1 /* 2 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 */ 18 /* 19 * This driver supports the sensor part of the first and second revision of 20 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because 21 * of lack of specs the CPU/RAM voltage & frequency control is not supported! 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/module.h> 27 #include <linux/sched.h> 28 #include <linux/init.h> 29 #include <linux/slab.h> 30 #include <linux/jiffies.h> 31 #include <linux/mutex.h> 32 #include <linux/err.h> 33 #include <linux/delay.h> 34 #include <linux/platform_device.h> 35 #include <linux/hwmon.h> 36 #include <linux/hwmon-sysfs.h> 37 #include <linux/dmi.h> 38 #include <linux/io.h> 39 40 /* Banks */ 41 #define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */ 42 #define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */ 43 #define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */ 44 #define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */ 45 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */ 46 #define ABIT_UGURU_MAX_BANK1_SENSORS 16 47 /* 48 * Warning if you increase one of the 2 MAX defines below to 10 or higher you 49 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! 50 */ 51 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */ 52 #define ABIT_UGURU_MAX_BANK2_SENSORS 6 53 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ 54 #define ABIT_UGURU_MAX_PWMS 5 55 /* uGuru sensor bank 1 flags */ /* Alarm if: */ 56 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */ 57 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */ 58 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */ 59 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */ 60 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */ 61 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */ 62 /* uGuru sensor bank 2 flags */ /* Alarm if: */ 63 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */ 64 /* uGuru sensor bank common flags */ 65 #define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */ 66 #define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */ 67 /* uGuru fan PWM (speed control) flags */ 68 #define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */ 69 /* Values used for conversion */ 70 #define ABIT_UGURU_FAN_MAX 15300 /* RPM */ 71 /* Bank1 sensor types */ 72 #define ABIT_UGURU_IN_SENSOR 0 73 #define ABIT_UGURU_TEMP_SENSOR 1 74 #define ABIT_UGURU_NC 2 75 /* 76 * In many cases we need to wait for the uGuru to reach a certain status, most 77 * of the time it will reach this status within 30 - 90 ISA reads, and thus we 78 * can best busy wait. This define gives the total amount of reads to try. 79 */ 80 #define ABIT_UGURU_WAIT_TIMEOUT 125 81 /* 82 * However sometimes older versions of the uGuru seem to be distracted and they 83 * do not respond for a long time. To handle this we sleep before each of the 84 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. 85 */ 86 #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5 87 /* 88 * Normally all expected status in abituguru_ready, are reported after the 89 * first read, but sometimes not and we need to poll. 90 */ 91 #define ABIT_UGURU_READY_TIMEOUT 5 92 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ 93 #define ABIT_UGURU_MAX_RETRIES 3 94 #define ABIT_UGURU_RETRY_DELAY (HZ/5) 95 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */ 96 #define ABIT_UGURU_MAX_TIMEOUTS 2 97 /* utility macros */ 98 #define ABIT_UGURU_NAME "abituguru" 99 #define ABIT_UGURU_DEBUG(level, format, arg...) \ 100 if (level <= verbose) \ 101 printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg) 102 /* Macros to help calculate the sysfs_names array length */ 103 /* 104 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0, 105 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 106 */ 107 #define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14) 108 /* 109 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0, 110 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 111 */ 112 #define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16) 113 /* 114 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0, 115 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 116 */ 117 #define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14) 118 /* 119 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0, 120 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 121 */ 122 #define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22) 123 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */ 124 #define ABITUGURU_SYSFS_NAMES_LENGTH ( \ 125 ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \ 126 ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \ 127 ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH) 128 129 /* 130 * All the macros below are named identical to the oguru and oguru2 programs 131 * reverse engineered by Olle Sandberg, hence the names might not be 100% 132 * logical. I could come up with better names, but I prefer keeping the names 133 * identical so that this driver can be compared with his work more easily. 134 */ 135 /* Two i/o-ports are used by uGuru */ 136 #define ABIT_UGURU_BASE 0x00E0 137 /* Used to tell uGuru what to read and to read the actual data */ 138 #define ABIT_UGURU_CMD 0x00 139 /* Mostly used to check if uGuru is busy */ 140 #define ABIT_UGURU_DATA 0x04 141 #define ABIT_UGURU_REGION_LENGTH 5 142 /* uGuru status' */ 143 #define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */ 144 #define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */ 145 #define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */ 146 #define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */ 147 148 /* Constants */ 149 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ 150 static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; 151 /* 152 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values 153 * correspond to 300-3000 RPM 154 */ 155 static const u8 abituguru_bank2_min_threshold = 5; 156 static const u8 abituguru_bank2_max_threshold = 50; 157 /* 158 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 159 * are temperature trip points. 160 */ 161 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; 162 /* 163 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a 164 * special case the minium allowed pwm% setting for this is 30% (77) on 165 * some MB's this special case is handled in the code! 166 */ 167 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; 168 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; 169 170 171 /* Insmod parameters */ 172 static bool force; 173 module_param(force, bool, 0); 174 MODULE_PARM_DESC(force, "Set to one to force detection."); 175 static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1, 176 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; 177 module_param_array(bank1_types, int, NULL, 0); 178 MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n" 179 " -1 autodetect\n" 180 " 0 volt sensor\n" 181 " 1 temp sensor\n" 182 " 2 not connected"); 183 static int fan_sensors; 184 module_param(fan_sensors, int, 0); 185 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " 186 "(0 = autodetect)"); 187 static int pwms; 188 module_param(pwms, int, 0); 189 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " 190 "(0 = autodetect)"); 191 192 /* Default verbose is 2, since this driver is still in the testing phase */ 193 static int verbose = 2; 194 module_param(verbose, int, 0644); 195 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" 196 " 0 normal output\n" 197 " 1 + verbose error reporting\n" 198 " 2 + sensors type probing info\n" 199 " 3 + retryable error reporting"); 200 201 202 /* 203 * For the Abit uGuru, we need to keep some data in memory. 