xref: /openbmc/linux/drivers/hwmon/abituguru.c (revision d0b73b48)
1 /*
2  * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 /*
19  * This driver supports the sensor part of the first and second revision of
20  * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
21  * of lack of specs the CPU/RAM voltage & frequency control is not supported!
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/sched.h>
28 #include <linux/init.h>
29 #include <linux/slab.h>
30 #include <linux/jiffies.h>
31 #include <linux/mutex.h>
32 #include <linux/err.h>
33 #include <linux/delay.h>
34 #include <linux/platform_device.h>
35 #include <linux/hwmon.h>
36 #include <linux/hwmon-sysfs.h>
37 #include <linux/dmi.h>
38 #include <linux/io.h>
39 
40 /* Banks */
41 #define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
42 #define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
43 #define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
44 #define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
45 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
46 #define ABIT_UGURU_MAX_BANK1_SENSORS		16
47 /*
48  * Warning if you increase one of the 2 MAX defines below to 10 or higher you
49  * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
50  */
51 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
52 #define ABIT_UGURU_MAX_BANK2_SENSORS		6
53 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
54 #define ABIT_UGURU_MAX_PWMS			5
55 /* uGuru sensor bank 1 flags */			     /* Alarm if: */
56 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
57 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
58 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
59 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
60 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
61 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
62 /* uGuru sensor bank 2 flags */			     /* Alarm if: */
63 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
64 /* uGuru sensor bank common flags */
65 #define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
66 #define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
67 /* uGuru fan PWM (speed control) flags */
68 #define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
69 /* Values used for conversion */
70 #define ABIT_UGURU_FAN_MAX			15300 /* RPM */
71 /* Bank1 sensor types */
72 #define ABIT_UGURU_IN_SENSOR			0
73 #define ABIT_UGURU_TEMP_SENSOR			1
74 #define ABIT_UGURU_NC				2
75 /*
76  * In many cases we need to wait for the uGuru to reach a certain status, most
77  * of the time it will reach this status within 30 - 90 ISA reads, and thus we
78  * can best busy wait. This define gives the total amount of reads to try.
79  */
80 #define ABIT_UGURU_WAIT_TIMEOUT			125
81 /*
82  * However sometimes older versions of the uGuru seem to be distracted and they
83  * do not respond for a long time. To handle this we sleep before each of the
84  * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
85  */
86 #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
87 /*
88  * Normally all expected status in abituguru_ready, are reported after the
89  * first read, but sometimes not and we need to poll.
90  */
91 #define ABIT_UGURU_READY_TIMEOUT		5
92 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
93 #define ABIT_UGURU_MAX_RETRIES			3
94 #define ABIT_UGURU_RETRY_DELAY			(HZ/5)
95 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
96 #define ABIT_UGURU_MAX_TIMEOUTS			2
97 /* utility macros */
98 #define ABIT_UGURU_NAME				"abituguru"
99 #define ABIT_UGURU_DEBUG(level, format, arg...)				\
100 	if (level <= verbose)						\
101 		printk(KERN_DEBUG ABIT_UGURU_NAME ": "	format , ## arg)
102 /* Macros to help calculate the sysfs_names array length */
103 /*
104  * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
105  * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
106  */
107 #define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
108 /*
109  * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
110  * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
111  */
112 #define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
113 /*
114  * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
115  * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
116  */
117 #define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
118 /*
119  * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
120  * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
121  */
122 #define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
123 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
124 #define ABITUGURU_SYSFS_NAMES_LENGTH	( \
125 	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
126 	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
127 	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
128 
129 /*
130  * All the macros below are named identical to the oguru and oguru2 programs
131  * reverse engineered by Olle Sandberg, hence the names might not be 100%
132  * logical. I could come up with better names, but I prefer keeping the names
133  * identical so that this driver can be compared with his work more easily.
134  */
135 /* Two i/o-ports are used by uGuru */
136 #define ABIT_UGURU_BASE				0x00E0
137 /* Used to tell uGuru what to read and to read the actual data */
138 #define ABIT_UGURU_CMD				0x00
139 /* Mostly used to check if uGuru is busy */
140 #define ABIT_UGURU_DATA				0x04
141 #define ABIT_UGURU_REGION_LENGTH		5
142 /* uGuru status' */
143 #define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
144 #define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
145 #define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
146 #define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
147 
148 /* Constants */
149 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
150 static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
151 /*
152  * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
153  * correspond to 300-3000 RPM
154  */
155 static const u8 abituguru_bank2_min_threshold = 5;
156 static const u8 abituguru_bank2_max_threshold = 50;
157 /*
158  * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
159  * are temperature trip points.
160  */
161 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
162 /*
163  * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
164  * special case the minium allowed pwm% setting for this is 30% (77) on
165  * some MB's this special case is handled in the code!
166  */
167 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
168 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
169 
170 
171 /* Insmod parameters */
172 static bool force;
173 module_param(force, bool, 0);
174 MODULE_PARM_DESC(force, "Set to one to force detection.");
175 static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
176 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
177 module_param_array(bank1_types, int, NULL, 0);
178 MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
179 	"   -1 autodetect\n"
180 	"    0 volt sensor\n"
181 	"    1 temp sensor\n"
182 	"    2 not connected");
183 static int fan_sensors;
184 module_param(fan_sensors, int, 0);
185 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
186 	"(0 = autodetect)");
187 static int pwms;
188 module_param(pwms, int, 0);
189 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
190 	"(0 = autodetect)");
191 
192 /* Default verbose is 2, since this driver is still in the testing phase */
193 static int verbose = 2;
194 module_param(verbose, int, 0644);
195 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
196 	"   0 normal output\n"
197 	"   1 + verbose error reporting\n"
198 	"   2 + sensors type probing info\n"
199 	"   3 + retryable error reporting");
200 
201 
202 /*
203  * For the Abit uGuru, we need to keep some data in memory.
204  * The structure is dynamically allocated, at the same time when a new
205  * abituguru device is allocated.
206  */
207 struct abituguru_data {
208 	struct device *hwmon_dev;	/* hwmon registered device */
209 	struct mutex update_lock;	/* protect access to data and uGuru */
210 	unsigned long last_updated;	/* In jiffies */
211 	unsigned short addr;		/* uguru base address */
212 	char uguru_ready;		/* is the uguru in ready state? */
213 	unsigned char update_timeouts;	/*
214 					 * number of update timeouts since last
215 					 * successful update
216 					 */
217 
218 	/*
219 	 * The sysfs attr and their names are generated automatically, for bank1
220 	 * we cannot use a predefined array because we don't know beforehand
221 	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
222 	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
223 	 * sysfs entries per sensor, for bank2 and pwms 6.
