1 /* 2 * adm1025.c 3 * 4 * Copyright (C) 2000 Chen-Yuan Wu <gwu@esoft.com> 5 * Copyright (C) 2003-2004 Jean Delvare <khali@linux-fr.org> 6 * 7 * The ADM1025 is a sensor chip made by Analog Devices. It reports up to 6 8 * voltages (including its own power source) and up to two temperatures 9 * (its own plus up to one external one). Voltages are scaled internally 10 * (which is not the common way) with ratios such that the nominal value 11 * of each voltage correspond to a register value of 192 (which means a 12 * resolution of about 0.5% of the nominal value). Temperature values are 13 * reported with a 1 deg resolution and a 3 deg accuracy. Complete 14 * datasheet can be obtained from Analog's website at: 15 * http://www.analog.com/Analog_Root/productPage/productHome/0,2121,ADM1025,00.html 16 * 17 * This driver also supports the ADM1025A, which differs from the ADM1025 18 * only in that it has "open-drain VID inputs while the ADM1025 has 19 * on-chip 100k pull-ups on the VID inputs". It doesn't make any 20 * difference for us. 21 * 22 * This driver also supports the NE1619, a sensor chip made by Philips. 23 * That chip is similar to the ADM1025A, with a few differences. The only 24 * difference that matters to us is that the NE1619 has only two possible 25 * addresses while the ADM1025A has a third one. Complete datasheet can be 26 * obtained from Philips's website at: 27 * http://www.semiconductors.philips.com/pip/NE1619DS.html 28 * 29 * Since the ADM1025 was the first chipset supported by this driver, most 30 * comments will refer to this chipset, but are actually general and 31 * concern all supported chipsets, unless mentioned otherwise. 32 * 33 * This program is free software; you can redistribute it and/or modify 34 * it under the terms of the GNU General Public License as published by 35 * the Free Software Foundation; either version 2 of the License, or 36 * (at your option) any later version. 37 * 38 * This program is distributed in the hope that it will be useful, 39 * but WITHOUT ANY WARRANTY; without even the implied warranty of 40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 41 * GNU General Public License for more details. 42 * 43 * You should have received a copy of the GNU General Public License 44 * along with this program; if not, write to the Free Software 45 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 46 */ 47 48 #include <linux/module.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/jiffies.h> 52 #include <linux/i2c.h> 53 #include <linux/hwmon.h> 54 #include <linux/hwmon-vid.h> 55 #include <linux/err.h> 56 #include <linux/mutex.h> 57 58 /* 59 * Addresses to scan 60 * ADM1025 and ADM1025A have three possible addresses: 0x2c, 0x2d and 0x2e. 61 * NE1619 has two possible addresses: 0x2c and 0x2d. 62 */ 63 64 static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; 65 66 /* 67 * Insmod parameters 68 */ 69 70 I2C_CLIENT_INSMOD_2(adm1025, ne1619); 71 72 /* 73 * The ADM1025 registers 74 */ 75 76 #define ADM1025_REG_MAN_ID 0x3E 77 #define ADM1025_REG_CHIP_ID 0x3F 78 #define ADM1025_REG_CONFIG 0x40 79 #define ADM1025_REG_STATUS1 0x41 80 #define ADM1025_REG_STATUS2 0x42 81 #define ADM1025_REG_IN(nr) (0x20 + (nr)) 82 #define ADM1025_REG_IN_MAX(nr) (0x2B + (nr) * 2) 83 #define ADM1025_REG_IN_MIN(nr) (0x2C + (nr) * 2) 84 #define ADM1025_REG_TEMP(nr) (0x26 + (nr)) 85 #define ADM1025_REG_TEMP_HIGH(nr) (0x37 + (nr) * 2) 86 #define ADM1025_REG_TEMP_LOW(nr) (0x38 + (nr) * 2) 87 #define ADM1025_REG_VID 0x47 88 #define ADM1025_REG_VID4 0x49 89 90 /* 91 * Conversions and various macros 92 * The ADM1025 uses signed 8-bit values for temperatures. 