204 * The structure is dynamically allocated, at the same time when a new 205 * abituguru device is allocated. 206 */ 207 struct abituguru_data { 208 struct device *hwmon_dev; /* hwmon registered device */ 209 struct mutex update_lock; /* protect access to data and uGuru */ 210 unsigned long last_updated; /* In jiffies */ 211 unsigned short addr; /* uguru base address */ 212 char uguru_ready; /* is the uguru in ready state? */ 213 unsigned char update_timeouts; /* 214 * number of update timeouts since last 215 * successful update 216 */ 217 218 /* 219 * The sysfs attr and their names are generated automatically, for bank1 220 * we cannot use a predefined array because we don't know beforehand 221 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its 222 * easier todo things the same way. For in sensors we have 9 (temp 7) 223 * sysfs entries per sensor, for bank2 and pwms 6. 224 */ 225 struct sensor_device_attribute_2 sysfs_attr[ 226 ABIT_UGURU_MAX_BANK1_SENSORS * 9 + 227 ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; 228 /* Buffer to store the dynamically generated sysfs names */ 229 char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH]; 230 231 /* Bank 1 data */ 232 /* number of and addresses of [0] in, [1] temp sensors */ 233 u8 bank1_sensors[2]; 234 u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS]; 235 u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS]; 236 /* 237 * This array holds 3 entries per sensor for the bank 1 sensor settings 238 * (flags, min, max for voltage / flags, warn, shutdown for temp). 239 */ 240 u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3]; 241 /* 242 * Maximum value for each sensor used for scaling in mV/millidegrees 243 * Celsius. 244 */ 245 int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS]; 246 247 /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ 248 u8 bank2_sensors; /* actual number of bank2 sensors found */ 249 u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; 250 u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ 251 252 /* Alarms 2 bytes for bank1, 1 byte for bank2 */ 253 u8 alarms[3]; 254 255 /* Fan PWM (speed control) 5 bytes per PWM */ 256 u8 pwms; /* actual number of pwms found */ 257 u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; 258 }; 259 260 static const char *never_happen = "This should never happen."; 261 static const char *report_this = 262 "Please report this to the abituguru maintainer (see MAINTAINERS)"; 263 264 /* wait till the uguru is in the specified state */ 265 static int abituguru_wait(struct abituguru_data *data, u8 state) 266 { 267 int timeout = ABIT_UGURU_WAIT_TIMEOUT; 268 269 while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { 270 timeout--; 271 if (timeout == 0) 272 return -EBUSY; 273 /* 274 * sleep a bit before our last few tries, see the comment on 275 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. 276 */ 277 if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP) 278 msleep(0); 279 } 280 return 0; 281 } 282 283 /* Put the uguru in ready for input state */ 284 static int abituguru_ready(struct abituguru_data *data) 285 { 286 int timeout = ABIT_UGURU_READY_TIMEOUT; 287 288 if (data->uguru_ready) 289 return 0; 290 291 /* Reset? / Prepare for next read/write cycle */ 292 outb(0x00, data->addr + ABIT_UGURU_DATA); 293 294 /* Wait till the uguru is ready */ 295 if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { 296 ABIT_UGURU_DEBUG(1, 297 "timeout exceeded waiting for ready state\n"); 298 return -EIO; 299 } 300 301 /* Cmd port MUST be read now and should contain 0xAC */ 302 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { 303 timeout--; 304 if (timeout == 0) { 305 ABIT_UGURU_DEBUG(1, 306 "CMD reg does not hold 0xAC after ready command\n"); 307 return -EIO; 308 } 309 msleep(0); 310 } 311 312 /* 313 * After this the ABIT_UGURU_DATA port should contain 314 * ABIT_UGURU_STATUS_INPUT 315 */ 316 timeout = ABIT_UGURU_READY_TIMEOUT; 317 while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { 318 timeout--; 319 if (timeout == 0) { 320 ABIT_UGURU_DEBUG(1, 321 "state != more input after ready command\n"); 322 return -EIO; 323 } 324 msleep(0); 325 } 326 327 data->uguru_ready = 1; 328 return 0; 329 } 330 331 /* 332 * Send the bank and then sensor address to the uGuru for the next read/write 333 * cycle. This function gets called as the first part of a read/write by 334 * abituguru_read and abituguru_write. This function should never be 335 * called by any other function. 336 */ 337 static int abituguru_send_address(struct abituguru_data *data, 338 u8 bank_addr, u8 sensor_addr, int retries) 339 { 340 /* 341 * assume the caller does error handling itself if it has not requested 342 * any retries, and thus be quiet. 343 */ 344 int report_errors = retries; 345 346 for (;;) { 347 /* 348 * Make sure the uguru is ready and then send the bank address, 349 * after this the uguru is no longer "ready". 350 */ 351 if (abituguru_ready(data) != 0) 352 return -EIO; 353 outb(bank_addr, data->addr + ABIT_UGURU_DATA); 354 data->uguru_ready = 0; 355 356 /* 357 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again 358 * and send the sensor addr 359 */ 360 if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { 361 if (retries) { 362 ABIT_UGURU_DEBUG(3, "timeout exceeded " 363 "waiting for more input state, %d " 364 "tries remaining\n", retries); 365 set_current_state(TASK_UNINTERRUPTIBLE); 366 schedule_timeout(ABIT_UGURU_RETRY_DELAY); 367 retries--; 368 continue; 369 } 370 if (report_errors) 371 ABIT_UGURU_DEBUG(1, "timeout exceeded " 372 "waiting for more input state " 373 "(bank: %d)\n", (int)bank_addr); 374 return -EBUSY; 375 } 376 outb(sensor_addr, data->addr + ABIT_UGURU_CMD); 377 return 0; 378 } 379 } 380 381 /* 382 * Read count bytes from sensor sensor_addr in bank bank_addr and store the 383 * result in buf, retry the send address part of the read retries times. 384 */ 385 static int abituguru_read(struct abituguru_data *data, 386 u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) 387 { 388 int i; 389 390 /* Send the address */ 391 i = abituguru_send_address(data, bank_addr, sensor_addr, retries); 392 if (i) 393 return i; 394 395 /* And read the data */ 396 for (i = 0; i < count; i++) { 397 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { 398 ABIT_UGURU_DEBUG(retries ? 