xref: /openbmc/linux/drivers/hwmon/adm1025.c (revision 7d545e77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * adm1025.c
4  *
5  * Copyright (C) 2000       Chen-Yuan Wu <gwu@esoft.com>
6  * Copyright (C) 2003-2009  Jean Delvare <jdelvare@suse.de>
7  *
8  * The ADM1025 is a sensor chip made by Analog Devices. It reports up to 6
9  * voltages (including its own power source) and up to two temperatures
10  * (its own plus up to one external one). Voltages are scaled internally
11  * (which is not the common way) with ratios such that the nominal value
12  * of each voltage correspond to a register value of 192 (which means a
13  * resolution of about 0.5% of the nominal value). Temperature values are
14  * reported with a 1 deg resolution and a 3 deg accuracy. Complete
15  * datasheet can be obtained from Analog's website at:
16  *   http://www.onsemi.com/PowerSolutions/product.do?id=ADM1025
17  *
18  * This driver also supports the ADM1025A, which differs from the ADM1025
19  * only in that it has "open-drain VID inputs while the ADM1025 has
20  * on-chip 100k pull-ups on the VID inputs". It doesn't make any
21  * difference for us.
22  *
23  * This driver also supports the NE1619, a sensor chip made by Philips.
24  * That chip is similar to the ADM1025A, with a few differences. The only
25  * difference that matters to us is that the NE1619 has only two possible
26  * addresses while the ADM1025A has a third one. Complete datasheet can be
27  * obtained from Philips's website at:
28  *   http://www.semiconductors.philips.com/pip/NE1619DS.html
29  *
30  * Since the ADM1025 was the first chipset supported by this driver, most
31  * comments will refer to this chipset, but are actually general and
32  * concern all supported chipsets, unless mentioned otherwise.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/jiffies.h>
39 #include <linux/i2c.h>
40 #include <linux/hwmon.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/hwmon-vid.h>
43 #include <linux/err.h>
44 #include <linux/mutex.h>
45 
46 /*
47  * Addresses to scan
48  * ADM1025 and ADM1025A have three possible addresses: 0x2c, 0x2d and 0x2e.
49  * NE1619 has two possible addresses: 0x2c and 0x2d.
50  */
51 
52 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
53 
54 enum chips { adm1025, ne1619 };
55 
56 /*
57  * The ADM1025 registers
58  */
59 
60 #define ADM1025_REG_MAN_ID		0x3E
61 #define ADM1025_REG_CHIP_ID		0x3F
62 #define ADM1025_REG_CONFIG		0x40
63 #define ADM1025_REG_STATUS1		0x41
64 #define ADM1025_REG_STATUS2		0x42
65 #define ADM1025_REG_IN(nr)		(0x20 + (nr))
66 #define ADM1025_REG_IN_MAX(nr)		(0x2B + (nr) * 2)
67 #define ADM1025_REG_IN_MIN(nr)		(0x2C + (nr) * 2)
68 #define ADM1025_REG_TEMP(nr)		(0x26 + (nr))
69 #define ADM1025_REG_TEMP_HIGH(nr)	(0x37 + (nr) * 2)
70 #define ADM1025_REG_TEMP_LOW(nr)	(0x38 + (nr) * 2)
71 #define ADM1025_REG_VID			0x47
72 #define ADM1025_REG_VID4		0x49
73 
74 /*
75  * Conversions and various macros
76  * The ADM1025 uses signed 8-bit values for temperatures.
