xref: /openbmc/linux/drivers/hwmon/abituguru.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2     abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede@hhs.nl>
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18 /*
19     This driver supports the sensor part of the first and second revision of
20     the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
21     of lack of specs the CPU/RAM voltage & frequency control is not supported!
22 */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/sched.h>
28 #include <linux/init.h>
29 #include <linux/slab.h>
30 #include <linux/jiffies.h>
31 #include <linux/mutex.h>
32 #include <linux/err.h>
33 #include <linux/delay.h>
34 #include <linux/platform_device.h>
35 #include <linux/hwmon.h>
36 #include <linux/hwmon-sysfs.h>
37 #include <linux/dmi.h>
38 #include <linux/io.h>
39 
40 /* Banks */
41 #define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
42 #define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
43 #define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
44 #define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
45 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
46 #define ABIT_UGURU_MAX_BANK1_SENSORS		16
47 /* Warning if you increase one of the 2 MAX defines below to 10 or higher you
48    should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! */
49 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
50 #define ABIT_UGURU_MAX_BANK2_SENSORS		6
51 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
52 #define ABIT_UGURU_MAX_PWMS			5
53 /* uGuru sensor bank 1 flags */			     /* Alarm if: */
54 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
55 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
56 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
57 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
58 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
59 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
60 /* uGuru sensor bank 2 flags */			     /* Alarm if: */
61 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
62 /* uGuru sensor bank common flags */
63 #define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
64 #define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
65 /* uGuru fan PWM (speed control) flags */
66 #define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
67 /* Values used for conversion */
68 #define ABIT_UGURU_FAN_MAX			15300 /* RPM */
69 /* Bank1 sensor types */
70 #define ABIT_UGURU_IN_SENSOR			0
71 #define ABIT_UGURU_TEMP_SENSOR			1
72 #define ABIT_UGURU_NC				2
73 /* In many cases we need to wait for the uGuru to reach a certain status, most
74    of the time it will reach this status within 30 - 90 ISA reads, and thus we
75    can best busy wait. This define gives the total amount of reads to try. */
76 #define ABIT_UGURU_WAIT_TIMEOUT			125
77 /* However sometimes older versions of the uGuru seem to be distracted and they
78    do not respond for a long time. To handle this we sleep before each of the
79    last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. */
80 #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
81 /* Normally all expected status in abituguru_ready, are reported after the
82    first read, but sometimes not and we need to poll. */
83 #define ABIT_UGURU_READY_TIMEOUT		5
84 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
85 #define ABIT_UGURU_MAX_RETRIES			3
86 #define ABIT_UGURU_RETRY_DELAY			(HZ/5)
87 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
88 #define ABIT_UGURU_MAX_TIMEOUTS			2
89 /* utility macros */
90 #define ABIT_UGURU_NAME				"abituguru"
91 #define ABIT_UGURU_DEBUG(level, format, arg...)				\
92 	if (level <= verbose)						\
93 		printk(KERN_DEBUG ABIT_UGURU_NAME ": "	format , ## arg)
94 /* Macros to help calculate the sysfs_names array length */
95 /* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
96    in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 */
97 #define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
98 /* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
99    temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 */
100 #define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
101 /* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
102    fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 */
103 #define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
104 /* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
105    pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 */
106 #define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
107 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
108 #define ABITUGURU_SYSFS_NAMES_LENGTH	( \
109 	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
110 	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
111 	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
112 
113 /* All the macros below are named identical to the oguru and oguru2 programs
114    reverse engineered by Olle Sandberg, hence the names might not be 100%
115    logical. I could come up with better names, but I prefer keeping the names
116    identical so that this driver can be compared with his work more easily. */
117 /* Two i/o-ports are used by uGuru */
118 #define ABIT_UGURU_BASE				0x00E0
119 /* Used to tell uGuru what to read and to read the actual data */
120 #define ABIT_UGURU_CMD				0x00
121 /* Mostly used to check if uGuru is busy */
122 #define ABIT_UGURU_DATA				0x04
123 #define ABIT_UGURU_REGION_LENGTH		5
124 /* uGuru status' */
125 #define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
126 #define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
127 #define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
128 #define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
129 
130 /* Constants */
131 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
132 static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
133 /* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
134    correspond to 300-3000 RPM */
135 static const u8 abituguru_bank2_min_threshold = 5;
136 static const u8 abituguru_bank2_max_threshold = 50;
137 /* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
138    are temperature trip points. */
139 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
140 /* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
141    special case the minium allowed pwm% setting for this is 30% (77) on
142    some MB's this special case is handled in the code! */
143 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
144 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
145 
146 
147 /* Insmod parameters */
148 static int force;
149 module_param(force, bool, 0);
150 MODULE_PARM_DESC(force, "Set to one to force detection.");
151 static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
152 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
153 module_param_array(bank1_types, int, NULL, 0);
154 MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
155 	"   -1 autodetect\n"
156 	"    0 volt sensor\n"
157 	"    1 temp sensor\n"
158 	"    2 not connected");
159 static int fan_sensors;
160 module_param(fan_sensors, int, 0);
161 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
162 	"(0 = autodetect)");
163 static int pwms;
164 module_param(pwms, int, 0);
165 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
166 	"(0 = autodetect)");
167 
168 /* Default verbose is 2, since this driver is still in the testing phase */
169 static int verbose = 2;
170 module_param(verbose, int, 0644);
171 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
172 	"   0 normal output\n"
173 	"   1 + verbose error reporting\n"
174 	"   2 + sensors type probing info\n"
175 	"   3 + retryable error reporting");
176 
177 
178 /* For the Abit uGuru, we need to keep some data in memory.