1 : 3, 399 "timeout exceeded waiting for " 400 "read state (bank: %d, sensor: %d)\n", 401 (int)bank_addr, (int)sensor_addr); 402 break; 403 } 404 buf[i] = inb(data->addr + ABIT_UGURU_CMD); 405 } 406 407 /* Last put the chip back in ready state */ 408 abituguru_ready(data); 409 410 return i; 411 } 412 413 /* 414 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send 415 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. 416 */ 417 static int abituguru_write(struct abituguru_data *data, 418 u8 bank_addr, u8 sensor_addr, u8 *buf, int count) 419 { 420 /* 421 * We use the ready timeout as we have to wait for 0xAC just like the 422 * ready function 423 */ 424 int i, timeout = ABIT_UGURU_READY_TIMEOUT; 425 426 /* Send the address */ 427 i = abituguru_send_address(data, bank_addr, sensor_addr, 428 ABIT_UGURU_MAX_RETRIES); 429 if (i) 430 return i; 431 432 /* And write the data */ 433 for (i = 0; i < count; i++) { 434 if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { 435 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " 436 "write state (bank: %d, sensor: %d)\n", 437 (int)bank_addr, (int)sensor_addr); 438 break; 439 } 440 outb(buf[i], data->addr + ABIT_UGURU_CMD); 441 } 442 443 /* 444 * Now we need to wait till the chip is ready to be read again, 445 * so that we can read 0xAC as confirmation that our write has 446 * succeeded. 447 */ 448 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { 449 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " 450 "after write (bank: %d, sensor: %d)\n", (int)bank_addr, 451 (int)sensor_addr); 452 return -EIO; 453 } 454 455 /* Cmd port MUST be read now and should contain 0xAC */ 456 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { 457 timeout--; 458 if (timeout == 0) { 459 ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after " 460 "write (bank: %d, sensor: %d)\n", 461 (int)bank_addr, (int)sensor_addr); 462 return -EIO; 463 } 464 msleep(0); 465 } 466 467 /* Last put the chip back in ready state */ 468 abituguru_ready(data); 469 470 return i; 471 } 472 473 /* 474 * Detect sensor type. Temp and Volt sensors are enabled with 475 * different masks and will ignore enable masks not meant for them. 476 * This enables us to test what kind of sensor we're dealing with. 477 * By setting the alarm thresholds so that we will always get an 478 * alarm for sensor type X and then enabling the sensor as sensor type 479 * X, if we then get an alarm it is a sensor of type X. 480 */ 481 static int __devinit 482 abituguru_detect_bank1_sensor_type(struct abituguru_data *data, 483 u8 sensor_addr) 484 { 485 u8 val, test_flag, buf[3]; 486 int i, ret = -ENODEV; /* error is the most common used retval :| */ 487 488 /* If overriden by the user return the user selected type */ 489 if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR && 490 bank1_types[sensor_addr] <= ABIT_UGURU_NC) { 491 ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor " 492 "%d because of \"bank1_types\" module param\n", 493 bank1_types[sensor_addr], (int)sensor_addr); 494 return bank1_types[sensor_addr]; 495 } 496 497 /* First read the sensor and the current settings */ 498 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, 499 1, ABIT_UGURU_MAX_RETRIES) != 1) 500 return -ENODEV; 501 502 /* Test val is sane / usable for sensor type detection. */ 503 if ((val < 10u) || (val > 250u)) { 504 pr_warn("bank1-sensor: %d reading (%d) too close to limits, " 505 "unable to determine sensor type, skipping sensor\n", 506 (int)sensor_addr, (int)val); 507 /* 508 * assume no sensor is there for sensors for which we can't 509 * determine the sensor type because their reading is too close 510 * to their limits, this usually means no sensor is there. 511 */ 512 return ABIT_UGURU_NC; 513 } 514 515 ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); 516 /* 517 * Volt sensor test, enable volt low alarm, set min value ridicously 518 * high, or vica versa if the reading is very high. If its a volt 519 * sensor this should always give us an alarm. 520 */ 521 if (val <= 240u) { 522 buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; 523 buf[1] = 245; 524 buf[2] = 250; 525 test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG; 526 } else { 527 buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE; 528 buf[1] = 5; 529 buf[2] = 10; 530 test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG; 531 } 532 533 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, 534 buf, 3) != 3) 535 goto abituguru_detect_bank1_sensor_type_exit; 536 /* 537 * Now we need 20 ms to give the uguru time to read the sensors 538 * and raise a voltage alarm 539 */ 540 set_current_state(TASK_UNINTERRUPTIBLE); 541 schedule_timeout(HZ/50); 542 /* Check for alarm and check the alarm is a volt low alarm. */ 543 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, 544 ABIT_UGURU_MAX_RETRIES) != 3) 545 goto abituguru_detect_bank1_sensor_type_exit; 546 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { 547 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, 548 sensor_addr, buf, 3, 549 ABIT_UGURU_MAX_RETRIES) != 3) 550 goto abituguru_detect_bank1_sensor_type_exit; 551 if (buf[0] & test_flag) { 552 ABIT_UGURU_DEBUG(2, " found volt sensor\n"); 553 ret = ABIT_UGURU_IN_SENSOR; 554 goto abituguru_detect_bank1_sensor_type_exit; 555 } else 556 ABIT_UGURU_DEBUG(2, " alarm raised during volt " 557 "sensor test, but volt range flag not set\n"); 558 } else 559 ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor " 560 "test\n"); 561 562 /* 563 * Temp sensor test, enable sensor as a temp sensor, set beep value 564 * ridicously low (but not too low, otherwise uguru ignores it). 565 * If its a temp sensor this should always give us an alarm. 566 */ 567 buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; 568 buf[1] = 5; 569 buf[2] = 10; 570 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, 571 buf, 3) != 3) 572 goto abituguru_detect_bank1_sensor_type_exit; 573 /* 574 * Now we need 50 ms to give the uguru time to read the sensors 575 * and raise a temp alarm 576 */ 577 set_current_state(TASK_UNINTERRUPTIBLE); 578 schedule_timeout(HZ/20); 579 /* Check for alarm and check the alarm is a temp high alarm. */ 580 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, 581 ABIT_UGURU_MAX_RETRIES) != 3) 582 goto abituguru_detect_bank1_sensor_type_exit; 583 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { 584 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, 585 sensor_addr, buf, 3, 586 ABIT_UGURU_MAX_RETRIES) != 3) 587 goto abituguru_detect_bank1_sensor_type_exit; 588 if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { 589 ABIT_UGURU_DEBUG(2, " found temp sensor\n"); 590 ret = ABIT_UGURU_TEMP_SENSOR; 591 goto abituguru_detect_bank1_sensor_type_exit; 592 } else 593 ABIT_UGURU_DEBUG(2, " alarm raised during temp " 594 "sensor test, but temp high flag not set\n"); 595 } else 596 ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor " 597 "test\n"); 598 599 ret = ABIT_UGURU_NC; 600 abituguru_detect_bank1_sensor_type_exit: 601 /* 602 * Restore original settings, failing here is really BAD, it has been 603 * reported that some BIOS-es hang when entering the uGuru menu with 604 * invalid settings present in the uGuru, so we try this 3 times. 