77  */
78 
79 static const int in_scale[6] = { 2500, 2250, 3300, 5000, 12000, 3300 };
80 
81 #define IN_FROM_REG(reg, scale)	(((reg) * (scale) + 96) / 192)
82 #define IN_TO_REG(val, scale)	((val) <= 0 ? 0 : \
83 				 (val) >= (scale) * 255 / 192 ? 255 : \
84 				 ((val) * 192 + (scale) / 2) / (scale))
85 
86 #define TEMP_FROM_REG(reg)	((reg) * 1000)
87 #define TEMP_TO_REG(val)	((val) <= -127500 ? -128 : \
88 				 (val) >= 126500 ? 127 : \
89 				 (((val) < 0 ? (val) - 500 : \
90 				   (val) + 500) / 1000))
91 
92 /*
93  * Client data (each client gets its own)
94  */
95 
96 struct adm1025_data {
97 	struct i2c_client *client;
98 	const struct attribute_group *groups[3];
99 	struct mutex update_lock;
100 	char valid; /* zero until following fields are valid */
101 	unsigned long last_updated; /* in jiffies */
102 
103 	u8 in[6];		/* register value */
104 	u8 in_max[6];		/* register value */
105 	u8 in_min[6];		/* register value */
106 	s8 temp[2];		/* register value */
107 	s8 temp_min[2];		/* register value */
108 	s8 temp_max[2];		/* register value */
109 	u16 alarms;		/* register values, combined */
110 	u8 vid;			/* register values, combined */
111 	u8 vrm;
112 };
113 
114 static struct adm1025_data *adm1025_update_device(struct device *dev)
115 {
116 	struct adm1025_data *data = dev_get_drvdata(dev);
117 	struct i2c_client *client = data->client;
118 
119 	mutex_lock(&data->update_lock);
120 
121 	if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) {
122 		int i;
123 
124 		dev_dbg(&client->dev, "Updating data.\n");
125 		for (i = 0; i < 6; i++) {
126 			data->in[i] = i2c_smbus_read_byte_data(client,
127 				      ADM1025_REG_IN(i));
128 			data->in_min[i] = i2c_smbus_read_byte_data(client,
129 					  ADM1025_REG_IN_MIN(i));
130 			data->in_max[i] = i2c_smbus_read_byte_data(client,
131 					  ADM1025_REG_IN_MAX(i));
132 		}
133 		for (i = 0; i < 2; i++) {
134 			data->temp[i] = i2c_smbus_read_byte_data(client,
135 					ADM1025_REG_TEMP(i));
136 			data->temp_min[i] = i2c_smbus_read_byte_data(client,
137 					    ADM1025_REG_TEMP_LOW(i));
138 			data->temp_max[i] = i2c_smbus_read_byte_data(client,
139 					    ADM1025_REG_TEMP_HIGH(i));
140 		}
141 		data->alarms = i2c_smbus_read_byte_data(client,
142 			       ADM1025_REG_STATUS1)
143 			     | (i2c_smbus_read_byte_data(client,
144 				ADM1025_REG_STATUS2) << 8);
145 		data->vid = (i2c_smbus_read_byte_data(client,
146 			     ADM1025_REG_VID) & 0x0f)
147 			  | ((i2c_smbus_read_byte_data(client,
148 			      ADM1025_REG_VID4) & 0x01) << 4);
149 
150 		data->last_updated = jiffies;
151 		data->valid = 1;
152 	}
153 
154 	mutex_unlock(&data->update_lock);
155 
156 	return data;
157 }
158 
159 /*
160  * Sysfs stuff
161  */
162 
163 static ssize_t
164 in_show(struct device *dev, struct device_attribute *attr, char *buf)
165 {
166 	int index = to_sensor_dev_attr(attr)->index;
167 	struct adm1025_data *data = adm1025_update_device(dev);
168 	return sprintf(buf, "%u\n", IN_FROM_REG(data->in[index],
169 		       in_scale[index]));
170 }
171 
172 static ssize_t
173 in_min_show(struct device *dev, struct device_attribute *attr, char *buf)
174 {
175 	int index = to_sensor_dev_attr(attr)->index;
176 	struct adm1025_data *data = adm1025_update_device(dev);
177 	return sprintf(buf, "%u\n", IN_FROM_REG(data->in_min[index],
178 		       in_scale[index]));
179 }
180 
181 static ssize_t
182 in_max_show(struct device *dev, struct device_attribute *attr, char *buf)
183 {
184 	int index = to_sensor_dev_attr(attr)->index;
185 	struct adm1025_data *data = adm1025_update_device(dev);
186 	return sprintf(buf, "%u\n", IN_FROM_REG(data->in_max[index],
187 		       in_scale[index]));
188 }
189 
190 static ssize_t
191 temp_show(struct device *dev, struct device_attribute *attr, char *buf)
192 {
193 	int index = to_sensor_dev_attr(attr)->index;
194 	struct adm1025_data *data = adm1025_update_device(dev);
195 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[index]));
196 }
197 
198 static ssize_t
199 temp_min_show(struct device *dev, struct device_attribute *attr, char *buf)
200 {
201 	int index = to_sensor_dev_attr(attr)->index;
202 	struct adm1025_data *data = adm1025_update_device(dev);