179    The structure is dynamically allocated, at the same time when a new
180    abituguru device is allocated. */
181 struct abituguru_data {
182 	struct device *hwmon_dev;	/* hwmon registered device */
183 	struct mutex update_lock;	/* protect access to data and uGuru */
184 	unsigned long last_updated;	/* In jiffies */
185 	unsigned short addr;		/* uguru base address */
186 	char uguru_ready;		/* is the uguru in ready state? */
187 	unsigned char update_timeouts;	/* number of update timeouts since last
188 					   successful update */
189 
190 	/* The sysfs attr and their names are generated automatically, for bank1
191 	   we cannot use a predefined array because we don't know beforehand
192 	   of a sensor is a volt or a temp sensor, for bank2 and the pwms its
193 	   easier todo things the same way.  For in sensors we have 9 (temp 7)
194 	   sysfs entries per sensor, for bank2 and pwms 6. */
195 	struct sensor_device_attribute_2 sysfs_attr[
196 		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
197 		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
198 	/* Buffer to store the dynamically generated sysfs names */
199 	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
200 
201 	/* Bank 1 data */
202 	/* number of and addresses of [0] in, [1] temp sensors */
203 	u8 bank1_sensors[2];
204 	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
205 	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
206 	/* This array holds 3 entries per sensor for the bank 1 sensor settings
207 	   (flags, min, max for voltage / flags, warn, shutdown for temp). */
208 	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
209 	/* Maximum value for each sensor used for scaling in mV/millidegrees
210 	   Celsius. */
211 	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
212 
213 	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
214 	u8 bank2_sensors; /* actual number of bank2 sensors found */
215 	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
216 	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
217 
218 	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
219 	u8 alarms[3];
220 
221 	/* Fan PWM (speed control) 5 bytes per PWM */
222 	u8 pwms; /* actual number of pwms found */
223 	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
224 };
225 
226 static const char *never_happen = "This should never happen.";
227 static const char *report_this =
228 	"Please report this to the abituguru maintainer (see MAINTAINERS)";
229 
230 /* wait till the uguru is in the specified state */
231 static int abituguru_wait(struct abituguru_data *data, u8 state)
232 {
233 	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
234 
235 	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
236 		timeout--;
237 		if (timeout == 0)
238 			return -EBUSY;
239 		/* sleep a bit before our last few tries, see the comment on
240 		   this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. */
241 		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
242 			msleep(0);
243 	}
244 	return 0;
245 }
246 
247 /* Put the uguru in ready for input state */
248 static int abituguru_ready(struct abituguru_data *data)
249 {
250 	int timeout = ABIT_UGURU_READY_TIMEOUT;
251 
252 	if (data->uguru_ready)
253 		return 0;
254 
255 	/* Reset? / Prepare for next read/write cycle */
256 	outb(0x00, data->addr + ABIT_UGURU_DATA);
257 
258 	/* Wait till the uguru is ready */
259 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
260 		ABIT_UGURU_DEBUG(1,
261 			"timeout exceeded waiting for ready state\n");
262 		return -EIO;
263 	}
264 
265 	/* Cmd port MUST be read now and should contain 0xAC */
266 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
267 		timeout--;
268 		if (timeout == 0) {
269 			ABIT_UGURU_DEBUG(1,
270 			   "CMD reg does not hold 0xAC after ready command\n");
271 			return -EIO;
272 		}
273 		msleep(0);
274 	}
275 
276 	/* After this the ABIT_UGURU_DATA port should contain
277 	   ABIT_UGURU_STATUS_INPUT */
278 	timeout = ABIT_UGURU_READY_TIMEOUT;
279 	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
280 		timeout--;
281 		if (timeout == 0) {
282 			ABIT_UGURU_DEBUG(1,
283 				"state != more input after ready command\n");
284 			return -EIO;
285 		}
286 		msleep(0);
287 	}
288 
289 	data->uguru_ready = 1;
290 	return 0;
291 }
292 
293 /* Send the bank and then sensor address to the uGuru for the next read/write
294    cycle. This function gets called as the first part of a read/write by
295    abituguru_read and abituguru_write. This function should never be
296    called by any other function. */
297 static int abituguru_send_address(struct abituguru_data *data,
298 	u8 bank_addr, u8 sensor_addr, int retries)
299 {
300 	/* assume the caller does error handling itself if it has not requested
301 	   any retries, and thus be quiet. */
302 	int report_errors = retries;
303 
304 	for (;;) {
305 		/* Make sure the uguru is ready and then send the bank address,
306 		   after this the uguru is no longer "ready". */
307 		if (abituguru_ready(data) != 0)
308 			return -EIO;
309 		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
310 		data->uguru_ready = 0;
311 
312 		/* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
313 		   and send the sensor addr */
314 		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
315 			if (retries) {
316 				ABIT_UGURU_DEBUG(3, "timeout exceeded "
317 					"waiting for more input state, %d "
318 					"tries remaining\n", retries);
319 				set_current_state(TASK_UNINTERRUPTIBLE);
320 				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
321 				retries--;
322 				continue;
323 			}
324 			if (report_errors)
325 				ABIT_UGURU_DEBUG(1, "timeout exceeded "
326 					"waiting for more input state "
327 					"(bank: %d)\n", (int)bank_addr);
328 			return -EBUSY;
329 		}
330 		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
331 		return 0;
332 	}
333 }
334 
335 /* Read count bytes from sensor sensor_addr in bank bank_addr and store the
336    result in buf, retry the send address part of the read retries times. */
337 static int abituguru_read(struct abituguru_data *data,
338 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
339 {
340 	int i;
341 
342 	/* Send the address */
343 	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
344 	if (i)
345 		return i;
346 
347 	/* And read the data */
348 	for (i = 0; i < count; i++) {
349 		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
350 			ABIT_UGURU_DEBUG(retries ? 1 : 3,
351 				"timeout exceeded waiting for "
352 				"read state (bank: %d, sensor: %d)\n",
353 				(int)bank_addr, (int)sensor_addr);
354 			break;
355 		}
356 		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
357 	}
358 
359 	/* Last put the chip back in ready state */
360 	abituguru_ready(data);
361 
362 	return i;
363 }
364 
365 /* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
366    address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */
367 static int abituguru_write(struct abituguru_data *data,
368 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
369 {
370 	/* We use the ready timeout as we have to wait for 0xAC just like the
371 	   ready function */
372 	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
373 
374 	/* Send the address */
375 	i = abituguru_send_address(data, bank_addr, sensor_addr,
376 		ABIT_UGURU_MAX_RETRIES);
377 	if (i)
378 		return i;
379 
380 	/* And write the data */
381 	for (i = 0; i < count; i++) {
382 		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
383 			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
384 				"write state (bank: %d, sensor: %d)\n",
385 				(int)bank_addr, (int)sensor_addr);
386 			break;
387 		}
388 		outb(buf[i], data->addr + ABIT_UGURU_CMD);
389 	}
390 
391 	/* Now we need to wait till the chip is ready to be read again,
392 	   so that we can read 0xAC as confirmation that our write has
393 	   succeeded. */
394 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
395 		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
396 			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
397 			(int)sensor_addr);
398 		return -EIO;
399 	}
400 
401 	/* Cmd port MUST be read now and should contain 0xAC */
402 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
403 		timeout--;
404 		if (timeout == 0) {
405 			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
406 				"write (bank: %d, sensor: %d)\n",
407 				(int)bank_addr, (int)sensor_addr);
408 			return -EIO;
409 		}
410 		msleep(0);
411 	}
412 
413 	/* Last put the chip back in ready state */
414 	abituguru_ready(data);
415 
416 	return i;
417 }
418 
419 /* Detect sensor type. Temp and Volt sensors are enabled with
420    different masks and will ignore enable masks not meant for them.