605 */ 606 for (i = 0; i < 3; i++) 607 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, 608 sensor_addr, data->bank1_settings[sensor_addr], 609 3) == 3) 610 break; 611 if (i == 3) { 612 pr_err("Fatal error could not restore original settings. %s %s\n", 613 never_happen, report_this); 614 return -ENODEV; 615 } 616 return ret; 617 } 618 619 /* 620 * These functions try to find out how many sensors there are in bank2 and how 621 * many pwms there are. The purpose of this is to make sure that we don't give 622 * the user the possibility to change settings for non-existent sensors / pwm. 623 * The uGuru will happily read / write whatever memory happens to be after the 624 * memory storing the PWM settings when reading/writing to a PWM which is not 625 * there. Notice even if we detect a PWM which doesn't exist we normally won't 626 * write to it, unless the user tries to change the settings. 627 * 628 * Although the uGuru allows reading (settings) from non existing bank2 629 * sensors, my version of the uGuru does seem to stop writing to them, the 630 * write function above aborts in this case with: 631 * "CMD reg does not hold 0xAC after write" 632 * 633 * Notice these 2 tests are non destructive iow read-only tests, otherwise 634 * they would defeat their purpose. Although for the bank2_sensors detection a 635 * read/write test would be feasible because of the reaction above, I've 636 * however opted to stay on the safe side. 637 */ 638 static void __devinit 639 abituguru_detect_no_bank2_sensors(struct abituguru_data *data) 640 { 641 int i; 642 643 if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) { 644 data->bank2_sensors = fan_sensors; 645 ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " 646 "\"fan_sensors\" module param\n", 647 (int)data->bank2_sensors); 648 return; 649 } 650 651 ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); 652 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { 653 /* 654 * 0x89 are the known used bits: 655 * -0x80 enable shutdown 656 * -0x08 enable beep 657 * -0x01 enable alarm 658 * All other bits should be 0, but on some motherboards 659 * 0x40 (bit 6) is also high for some of the fans?? 660 */ 661 if (data->bank2_settings[i][0] & ~0xC9) { 662 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " 663 "to be a fan sensor: settings[0] = %02X\n", 664 i, (unsigned int)data->bank2_settings[i][0]); 665 break; 666 } 667 668 /* check if the threshold is within the allowed range */ 669 if (data->bank2_settings[i][1] < 670 abituguru_bank2_min_threshold) { 671 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " 672 "to be a fan sensor: the threshold (%d) is " 673 "below the minimum (%d)\n", i, 674 (int)data->bank2_settings[i][1], 675 (int)abituguru_bank2_min_threshold); 676 break; 677 } 678 if (data->bank2_settings[i][1] > 679 abituguru_bank2_max_threshold) { 680 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " 681 "to be a fan sensor: the threshold (%d) is " 682 "above the maximum (%d)\n", i, 683 (int)data->bank2_settings[i][1], 684 (int)abituguru_bank2_max_threshold); 685 break; 686 } 687 } 688 689 data->bank2_sensors = i; 690 ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", 691 (int)data->bank2_sensors); 692 } 693 694 static void __devinit 695 abituguru_detect_no_pwms(struct abituguru_data *data) 696 { 697 int i, j; 698 699 if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) { 700 data->pwms = pwms; 701 ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " 702 "\"pwms\" module param\n", (int)data->pwms); 703 return; 704 } 705 706 ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); 707 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { 708 /* 709 * 0x80 is the enable bit and the low 710 * nibble is which temp sensor to use, 711 * the other bits should be 0 712 */ 713 if (data->pwm_settings[i][0] & ~0x8F) { 714 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 715 "to be a pwm channel: settings[0] = %02X\n", 716 i, (unsigned int)data->pwm_settings[i][0]); 717 break; 718 } 719 720 /* 721 * the low nibble must correspond to one of the temp sensors 722 * we've found 723 */ 724 for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; 725 j++) { 726 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == 727 (data->pwm_settings[i][0] & 0x0F)) 728 break; 729 } 730 if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { 731 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 732 "to be a pwm channel: %d is not a valid temp " 733 "sensor address\n", i, 734 data->pwm_settings[i][0] & 0x0F); 735 break; 736 } 737 738 /* check if all other settings are within the allowed range */ 739 for (j = 1; j < 5; j++) { 740 u8 min; 741 /* special case pwm1 min pwm% */ 742 if ((i == 0) && ((j == 1) || (j == 2))) 743 min = 77; 744 else 745 min = abituguru_pwm_min[j]; 746 if (data->pwm_settings[i][j] < min) { 747 ABIT_UGURU_DEBUG(2, " pwm channel %d does " 748 "not seem to be a pwm channel: " 749 "setting %d (%d) is below the minimum " 750 "value (%d)\n", i, j, 751 (int)data->pwm_settings[i][j], 752 (int)min); 753 goto abituguru_detect_no_pwms_exit; 754 } 755 if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { 756 ABIT_UGURU_DEBUG(2, " pwm channel %d does " 757 "not seem to be a pwm channel: " 758 "setting %d (%d) is above the maximum " 759 "value (%d)\n", i, j, 760 (int)data->pwm_settings[i][j], 761 (int)abituguru_pwm_max[j]); 762 goto abituguru_detect_no_pwms_exit; 763 } 764 } 765 766 /* check that min temp < max temp and min pwm < max pwm */ 767 if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { 768 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 769 "to be a pwm channel: min pwm (%d) >= " 770 "max pwm (%d)\n", i, 771 (int)data->pwm_settings[i][1], 772 (int)data->pwm_settings[i][2]); 773 break; 774 } 775 if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { 776 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 777 "to be a pwm channel: min temp (%d) >= " 778 "max temp (%d)\n", i, 779 (int)data->pwm_settings[i][3], 780 (int)data->pwm_settings[i][4]); 781 break; 782 } 783 } 784 785 abituguru_detect_no_pwms_exit: 786 data->pwms = i; 787 ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); 788 } 789 790 /* 791 * Following are the sysfs callback functions. These functions expect: 792 * sensor_device_attribute_2->index: sensor address/offset in the bank 793 * sensor_device_attribute_2->nr: register offset, bitmask or NA. 794 */ 795 static struct abituguru_data *abituguru_update_device(struct device *dev); 796 797 static ssize_t show_bank1_value(struct device *dev, 798 struct device_attribute *devattr, char *buf) 799 { 800 