224 	 */
225 	struct sensor_device_attribute_2 sysfs_attr[
226 		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
227 		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
228 	/* Buffer to store the dynamically generated sysfs names */
229 	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
230 
231 	/* Bank 1 data */
232 	/* number of and addresses of [0] in, [1] temp sensors */
233 	u8 bank1_sensors[2];
234 	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
235 	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
236 	/*
237 	 * This array holds 3 entries per sensor for the bank 1 sensor settings
238 	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
239 	 */
240 	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
241 	/*
242 	 * Maximum value for each sensor used for scaling in mV/millidegrees
243 	 * Celsius.
244 	 */
245 	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
246 
247 	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
248 	u8 bank2_sensors; /* actual number of bank2 sensors found */
249 	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
250 	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
251 
252 	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
253 	u8 alarms[3];
254 
255 	/* Fan PWM (speed control) 5 bytes per PWM */
256 	u8 pwms; /* actual number of pwms found */
257 	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
258 };
259 
260 static const char *never_happen = "This should never happen.";
261 static const char *report_this =
262 	"Please report this to the abituguru maintainer (see MAINTAINERS)";
263 
264 /* wait till the uguru is in the specified state */
265 static int abituguru_wait(struct abituguru_data *data, u8 state)
266 {
267 	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
268 
269 	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
270 		timeout--;
271 		if (timeout == 0)
272 			return -EBUSY;
273 		/*
274 		 * sleep a bit before our last few tries, see the comment on
275 		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
276 		 */
277 		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
278 			msleep(0);
279 	}
280 	return 0;
281 }
282 
283 /* Put the uguru in ready for input state */
284 static int abituguru_ready(struct abituguru_data *data)
285 {
286 	int timeout = ABIT_UGURU_READY_TIMEOUT;
287 
288 	if (data->uguru_ready)
289 		return 0;
290 
291 	/* Reset? / Prepare for next read/write cycle */
292 	outb(0x00, data->addr + ABIT_UGURU_DATA);
293 
294 	/* Wait till the uguru is ready */
295 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
296 		ABIT_UGURU_DEBUG(1,
297 			"timeout exceeded waiting for ready state\n");
298 		return -EIO;
299 	}
300 
301 	/* Cmd port MUST be read now and should contain 0xAC */
302 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
303 		timeout--;
304 		if (timeout == 0) {
305 			ABIT_UGURU_DEBUG(1,
306 			   "CMD reg does not hold 0xAC after ready command\n");
307 			return -EIO;
308 		}
309 		msleep(0);
310 	}
311 
312 	/*
313 	 * After this the ABIT_UGURU_DATA port should contain
314 	 * ABIT_UGURU_STATUS_INPUT
315 	 */
316 	timeout = ABIT_UGURU_READY_TIMEOUT;
317 	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
318 		timeout--;
319 		if (timeout == 0) {
320 			ABIT_UGURU_DEBUG(1,
321 				"state != more input after ready command\n");
322 			return -EIO;
323 		}
324 		msleep(0);
325 	}
326 
327 	data->uguru_ready = 1;
328 	return 0;
329 }
330 
331 /*
332  * Send the bank and then sensor address to the uGuru for the next read/write
333  * cycle. This function gets called as the first part of a read/write by
334  * abituguru_read and abituguru_write. This function should never be
335  * called by any other function.
336  */
337 static int abituguru_send_address(struct abituguru_data *data,
338 	u8 bank_addr, u8 sensor_addr, int retries)
339 {
340 	/*
341 	 * assume the caller does error handling itself if it has not requested
342 	 * any retries, and thus be quiet.
343 	 */
344 	int report_errors = retries;
345 
346 	for (;;) {
347 		/*
348 		 * Make sure the uguru is ready and then send the bank address,
349 		 * after this the uguru is no longer "ready".
350 		 */
351 		if (abituguru_ready(data) != 0)
352 			return -EIO;
353 		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
354 		data->uguru_ready = 0;
355 
356 		/*
357 		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
358 		 * and send the sensor addr
359 		 */
360 		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
361 			if (retries) {
362 				ABIT_UGURU_DEBUG(3, "timeout exceeded "
363 					"waiting for more input state, %d "
364 					"tries remaining\n", retries);
365 				set_current_state(TASK_UNINTERRUPTIBLE);
366 				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
367 				retries--;
368 				continue;
369 			}
370 			if (report_errors)
371 				ABIT_UGURU_DEBUG(1, "timeout exceeded "
372 					"waiting for more input state "
373 					"(bank: %d)\n", (int)bank_addr);
374 			return -EBUSY;
375 		}
376 		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
377 		return 0;
378 	}
379 }
380 
381 /*
382  * Read count bytes from sensor sensor_addr in bank bank_addr and store the
383  * result in buf, retry the send address part of the read retries times.
384  */
385 static int abituguru_read(struct abituguru_data *data,
386 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
387 {
388 	int i;
389 
390 	/* Send the address */
391 	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
392 	if (i)
393 		return i;
394 
395 	/* And read the data */
396 	for (i = 0; i < count; i++) {
397 		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
398 			ABIT_UGURU_DEBUG(retries ? 1 : 3,
399 				"timeout exceeded waiting for "
400 				"read state (bank: %d, sensor: %d)\n",
401 				(int)bank_addr, (int)sensor_addr);
402 			break;
403 		}
404 		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
405 	}
406 
407 	/* Last put the chip back in ready state */
408 	abituguru_ready(data);
409 
410 	return i;
411 }
412 
413 /*
414  * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
415  * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
416  */
417 static int abituguru_write(struct abituguru_data *data,
418 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
419 {
420 	/*
421 	 * We use the ready timeout as we have to wait for 0xAC just like the
422 	 * ready function
423 	 */
424 	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
425 
426 	/* Send the address */
427 	i = abituguru_send_address(data, bank_addr, sensor_addr,
428 		ABIT_UGURU_MAX_RETRIES);
429 	if (i)
430 		return i;
431 
432 	/* And write the data */
433 	for (i = 0; i < count; i++) {
434 		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
435 			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
436 				"write state (bank: %d, sensor: %d)\n",
437 				(int)bank_addr, (int)sensor_addr);
438 			break;
439 		}
440 		outb(buf[i], data->addr + ABIT_UGURU_CMD);
441 	}
442 
443 	/*
444 	 * Now we need to wait till the chip is ready to be read again,
445 	 * so that we can read 0xAC as confirmation that our write has
446 	 * succeeded.