421    This enables us to test what kind of sensor we're dealing with.
422    By setting the alarm thresholds so that we will always get an
423    alarm for sensor type X and then enabling the sensor as sensor type
424    X, if we then get an alarm it is a sensor of type X. */
425 static int __devinit
426 abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
427 				   u8 sensor_addr)
428 {
429 	u8 val, test_flag, buf[3];
430 	int i, ret = -ENODEV; /* error is the most common used retval :| */
431 
432 	/* If overriden by the user return the user selected type */
433 	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
434 			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
435 		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
436 			"%d because of \"bank1_types\" module param\n",
437 			bank1_types[sensor_addr], (int)sensor_addr);
438 		return bank1_types[sensor_addr];
439 	}
440 
441 	/* First read the sensor and the current settings */
442 	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
443 			1, ABIT_UGURU_MAX_RETRIES) != 1)
444 		return -ENODEV;
445 
446 	/* Test val is sane / usable for sensor type detection. */
447 	if ((val < 10u) || (val > 250u)) {
448 		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
449 			"unable to determine sensor type, skipping sensor\n",
450 			(int)sensor_addr, (int)val);
451 		/* assume no sensor is there for sensors for which we can't
452 		   determine the sensor type because their reading is too close
453 		   to their limits, this usually means no sensor is there. */
454 		return ABIT_UGURU_NC;
455 	}
456 
457 	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
458 	/* Volt sensor test, enable volt low alarm, set min value ridicously
459 	   high, or vica versa if the reading is very high. If its a volt
460 	   sensor this should always give us an alarm. */
461 	if (val <= 240u) {
462 		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
463 		buf[1] = 245;
464 		buf[2] = 250;
465 		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
466 	} else {
467 		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
468 		buf[1] = 5;
469 		buf[2] = 10;
470 		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
471 	}
472 
473 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
474 			buf, 3) != 3)
475 		goto abituguru_detect_bank1_sensor_type_exit;
476 	/* Now we need 20 ms to give the uguru time to read the sensors
477 	   and raise a voltage alarm */
478 	set_current_state(TASK_UNINTERRUPTIBLE);
479 	schedule_timeout(HZ/50);
480 	/* Check for alarm and check the alarm is a volt low alarm. */
481 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
482 			ABIT_UGURU_MAX_RETRIES) != 3)
483 		goto abituguru_detect_bank1_sensor_type_exit;
484 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
485 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
486 				sensor_addr, buf, 3,
487 				ABIT_UGURU_MAX_RETRIES) != 3)
488 			goto abituguru_detect_bank1_sensor_type_exit;
489 		if (buf[0] & test_flag) {
490 			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
491 			ret = ABIT_UGURU_IN_SENSOR;
492 			goto abituguru_detect_bank1_sensor_type_exit;
493 		} else
494 			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
495 				"sensor test, but volt range flag not set\n");
496 	} else
497 		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
498 			"test\n");
499 
500 	/* Temp sensor test, enable sensor as a temp sensor, set beep value
501 	   ridicously low (but not too low, otherwise uguru ignores it).
502 	   If its a temp sensor this should always give us an alarm. */
503 	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
504 	buf[1] = 5;
505 	buf[2] = 10;
506 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
507 			buf, 3) != 3)
508 		goto abituguru_detect_bank1_sensor_type_exit;
509 	/* Now we need 50 ms to give the uguru time to read the sensors
510 	   and raise a temp alarm */
511 	set_current_state(TASK_UNINTERRUPTIBLE);
512 	schedule_timeout(HZ/20);
513 	/* Check for alarm and check the alarm is a temp high alarm. */
514 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
515 			ABIT_UGURU_MAX_RETRIES) != 3)
516 		goto abituguru_detect_bank1_sensor_type_exit;
517 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
518 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
519 				sensor_addr, buf, 3,
520 				ABIT_UGURU_MAX_RETRIES) != 3)
521 			goto abituguru_detect_bank1_sensor_type_exit;
522 		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
523 			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
524 			ret = ABIT_UGURU_TEMP_SENSOR;
525 			goto abituguru_detect_bank1_sensor_type_exit;
526 		} else
527 			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
528 				"sensor test, but temp high flag not set\n");
529 	} else
530 		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
531 			"test\n");
532 
533 	ret = ABIT_UGURU_NC;
534 abituguru_detect_bank1_sensor_type_exit:
535 	/* Restore original settings, failing here is really BAD, it has been
536 	   reported that some BIOS-es hang when entering the uGuru menu with
537 	   invalid settings present in the uGuru, so we try this 3 times. */
538 	for (i = 0; i < 3; i++)
539 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
540 				sensor_addr, data->bank1_settings[sensor_addr],
541 				3) == 3)
542 			break;
543 	if (i == 3) {
544 		pr_err("Fatal error could not restore original settings. %s %s\n",
545 		       never_happen, report_this);
546 		return -ENODEV;
547 	}
548 	return ret;
549 }
550 
551 /* These functions try to find out how many sensors there are in bank2 and how
552    many pwms there are. The purpose of this is to make sure that we don't give
553    the user the possibility to change settings for non-existent sensors / pwm.
554    The uGuru will happily read / write whatever memory happens to be after the
555    memory storing the PWM settings when reading/writing to a PWM which is not
556    there. Notice even if we detect a PWM which doesn't exist we normally won't
557    write to it, unless the user tries to change the settings.
