 read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER); 1033 i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT; 1034 /* Save it as update interval */ 1035 data->update_interval = update_intervals[i]; 1036 } 1037 1038 static int adm1031_probe(struct i2c_client *client, 1039 const struct i2c_device_id *id) 1040 { 1041 struct device *dev = &client->dev; 1042 struct device *hwmon_dev; 1043 struct adm1031_data *data; 1044 1045 data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL); 1046 if (!data) 1047 return -ENOMEM; 1048 1049 i2c_set_clientdata(client, data); 1050 data->client = client; 1051 data->chip_type = id->driver_data; 1052 mutex_init(&data->update_lock); 1053 1054 if (data->chip_type == adm1030) 1055 data->chan_select_table = &auto_channel_select_table_adm1030; 1056 else 1057 data->chan_select_table = &auto_channel_select_table_adm1031; 1058 1059 /* Initialize the ADM1031 chip */ 1060 adm1031_init_client(client); 1061 1062 /* sysfs hooks */ 1063 data->groups[0] = &adm1031_group; 1064 if (data->chip_type == adm1031) 1065 data->groups[1] = &adm1031_group_opt; 1066 1067 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, 1068 data, data->groups); 1069 return PTR_ERR_OR_ZERO(hwmon_dev); 1070 } 1071 1072 static const struct i2c_device_id adm1031_id[] = { 1073 { "adm1030", adm1030 }, 1074 { "adm1031", adm1031 }, 1075 { } 1076 }; 1077 MODULE_DEVICE_TABLE(i2c, adm1031_id); 1078 1079 static struct i2c_driver adm1031_driver = { 1080 .class = I2C_CLASS_HWMON, 1081 .driver = { 1082 .name = "adm1031", 1083 }, 1084 .probe = adm1031_probe, 1085 .id_table = adm1031_id, 1086 .detect = adm1031_detect, 1087 .address_list = normal_i2c, 1088 }; 1089 1090 module_i2c_driver(adm1031_driver); 1091 1092 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>"); 1093 MODULE_DESCRIPTION("ADM1031/ADM1030 driver"); 1094 MODULE_LICENSE("GPL"); 1095