447 	 */
448 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
449 		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
450 			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
451 			(int)sensor_addr);
452 		return -EIO;
453 	}
454 
455 	/* Cmd port MUST be read now and should contain 0xAC */
456 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
457 		timeout--;
458 		if (timeout == 0) {
459 			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
460 				"write (bank: %d, sensor: %d)\n",
461 				(int)bank_addr, (int)sensor_addr);
462 			return -EIO;
463 		}
464 		msleep(0);
465 	}
466 
467 	/* Last put the chip back in ready state */
468 	abituguru_ready(data);
469 
470 	return i;
471 }
472 
473 /*
474  * Detect sensor type. Temp and Volt sensors are enabled with
475  * different masks and will ignore enable masks not meant for them.
476  * This enables us to test what kind of sensor we're dealing with.
477  * By setting the alarm thresholds so that we will always get an
478  * alarm for sensor type X and then enabling the sensor as sensor type
479  * X, if we then get an alarm it is a sensor of type X.
480  */
481 static int
482 abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
483 				   u8 sensor_addr)
484 {
485 	u8 val, test_flag, buf[3];
486 	int i, ret = -ENODEV; /* error is the most common used retval :| */
487 
488 	/* If overriden by the user return the user selected type */
489 	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
490 			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
491 		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
492 			"%d because of \"bank1_types\" module param\n",
493 			bank1_types[sensor_addr], (int)sensor_addr);
494 		return bank1_types[sensor_addr];
495 	}
496 
497 	/* First read the sensor and the current settings */
498 	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
499 			1, ABIT_UGURU_MAX_RETRIES) != 1)
500 		return -ENODEV;
501 
502 	/* Test val is sane / usable for sensor type detection. */
503 	if ((val < 10u) || (val > 250u)) {
504 		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
505 			"unable to determine sensor type, skipping sensor\n",
506 			(int)sensor_addr, (int)val);
507 		/*
508 		 * assume no sensor is there for sensors for which we can't
509 		 * determine the sensor type because their reading is too close
510 		 * to their limits, this usually means no sensor is there.
511 		 */
512 		return ABIT_UGURU_NC;
513 	}
514 
515 	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
516 	/*
517 	 * Volt sensor test, enable volt low alarm, set min value ridicously
518 	 * high, or vica versa if the reading is very high. If its a volt
519 	 * sensor this should always give us an alarm.
520 	 */
521 	if (val <= 240u) {
522 		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
523 		buf[1] = 245;
524 		buf[2] = 250;
525 		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
526 	} else {
527 		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
528 		buf[1] = 5;
529 		buf[2] = 10;
530 		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
531 	}
532 
533 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
534 			buf, 3) != 3)
535 		goto abituguru_detect_bank1_sensor_type_exit;
536 	/*
537 	 * Now we need 20 ms to give the uguru time to read the sensors
538 	 * and raise a voltage alarm
539 	 */
540 	set_current_state(TASK_UNINTERRUPTIBLE);
541 	schedule_timeout(HZ/50);
542 	/* Check for alarm and check the alarm is a volt low alarm. */
543 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
544 			ABIT_UGURU_MAX_RETRIES) != 3)
545 		goto abituguru_detect_bank1_sensor_type_exit;
546 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
547 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
548 				sensor_addr, buf, 3,
549 				ABIT_UGURU_MAX_RETRIES) != 3)
550 			goto abituguru_detect_bank1_sensor_type_exit;
551 		if (buf[0] & test_flag) {
552 			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
553 			ret = ABIT_UGURU_IN_SENSOR;
554 			goto abituguru_detect_bank1_sensor_type_exit;
555 		} else
556 			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
557 				"sensor test, but volt range flag not set\n");
558 	} else
559 		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
560 			"test\n");
561 
562 	/*
563 	 * Temp sensor test, enable sensor as a temp sensor, set beep value
564 	 * ridicously low (but not too low, otherwise uguru ignores it).
565 	 * If its a temp sensor this should always give us an alarm.
566 	 */
567 	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
568 	buf[1] = 5;
569 	buf[2] = 10;
570 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
571 			buf, 3) != 3)
572 		goto abituguru_detect_bank1_sensor_type_exit;
573 	/*
574 	 * Now we need 50 ms to give the uguru time to read the sensors
575 	 * and raise a temp alarm
576 	 */
577 	set_current_state(TASK_UNINTERRUPTIBLE);
578 	schedule_timeout(HZ/20);
579 	/* Check for alarm and check the alarm is a temp high alarm. */
580 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
581 			ABIT_UGURU_MAX_RETRIES) != 3)
582 		goto abituguru_detect_bank1_sensor_type_exit;
583 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
584 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
585 				sensor_addr, buf, 3,
586 				ABIT_UGURU_MAX_RETRIES) != 3)
587 			goto abituguru_detect_bank1_sensor_type_exit;
588 		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
589 			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
590 			ret = ABIT_UGURU_TEMP_SENSOR;
591 			goto abituguru_detect_bank1_sensor_type_exit;
592 		} else
593 			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
594 				"sensor test, but temp high flag not set\n");
595 	} else
596 		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
597 			"test\n");
598 
599 	ret = ABIT_UGURU_NC;
600 abituguru_detect_bank1_sensor_type_exit:
601 	/*
602 	 * Restore original settings, failing here is really BAD, it has been
603 	 * reported that some BIOS-es hang when entering the uGuru menu with
604 	 * invalid settings present in the uGuru, so we try this 3 times.
605 	 */
606 	for (i = 0; i < 3; i++)
607 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
608 				sensor_addr, data->bank1_settings[sensor_addr],
609 				3) == 3)
610 			break;
611 	if (i == 3) {
612 		pr_err("Fatal error could not restore original settings. %s %s\n",
613 		       never_happen, report_this);
614 		return -ENODEV;
615 	}
616 	return ret;
617 }
618 
619 /*
620  * These functions try to find out how many sensors there are in bank2 and how
621  * many pwms there are. The purpose of this is to make sure that we don't give
622  * the user the possibility to change settings for non-existent sensors / pwm.
623  * The uGuru will happily read / write whatever memory happens to be after the
624  * memory storing the PWM settings when reading/writing to a PWM which is not
625  * there. Notice even if we detect a PWM which doesn't exist we normally won't
626  * write to it, unless the user tries to change the settings.
627  *
628  * Although the uGuru allows reading (settings) from non existing bank2
629  * sensors, my version of the uGuru does seem to stop writing to them, the
630  * write function above aborts in this case with:
631  * "CMD reg does not hold 0xAC after write"
632  *
633  * Notice these 2 tests are non destructive iow read-only tests, otherwise
634  * they would defeat their purpose. Although for the bank2_sensors detection a
635  * read/write test would be feasible because of the reaction above, I've
636  * however opted to stay on the safe side.