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 801 struct abituguru_data *data = abituguru_update_device(dev); 802 if (!data) 803 return -EIO; 804 return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * 805 data->bank1_max_value[attr->index] + 128) / 255); 806 } 807 808 static ssize_t show_bank1_setting(struct device *dev, 809 struct device_attribute *devattr, char *buf) 810 { 811 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 812 struct abituguru_data *data = dev_get_drvdata(dev); 813 return sprintf(buf, "%d\n", 814 (data->bank1_settings[attr->index][attr->nr] * 815 data->bank1_max_value[attr->index] + 128) / 255); 816 } 817 818 static ssize_t show_bank2_value(struct device *dev, 819 struct device_attribute *devattr, char *buf) 820 { 821 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 822 struct abituguru_data *data = abituguru_update_device(dev); 823 if (!data) 824 return -EIO; 825 return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * 826 ABIT_UGURU_FAN_MAX + 128) / 255); 827 } 828 829 static ssize_t show_bank2_setting(struct device *dev, 830 struct device_attribute *devattr, char *buf) 831 { 832 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 833 struct abituguru_data *data = dev_get_drvdata(dev); 834 return sprintf(buf, "%d\n", 835 (data->bank2_settings[attr->index][attr->nr] * 836 ABIT_UGURU_FAN_MAX + 128) / 255); 837 } 838 839 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute 840 *devattr, const char *buf, size_t count) 841 { 842 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 843 struct abituguru_data *data = dev_get_drvdata(dev); 844 unsigned long val; 845 ssize_t ret; 846 847 ret = kstrtoul(buf, 10, &val); 848 if (ret) 849 return ret; 850 851 ret = count; 852 val = (val * 255 + data->bank1_max_value[attr->index] / 2) / 853 data->bank1_max_value[attr->index]; 854 if (val > 255) 855 return -EINVAL; 856 857 mutex_lock(&data->update_lock); 858 if (data->bank1_settings[attr->index][attr->nr] != val) { 859 u8 orig_val = data->bank1_settings[attr->index][attr->nr]; 860 data->bank1_settings[attr->index][attr->nr] = val; 861 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, 862 attr->index, data->bank1_settings[attr->index], 863 3) <= attr->nr) { 864 data->bank1_settings[attr->index][attr->nr] = orig_val; 865 ret = -EIO; 866 } 867 } 868 mutex_unlock(&data->update_lock); 869 return ret; 870 } 871 872 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute 873 *devattr, const char *buf, size_t count) 874 { 875 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 876 struct abituguru_data *data = dev_get_drvdata(dev); 877 unsigned long val; 878 ssize_t ret; 879 880 ret = kstrtoul(buf, 10, &val); 881 if (ret) 882 return ret; 883 884 ret = count; 885 val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX; 886 887 /* this check can be done before taking the lock */ 888 if (val < abituguru_bank2_min_threshold || 889 val > abituguru_bank2_max_threshold) 890 return -EINVAL; 891 892 mutex_lock(&data->update_lock); 893 if (data->bank2_settings[attr->index][attr->nr] != val) { 894 u8 orig_val = data->bank2_settings[attr->index][attr->nr]; 895 data->bank2_settings[attr->index][attr->nr] = val; 896 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, 897 attr->index, data->bank2_settings[attr->index], 898 2) <= attr->nr) { 899 data->bank2_settings[attr->index][attr->nr] = orig_val; 900 ret = -EIO; 901 } 902 } 903 mutex_unlock(&data->update_lock); 904 return ret; 905 } 906 907 static ssize_t show_bank1_alarm(struct device *dev, 908 struct device_attribute *devattr, char *buf) 909 { 910 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 911 struct abituguru_data *data = abituguru_update_device(dev); 912 if (!data) 913 return -EIO; 914 /* 915 * See if the alarm bit for this sensor is set, and if the 916 * alarm matches the type of alarm we're looking for (for volt 917 * it can be either low or high). The type is stored in a few 918 * readonly bits in the settings part of the relevant sensor. 919 * The bitmask of the type is passed to us in attr->nr. 920 */ 921 if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && 922 (data->bank1_settings[attr->index][0] & attr->nr)) 923 return sprintf(buf, "1\n"); 924 else 925 return sprintf(buf, "0\n"); 926 } 927 928 static ssize_t show_bank2_alarm(struct device *dev, 929 struct device_attribute *devattr, char *buf) 930 { 931 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 932 struct abituguru_data *data = abituguru_update_device(dev); 933 if (!data) 934 return -EIO; 935 if (data->alarms[2] & (0x01 << attr->index)) 936 return sprintf(buf, "1\n"); 937 else 938 return sprintf(buf, "0\n"); 939 } 940 941 static ssize_t show_bank1_mask(struct device *dev, 942 struct device_attribute *devattr, char *buf) 943 { 944 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 945 struct abituguru_data *data = dev_get_drvdata(dev); 946 if (data->bank1_settings[attr->index][0] & attr->nr) 947 return sprintf(buf, "1\n"); 948 else 949 return sprintf(buf, "0\n"); 950 } 951 952 static ssize_t show_bank2_mask(struct device *dev, 953 struct device_attribute *devattr, char *buf) 954 { 955 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 956 struct abituguru_data *data = dev_get_drvdata(dev); 957 if (data->bank2_settings[attr->index][0] & attr->nr) 958 return sprintf(buf, "1\n"); 959 else 960 return sprintf(buf, "0\n"); 961 } 962 963 static ssize_t store_bank1_mask(struct device *dev, 964 struct device_attribute *devattr, const char *buf, size_t count) 965 { 966 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 967 struct abituguru_data *data = dev_get_drvdata(dev); 968 ssize_t ret; 969 u8 orig_val; 970 unsigned long mask; 971 972 ret = kstrtoul(buf, 10, &mask); 973 if (ret) 974 return ret; 975 976 ret = count; 977 mutex_lock(&data->update_lock); 978 orig_val = data->bank1_settings[attr->index][0]; 979 980 if (mask) 981 data->bank1_settings[attr->index][0] |= attr->nr; 982 else 983 data->bank1_settings[attr->index][0] &= ~attr->nr; 984 985 if ((data->bank1_settings[attr->index][0] != orig_val) && 986 (abituguru_write(data, 987 ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, 988 data->bank1_settings[attr->index], 3) < 1)) { 989 data->bank1_settings[attr->index][0] = orig_val; 990 ret = -EIO; 991 } 992 mutex_unlock(&data->update_lock); 993 return ret; 994 } 995 996 static ssize_t store_bank2_mask(struct device *dev, 997 struct device_attribute *devattr, const char *buf, size_t count) 998 { 999 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1000 struct abituguru_data *data = dev_get_drvdata(dev); 1001 ssize_t ret; 1002 u8 orig_val; 1003 unsigned long mask; 1004 1005 ret = kstrtoul(buf, 10, &mask); 1006 if (ret) 1007 return ret; 1008 1009 ret = count; 1010 mutex_lock(&data->update_lock); 1011 orig_val = data->bank2_settings[attr->index][0]; 1012 1013 if (mask) 1014 data->bank2_settings[attr->index][0] |= attr->nr; 1015 else 1016 data->bank2_settings[attr->index][0] &= ~attr->nr; 1017 1018 if ((data->bank2_settings[attr->index][0] != orig_val) && 1019 (abituguru_write(data, 1020 ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, 1021 data->bank2_settings[attr->index], 2) < 1)) { 1022 data->bank2_settings[attr->index][0] = orig_val; 1023 ret = -EIO; 1024 } 1025 mutex_unlock(&data->update_lock); 1026 return ret; 1027 } 1028 1029 /* Fan PWM (speed control) */ 1030 static ssize_t show_pwm_setting(struct device *dev, 1031 struct device_attribute *devattr, char *buf) 1032 { 1033 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1034 struct abituguru_data *data = dev_get_drvdata(dev); 1035 return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * 1036 abituguru_pwm_settings_multiplier[attr->nr]); 1037 } 1038 1039 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute 1040 *devattr, const char *buf, size_t count) 1041 { 1042 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1043 struct abituguru_data *data = dev_get_drvdata(dev); 1044 u8 min; 1045 unsigned long val; 1046 ssize_t ret; 1047 1048 ret = kstrtoul(buf, 10, &val); 1049 if (ret) 1050 return ret; 1051 1052 ret = count; 1053 val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) / 1054 abituguru_pwm_settings_multiplier[attr->nr]; 1055 1056 /* special case pwm1 min pwm% */ 1057 if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) 1058 min = 77; 1059 else 1060 min = abituguru_pwm_min[attr->nr]; 1061 1062 /* this check can be done before taking the lock */ 1063 if (val < min || val > abituguru_pwm_max[attr->nr]) 1064 return -EINVAL; 1065 1066 mutex_lock(&data->update_lock); 1067 /* this check needs to be done after taking the lock */ 1068 if ((attr->nr & 1) && 1069 (val >= data->pwm_settings[attr->index][attr->nr + 1])) 1070 ret = -EINVAL; 1071 else if (!(attr->nr & 1) && 1072 (val <= data->pwm_settings[attr->index][attr->nr - 1])) 1073 ret = -EINVAL; 1074 else if (data->pwm_settings[attr->index][attr->nr] != val) { 1075 u8 orig_val = data->pwm_settings[attr->index][attr->nr]; 1076 data->pwm_settings[attr->index][attr->nr] = val; 1077 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, 1078 attr->index, data->pwm_settings[attr->index], 1079 5) <= attr->nr) { 1080 data->pwm_settings[attr->index][attr->nr] = 1081 orig_val; 1082 ret = -EIO; 1083 } 1084 } 1085 mutex_unlock(&data->update_lock); 1086 return ret; 1087 } 1088 1089 static ssize_t show_pwm_sensor(struct device *dev, 1090 struct device_attribute *devattr, char *buf) 1091 { 1092 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1093 struct abituguru_data *data = dev_get_drvdata(dev); 1094 int i; 1095 /* 1096 * We need to walk to the temp sensor addresses to find what 1097 * the userspace id of the configured temp sensor is. 1098 */ 1099 for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) 1100 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == 1101 (data->pwm_settings[attr->index][0] & 0x0F)) 1102 return sprintf(buf, "%d\n", i+1); 1103 1104 return -ENXIO; 1105 } 1106 1107 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute 1108 *devattr, const char *buf, size_t count) 1109 { 1110 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1111 struct abituguru_data *data = dev_get_drvdata(dev); 1112 ssize_t ret; 1113 unsigned long val; 1114 u8 orig_val; 1115 u8 address; 1116 1117 ret = kstrtoul(buf, 10, &val); 1118 if (ret) 1119 return ret; 1120 1121 if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) 1122 return -EINVAL; 1123 1124 val -= 1; 1125 ret = count; 1126 mutex_lock(&data->update_lock); 1127 orig_val = data->pwm_settings[attr->index][0]; 1128 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; 1129 data->pwm_settings[attr->index][0] &= 0xF0; 1130 data->pwm_settings[attr->index][0] |= address; 1131 if (data->pwm_settings[attr->index][0] != orig_val) { 1132 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index, 1133 data->pwm_settings[attr->index], 5) < 1) { 1134 data->pwm_settings[attr->index][0] = orig_val; 1135 ret = -EIO; 1136 } 1137 } 1138 mutex_unlock(&data->update_lock); 1139 return ret; 1140 } 1141 1142 static ssize_t show_pwm_enable(struct device *dev, 1143 struct device_attribute *devattr, char *buf) 1144 { 1145 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1146 struct abituguru_data *data = dev_get_drvdata(dev); 1147 int res = 0; 1148 if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) 1149 res = 2; 1150 return sprintf(buf, "%d\n", res); 1151 } 1152 1153 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute 1154 *devattr, const char *buf, size_t count) 1155 { 1156 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1157 struct abituguru_data *data = dev_get_drvdata(dev); 1158 u8 orig_val; 1159 ssize_t ret; 1160 unsigned long user_val; 1161 1162 ret = kstrtoul(buf, 10, &user_val); 1163 if (ret) 1164 return ret; 1165 1166 ret = count; 1167 mutex_lock(&data->update_lock); 1168 orig_val = data->pwm_settings[attr->index][0]; 1169 switch (user_val) { 1170 case 0: 1171 data->pwm_settings[attr->index][0] &= 1172 ~ABIT_UGURU_FAN_PWM_ENABLE; 1173 break; 1174 case 2: 1175 data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE; 1176 break; 1177 default: 1178 ret = -EINVAL; 1179 } 1180 if ((data->pwm_settings[attr->index][0] != orig_val) && 1181 (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, 1182 attr->index, data->pwm_settings[attr->index], 1183 5) < 1)) { 1184 data->pwm_settings[attr->index][0] = orig_val; 1185 ret = -EIO; 1186 } 1187 mutex_unlock(&data->update_lock); 1188 return ret; 1189 } 1190 1191 static ssize_t show_name(struct device *dev, 1192 struct device_attribute *devattr, char *buf) 1193 { 1194 return sprintf(buf, "%s\n", ABIT_UGURU_NAME); 1195 } 1196 1197 /* Sysfs attr templates, the real entries are generated automatically. */ 1198 static const 1199 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { 1200 { 1201 SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), 1202 SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, 1203 store_bank1_setting, 1, 0), 1204 SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, 1205 ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), 1206 SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, 1207 store_bank1_setting, 2, 0), 1208 SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, 1209 ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), 1210 SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, 1211 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), 1212 SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, 1213 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), 1214 SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, 1215 store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), 1216 SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, 1217 store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), 1218 }, { 1219 SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), 1220 SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, 1221 ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), 