558 
559    Although the uGuru allows reading (settings) from non existing bank2
560    sensors, my version of the uGuru does seem to stop writing to them, the
561    write function above aborts in this case with:
562    "CMD reg does not hold 0xAC after write"
563 
564    Notice these 2 tests are non destructive iow read-only tests, otherwise
565    they would defeat their purpose. Although for the bank2_sensors detection a
566    read/write test would be feasible because of the reaction above, I've
567    however opted to stay on the safe side. */
568 static void __devinit
569 abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
570 {
571 	int i;
572 
573 	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
574 		data->bank2_sensors = fan_sensors;
575 		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
576 			"\"fan_sensors\" module param\n",
577 			(int)data->bank2_sensors);
578 		return;
579 	}
580 
581 	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
582 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
583 		/* 0x89 are the known used bits:
584 		   -0x80 enable shutdown
585 		   -0x08 enable beep
586 		   -0x01 enable alarm
587 		   All other bits should be 0, but on some motherboards
588 		   0x40 (bit 6) is also high for some of the fans?? */
589 		if (data->bank2_settings[i][0] & ~0xC9) {
590 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
591 				"to be a fan sensor: settings[0] = %02X\n",
592 				i, (unsigned int)data->bank2_settings[i][0]);
593 			break;
594 		}
595 
596 		/* check if the threshold is within the allowed range */
597 		if (data->bank2_settings[i][1] <
598 				abituguru_bank2_min_threshold) {
599 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
600 				"to be a fan sensor: the threshold (%d) is "
601 				"below the minimum (%d)\n", i,
602 				(int)data->bank2_settings[i][1],
603 				(int)abituguru_bank2_min_threshold);
604 			break;
605 		}
606 		if (data->bank2_settings[i][1] >
607 				abituguru_bank2_max_threshold) {
608 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
609 				"to be a fan sensor: the threshold (%d) is "
610 				"above the maximum (%d)\n", i,
611 				(int)data->bank2_settings[i][1],
612 				(int)abituguru_bank2_max_threshold);
613 			break;
614 		}
615 	}
616 
617 	data->bank2_sensors = i;
618 	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
619 		(int)data->bank2_sensors);
620 }
621 
622 static void __devinit
623 abituguru_detect_no_pwms(struct abituguru_data *data)
624 {
625 	int i, j;
626 
627 	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
628 		data->pwms = pwms;
629 		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
630 			"\"pwms\" module param\n", (int)data->pwms);
631 		return;
632 	}
633 
634 	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
635 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
636 		/* 0x80 is the enable bit and the low
637 		   nibble is which temp sensor to use,
638 		   the other bits should be 0 */
639 		if (data->pwm_settings[i][0] & ~0x8F) {
640 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
641 				"to be a pwm channel: settings[0] = %02X\n",
642 				i, (unsigned int)data->pwm_settings[i][0]);
643 			break;
644 		}
645 
646 		/* the low nibble must correspond to one of the temp sensors
647 		   we've found */
648 		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
649 				j++) {
650 			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
651 					(data->pwm_settings[i][0] & 0x0F))
652 				break;
653 		}
654 		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
655 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
656 				"to be a pwm channel: %d is not a valid temp "
657 				"sensor address\n", i,
658 				data->pwm_settings[i][0] & 0x0F);
659 			break;
660 		}
661 
662 		/* check if all other settings are within the allowed range */
663 		for (j = 1; j < 5; j++) {
664 			u8 min;
665 			/* special case pwm1 min pwm% */
666 			if ((i == 0) && ((j == 1) || (j == 2)))
667 				min = 77;
668 			else
669 				min = abituguru_pwm_min[j];
670 			if (data->pwm_settings[i][j] < min) {
671 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
672 					"not seem to be a pwm channel: "
673 					"setting %d (%d) is below the minimum "
674 					"value (%d)\n", i, j,
675 					(int)data->pwm_settings[i][j],
676 					(int)min);
677 				goto abituguru_detect_no_pwms_exit;
678 			}
679 			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
680 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
681 					"not seem to be a pwm channel: "
682 					"setting %d (%d) is above the maximum "
683 					"value (%d)\n", i, j,
684 					(int)data->pwm_settings[i][j],
685 					(int)abituguru_pwm_max[j]);
686 				goto abituguru_detect_no_pwms_exit;
687 			}
688 		}
689 
690 		/* check that min temp < max temp and min pwm < max pwm */
691 		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
692 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
693 				"to be a pwm channel: min pwm (%d) >= "
694 				"max pwm (%d)\n", i,
695 				(int)data->pwm_settings[i][1],
696 				(int)data->pwm_settings[i][2]);
697 			break;
698 		}
699 		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
700 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
701 				"to be a pwm channel: min temp (%d) >= "
702 				"max temp (%d)\n", i,
703 				(int)data->pwm_settings[i][3],
704 				(int)data->pwm_settings[i][4]);
705 			break;
706 		}
707 	}
708 
709 abituguru_detect_no_pwms_exit:
710 	data->pwms = i;
711 	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
712 }
713 
714 /* Following are the sysfs callback functions. These functions expect:
715    sensor_device_attribute_2->index:   sensor address/offset in the bank
716    sensor_device_attribute_2->nr:      register offset, bitmask or NA. */
717 static struct abituguru_data *abituguru_update_device(struct device *dev);
718 
719 static ssize_t show_bank1_value(struct device *dev,
720 	struct device_attribute *devattr, char *buf)
721 {
722 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
723 	struct abituguru_data *data = abituguru_update_device(dev);
724 	if (!data)
725 		return -EIO;
726 	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
727 		data->bank1_max_value[attr->index] + 128) / 255);
728 }
729 
730 static ssize_t show_bank1_setting(struct device *dev,
731 	struct device_attribute *devattr, char *buf)
732 {
733 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
734 	struct abituguru_data *data = dev_get_drvdata(dev);
735 	return sprintf(buf, "%d\n",
736 		(data->bank1_settings[attr->index][attr->nr] *
737 		data->bank1_max_value[attr->index] + 128) / 255);
738 }
739 
740 static ssize_t show_bank2_value(struct device *dev,
741 	struct device_attribute *devattr, char *buf)
742 {
743 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
744 	struct abituguru_data *data = abituguru_update_device(dev);
745 	if (!data)
746 		return -EIO;
747 	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
748 		ABIT_UGURU_FAN_MAX + 128) / 255);
749 }
750 
751 static ssize_t show_bank2_setting(struct device *dev,
752 	struct device_attribute *devattr, char *buf)
753 {
754 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
755 	struct abituguru_data *data = dev_get_drvdata(dev);
756 	return sprintf(buf, "%d\n",
757 		(data->bank2_settings[attr->index][attr->nr] *
758 		ABIT_UGURU_FAN_MAX + 128) / 255);
759 }
760 
761 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
762 	*devattr, const char *buf, size_t count)
763 {
764 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