203 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[index]));
204 }
205 
206 static ssize_t
207 temp_max_show(struct device *dev, struct device_attribute *attr, char *buf)
208 {
209 	int index = to_sensor_dev_attr(attr)->index;
210 	struct adm1025_data *data = adm1025_update_device(dev);
211 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
212 }
213 
214 static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
215 			    const char *buf, size_t count)
216 {
217 	int index = to_sensor_dev_attr(attr)->index;
218 	struct adm1025_data *data = dev_get_drvdata(dev);
219 	struct i2c_client *client = data->client;
220 	long val;
221 	int err;
222 
223 	err = kstrtol(buf, 10, &val);
224 	if (err)
225 		return err;
226 
227 	mutex_lock(&data->update_lock);
228 	data->in_min[index] = IN_TO_REG(val, in_scale[index]);
229 	i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MIN(index),
230 				  data->in_min[index]);
231 	mutex_unlock(&data->update_lock);
232 	return count;
233 }
234 
235 static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
236 			    const char *buf, size_t count)
237 {
238 	int index = to_sensor_dev_attr(attr)->index;
239 	struct adm1025_data *data = dev_get_drvdata(dev);
240 	struct i2c_client *client = data->client;
241 	long val;
242 	int err;
243 
244 	err = kstrtol(buf, 10, &val);
245 	if (err)
246 		return err;
247 
248 	mutex_lock(&data->update_lock);
249 	data->in_max[index] = IN_TO_REG(val, in_scale[index]);
250 	i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(index),
251 				  data->in_max[index]);
252 	mutex_unlock(&data->update_lock);
253 	return count;
254 }
255 
256 static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
257 static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
258 static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
259 static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
260 static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
261 static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
262 static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
263 static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
264 static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
265 static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
266 static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
267 static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
268 static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
269 static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
270 static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
271 static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
272 static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
273 static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
274 
275 static ssize_t temp_min_store(struct device *dev,
276 			      struct device_attribute *attr, const char *buf,
277 			      size_t count)
278 {
279 	int index = to_sensor_dev_attr(attr)->index;
280 	struct adm1025_data *data = dev_get_drvdata(dev);
281 	struct i2c_client *client = data->client;
282 	long val;
283 	int err;
284 
285 	err = kstrtol(buf, 10, &val);
286 	if (err)
287 		return err;
288 
289 	mutex_lock(&data->update_lock);
290 	data->temp_min[index] = TEMP_TO_REG(val);
291 	i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_LOW(index),
292 				  data->temp_min[index]);
293 	mutex_unlock(&data->update_lock);
294 	return count;
295 }
296 
297 static ssize_t temp_max_store(struct device *dev,
298 			      struct device_attribute *attr, const char *buf,
299 			      size_t count)
300 {
301 	int index = to_sensor_dev_attr(attr)->index;
302 	struct adm1025_data *data = dev_get_drvdata(dev);
303 	struct i2c_client *client = data->client;
304 	long val;
305 	int err;
306 
307 	err = kstrtol(buf, 10, &val);
308 	if (err)
309 		return err;
310 
311 	mutex_lock(&data->update_lock);
312 	data->temp_max[index] = TEMP_TO_REG(val);
313 	i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(index),
314 				  data->temp_max[index]);
315 	mutex_unlock(&data->update_lock);
316 	return count;
317 }
318 
319 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