1222 SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, 1223 store_bank1_setting, 1, 0), 1224 SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, 1225 store_bank1_setting, 2, 0), 1226 SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, 1227 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), 1228 SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, 1229 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), 1230 SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, 1231 store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), 1232 } 1233 }; 1234 1235 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { 1236 SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), 1237 SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), 1238 SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, 1239 store_bank2_setting, 1, 0), 1240 SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, 1241 store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), 1242 SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, 1243 store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), 1244 SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, 1245 store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), 1246 }; 1247 1248 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { 1249 SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, 1250 store_pwm_enable, 0, 0), 1251 SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, 1252 store_pwm_sensor, 0, 0), 1253 SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, 1254 store_pwm_setting, 1, 0), 1255 SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, 1256 store_pwm_setting, 2, 0), 1257 SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, 1258 store_pwm_setting, 3, 0), 1259 SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, 1260 store_pwm_setting, 4, 0), 1261 }; 1262 1263 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { 1264 SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), 1265 }; 1266 1267 static int __devinit abituguru_probe(struct platform_device *pdev) 1268 { 1269 struct abituguru_data *data; 1270 int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV; 1271 char *sysfs_filename; 1272 1273 /* 1274 * El weirdo probe order, to keep the sysfs order identical to the 1275 * BIOS and window-appliction listing order. 1276 */ 1277 const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = { 1278 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02, 1279 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; 1280 1281 data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL); 1282 if (!data) 1283 return -ENOMEM; 1284 1285 data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; 1286 mutex_init(&data->update_lock); 1287 platform_set_drvdata(pdev, data); 1288 1289 /* See if the uGuru is ready */ 1290 if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) 1291 data->uguru_ready = 1; 1292 1293 /* 1294 * Completely read the uGuru this has 2 purposes: 1295 * - testread / see if one really is there. 1296 * - make an in memory copy of all the uguru settings for future use. 1297 */ 1298 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, 1299 data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) 1300 goto abituguru_probe_error; 1301 1302 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { 1303 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, 1304 &data->bank1_value[i], 1, 1305 ABIT_UGURU_MAX_RETRIES) != 1) 1306 goto abituguru_probe_error; 1307 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, 1308 data->bank1_settings[i], 3, 1309 ABIT_UGURU_MAX_RETRIES) != 3) 1310 goto abituguru_probe_error; 1311 } 1312 /* 1313 * Note: We don't know how many bank2 sensors / pwms there really are, 1314 * but in order to "detect" this we need to read the maximum amount 1315 * anyways. If we read sensors/pwms not there we'll just read crap 1316 * this can't hurt. We need the detection because we don't want 1317 * unwanted writes, which will hurt! 1318 */ 1319 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { 1320 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, 1321 &data->bank2_value[i], 1, 1322 ABIT_UGURU_MAX_RETRIES) != 1) 1323 goto abituguru_probe_error; 1324 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, 1325 data->bank2_settings[i], 2, 1326 ABIT_UGURU_MAX_RETRIES) != 2) 1327 goto abituguru_probe_error; 1328 } 1329 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { 1330 if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, 1331 data->pwm_settings[i], 5, 1332 ABIT_UGURU_MAX_RETRIES) != 5) 1333 goto abituguru_probe_error; 1334 } 1335 data->last_updated = jiffies; 1336 1337 /* Detect sensor types and fill the sysfs attr for bank1 */ 1338 sysfs_attr_i = 0; 1339 sysfs_filename = data->sysfs_names; 1340 sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH; 1341 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { 1342 res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); 1343 if (res < 0) 1344 goto abituguru_probe_error; 1345 if (res == ABIT_UGURU_NC) 1346 continue; 1347 1348 /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */ 1349 for (j = 0; j < (res ? 7 : 9); j++) { 1350 used = snprintf(sysfs_filename, sysfs_names_free, 1351 abituguru_sysfs_bank1_templ[res][j].dev_attr. 1352 attr.name, data->bank1_sensors[res] + res) 1353 + 1; 1354 data->sysfs_attr[sysfs_attr_i] = 1355 abituguru_sysfs_bank1_templ[res][j]; 1356 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = 1357 sysfs_filename; 1358 data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; 1359 sysfs_filename += used; 1360 sysfs_names_free -= used; 1361 sysfs_attr_i++; 1362 } 1363 data->bank1_max_value[probe_order[i]] = 1364 abituguru_bank1_max_value[res]; 1365 data->bank1_address[res][data->bank1_sensors[res]] = 1366 probe_order[i]; 1367 data->bank1_sensors[res]++; 1368 } 1369 /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ 1370 abituguru_detect_no_bank2_sensors(data); 1371 for (i = 0; i < data->bank2_sensors; i++) { 1372 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) { 1373 used = snprintf(sysfs_filename, sysfs_names_free, 1374 abituguru_sysfs_fan_templ[j].dev_attr.attr.name, 1375 i + 1) + 1; 1376 data->sysfs_attr[sysfs_attr_i] = 1377 abituguru_sysfs_fan_templ[j]; 1378 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = 1379 sysfs_filename; 1380 data->sysfs_attr[sysfs_attr_i].index = i; 1381 sysfs_filename += used; 1382 sysfs_names_free -= used; 1383 sysfs_attr_i++; 1384 } 1385 } 1386 /* Detect number of sensors and fill the sysfs attr for pwms */ 1387 abituguru_detect_no_pwms(data); 1388 for (i = 0; i < data->pwms; i++) { 1389 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) { 1390 used = snprintf(sysfs_filename, sysfs_names_free, 1391 abituguru_sysfs_pwm_templ[j].dev_attr.attr.name, 1392 i + 1) + 1; 1393 data->sysfs_attr[sysfs_attr_i] = 1394 abituguru_sysfs_pwm_templ[j]; 1395 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = 1396 sysfs_filename; 