765 	struct abituguru_data *data = dev_get_drvdata(dev);
766 	u8 val = (simple_strtoul(buf, NULL, 10) * 255 +
767 		data->bank1_max_value[attr->index]/2) /
768 		data->bank1_max_value[attr->index];
769 	ssize_t ret = count;
770 
771 	mutex_lock(&data->update_lock);
772 	if (data->bank1_settings[attr->index][attr->nr] != val) {
773 		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
774 		data->bank1_settings[attr->index][attr->nr] = val;
775 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
776 				attr->index, data->bank1_settings[attr->index],
777 				3) <= attr->nr) {
778 			data->bank1_settings[attr->index][attr->nr] = orig_val;
779 			ret = -EIO;
780 		}
781 	}
782 	mutex_unlock(&data->update_lock);
783 	return ret;
784 }
785 
786 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
787 	*devattr, const char *buf, size_t count)
788 {
789 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
790 	struct abituguru_data *data = dev_get_drvdata(dev);
791 	u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) /
792 		ABIT_UGURU_FAN_MAX;
793 	ssize_t ret = count;
794 
795 	/* this check can be done before taking the lock */
796 	if ((val < abituguru_bank2_min_threshold) ||
797 			(val > abituguru_bank2_max_threshold))
798 		return -EINVAL;
799 
800 	mutex_lock(&data->update_lock);
801 	if (data->bank2_settings[attr->index][attr->nr] != val) {
802 		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
803 		data->bank2_settings[attr->index][attr->nr] = val;
804 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
805 				attr->index, data->bank2_settings[attr->index],
806 				2) <= attr->nr) {
807 			data->bank2_settings[attr->index][attr->nr] = orig_val;
808 			ret = -EIO;
809 		}
810 	}
811 	mutex_unlock(&data->update_lock);
812 	return ret;
813 }
814 
815 static ssize_t show_bank1_alarm(struct device *dev,
816 	struct device_attribute *devattr, char *buf)
817 {
818 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
819 	struct abituguru_data *data = abituguru_update_device(dev);
820 	if (!data)
821 		return -EIO;
822 	/* See if the alarm bit for this sensor is set, and if the
823 	   alarm matches the type of alarm we're looking for (for volt
824 	   it can be either low or high). The type is stored in a few
825 	   readonly bits in the settings part of the relevant sensor.
826 	   The bitmask of the type is passed to us in attr->nr. */
827 	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
828 			(data->bank1_settings[attr->index][0] & attr->nr))
829 		return sprintf(buf, "1\n");
830 	else
831 		return sprintf(buf, "0\n");
832 }
833 
834 static ssize_t show_bank2_alarm(struct device *dev,
835 	struct device_attribute *devattr, char *buf)
836 {
837 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
838 	struct abituguru_data *data = abituguru_update_device(dev);
839 	if (!data)
840 		return -EIO;
841 	if (data->alarms[2] & (0x01 << attr->index))
842 		return sprintf(buf, "1\n");
843 	else
844 		return sprintf(buf, "0\n");
845 }
846 
847 static ssize_t show_bank1_mask(struct device *dev,
848 	struct device_attribute *devattr, char *buf)
849 {
850 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
851 	struct abituguru_data *data = dev_get_drvdata(dev);
852 	if (data->bank1_settings[attr->index][0] & attr->nr)
853 		return sprintf(buf, "1\n");
854 	else
855 		return sprintf(buf, "0\n");
856 }
857 
858 static ssize_t show_bank2_mask(struct device *dev,
859 	struct device_attribute *devattr, char *buf)
860 {
861 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
862 	struct abituguru_data *data = dev_get_drvdata(dev);
863 	if (data->bank2_settings[attr->index][0] & attr->nr)
864 		return sprintf(buf, "1\n");
865 	else
866 		return sprintf(buf, "0\n");
867 }
868 
869 static ssize_t store_bank1_mask(struct device *dev,
870 	struct device_attribute *devattr, const char *buf, size_t count)
871 {
872 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
873 	struct abituguru_data *data = dev_get_drvdata(dev);
874 	int mask = simple_strtoul(buf, NULL, 10);
875 	ssize_t ret = count;
876 	u8 orig_val;
877 
878 	mutex_lock(&data->update_lock);
879 	orig_val = data->bank1_settings[attr->index][0];
880 
881 	if (mask)
882 		data->bank1_settings[attr->index][0] |= attr->nr;
883 	else
884 		data->bank1_settings[attr->index][0] &= ~attr->nr;
885 
886 	if ((data->bank1_settings[attr->index][0] != orig_val) &&
887 			(abituguru_write(data,
888 			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
889 			data->bank1_settings[attr->index], 3) < 1)) {
890 		data->bank1_settings[attr->index][0] = orig_val;
891 		ret = -EIO;
892 	}
893 	mutex_unlock(&data->update_lock);
894 	return ret;
895 }
896 
897 static ssize_t store_bank2_mask(struct device *dev,
898 	struct device_attribute *devattr, const char *buf, size_t count)
899 {
900 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
901 	struct abituguru_data *data = dev_get_drvdata(dev);
902 	int mask = simple_strtoul(buf, NULL, 10);
903 	ssize_t ret = count;
904 	u8 orig_val;
905 
906 	mutex_lock(&data->update_lock);
907 	orig_val = data->bank2_settings[attr->index][0];
908 
909 	if (mask)
910 		data->bank2_settings[attr->index][0] |= attr->nr;
911 	else
912 		data->bank2_settings[attr->index][0] &= ~attr->nr;
913 
914 	if ((data->bank2_settings[attr->index][0] != orig_val) &&
915 			(abituguru_write(data,
916 			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
917 			data->bank2_settings[attr->index], 2) < 1)) {
918 		data->bank2_settings[attr->index][0] = orig_val;
919 		ret = -EIO;
920 	}
921 	mutex_unlock(&data->update_lock);
922 	return ret;
923 }
924 
925 /* Fan PWM (speed control) */
926 static ssize_t show_pwm_setting(struct device *dev,
927 	struct device_attribute *devattr, char *buf)
928 {
929 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
930 	struct abituguru_data *data = dev_get_drvdata(dev);
931 	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
932 		abituguru_pwm_settings_multiplier[attr->nr]);
933 }
934 
935 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
936 	*devattr, const char *buf, size_t count)
937 {
938 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
939 	struct abituguru_data *data = dev_get_drvdata(dev);
940 	u8 min, val = (simple_strtoul(buf, NULL, 10) +
941 		abituguru_pwm_settings_multiplier[attr->nr]/2) /
942 		abituguru_pwm_settings_multiplier[attr->nr];
943 	ssize_t ret = count;
944 
945 	/* special case pwm1 min pwm% */
946 	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
947 		min = 77;
948 	else
949 		min = abituguru_pwm_min[attr->nr];
950 
951 	/* this check can be done before taking the lock */
952 	if ((val < min) || (val > abituguru_pwm_max[attr->nr]))
953 		return -EINVAL;
954 
955 	mutex_lock(&data->update_lock);
956 	/* this check needs to be done after taking the lock */
957 	if ((attr->nr & 1) &&
958 			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
959 		ret = -EINVAL;
960 	else if (!(attr->nr & 1) &&
961 			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
962 		ret = -EINVAL;
963 	else if (data->pwm_settings[attr->index][attr->nr] != val) {
964 		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
965 		data->pwm_settings[attr->index][attr->nr] = val;
966 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
967 				attr->index, data->pwm_settings[attr->index],
968 				5) <= attr->nr) {
969 			data->pwm_settings[attr->index][attr->nr] =
970 				orig_val;
971 			ret = -EIO;
972 		}
973 	}
974 	mutex_unlock(&data->update_lock);
975 	return ret;