637  */
638 static void
639 abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
640 {
641 	int i;
642 
643 	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
644 		data->bank2_sensors = fan_sensors;
645 		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
646 			"\"fan_sensors\" module param\n",
647 			(int)data->bank2_sensors);
648 		return;
649 	}
650 
651 	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
652 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
653 		/*
654 		 * 0x89 are the known used bits:
655 		 * -0x80 enable shutdown
656 		 * -0x08 enable beep
657 		 * -0x01 enable alarm
658 		 * All other bits should be 0, but on some motherboards
659 		 * 0x40 (bit 6) is also high for some of the fans??
660 		 */
661 		if (data->bank2_settings[i][0] & ~0xC9) {
662 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
663 				"to be a fan sensor: settings[0] = %02X\n",
664 				i, (unsigned int)data->bank2_settings[i][0]);
665 			break;
666 		}
667 
668 		/* check if the threshold is within the allowed range */
669 		if (data->bank2_settings[i][1] <
670 				abituguru_bank2_min_threshold) {
671 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
672 				"to be a fan sensor: the threshold (%d) is "
673 				"below the minimum (%d)\n", i,
674 				(int)data->bank2_settings[i][1],
675 				(int)abituguru_bank2_min_threshold);
676 			break;
677 		}
678 		if (data->bank2_settings[i][1] >
679 				abituguru_bank2_max_threshold) {
680 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
681 				"to be a fan sensor: the threshold (%d) is "
682 				"above the maximum (%d)\n", i,
683 				(int)data->bank2_settings[i][1],
684 				(int)abituguru_bank2_max_threshold);
685 			break;
686 		}
687 	}
688 
689 	data->bank2_sensors = i;
690 	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
691 		(int)data->bank2_sensors);
692 }
693 
694 static void
695 abituguru_detect_no_pwms(struct abituguru_data *data)
696 {
697 	int i, j;
698 
699 	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
700 		data->pwms = pwms;
701 		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
702 			"\"pwms\" module param\n", (int)data->pwms);
703 		return;
704 	}
705 
706 	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
707 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
708 		/*
709 		 * 0x80 is the enable bit and the low
710 		 * nibble is which temp sensor to use,
711 		 * the other bits should be 0
712 		 */
713 		if (data->pwm_settings[i][0] & ~0x8F) {
714 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
715 				"to be a pwm channel: settings[0] = %02X\n",
716 				i, (unsigned int)data->pwm_settings[i][0]);
717 			break;
718 		}
719 
720 		/*
721 		 * the low nibble must correspond to one of the temp sensors
722 		 * we've found
723 		 */
724 		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
725 				j++) {
726 			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
727 					(data->pwm_settings[i][0] & 0x0F))
728 				break;
729 		}
730 		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
731 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
732 				"to be a pwm channel: %d is not a valid temp "
733 				"sensor address\n", i,
734 				data->pwm_settings[i][0] & 0x0F);
735 			break;
736 		}
737 
738 		/* check if all other settings are within the allowed range */
739 		for (j = 1; j < 5; j++) {
740 			u8 min;
741 			/* special case pwm1 min pwm% */
742 			if ((i == 0) && ((j == 1) || (j == 2)))
743 				min = 77;
744 			else
745 				min = abituguru_pwm_min[j];
746 			if (data->pwm_settings[i][j] < min) {
747 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
748 					"not seem to be a pwm channel: "
749 					"setting %d (%d) is below the minimum "
750 					"value (%d)\n", i, j,
751 					(int)data->pwm_settings[i][j],
752 					(int)min);
753 				goto abituguru_detect_no_pwms_exit;
754 			}
755 			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
756 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
757 					"not seem to be a pwm channel: "
758 					"setting %d (%d) is above the maximum "
759 					"value (%d)\n", i, j,
760 					(int)data->pwm_settings[i][j],
761 					(int)abituguru_pwm_max[j]);
762 				goto abituguru_detect_no_pwms_exit;
763 			}
764 		}
765 
766 		/* check that min temp < max temp and min pwm < max pwm */
767 		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
768 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
769 				"to be a pwm channel: min pwm (%d) >= "
770 				"max pwm (%d)\n", i,
771 				(int)data->pwm_settings[i][1],
772 				(int)data->pwm_settings[i][2]);
773 			break;
774 		}
775 		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
776 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
777 				"to be a pwm channel: min temp (%d) >= "
778 				"max temp (%d)\n", i,
779 				(int)data->pwm_settings[i][3],
780 				(int)data->pwm_settings[i][4]);
781 			break;
782 		}
783 	}
784 
785 abituguru_detect_no_pwms_exit:
786 	data->pwms = i;
787 	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
788 }
789 
790 /*
791  * Following are the sysfs callback functions. These functions expect:
792  * sensor_device_attribute_2->index:   sensor address/offset in the bank
793  * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
794  */
795 static struct abituguru_data *abituguru_update_device(struct device *dev);
796 
797 static ssize_t show_bank1_value(struct device *dev,
798 	struct device_attribute *devattr, char *buf)
799 {
800 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
801 	struct abituguru_data *data = abituguru_update_device(dev);
802 	if (!data)
803 		return -EIO;
804 	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
805 		data->bank1_max_value[attr->index] + 128) / 255);
806 }
807 
808 static ssize_t show_bank1_setting(struct device *dev,
809 	struct device_attribute *devattr, char *buf)
810 {
811 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
812 	struct abituguru_data *data = dev_get_drvdata(dev);
813 	return sprintf(buf, "%d\n",
814 		(data->bank1_settings[attr->index][attr->nr] *
815 		data->bank1_max_value[attr->index] + 128) / 255);
816 }
817 
818 static ssize_t show_bank2_value(struct device *dev,
819 	struct device_attribute *devattr, char *buf)
820 {
821 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
822 	struct abituguru_data *data = abituguru_update_device(dev);
823 	if (!data)
824 		return -EIO;
825 	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
826 		ABIT_UGURU_FAN_MAX + 128) / 255);
827 }
828 
829 static ssize_t show_bank2_setting(struct device *dev,
830 	struct device_attribute *devattr, char *buf)
831 {
832 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
833 	struct abituguru_data *data = dev_get_drvdata(dev);
834 	return sprintf(buf, "%d\n",
835 		(data->bank2_settings[attr->index][attr->nr] *
836 		ABIT_UGURU_FAN_MAX + 128) / 255);
837 }
838 
839 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
840 	*devattr, const char *buf, size_t count)
841 {
842 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
843 	struct abituguru_data *data = dev_get_drvdata(dev);
844 	unsigned long val;
845 	ssize_t ret;
846 
847 	ret = kstrtoul(buf, 10, &val);
848 	if (ret)
849 		return ret;
850 
851 	ret = count;
852 	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
853 		data->bank1_max_value[attr->index];