93 */ 94 95 static int in_scale[6] = { 2500, 2250, 3300, 5000, 12000, 3300 }; 96 97 #define IN_FROM_REG(reg,scale) (((reg) * (scale) + 96) / 192) 98 #define IN_TO_REG(val,scale) ((val) <= 0 ? 0 : \ 99 (val) * 192 >= (scale) * 255 ? 255 : \ 100 ((val) * 192 + (scale)/2) / (scale)) 101 102 #define TEMP_FROM_REG(reg) ((reg) * 1000) 103 #define TEMP_TO_REG(val) ((val) <= -127500 ? -128 : \ 104 (val) >= 126500 ? 127 : \ 105 (((val) < 0 ? (val)-500 : (val)+500) / 1000)) 106 107 /* 108 * Functions declaration 109 */ 110 111 static int adm1025_attach_adapter(struct i2c_adapter *adapter); 112 static int adm1025_detect(struct i2c_adapter *adapter, int address, int kind); 113 static void adm1025_init_client(struct i2c_client *client); 114 static int adm1025_detach_client(struct i2c_client *client); 115 static struct adm1025_data *adm1025_update_device(struct device *dev); 116 117 /* 118 * Driver data (common to all clients) 119 */ 120 121 static struct i2c_driver adm1025_driver = { 122 .driver = { 123 .name = "adm1025", 124 }, 125 .id = I2C_DRIVERID_ADM1025, 126 .attach_adapter = adm1025_attach_adapter, 127 .detach_client = adm1025_detach_client, 128 }; 129 130 /* 131 * Client data (each client gets its own) 132 */ 133 134 struct adm1025_data { 135 struct i2c_client client; 136 struct class_device *class_dev; 137 struct mutex update_lock; 138 char valid; /* zero until following fields are valid */ 139 unsigned long last_updated; /* in jiffies */ 140 141 u8 in[6]; /* register value */ 142 u8 in_max[6]; /* register value */ 143 u8 in_min[6]; /* register value */ 144 s8 temp[2]; /* register value */ 145 s8 temp_min[2]; /* register value */ 146 s8 temp_max[2]; /* register value */ 147 u16 alarms; /* register values, combined */ 148 u8 vid; /* register values, combined */ 149 u8 vrm; 150 }; 151 152 /* 153 * Sysfs stuff 154 */ 155 156 #define show_in(offset) \ 157 static ssize_t show_in##offset(struct device *dev, struct device_attribute *attr, char *buf) \ 158 { \ 159 struct adm1025_data *data = adm1025_update_device(dev); \ 160 return sprintf(buf, "%u\n", IN_FROM_REG(data->in[offset], \ 161 in_scale[offset])); \ 162 } \ 163 static ssize_t show_in##offset##_min(struct device *dev, struct device_attribute *attr, char *buf) \ 164 { \ 165 struct adm1025_data *data = adm1025_update_device(dev); \ 166 return sprintf(buf, "%u\n", IN_FROM_REG(data->in_min[offset], \ 167 in_scale[offset])); \ 168 } \ 169 static ssize_t show_in##offset##_max(struct device *dev, struct device_attribute *attr, char *buf) \ 170 { \ 171 struct adm1025_data *data = adm1025_update_device(dev); \ 172 return sprintf(buf, "%u\n", IN_FROM_REG(data->in_max[offset], \ 173 in_scale[offset])); \ 174 } \ 175 static DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in##offset, NULL); 176 show_in(0); 177 show_in(1); 178 show_in(2); 179 show_in(3); 180 show_in(4); 181 show_in(5); 182 183 #define show_temp(offset) \ 184 static ssize_t show_temp##offset(struct device *dev, struct device_attribute *attr, char *buf) \ 185 { \ 186 struct adm1025_data *data = adm1025_update_device(dev); \ 187 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[offset-1])); \ 188 } \ 189 static ssize_t show_temp##offset##_min(struct device *dev, struct device_attribute *attr, char *buf) \ 190 { \ 191 struct adm1025_data *data = adm1025_update_device(dev); \ 192 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[offset-1])); \ 193 } \ 194 static ssize_t show_temp##offset##_max(struct device *dev, struct device_attribute *attr, char *buf) \ 195 { \ 196 struct adm1025_data *data = adm1025_update_device(dev); \ 197 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[offset-1])); \ 198 }\ 199 static DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp##offset, NULL); 200 show_temp(1); 201 show_temp(2); 202 203 #define set_in(offset) \ 204 static ssize_t set_in##offset##_min(struct device *dev, struct device_attribute *attr, const char *buf, \ 205 size_t count) \ 206 { \ 207 struct i2c_client *client = to_i2c_client(dev); \ 208 struct adm1025_data *data = i2c_get_clientdata(client); \ 209 long val = simple_strtol(buf, NULL, 10); \ 210 \ 211 mutex_lock(&data->update_lock); \ 212 data->in_min[offset] = IN_TO_REG(val, in_scale[offset]); \ 213 i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MIN(offset), \ 214 data->in_min[offset]); \ 215 mutex_unlock(&data->update_lock); \ 216 return count; \ 217 } \ 218 static ssize_t set_in##offset##_max(struct device *dev, struct device_attribute *attr, const char *buf, \ 219 size_t count) \ 220 { \ 221 struct i2c_client *client = to_i2c_client(dev); \ 222 struct adm1025_data *data = i2c_get_clientdata(client); \ 223 long val = simple_strtol(buf, NULL, 10); \ 224 \ 225 mutex_lock(&data->update_lock); \ 226 data->in_max[offset] = IN_TO_REG(val, in_scale[offset]); \ 227 i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(offset), \ 228 data->in_max[offset]); \ 229 mutex_unlock(&data->update_lock); \ 230 return count; \ 231 } \ 232 static DEVICE_ATTR(in##offset##_min, S_IWUSR | S_IRUGO, \ 233 show_in##offset##_min, set_in##offset##_min); \ 234 static DEVICE_ATTR(in##offset##_max, S_IWUSR | S_IRUGO, \ 235 show_in##offset##_max, set_in##offset##_max); 236 set_in(0); 237 set_in(1); 238 set_in(2); 239 set_in(3); 240 set_in(4); 241 set_in(5); 242 243 #define set_temp(offset) \ 244 static ssize_t set_temp##offset##_min(struct device *dev, struct device_attribute *attr, const char *buf, \ 245 size_t count) \ 246 { \ 247 struct i2c_client *client = to_i2c_client(dev); \ 248 struct adm1025_data *data = i2c_get_clientdata(client); \ 249 long val = simple_strtol(buf, NULL, 10); \ 250 \ 251 mutex_lock(&data->update_lock); \ 252 data->temp_min[offset-1] = TEMP_TO_REG(val); \ 253 i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_LOW(offset-1), \ 254 data->temp_min[offset-1]); \ 255 mutex_unlock(&data->update_lock); \ 256 return count; \ 257 } \ 258 static ssize_t set_temp##offset##_max(struct device *dev, struct device_attribute *attr, const char *buf, \ 259 size_t count) \ 260 { \ 261 struct i2c_client *client = to_i2c_client(dev); \ 262 struct adm1025_data *data = i2c_get_clientdata(client); \ 263 long val = simple_strtol(buf, NULL, 10); \ 264 \ 265 mutex_lock(&data->update_lock); \ 266 data->temp_max[offset-1] = TEMP_TO_REG(val); \ 267 i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(offset-1), \ 268 