976 }
977 
978 static ssize_t show_pwm_sensor(struct device *dev,
979 	struct device_attribute *devattr, char *buf)
980 {
981 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
982 	struct abituguru_data *data = dev_get_drvdata(dev);
983 	int i;
984 	/* We need to walk to the temp sensor addresses to find what
985 	   the userspace id of the configured temp sensor is. */
986 	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
987 		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
988 				(data->pwm_settings[attr->index][0] & 0x0F))
989 			return sprintf(buf, "%d\n", i+1);
990 
991 	return -ENXIO;
992 }
993 
994 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
995 	*devattr, const char *buf, size_t count)
996 {
997 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
998 	struct abituguru_data *data = dev_get_drvdata(dev);
999 	unsigned long val = simple_strtoul(buf, NULL, 10) - 1;
1000 	ssize_t ret = count;
1001 
1002 	mutex_lock(&data->update_lock);
1003 	if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
1004 		u8 orig_val = data->pwm_settings[attr->index][0];
1005 		u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1006 		data->pwm_settings[attr->index][0] &= 0xF0;
1007 		data->pwm_settings[attr->index][0] |= address;
1008 		if (data->pwm_settings[attr->index][0] != orig_val) {
1009 			if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1010 					attr->index,
1011 					data->pwm_settings[attr->index],
1012 					5) < 1) {
1013 				data->pwm_settings[attr->index][0] = orig_val;
1014 				ret = -EIO;
1015 			}
1016 		}
1017 	}
1018 	else
1019 		ret = -EINVAL;
1020 	mutex_unlock(&data->update_lock);
1021 	return ret;
1022 }
1023 
1024 static ssize_t show_pwm_enable(struct device *dev,
1025 	struct device_attribute *devattr, char *buf)
1026 {
1027 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1028 	struct abituguru_data *data = dev_get_drvdata(dev);
1029 	int res = 0;
1030 	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1031 		res = 2;
1032 	return sprintf(buf, "%d\n", res);
1033 }
1034 
1035 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1036 	*devattr, const char *buf, size_t count)
1037 {
1038 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1039 	struct abituguru_data *data = dev_get_drvdata(dev);
1040 	u8 orig_val, user_val = simple_strtoul(buf, NULL, 10);
1041 	ssize_t ret = count;
1042 
1043 	mutex_lock(&data->update_lock);
1044 	orig_val = data->pwm_settings[attr->index][0];
1045 	switch (user_val) {
1046 		case 0:
1047 			data->pwm_settings[attr->index][0] &=
1048 				~ABIT_UGURU_FAN_PWM_ENABLE;
1049 			break;
1050 		case 2:
1051 			data->pwm_settings[attr->index][0] |=
1052 				ABIT_UGURU_FAN_PWM_ENABLE;
1053 			break;
1054 		default:
1055 			ret = -EINVAL;
1056 	}
1057 	if ((data->pwm_settings[attr->index][0] != orig_val) &&
1058 			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1059 			attr->index, data->pwm_settings[attr->index],
1060 			5) < 1)) {
1061 		data->pwm_settings[attr->index][0] = orig_val;
1062 		ret = -EIO;
1063 	}
1064 	mutex_unlock(&data->update_lock);
1065 	return ret;
1066 }
1067 
1068 static ssize_t show_name(struct device *dev,
1069 	struct device_attribute *devattr, char *buf)
1070 {
1071 	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1072 }
1073 
1074 /* Sysfs attr templates, the real entries are generated automatically. */
1075 static const
1076 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1077 	{
1078 	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1079 	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1080 		store_bank1_setting, 1, 0),
1081 	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1082 		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1083 	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1084 		store_bank1_setting, 2, 0),
1085 	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1086 		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1087 	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1088 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1089 	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1090 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1091 	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1092 		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1093 	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1094 		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1095 	}, {
1096 	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1097 	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1098 		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1099 	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1100 		store_bank1_setting, 1, 0),
1101 	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1102 		store_bank1_setting, 2, 0),
1103 	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1104 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1105 	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1106 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1107 	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1108 		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1109 	}
1110 };
1111 
1112 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1113 	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1114 	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1115 	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1116 		store_bank2_setting, 1, 0),
1117 	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1118 		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1119 	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1120 		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1121 	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1122 		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1123 };
1124 
1125 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1126 	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1127 		store_pwm_enable, 0, 0),
1128 	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1129 		store_pwm_sensor, 0, 0),
1130 	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1131 		store_pwm_setting, 1, 0),
1132 	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1133 		store_pwm_setting, 2, 0),
1134 	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1135 		store_pwm_setting, 3, 0),
1136 	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1137 		store_pwm_setting, 4, 0),
1138 };
1139 
1140 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1141 	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1142 };
1143 
1144 static int __devinit abituguru_probe(struct platform_device *pdev)
1145 {
1146 	struct abituguru_data *data;
1147 	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1148 	char *sysfs_filename;
1149 
1150 	/* El weirdo probe order, to keep the sysfs order identical to the
1151 	   BIOS and window-appliction listing order. */
1152 	const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1153 		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1154 		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1155 
1156 	if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL)))
1157 		return -ENOMEM;
1158 
1159 	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1160 	mutex_init(&data->update_lock);
1161 	platform_set_drvdata(pdev, data);
1162 
1163 	/* See if the uGuru is ready */
1164 	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1165 		data->uguru_ready = 1;
1166 
1167 	/* Completely read the uGuru this has 2 purposes:
1168 	   - testread / see if one really is there.