854 	if (val > 255)
855 		return -EINVAL;
856 
857 	mutex_lock(&data->update_lock);
858 	if (data->bank1_settings[attr->index][attr->nr] != val) {
859 		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
860 		data->bank1_settings[attr->index][attr->nr] = val;
861 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
862 				attr->index, data->bank1_settings[attr->index],
863 				3) <= attr->nr) {
864 			data->bank1_settings[attr->index][attr->nr] = orig_val;
865 			ret = -EIO;
866 		}
867 	}
868 	mutex_unlock(&data->update_lock);
869 	return ret;
870 }
871 
872 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
873 	*devattr, const char *buf, size_t count)
874 {
875 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
876 	struct abituguru_data *data = dev_get_drvdata(dev);
877 	unsigned long val;
878 	ssize_t ret;
879 
880 	ret = kstrtoul(buf, 10, &val);
881 	if (ret)
882 		return ret;
883 
884 	ret = count;
885 	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
886 
887 	/* this check can be done before taking the lock */
888 	if (val < abituguru_bank2_min_threshold ||
889 			val > abituguru_bank2_max_threshold)
890 		return -EINVAL;
891 
892 	mutex_lock(&data->update_lock);
893 	if (data->bank2_settings[attr->index][attr->nr] != val) {
894 		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
895 		data->bank2_settings[attr->index][attr->nr] = val;
896 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
897 				attr->index, data->bank2_settings[attr->index],
898 				2) <= attr->nr) {
899 			data->bank2_settings[attr->index][attr->nr] = orig_val;
900 			ret = -EIO;
901 		}
902 	}
903 	mutex_unlock(&data->update_lock);
904 	return ret;
905 }
906 
907 static ssize_t show_bank1_alarm(struct device *dev,
908 	struct device_attribute *devattr, char *buf)
909 {
910 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
911 	struct abituguru_data *data = abituguru_update_device(dev);
912 	if (!data)
913 		return -EIO;
914 	/*
915 	 * See if the alarm bit for this sensor is set, and if the
916 	 * alarm matches the type of alarm we're looking for (for volt
917 	 * it can be either low or high). The type is stored in a few
918 	 * readonly bits in the settings part of the relevant sensor.
919 	 * The bitmask of the type is passed to us in attr->nr.
920 	 */
921 	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
922 			(data->bank1_settings[attr->index][0] & attr->nr))
923 		return sprintf(buf, "1\n");
924 	else
925 		return sprintf(buf, "0\n");
926 }
927 
928 static ssize_t show_bank2_alarm(struct device *dev,
929 	struct device_attribute *devattr, char *buf)
930 {
931 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
932 	struct abituguru_data *data = abituguru_update_device(dev);
933 	if (!data)
934 		return -EIO;
935 	if (data->alarms[2] & (0x01 << attr->index))
936 		return sprintf(buf, "1\n");
937 	else
938 		return sprintf(buf, "0\n");
939 }
940 
941 static ssize_t show_bank1_mask(struct device *dev,
942 	struct device_attribute *devattr, char *buf)
943 {
944 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
945 	struct abituguru_data *data = dev_get_drvdata(dev);
946 	if (data->bank1_settings[attr->index][0] & attr->nr)
947 		return sprintf(buf, "1\n");
948 	else
949 		return sprintf(buf, "0\n");
950 }
951 
952 static ssize_t show_bank2_mask(struct device *dev,
953 	struct device_attribute *devattr, char *buf)
954 {
955 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
956 	struct abituguru_data *data = dev_get_drvdata(dev);
957 	if (data->bank2_settings[attr->index][0] & attr->nr)
958 		return sprintf(buf, "1\n");
959 	else
960 		return sprintf(buf, "0\n");
961 }
962 
963 static ssize_t store_bank1_mask(struct device *dev,
964 	struct device_attribute *devattr, const char *buf, size_t count)
965 {
966 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
967 	struct abituguru_data *data = dev_get_drvdata(dev);
968 	ssize_t ret;
969 	u8 orig_val;
970 	unsigned long mask;
971 
972 	ret = kstrtoul(buf, 10, &mask);
973 	if (ret)
974 		return ret;
975 
976 	ret = count;
977 	mutex_lock(&data->update_lock);
978 	orig_val = data->bank1_settings[attr->index][0];
979 
980 	if (mask)
981 		data->bank1_settings[attr->index][0] |= attr->nr;
982 	else
983 		data->bank1_settings[attr->index][0] &= ~attr->nr;
984 
985 	if ((data->bank1_settings[attr->index][0] != orig_val) &&
986 			(abituguru_write(data,
987 			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
988 			data->bank1_settings[attr->index], 3) < 1)) {
989 		data->bank1_settings[attr->index][0] = orig_val;
990 		ret = -EIO;
991 	}
992 	mutex_unlock(&data->update_lock);
993 	return ret;
994 }
995 
996 static ssize_t store_bank2_mask(struct device *dev,
997 	struct device_attribute *devattr, const char *buf, size_t count)
998 {
999 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1000 	struct abituguru_data *data = dev_get_drvdata(dev);
1001 	ssize_t ret;
1002 	u8 orig_val;
1003 	unsigned long mask;
1004 
1005 	ret = kstrtoul(buf, 10, &mask);
1006 	if (ret)
1007 		return ret;
1008 
1009 	ret = count;
1010 	mutex_lock(&data->update_lock);
1011 	orig_val = data->bank2_settings[attr->index][0];
1012 
1013 	if (mask)
1014 		data->bank2_settings[attr->index][0] |= attr->nr;
1015 	else
1016 		data->bank2_settings[attr->index][0] &= ~attr->nr;
1017 
1018 	if ((data->bank2_settings[attr->index][0] != orig_val) &&
1019 			(abituguru_write(data,
1020 			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1021 			data->bank2_settings[attr->index], 2) < 1)) {
1022 		data->bank2_settings[attr->index][0] = orig_val;
1023 		ret = -EIO;
1024 	}
1025 	mutex_unlock(&data->update_lock);
1026 	return ret;
1027 }
1028 
1029 /* Fan PWM (speed control) */
1030 static ssize_t show_pwm_setting(struct device *dev,
1031 	struct device_attribute *devattr, char *buf)
1032 {
1033 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1034 	struct abituguru_data *data = dev_get_drvdata(dev);
1035 	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1036 		abituguru_pwm_settings_multiplier[attr->nr]);
1037 }
1038 
1039 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1040 	*devattr, const char *buf, size_t count)
1041 {
1042 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1043 	struct abituguru_data *data = dev_get_drvdata(dev);
1044 	u8 min;
1045 	unsigned long val;
1046 	ssize_t ret;
1047 
1048 	ret = kstrtoul(buf, 10, &val);
1049 	if (ret)
1050 		return ret;
1051 
1052 	ret = count;
1053 	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1054 				abituguru_pwm_settings_multiplier[attr->nr];
1055 
1056 	/* special case pwm1 min pwm% */
1057 	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1058 		min = 77;
1059 	else
1060 		min = abituguru_pwm_min[attr->nr];
1061 
1062 	/* this check can be done before taking the lock */
1063 	if (val < min || val > abituguru_pwm_max[attr->nr])
1064 		return -EINVAL;
1065 
1066 	mutex_lock(&data->update_lock);
1067 	/* this check needs to be done after taking the lock */
1068 	if ((attr->nr & 1) &&
1069 			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
1070 		ret = -EINVAL;
1071 	else if (!(attr->nr & 1) &&
1072 			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
1073 		ret = -EINVAL;
1074 	else if (data->pwm_settings[attr->index][attr->nr] != val) {
1075 		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1076 		data->pwm_settings[attr->index][attr->nr] = val;