320 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
321 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
322 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
323 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
324 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
325 
326 static ssize_t
327 alarms_show(struct device *dev, struct device_attribute *attr, char *buf)
328 {
329 	struct adm1025_data *data = adm1025_update_device(dev);
330 	return sprintf(buf, "%u\n", data->alarms);
331 }
332 static DEVICE_ATTR_RO(alarms);
333 
334 static ssize_t
335 alarm_show(struct device *dev, struct device_attribute *attr, char *buf)
336 {
337 	int bitnr = to_sensor_dev_attr(attr)->index;
338 	struct adm1025_data *data = adm1025_update_device(dev);
339 	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
340 }
341 static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
342 static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
343 static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
344 static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
345 static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
346 static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 9);
347 static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 5);
348 static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 4);
349 static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
350 
351 static ssize_t
352 cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
353 {
354 	struct adm1025_data *data = adm1025_update_device(dev);
355 	return sprintf(buf, "%u\n", vid_from_reg(data->vid, data->vrm));
356 }
357 static DEVICE_ATTR_RO(cpu0_vid);
358 
359 static ssize_t
360 vrm_show(struct device *dev, struct device_attribute *attr, char *buf)
361 {
362 	struct adm1025_data *data = dev_get_drvdata(dev);
363 	return sprintf(buf, "%u\n", data->vrm);
364 }
365 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
366 			 const char *buf, size_t count)
367 {
368 	struct adm1025_data *data = dev_get_drvdata(dev);
369 	unsigned long val;
370 	int err;
371 
372 	err = kstrtoul(buf, 10, &val);
373 	if (err)
374 		return err;
375 
376 	if (val > 255)
377 		return -EINVAL;
378 
379 	data->vrm = val;
380 	return count;
381 }
382 static DEVICE_ATTR_RW(vrm);
383 
384 /*
385  * Real code
386  */
387 
388 static struct attribute *adm1025_attributes[] = {
389 	&sensor_dev_attr_in0_input.dev_attr.attr,
390 	&sensor_dev_attr_in1_input.dev_attr.attr,
391 	&sensor_dev_attr_in2_input.dev_attr.attr,
392 	&sensor_dev_attr_in3_input.dev_attr.attr,
393 	&sensor_dev_attr_in5_input.dev_attr.attr,
394 	&sensor_dev_attr_in0_min.dev_attr.attr,
395 	&sensor_dev_attr_in1_min.dev_attr.attr,
396 	&sensor_dev_attr_in2_min.dev_attr.attr,
397 	&sensor_dev_attr_in3_min.dev_attr.attr,
398 	&sensor_dev_attr_in5_min.dev_attr.attr,
399 	&sensor_dev_attr_in0_max.dev_attr.attr,
400 	&sensor_dev_attr_in1_max.dev_attr.attr,
401 	&sensor_dev_attr_in2_max.dev_attr.attr,
402 	&sensor_dev_attr_in3_max.dev_attr.attr,
403 	&sensor_dev_attr_in5_max.dev_attr.attr,
404 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
405 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
406 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
407 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
408 	&sensor_dev_attr_in5_alarm.dev_attr.attr,
409 	&sensor_dev_attr_temp1_input.dev_attr.attr,
410 	&sensor_dev_attr_temp2_input.dev_attr.attr,
411 	&sensor_dev_attr_temp1_min.dev_attr.attr,
412 	&sensor_dev_attr_temp2_min.dev_attr.attr,
413 	&sensor_dev_attr_temp1_max.dev_attr.attr,
414 	&sensor_dev_attr_temp2_max.dev_attr.attr,
415 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
416 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
417 	&sensor_dev_attr_temp1_fault.dev_attr.attr,
418 	&dev_attr_alarms.attr,
419 	&dev_attr_cpu0_vid.attr,
420 	&dev_attr_vrm.attr,
421 	NULL
422 };
423 
424 static const struct attribute_group adm1025_group = {
425 	.attrs = adm1025_attributes,
426 };
427 
428 static struct attribute *adm1025_attributes_in4[] = {
429 	&sensor_dev_attr_in4_input.dev_attr.attr,
430 	&sensor_dev_attr_in4_min.dev_attr.attr,
431 	&sensor_dev_attr_in4_max.dev_attr.attr,