1169 	   - make an in memory copy of all the uguru settings for future use. */
1170 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1171 			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1172 		goto abituguru_probe_error;
1173 
1174 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1175 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1176 				&data->bank1_value[i], 1,
1177 				ABIT_UGURU_MAX_RETRIES) != 1)
1178 			goto abituguru_probe_error;
1179 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1180 				data->bank1_settings[i], 3,
1181 				ABIT_UGURU_MAX_RETRIES) != 3)
1182 			goto abituguru_probe_error;
1183 	}
1184 	/* Note: We don't know how many bank2 sensors / pwms there really are,
1185 	   but in order to "detect" this we need to read the maximum amount
1186 	   anyways. If we read sensors/pwms not there we'll just read crap
1187 	   this can't hurt. We need the detection because we don't want
1188 	   unwanted writes, which will hurt! */
1189 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1190 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1191 				&data->bank2_value[i], 1,
1192 				ABIT_UGURU_MAX_RETRIES) != 1)
1193 			goto abituguru_probe_error;
1194 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1195 				data->bank2_settings[i], 2,
1196 				ABIT_UGURU_MAX_RETRIES) != 2)
1197 			goto abituguru_probe_error;
1198 	}
1199 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1200 		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1201 				data->pwm_settings[i], 5,
1202 				ABIT_UGURU_MAX_RETRIES) != 5)
1203 			goto abituguru_probe_error;
1204 	}
1205 	data->last_updated = jiffies;
1206 
1207 	/* Detect sensor types and fill the sysfs attr for bank1 */
1208 	sysfs_attr_i = 0;
1209 	sysfs_filename = data->sysfs_names;
1210 	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1211 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1212 		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1213 		if (res < 0)
1214 			goto abituguru_probe_error;
1215 		if (res == ABIT_UGURU_NC)
1216 			continue;
1217 
1218 		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1219 		for (j = 0; j < (res ? 7 : 9); j++) {
1220 			used = snprintf(sysfs_filename, sysfs_names_free,
1221 				abituguru_sysfs_bank1_templ[res][j].dev_attr.
1222 				attr.name, data->bank1_sensors[res] + res)
1223 				+ 1;
1224 			data->sysfs_attr[sysfs_attr_i] =
1225 				abituguru_sysfs_bank1_templ[res][j];
1226 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1227 				sysfs_filename;
1228 			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1229 			sysfs_filename += used;
1230 			sysfs_names_free -= used;
1231 			sysfs_attr_i++;
1232 		}
1233 		data->bank1_max_value[probe_order[i]] =
1234 			abituguru_bank1_max_value[res];
1235 		data->bank1_address[res][data->bank1_sensors[res]] =
1236 			probe_order[i];
1237 		data->bank1_sensors[res]++;
1238 	}
1239 	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1240 	abituguru_detect_no_bank2_sensors(data);
1241 	for (i = 0; i < data->bank2_sensors; i++) {
1242 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1243 			used = snprintf(sysfs_filename, sysfs_names_free,
1244 				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1245 				i + 1) + 1;
1246 			data->sysfs_attr[sysfs_attr_i] =
1247 				abituguru_sysfs_fan_templ[j];
1248 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1249 				sysfs_filename;
1250 			data->sysfs_attr[sysfs_attr_i].index = i;
1251 			sysfs_filename += used;
1252 			sysfs_names_free -= used;
1253 			sysfs_attr_i++;
1254 		}
1255 	}
1256 	/* Detect number of sensors and fill the sysfs attr for pwms */
1257 	abituguru_detect_no_pwms(data);
1258 	for (i = 0; i < data->pwms; i++) {
1259 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1260 			used = snprintf(sysfs_filename, sysfs_names_free,
1261 				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1262 				i + 1) + 1;
1263 			data->sysfs_attr[sysfs_attr_i] =
1264 				abituguru_sysfs_pwm_templ[j];
1265 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1266 				sysfs_filename;
1267 			data->sysfs_attr[sysfs_attr_i].index = i;
1268 			sysfs_filename += used;
1269 			sysfs_names_free -= used;
1270 			sysfs_attr_i++;
1271 		}
1272 	}
1273 	/* Fail safe check, this should never happen! */
1274 	if (sysfs_names_free < 0) {
1275 		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1276 		       never_happen, report_this);
1277 		res = -ENAMETOOLONG;
1278 		goto abituguru_probe_error;
1279 	}
1280 	pr_info("found Abit uGuru\n");
1281 
1282 	/* Register sysfs hooks */
1283 	for (i = 0; i < sysfs_attr_i; i++)
1284 		if (device_create_file(&pdev->dev,
1285 				&data->sysfs_attr[i].dev_attr))
1286 			goto abituguru_probe_error;
1287 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1288 		if (device_create_file(&pdev->dev,
1289 				&abituguru_sysfs_attr[i].dev_attr))
1290 			goto abituguru_probe_error;
1291 
1292 	data->hwmon_dev = hwmon_device_register(&pdev->dev);
1293 	if (!IS_ERR(data->hwmon_dev))
1294 		return 0; /* success */
1295 
1296 	res = PTR_ERR(data->hwmon_dev);
1297 abituguru_probe_error:
1298 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1299 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1300 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1301 		device_remove_file(&pdev->dev,
1302 			&abituguru_sysfs_attr[i].dev_attr);
1303 	platform_set_drvdata(pdev, NULL);
1304 	kfree(data);
1305 	return res;
1306 }
1307 
1308 static int __devexit abituguru_remove(struct platform_device *pdev)
1309 {
1310 	int i;
1311 	struct abituguru_data *data = platform_get_drvdata(pdev);
1312 
1313 	hwmon_device_unregister(data->hwmon_dev);
1314 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1315 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1316 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1317 		device_remove_file(&pdev->dev,
1318 			&abituguru_sysfs_attr[i].dev_attr);
1319 	platform_set_drvdata(pdev, NULL);
1320 	kfree(data);
1321 
1322 	return 0;
1323 }
1324 