1077 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1078 				attr->index, data->pwm_settings[attr->index],
1079 				5) <= attr->nr) {
1080 			data->pwm_settings[attr->index][attr->nr] =
1081 				orig_val;
1082 			ret = -EIO;
1083 		}
1084 	}
1085 	mutex_unlock(&data->update_lock);
1086 	return ret;
1087 }
1088 
1089 static ssize_t show_pwm_sensor(struct device *dev,
1090 	struct device_attribute *devattr, char *buf)
1091 {
1092 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1093 	struct abituguru_data *data = dev_get_drvdata(dev);
1094 	int i;
1095 	/*
1096 	 * We need to walk to the temp sensor addresses to find what
1097 	 * the userspace id of the configured temp sensor is.
1098 	 */
1099 	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1100 		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1101 				(data->pwm_settings[attr->index][0] & 0x0F))
1102 			return sprintf(buf, "%d\n", i+1);
1103 
1104 	return -ENXIO;
1105 }
1106 
1107 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1108 	*devattr, const char *buf, size_t count)
1109 {
1110 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1111 	struct abituguru_data *data = dev_get_drvdata(dev);
1112 	ssize_t ret;
1113 	unsigned long val;
1114 	u8 orig_val;
1115 	u8 address;
1116 
1117 	ret = kstrtoul(buf, 10, &val);
1118 	if (ret)
1119 		return ret;
1120 
1121 	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1122 		return -EINVAL;
1123 
1124 	val -= 1;
1125 	ret = count;
1126 	mutex_lock(&data->update_lock);
1127 	orig_val = data->pwm_settings[attr->index][0];
1128 	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1129 	data->pwm_settings[attr->index][0] &= 0xF0;
1130 	data->pwm_settings[attr->index][0] |= address;
1131 	if (data->pwm_settings[attr->index][0] != orig_val) {
1132 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1133 				    data->pwm_settings[attr->index], 5) < 1) {
1134 			data->pwm_settings[attr->index][0] = orig_val;
1135 			ret = -EIO;
1136 		}
1137 	}
1138 	mutex_unlock(&data->update_lock);
1139 	return ret;
1140 }
1141 
1142 static ssize_t show_pwm_enable(struct device *dev,
1143 	struct device_attribute *devattr, char *buf)
1144 {
1145 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1146 	struct abituguru_data *data = dev_get_drvdata(dev);
1147 	int res = 0;
1148 	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1149 		res = 2;
1150 	return sprintf(buf, "%d\n", res);
1151 }
1152 
1153 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1154 	*devattr, const char *buf, size_t count)
1155 {
1156 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1157 	struct abituguru_data *data = dev_get_drvdata(dev);
1158 	u8 orig_val;
1159 	ssize_t ret;
1160 	unsigned long user_val;
1161 
1162 	ret = kstrtoul(buf, 10, &user_val);
1163 	if (ret)
1164 		return ret;
1165 
1166 	ret = count;
1167 	mutex_lock(&data->update_lock);
1168 	orig_val = data->pwm_settings[attr->index][0];
1169 	switch (user_val) {
1170 	case 0:
1171 		data->pwm_settings[attr->index][0] &=
1172 			~ABIT_UGURU_FAN_PWM_ENABLE;
1173 		break;
1174 	case 2:
1175 		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1176 		break;
1177 	default:
1178 		ret = -EINVAL;
1179 	}
1180 	if ((data->pwm_settings[attr->index][0] != orig_val) &&
1181 			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1182 			attr->index, data->pwm_settings[attr->index],
1183 			5) < 1)) {
1184 		data->pwm_settings[attr->index][0] = orig_val;
1185 		ret = -EIO;
1186 	}
1187 	mutex_unlock(&data->update_lock);
1188 	return ret;
1189 }
1190 
1191 static ssize_t show_name(struct device *dev,
1192 	struct device_attribute *devattr, char *buf)
1193 {
1194 	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1195 }
1196 
1197 /* Sysfs attr templates, the real entries are generated automatically. */
1198 static const
1199 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1200 	{
1201 	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1202 	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1203 		store_bank1_setting, 1, 0),
1204 	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1205 		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1206 	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1207 		store_bank1_setting, 2, 0),
1208 	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1209 		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1210 	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1211 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1212 	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1213 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1214 	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1215 		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1216 	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1217 		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1218 	}, {
1219 	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1220 	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1221 		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1222 	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1223 		store_bank1_setting, 1, 0),
1224 	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1225 		store_bank1_setting, 2, 0),
1226 	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1227 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1228 	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1229 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1230 	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1231 		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1232 	}
1233 };
1234 
1235 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1236 	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1237 	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1238 	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1239 		store_bank2_setting, 1, 0),
1240 	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1241 		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1242 	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1243 		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1244 	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1245 		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1246 };
1247 
1248 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1249 	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1250 		store_pwm_enable, 0, 0),
1251 	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1252 		store_pwm_sensor, 0, 0),
1253 	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1254 		store_pwm_setting, 1, 0),
1255 	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1256 		store_pwm_setting, 2, 0),
1257 	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1258 		store_pwm_setting, 3, 0),
1259 	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1260 		store_pwm_setting, 4, 0),
1261 };
1262 
1263 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1264 	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1265 };
1266 
1267 static int abituguru_probe(struct platform_device *pdev)
1268 {
1269 	struct abituguru_data *data;
1270 	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1271 	char *sysfs_filename;
1272 
1273 	/*
1274 	 * El weirdo probe order, to keep the sysfs order identical to the
1275 	 * BIOS and window-appliction listing order.