432 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
433 	NULL
434 };
435 
436 static const struct attribute_group adm1025_group_in4 = {
437 	.attrs = adm1025_attributes_in4,
438 };
439 
440 /* Return 0 if detection is successful, -ENODEV otherwise */
441 static int adm1025_detect(struct i2c_client *client,
442 			  struct i2c_board_info *info)
443 {
444 	struct i2c_adapter *adapter = client->adapter;
445 	const char *name;
446 	u8 man_id, chip_id;
447 
448 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
449 		return -ENODEV;
450 
451 	/* Check for unused bits */
452 	if ((i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG) & 0x80)
453 	 || (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS1) & 0xC0)
454 	 || (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS2) & 0xBC)) {
455 		dev_dbg(&adapter->dev, "ADM1025 detection failed at 0x%02x\n",
456 			client->addr);
457 		return -ENODEV;
458 	}
459 
460 	/* Identification */
461 	chip_id = i2c_smbus_read_byte_data(client, ADM1025_REG_CHIP_ID);
462 	if ((chip_id & 0xF0) != 0x20)
463 		return -ENODEV;
464 
465 	man_id = i2c_smbus_read_byte_data(client, ADM1025_REG_MAN_ID);
466 	if (man_id == 0x41)
467 		name = "adm1025";
468 	else if (man_id == 0xA1 && client->addr != 0x2E)
469 		name = "ne1619";
470 	else
471 		return -ENODEV;
472 
473 	strlcpy(info->type, name, I2C_NAME_SIZE);
474 
475 	return 0;
476 }
477 
478 static void adm1025_init_client(struct i2c_client *client)
479 {
480 	u8 reg;
481 	struct adm1025_data *data = i2c_get_clientdata(client);
482 	int i;
483 
484 	data->vrm = vid_which_vrm();
485 
486 	/*
487 	 * Set high limits
488 	 * Usually we avoid setting limits on driver init, but it happens
489 	 * that the ADM1025 comes with stupid default limits (all registers
490 	 * set to 0). In case the chip has not gone through any limit
491 	 * setting yet, we better set the high limits to the max so that
492 	 * no alarm triggers.
493 	 */
494 	for (i = 0; i < 6; i++) {
495 		reg = i2c_smbus_read_byte_data(client,
496 					       ADM1025_REG_IN_MAX(i));
497 		if (reg == 0)
498 			i2c_smbus_write_byte_data(client,
499 						  ADM1025_REG_IN_MAX(i),
500 						  0xFF);
501 	}
502 	for (i = 0; i < 2; i++) {
503 		reg = i2c_smbus_read_byte_data(client,
504 					       ADM1025_REG_TEMP_HIGH(i));
505 		if (reg == 0)
506 			i2c_smbus_write_byte_data(client,
507 						  ADM1025_REG_TEMP_HIGH(i),
508 						  0x7F);
509 	}
510 
511 	/*
512 	 * Start the conversions
513 	 */
514 	reg = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
515 	if (!(reg & 0x01))
516 		i2c_smbus_write_byte_data(client, ADM1025_REG_CONFIG,
517 					  (reg&0x7E)|0x01);
518 }
519 
520 static int adm1025_probe(struct i2c_client *client,
521 			 const struct i2c_device_id *id)
522 {
523 	struct device *dev = &client->dev;
524 	struct device *hwmon_dev;
525 	struct adm1025_data *data;
526 	u8 config;
527 
528 	data = devm_kzalloc(dev, sizeof(struct adm1025_data), GFP_KERNEL);
529 	if (!data)
530 		return -ENOMEM;
531 
532 	i2c_set_clientdata(client, data);
533 	data->client = client;
534 	mutex_init(&data->update_lock);
535 
536 	/* Initialize the ADM1025 chip */
537 	adm1025_init_client(client);
538 
539 	/* sysfs hooks */
540 	data->groups[0] = &adm1025_group;
541 	/* Pin 11 is either in4 (+12V) or VID4 */
542 	config = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
543 	if (!(config & 0x20))
544 		data->groups[1] = &adm1025_group_in4;
545 
546 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
547 							   data, data->groups);
548 	return PTR_ERR_OR_ZERO(hwmon_dev);
549 }
550 
551 static const struct i2c_device_id adm1025_id[] = {
552 	{ "adm1025", adm1025 },
553 	{ "ne1619", ne1619 },
554 	{ }
555 };
556 MODULE_DEVICE_TABLE(i2c, adm1025_id);
557 
558 static struct i2c_driver adm1025_driver = {
559 	.class		= I2C_CLASS_HWMON,
560 	.driver = {
561 		.name	= "adm1025",
562 	},
563 	.probe		= adm1025_probe,
564 	.id_table	= adm1025_id,
565 	.detect		= adm1025_detect,
566 	.address_list	= normal_i2c,
567 };
568 
569 module_i2c_driver(adm1025_driver);
570 
571 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
572 MODULE_DESCRIPTION("ADM1025 driver");
573 MODULE_LICENSE("GPL");
574