data->temp_max[offset-1]); \ 269 mutex_unlock(&data->update_lock); \ 270 return count; \ 271 } \ 272 static DEVICE_ATTR(temp##offset##_min, S_IWUSR | S_IRUGO, \ 273 show_temp##offset##_min, set_temp##offset##_min); \ 274 static DEVICE_ATTR(temp##offset##_max, S_IWUSR | S_IRUGO, \ 275 show_temp##offset##_max, set_temp##offset##_max); 276 set_temp(1); 277 set_temp(2); 278 279 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) 280 { 281 struct adm1025_data *data = adm1025_update_device(dev); 282 return sprintf(buf, "%u\n", data->alarms); 283 } 284 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); 285 286 static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct adm1025_data *data = adm1025_update_device(dev); 289 return sprintf(buf, "%u\n", vid_from_reg(data->vid, data->vrm)); 290 } 291 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL); 292 293 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, char *buf) 294 { 295 struct adm1025_data *data = adm1025_update_device(dev); 296 return sprintf(buf, "%u\n", data->vrm); 297 } 298 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 299 { 300 struct i2c_client *client = to_i2c_client(dev); 301 struct adm1025_data *data = i2c_get_clientdata(client); 302 data->vrm = simple_strtoul(buf, NULL, 10); 303 return count; 304 } 305 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm); 306 307 /* 308 * Real code 309 */ 310 311 static int adm1025_attach_adapter(struct i2c_adapter *adapter) 312 { 313 if (!(adapter->class & I2C_CLASS_HWMON)) 314 return 0; 315 return i2c_probe(adapter, &addr_data, adm1025_detect); 316 } 317 318 static struct attribute *adm1025_attributes[] = { 319 &dev_attr_in0_input.attr, 320 &dev_attr_in1_input.attr, 321 &dev_attr_in2_input.attr, 322 &dev_attr_in3_input.attr, 323 &dev_attr_in5_input.attr, 324 &dev_attr_in0_min.attr, 325 &dev_attr_in1_min.attr, 326 &dev_attr_in2_min.attr, 327 &dev_attr_in3_min.attr, 328 &dev_attr_in5_min.attr, 329 &dev_attr_in0_max.attr, 330 &dev_attr_in1_max.attr, 331 &dev_attr_in2_max.attr, 332 &dev_attr_in3_max.attr, 333 &dev_attr_in5_max.attr, 334 &dev_attr_temp1_input.attr, 335 &dev_attr_temp2_input.attr, 336 &dev_attr_temp1_min.attr, 337 &dev_attr_temp2_min.attr, 338 &dev_attr_temp1_max.attr, 339 &dev_attr_temp2_max.attr, 340 &dev_attr_alarms.attr, 341 &dev_attr_cpu0_vid.attr, 342 &dev_attr_vrm.attr, 343 NULL 344 }; 345 346 static const struct attribute_group adm1025_group = { 347 .attrs = adm1025_attributes, 348 }; 349 350 static struct attribute *adm1025_attributes_opt[] = { 351 &dev_attr_in4_input.attr, 352 &dev_attr_in4_min.attr, 353 &dev_attr_in4_max.attr, 354 NULL 355 }; 356 357 static const struct attribute_group adm1025_group_opt = { 358 .attrs = adm1025_attributes_opt, 359 }; 360 361 /* 362 * The following function does more than just detection. If detection 363 * succeeds, it also registers the new chip. 364 */ 365 static int adm1025_detect(struct i2c_adapter *adapter, int address, int kind) 366 { 367 struct i2c_client *new_client; 368 struct adm1025_data *data; 369 int err = 0; 370 const char *name = ""; 371 u8 config; 372 373 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 374 goto exit; 375 376 if (!