1325 static struct abituguru_data *abituguru_update_device(struct device *dev)
1326 {
1327 	int i, err;
1328 	struct abituguru_data *data = dev_get_drvdata(dev);
1329 	/* fake a complete successful read if no update necessary. */
1330 	char success = 1;
1331 
1332 	mutex_lock(&data->update_lock);
1333 	if (time_after(jiffies, data->last_updated + HZ)) {
1334 		success = 0;
1335 		if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1336 				data->alarms, 3, 0)) != 3)
1337 			goto LEAVE_UPDATE;
1338 		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1339 			if ((err = abituguru_read(data,
1340 					ABIT_UGURU_SENSOR_BANK1, i,
1341 					&data->bank1_value[i], 1, 0)) != 1)
1342 				goto LEAVE_UPDATE;
1343 			if ((err = abituguru_read(data,
1344 					ABIT_UGURU_SENSOR_BANK1 + 1, i,
1345 					data->bank1_settings[i], 3, 0)) != 3)
1346 				goto LEAVE_UPDATE;
1347 		}
1348 		for (i = 0; i < data->bank2_sensors; i++)
1349 			if ((err = abituguru_read(data,
1350 					ABIT_UGURU_SENSOR_BANK2, i,
1351 					&data->bank2_value[i], 1, 0)) != 1)
1352 				goto LEAVE_UPDATE;
1353 		/* success! */
1354 		success = 1;
1355 		data->update_timeouts = 0;
1356 LEAVE_UPDATE:
1357 		/* handle timeout condition */
1358 		if (!success && (err == -EBUSY || err >= 0)) {
1359 			/* No overflow please */
1360 			if (data->update_timeouts < 255u)
1361 				data->update_timeouts++;
1362 			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1363 				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1364 					"try again next update\n");
1365 				/* Just a timeout, fake a successful read */
1366 				success = 1;
1367 			} else
1368 				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1369 					"times waiting for more input state\n",
1370 					(int)data->update_timeouts);
1371 		}
1372 		/* On success set last_updated */
1373 		if (success)
1374 			data->last_updated = jiffies;
1375 	}
1376 	mutex_unlock(&data->update_lock);
1377 
1378 	if (success)
1379 		return data;
1380 	else
1381 		return NULL;
1382 }
1383 
1384 #ifdef CONFIG_PM
1385 static int abituguru_suspend(struct platform_device *pdev, pm_message_t state)
1386 {
1387 	struct abituguru_data *data = platform_get_drvdata(pdev);
1388 	/* make sure all communications with the uguru are done and no new
1389 	   ones are started */
1390 	mutex_lock(&data->update_lock);
1391 	return 0;
1392 }
1393 
1394 static int abituguru_resume(struct platform_device *pdev)
1395 {
1396 	struct abituguru_data *data = platform_get_drvdata(pdev);
1397 	/* See if the uGuru is still ready */
1398 	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1399 		data->uguru_ready = 0;
1400 	mutex_unlock(&data->update_lock);
1401 	return 0;
1402 }
1403 #else
1404 #define abituguru_suspend	NULL
1405 #define abituguru_resume	NULL
1406 #endif /* CONFIG_PM */
1407 
1408 static struct platform_driver abituguru_driver = {
1409 	.driver = {
1410 		.owner	= THIS_MODULE,
1411 		.name	= ABIT_UGURU_NAME,
1412 	},
1413 	.probe		= abituguru_probe,
1414 	.remove		= __devexit_p(abituguru_remove),
1415 	.suspend	= abituguru_suspend,
1416 	.resume		= abituguru_resume,
1417 };
1418 
1419 static int __init abituguru_detect(void)
1420 {
1421 	/* See if there is an uguru there. After a reboot uGuru will hold 0x00
1422 	   at DATA and 0xAC, when this driver has already been loaded once
1423 	   DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1424 	   scenario but some will hold 0x00.
1425 	   Some uGuru's initally hold 0x09 at DATA and will only hold 0x08
1426 	   after reading CMD first, so CMD must be read first! */
1427 	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1428 	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1429 	if (((data_val == 0x00) || (data_val == 0x08)) &&
1430 	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1431 		return ABIT_UGURU_BASE;
1432 
1433 	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1434 		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1435 
1436 	if (force) {
1437 		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1438 		return ABIT_UGURU_BASE;
1439 	}
1440 
1441 	/* No uGuru found */
1442 	return -ENODEV;
1443 }
1444 
1445 static struct platform_device *abituguru_pdev;
1446 
1447 static int __init abituguru_init(void)
1448 {
1449 	int address, err;
1450 	struct resource res = { .flags = IORESOURCE_IO };
1451 
1452 #ifdef CONFIG_DMI
1453 	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1454 
1455 	/* safety check, refuse to load on non Abit motherboards */
1456 	if (!force && (!board_vendor ||
1457 			strcmp(board_vendor, "http://www.abit.com.tw/")))
1458 		return -ENODEV;
1459 #endif
1460 
1461 	address = abituguru_detect();
1462 	if (address < 0)
1463 		return address;
1464 
1465 	err = platform_driver_register(&abituguru_driver);
1466 	if (err)
1467 		goto exit;
1468 
1469 	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1470 	if (!abituguru_pdev) {
1471 		pr_err("Device allocation failed\n");
1472 		err = -ENOMEM;
1473 		goto exit_driver_unregister;
1474 	}
1475 
1476 	res.start = address;
1477 	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1478 	res.name = ABIT_UGURU_NAME;
1479 
1480 	err = platform_device_add_resources(abituguru_pdev, &res, 1);
1481 	if (err) {
1482 		pr_err("Device resource addition failed (%d)\n", err);
1483 		goto exit_device_put;
1484 	}
1485 
1486 	err = platform_device_add(abituguru_pdev);
1487 	if (err) {
1488 		pr_err("Device addition failed (%d)\n", err);
1489 		goto exit_device_put;
1490 	}
1491 
1492 	return 0;
1493 
1494 exit_device_put:
1495 	platform_device_put(abituguru_pdev);
1496 exit_driver_unregister:
1497 	platform_driver_unregister(&abituguru_driver);
1498 exit:
1499 	return err;
1500 }
1501 
1502 static void __exit abituguru_exit(void)
1503 {
1504 	platform_device_unregister(abituguru_pdev);
1505 	platform_driver_unregister(&abituguru_driver);
1506 }
1507 
1508 MODULE_AUTHOR("Hans de Goede <j.w.r.degoede@hhs.nl>");
1509 MODULE_DESCRIPTION("Abit uGuru Sensor device");
1510 MODULE_LICENSE("GPL");
1511 
1512 module_init(abituguru_init);
1513 module_exit(abituguru_exit);
1514