1276 	 */
1277 	const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1278 		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1279 		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1280 
1281 	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1282 			    GFP_KERNEL);
1283 	if (!data)
1284 		return -ENOMEM;
1285 
1286 	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1287 	mutex_init(&data->update_lock);
1288 	platform_set_drvdata(pdev, data);
1289 
1290 	/* See if the uGuru is ready */
1291 	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1292 		data->uguru_ready = 1;
1293 
1294 	/*
1295 	 * Completely read the uGuru this has 2 purposes:
1296 	 * - testread / see if one really is there.
1297 	 * - make an in memory copy of all the uguru settings for future use.
1298 	 */
1299 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1300 			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1301 		goto abituguru_probe_error;
1302 
1303 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1304 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1305 				&data->bank1_value[i], 1,
1306 				ABIT_UGURU_MAX_RETRIES) != 1)
1307 			goto abituguru_probe_error;
1308 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1309 				data->bank1_settings[i], 3,
1310 				ABIT_UGURU_MAX_RETRIES) != 3)
1311 			goto abituguru_probe_error;
1312 	}
1313 	/*
1314 	 * Note: We don't know how many bank2 sensors / pwms there really are,
1315 	 * but in order to "detect" this we need to read the maximum amount
1316 	 * anyways. If we read sensors/pwms not there we'll just read crap
1317 	 * this can't hurt. We need the detection because we don't want
1318 	 * unwanted writes, which will hurt!
1319 	 */
1320 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1321 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1322 				&data->bank2_value[i], 1,
1323 				ABIT_UGURU_MAX_RETRIES) != 1)
1324 			goto abituguru_probe_error;
1325 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1326 				data->bank2_settings[i], 2,
1327 				ABIT_UGURU_MAX_RETRIES) != 2)
1328 			goto abituguru_probe_error;
1329 	}
1330 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1331 		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1332 				data->pwm_settings[i], 5,
1333 				ABIT_UGURU_MAX_RETRIES) != 5)
1334 			goto abituguru_probe_error;
1335 	}
1336 	data->last_updated = jiffies;
1337 
1338 	/* Detect sensor types and fill the sysfs attr for bank1 */
1339 	sysfs_attr_i = 0;
1340 	sysfs_filename = data->sysfs_names;
1341 	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1342 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1343 		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1344 		if (res < 0)
1345 			goto abituguru_probe_error;
1346 		if (res == ABIT_UGURU_NC)
1347 			continue;
1348 
1349 		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1350 		for (j = 0; j < (res ? 7 : 9); j++) {
1351 			used = snprintf(sysfs_filename, sysfs_names_free,
1352 				abituguru_sysfs_bank1_templ[res][j].dev_attr.
1353 				attr.name, data->bank1_sensors[res] + res)
1354 				+ 1;
1355 			data->sysfs_attr[sysfs_attr_i] =
1356 				abituguru_sysfs_bank1_templ[res][j];
1357 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1358 				sysfs_filename;
1359 			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1360 			sysfs_filename += used;
1361 			sysfs_names_free -= used;
1362 			sysfs_attr_i++;
1363 		}
1364 		data->bank1_max_value[probe_order[i]] =
1365 			abituguru_bank1_max_value[res];
1366 		data->bank1_address[res][data->bank1_sensors[res]] =
1367 			probe_order[i];
1368 		data->bank1_sensors[res]++;
1369 	}
1370 	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1371 	abituguru_detect_no_bank2_sensors(data);
1372 	for (i = 0; i < data->bank2_sensors; i++) {
1373 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1374 			used = snprintf(sysfs_filename, sysfs_names_free,
1375 				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1376 				i + 1) + 1;
1377 			data->sysfs_attr[sysfs_attr_i] =
1378 				abituguru_sysfs_fan_templ[j];
1379 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1380 				sysfs_filename;
1381 			data->sysfs_attr[sysfs_attr_i].index = i;
1382 			sysfs_filename += used;
1383 			sysfs_names_free -= used;
1384 			sysfs_attr_i++;
1385 		}
1386 	}
1387 	/* Detect number of sensors and fill the sysfs attr for pwms */
1388 	abituguru_detect_no_pwms(data);
1389 	for (i = 0; i < data->pwms; i++) {
1390 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1391 			used = snprintf(sysfs_filename, sysfs_names_free,
1392 				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1393 				i + 1) + 1;
1394 			data->sysfs_attr[sysfs_attr_i] =
1395 				abituguru_sysfs_pwm_templ[j];
1396 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1397 				sysfs_filename;
1398 			data->sysfs_attr[sysfs_attr_i].index = i;
1399 			sysfs_filename += used;
1400 			sysfs_names_free -= used;
1401 			sysfs_attr_i++;
1402 		}
1403 	}
1404 	/* Fail safe check, this should never happen! */
1405 	if (sysfs_names_free < 0) {
1406 		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1407 		       never_happen, report_this);
1408 		res = -ENAMETOOLONG;
1409 		goto abituguru_probe_error;
1410 	}
1411 	pr_info("found Abit uGuru\n");
1412 
1413 	/* Register sysfs hooks */
1414 	for (i = 0; i < sysfs_attr_i; i++)
1415 		if (device_create_file(&pdev->dev,
1416 				&data->sysfs_attr[i].dev_attr))
1417 			goto abituguru_probe_error;
1418 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1419 		if (device_create_file(&pdev->dev,
1420 				&abituguru_sysfs_attr[i].dev_attr))
1421 			goto abituguru_probe_error;
1422 
1423 	data->hwmon_dev = hwmon_device_register(&pdev->dev);
1424 	if (!IS_ERR(data->hwmon_dev))
1425 		return 0; /* success */
1426 
1427 	res = PTR_ERR(data->hwmon_dev);
1428 abituguru_probe_error:
1429 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1430 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1431 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1432 		device_remove_file(&pdev->dev,
1433 			&abituguru_sysfs_attr[i].dev_attr);
1434 	return res;
1435 }
1436 
1437 static int abituguru_remove(struct platform_device *pdev)
1438 {
1439 	int i;
1440 	struct abituguru_data *data = platform_get_drvdata(pdev);
1441 
1442 	hwmon_device_unregister(data->hwmon_dev);