(data = kzalloc(sizeof(struct adm1025_data), GFP_KERNEL))) { 377 err = -ENOMEM; 378 goto exit; 379 } 380 381 /* The common I2C client data is placed right before the 382 ADM1025-specific data. */ 383 new_client = &data->client; 384 i2c_set_clientdata(new_client, data); 385 new_client->addr = address; 386 new_client->adapter = adapter; 387 new_client->driver = &adm1025_driver; 388 new_client->flags = 0; 389 390 /* 391 * Now we do the remaining detection. A negative kind means that 392 * the driver was loaded with no force parameter (default), so we 393 * must both detect and identify the chip. A zero kind means that 394 * the driver was loaded with the force parameter, the detection 395 * step shall be skipped. A positive kind means that the driver 396 * was loaded with the force parameter and a given kind of chip is 397 * requested, so both the detection and the identification steps 398 * are skipped. 399 */ 400 config = i2c_smbus_read_byte_data(new_client, ADM1025_REG_CONFIG); 401 if (kind < 0) { /* detection */ 402 if ((config & 0x80) != 0x00 403 || (i2c_smbus_read_byte_data(new_client, 404 ADM1025_REG_STATUS1) & 0xC0) != 0x00 405 || (i2c_smbus_read_byte_data(new_client, 406 ADM1025_REG_STATUS2) & 0xBC) != 0x00) { 407 dev_dbg(&adapter->dev, 408 "ADM1025 detection failed at 0x%02x.\n", 409 address); 410 goto exit_free; 411 } 412 } 413 414 if (kind <= 0) { /* identification */ 415 u8 man_id, chip_id; 416 417 man_id = i2c_smbus_read_byte_data(new_client, 418 ADM1025_REG_MAN_ID); 419 chip_id = i2c_smbus_read_byte_data(new_client, 420 ADM1025_REG_CHIP_ID); 421 422 if (man_id == 0x41) { /* Analog Devices */ 423 if ((chip_id & 0xF0) == 0x20) { /* ADM1025/ADM1025A */ 424 kind = adm1025; 425 } 426 } else 427 if (man_id == 0xA1) { /* Philips */ 428 if (address != 0x2E 429 && (chip_id & 0xF0) == 0x20) { /* NE1619 */ 430 kind = ne1619; 431 } 432 } 433 434 if (kind <= 0) { /* identification failed */ 435 dev_info(&adapter->dev, 436 "Unsupported chip (man_id=0x%02X, " 437 "chip_id=0x%02X).\n", man_id, chip_id); 438 goto exit_free; 439 } 440 } 441 442 if (kind == adm1025) { 443 name = "adm1025"; 444 } else if (kind == ne1619) { 445 name = "ne1619"; 446 } 447 448 /* We can fill in the remaining client fields */ 449 strlcpy(new_client->name, name, I2C_NAME_SIZE); 450 data->valid = 0; 451 mutex_init(&data->update_lock); 452 453 /* Tell the I2C layer a new client has arrived */ 454 if ((err = i2c_attach_client(new_client))) 455 goto exit_free; 456 457 /* Initialize the ADM1025 chip */ 458 adm1025_init_client(new_client); 459 460 /* Register sysfs hooks */ 461 if ((err = sysfs_create_group(&new_client->dev.kobj, &adm1025_group))) 462 goto exit_detach; 463 464 /* Pin 11 is either in4 (+12V) or VID4 */ 465 if (!(config & 0x20)) { 466 if ((err = device_create_file(&new_client->dev, 467 &dev_attr_in4_input)) 468 || (err = device_create_file(&new_client->dev, 469 &dev_attr_in4_min)) 470 || (err = device_create_file(&new_client->dev, 471 &dev_attr_in4_max))) 472 goto exit_remove; 473 } 474 475 data->class_dev = hwmon_device_register(&new_client->dev); 476 if (IS_ERR(data->class_dev)) { 477 err = PTR_ERR(data->class_dev); 478 goto exit_remove; 479 } 480 481 return 0; 482 483 exit_remove: 484 sysfs_remove_group(&new_client->dev.kobj, &adm1025_group); 485 sysfs_remove_group(&new_client->dev.kobj, &adm1025_group_opt); 486 exit_detach: 487 i2c_detach_client(new_client); 488 exit_free: 489 kfree(data); 490 exit: 491 return err; 492 } 493 494 static void adm1025_init_client(struct i2c_client *client) 495 { 496 u8 reg; 497 struct adm1025_data *data = i2c_get_clientdata(client); 498 int i; 499 500 data->vrm = vid_which_vrm(); 501 502 /* 503 * Set high limits 504 * Usually we avoid setting limits on driver init, but it happens 505 * that the ADM1025 comes with stupid default limits (all registers 506 * set to 0). In case the chip has not gone through any limit 507 * setting yet, we better set the high limits to the max so that 508 * no alarm triggers. 509 */ 510 for (i=0; i<6; i++) { 511 reg = i2c_smbus_read_byte_data(client, 512 ADM1025_REG_IN_MAX(i)); 513 if (reg == 0) 514 i2c_smbus_write_byte_data(client, 515 ADM1025_REG_IN_MAX(i), 516 0xFF); 517 } 518 for (i=0; i<2; i++) { 519 reg = i2c_smbus_read_byte_data(client, 520 ADM1025_REG_TEMP_HIGH(i)); 521 if (reg == 0) 522 i2c_smbus_write_byte_data(client, 523 ADM1025_REG_TEMP_HIGH(i), 524 0x7F); 525 } 526 527 /* 528 * Start the conversions 529 */ 530 reg = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG); 531 if (!(reg & 0x01)) 532 i2c_smbus_write_byte_data(client, ADM1025_REG_CONFIG, 533 (reg&0x7E)|0x01); 534 } 535 536 static int adm1025_detach_client(struct i2c_client *client) 537 { 538 struct adm1025_data *data = i2c_get_clientdata(client); 539 int err; 540 541 hwmon_device_unregister(data->class_dev); 542 sysfs_remove_group(&client->dev.kobj, &adm1025_group); 543 sysfs_remove_group(&client->dev.kobj, &adm1025_group_opt); 544 545 if ((err = i2c_detach_client(client))) 546 return err; 547 548 kfree(data); 549 return 0; 550 } 551 552 static struct adm1025_data *adm1025_update_device(struct device *dev) 553 { 554 struct i2c_client *client = to_i2c_client(dev); 555 struct adm1025_data *data = i2c_get_clientdata(client); 556 557 mutex_lock(&data->update_lock); 558 559 if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) { 560 int i; 561 562 dev_dbg(&client->dev, "Updating data.\n"); 563 for (i=0; i<6; i++) { 564 data->in[i] = i2c_smbus_read_byte_data(client, 565 ADM1025_REG_IN(i)); 566 data->in_min[i] = i2c_smbus_read_byte_data(client, 567 ADM1025_REG_IN_MIN(i)); 568 data->in_max[i] = i2c_smbus_read_byte_data(client, 569 ADM1025_REG_IN_MAX(i)); 570 } 571 for (i=0; i<2; i++) { 572 data->temp[i] = i2c_smbus_read_byte_data(client, 573 ADM1025_REG_TEMP(i)); 574 data->temp_min[i] = i2c_smbus_read_byte_data(client, 575 ADM1025_REG_TEMP_LOW(i)); 576 data->temp_max[i] = i2c_smbus_read_byte_data(client, 577 ADM1025_REG_TEMP_HIGH(i)); 578 } 579 data->alarms = i2c_smbus_read_byte_data(client, 580 ADM1025_REG_STATUS1) 581 | (i2c_smbus_read_byte_data(client, 582 ADM1025_REG_STATUS2) << 8); 583 data->vid = (i2c_smbus_read_byte_data(client, 584 ADM1025_REG_VID) & 0x0f) 585 | ((i2c_smbus_read_byte_data(client, 586 ADM1025_REG_VID4) & 0x01) << 4); 587 588 data->last_updated = jiffies; 589 data->valid = 1; 590 } 591 592 mutex_unlock(&data->update_lock); 593 594 return data; 595 } 596 597 static int __init sensors_adm1025_init(void) 598 { 599 return i2c_add_driver(&adm1025_driver); 600 } 601 602 static void __exit sensors_adm1025_exit(void) 603 { 604 i2c_del_driver(&adm1025_driver); 605 } 606 607 MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>"); 608 MODULE_DESCRIPTION("ADM1025 driver"); 609 MODULE_LICENSE("GPL"); 610 611 module_init(sensors_adm1025_init); 612 module_exit(sensors_adm1025_exit); 613