1443 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1444 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1445 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1446 		device_remove_file(&pdev->dev,
1447 			&abituguru_sysfs_attr[i].dev_attr);
1448 
1449 	return 0;
1450 }
1451 
1452 static struct abituguru_data *abituguru_update_device(struct device *dev)
1453 {
1454 	int i, err;
1455 	struct abituguru_data *data = dev_get_drvdata(dev);
1456 	/* fake a complete successful read if no update necessary. */
1457 	char success = 1;
1458 
1459 	mutex_lock(&data->update_lock);
1460 	if (time_after(jiffies, data->last_updated + HZ)) {
1461 		success = 0;
1462 		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1463 				     data->alarms, 3, 0);
1464 		if (err != 3)
1465 			goto LEAVE_UPDATE;
1466 		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1467 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1468 					     i, &data->bank1_value[i], 1, 0);
1469 			if (err != 1)
1470 				goto LEAVE_UPDATE;
1471 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1472 					     i, data->bank1_settings[i], 3, 0);
1473 			if (err != 3)
1474 				goto LEAVE_UPDATE;
1475 		}
1476 		for (i = 0; i < data->bank2_sensors; i++) {
1477 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1478 					     &data->bank2_value[i], 1, 0);
1479 			if (err != 1)
1480 				goto LEAVE_UPDATE;
1481 		}
1482 		/* success! */
1483 		success = 1;
1484 		data->update_timeouts = 0;
1485 LEAVE_UPDATE:
1486 		/* handle timeout condition */
1487 		if (!success && (err == -EBUSY || err >= 0)) {
1488 			/* No overflow please */
1489 			if (data->update_timeouts < 255u)
1490 				data->update_timeouts++;
1491 			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1492 				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1493 					"try again next update\n");
1494 				/* Just a timeout, fake a successful read */
1495 				success = 1;
1496 			} else
1497 				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1498 					"times waiting for more input state\n",
1499 					(int)data->update_timeouts);
1500 		}
1501 		/* On success set last_updated */
1502 		if (success)
1503 			data->last_updated = jiffies;
1504 	}
1505 	mutex_unlock(&data->update_lock);
1506 
1507 	if (success)
1508 		return data;
1509 	else
1510 		return NULL;
1511 }
1512 
1513 #ifdef CONFIG_PM_SLEEP
1514 static int abituguru_suspend(struct device *dev)
1515 {
1516 	struct abituguru_data *data = dev_get_drvdata(dev);
1517 	/*
1518 	 * make sure all communications with the uguru are done and no new
1519 	 * ones are started
1520 	 */
1521 	mutex_lock(&data->update_lock);
1522 	return 0;
1523 }
1524 
1525 static int abituguru_resume(struct device *dev)
1526 {
1527 	struct abituguru_data *data = dev_get_drvdata(dev);
1528 	/* See if the uGuru is still ready */
1529 	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1530 		data->uguru_ready = 0;
1531 	mutex_unlock(&data->update_lock);
1532 	return 0;
1533 }
1534 
1535 static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1536 #define ABIT_UGURU_PM	&abituguru_pm
1537 #else
1538 #define ABIT_UGURU_PM	NULL
1539 #endif /* CONFIG_PM */
1540 
1541 static struct platform_driver abituguru_driver = {
1542 	.driver = {
1543 		.owner	= THIS_MODULE,
1544 		.name	= ABIT_UGURU_NAME,
1545 		.pm	= ABIT_UGURU_PM,
1546 	},
1547 	.probe		= abituguru_probe,
1548 	.remove		= abituguru_remove,
1549 };
1550 
1551 static int __init abituguru_detect(void)
1552 {
1553 	/*
1554 	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
1555 	 * at DATA and 0xAC, when this driver has already been loaded once
1556 	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1557 	 * scenario but some will hold 0x00.
1558 	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1559 	 * after reading CMD first, so CMD must be read first!
1560 	 */
1561 	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1562 	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1563 	if (((data_val == 0x00) || (data_val == 0x08)) &&
1564 	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1565 		return ABIT_UGURU_BASE;
1566 
1567 	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1568 		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1569 
1570 	if (force) {
1571 		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1572 		return ABIT_UGURU_BASE;
1573 	}
1574 
1575 	/* No uGuru found */
1576 	return -ENODEV;
1577 }
1578 
1579 static struct platform_device *abituguru_pdev;
1580 
1581 static int __init abituguru_init(void)
1582 {
1583 	int address, err;
1584 	struct resource res = { .flags = IORESOURCE_IO };
1585 	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1586 
1587 	/* safety check, refuse to load on non Abit motherboards */
1588 	if (!force && (!board_vendor ||
1589 			strcmp(board_vendor, "http://www.abit.com.tw/")))
1590 		return -ENODEV;
1591 
1592 	address = abituguru_detect();
1593 	if (address < 0)
1594 		return address;
1595 
1596 	err = platform_driver_register(&abituguru_driver);
1597 	if (err)
1598 		goto exit;
1599 
1600 	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1601 	if (!abituguru_pdev) {
1602 		pr_err("Device allocation failed\n");
1603 		err = -ENOMEM;
1604 		goto exit_driver_unregister;
1605 	}
1606 
1607 	res.start = address;
1608 	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1609 	res.name = ABIT_UGURU_NAME;
1610 
1611 	err = platform_device_add_resources(abituguru_pdev, &res, 1);
1612 	if (err) {
1613 		pr_err("Device resource addition failed (%d)\n", err);
1614 		goto exit_device_put;
1615 	}
1616 
1617 	err = platform_device_add(abituguru_pdev);
1618 	if (err) {
1619 		pr_err("Device addition failed (%d)\n", err);
1620 		goto exit_device_put;
1621 	}
1622 
1623 	return 0;
1624 
1625 exit_device_put:
1626 	platform_device_put(abituguru_pdev);
1627 exit_driver_unregister:
1628 	platform_driver_unregister(&abituguru_driver);
1629 exit:
1630 	return err;
1631 }
1632 
1633 static void __exit abituguru_exit(void)
1634 {
1635 	platform_device_unregister(abituguru_pdev);
1636 	platform_driver_unregister(&abituguru_driver);
1637 }
1638 
1639 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1640 MODULE_DESCRIPTION("Abit uGuru Sensor device");
1641 MODULE_LICENSE("GPL");
1642 
1643 module_init(abituguru_init);
1644 module_exit(abituguru_exit);
1645