1397 data->sysfs_attr[sysfs_attr_i].index = i; 1398 sysfs_filename += used; 1399 sysfs_names_free -= used; 1400 sysfs_attr_i++; 1401 } 1402 } 1403 /* Fail safe check, this should never happen! */ 1404 if (sysfs_names_free < 0) { 1405 pr_err("Fatal error ran out of space for sysfs attr names. %s %s", 1406 never_happen, report_this); 1407 res = -ENAMETOOLONG; 1408 goto abituguru_probe_error; 1409 } 1410 pr_info("found Abit uGuru\n"); 1411 1412 /* Register sysfs hooks */ 1413 for (i = 0; i < sysfs_attr_i; i++) 1414 if (device_create_file(&pdev->dev, 1415 &data->sysfs_attr[i].dev_attr)) 1416 goto abituguru_probe_error; 1417 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) 1418 if (device_create_file(&pdev->dev, 1419 &abituguru_sysfs_attr[i].dev_attr)) 1420 goto abituguru_probe_error; 1421 1422 data->hwmon_dev = hwmon_device_register(&pdev->dev); 1423 if (!IS_ERR(data->hwmon_dev)) 1424 return 0; /* success */ 1425 1426 res = PTR_ERR(data->hwmon_dev); 1427 abituguru_probe_error: 1428 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) 1429 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); 1430 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) 1431 device_remove_file(&pdev->dev, 1432 &abituguru_sysfs_attr[i].dev_attr); 1433 platform_set_drvdata(pdev, NULL); 1434 kfree(data); 1435 return res; 1436 } 1437 1438 static int __devexit abituguru_remove(struct platform_device *pdev) 1439 { 1440 int i; 1441 struct abituguru_data *data = platform_get_drvdata(pdev); 1442 1443 hwmon_device_unregister(data->hwmon_dev); 1444 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) 1445 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); 1446 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) 1447 device_remove_file(&pdev->dev, 1448 &abituguru_sysfs_attr[i].dev_attr); 1449 platform_set_drvdata(pdev, NULL); 1450 kfree(data); 1451 1452 return 0; 1453 } 1454 1455 static struct abituguru_data *abituguru_update_device(struct device *dev) 1456 { 1457 int i, err; 1458 struct abituguru_data *data = dev_get_drvdata(dev); 1459 /* fake a complete successful read if no update necessary. */ 1460 char success = 1; 1461 1462 mutex_lock(&data->update_lock); 1463 if (time_after(jiffies, data->last_updated + HZ)) { 1464 success = 0; 1465 err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, 1466 data->alarms, 3, 0); 1467 if (err != 3) 1468 goto LEAVE_UPDATE; 1469 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { 1470 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, 1471 i, &data->bank1_value[i], 1, 0); 1472 if (err != 1) 1473 goto LEAVE_UPDATE; 1474 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, 1475 i, data->bank1_settings[i], 3, 0); 1476 if (err != 3) 1477 goto LEAVE_UPDATE; 1478 } 1479 for (i = 0; i < data->bank2_sensors; i++) { 1480 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, 1481 &data->bank2_value[i], 1, 0); 1482 if (err != 1) 1483 goto LEAVE_UPDATE; 1484 } 1485 /* success! */ 1486 success = 1; 1487 data->update_timeouts = 0; 1488 LEAVE_UPDATE: 1489 /* handle timeout condition */ 1490 if (!success && (err == -EBUSY || err >= 0)) { 1491 /* No overflow please */ 1492 if (data->update_timeouts < 255u) 1493 data->update_timeouts++; 1494 if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { 1495 ABIT_UGURU_DEBUG(3, "timeout exceeded, will " 1496 "try again next update\n"); 1497 /* Just a timeout, fake a successful read */ 1498 success = 1; 1499 } else 1500 ABIT_UGURU_DEBUG(1, "timeout exceeded %d " 1501 "times waiting for more input state\n", 1502 (int)data->update_timeouts); 1503 } 1504 /* On success set last_updated */ 1505 if (success) 1506 data->last_updated = jiffies; 1507 } 1508 mutex_unlock(&data->update_lock); 1509 1510 if (success) 1511 return data; 1512 else 1513 return NULL; 1514 } 1515 1516 #ifdef CONFIG_PM_SLEEP 1517 static int abituguru_suspend(struct device *dev) 1518 { 1519 struct abituguru_data *data = dev_get_drvdata(dev); 1520 /* 1521 * make sure all communications with the uguru are done and no new 1522 * ones are started 1523 */ 1524 mutex_lock(&data->update_lock); 1525 return 0; 1526 } 1527 1528 static int abituguru_resume(struct device *dev) 1529 { 1530 struct abituguru_data *data = dev_get_drvdata(dev); 1531 /* See if the uGuru is still ready */ 1532 if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) 1533 data->uguru_ready = 0; 1534 mutex_unlock(&data->update_lock); 1535 return 0; 1536 } 1537 1538 static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume); 1539 #define ABIT_UGURU_PM &abituguru_pm 1540 #else 1541 #define ABIT_UGURU_PM NULL 1542 #endif /* CONFIG_PM */ 1543 1544 static struct platform_driver abituguru_driver = { 1545 .driver = { 1546 .owner = THIS_MODULE, 1547 .name = ABIT_UGURU_NAME, 1548 .pm = ABIT_UGURU_PM, 1549 }, 1550 .probe = abituguru_probe, 1551 .remove = __devexit_p(abituguru_remove), 1552 }; 1553 1554 static int __init abituguru_detect(void) 1555 { 1556 /* 1557 * See if there is an uguru there. After a reboot uGuru will hold 0x00 1558 * at DATA and 0xAC, when this driver has already been loaded once 1559 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either 1560 * scenario but some will hold 0x00. 1561 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08 1562 * after reading CMD first, so CMD must be read first! 1563 */ 1564 u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); 1565 u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); 1566 if (((data_val == 0x00) || (data_val == 0x08)) && 1567 ((cmd_val == 0x00) || (cmd_val == 0xAC))) 1568 return ABIT_UGURU_BASE; 1569 1570 ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " 1571 "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); 1572 1573 if (force) { 1574 pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n"); 1575 return ABIT_UGURU_BASE; 1576 } 1577 1578 /* No uGuru found */ 1579 return -ENODEV; 1580 } 1581 1582 static struct platform_device *abituguru_pdev; 1583 1584 static int __init abituguru_init(void) 1585 { 1586 int address, err; 1587 struct resource res = { .flags = IORESOURCE_IO }; 1588 const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR); 1589 1590 /* safety check, refuse to load on non Abit motherboards */ 1591 if (!force && (!board_vendor || 1592 strcmp(board_vendor, "http://www.abit.com.tw/"))) 1593 return -ENODEV; 1594 1595 address = abituguru_detect(); 1596 if (address < 0) 1597 return address; 1598 1599 err = platform_driver_register(&abituguru_driver); 1600 if (err) 1601 goto exit; 1602 1603 abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); 1604 if (!abituguru_pdev) { 1605 pr_err("Device allocation failed\n"); 1606 err = -ENOMEM; 1607 goto exit_driver_unregister; 1608 } 1609 1610 res.start = address; 1611 res.end = address + ABIT_UGURU_REGION_LENGTH - 1; 1612 res.name = ABIT_UGURU_NAME; 1613 1614 err = platform_device_add_resources(abituguru_pdev, &res, 1); 1615 if (err) { 1616 pr_err("Device resource addition failed (%d)\n", err); 1617 goto exit_device_put; 1618 } 1619 1620 err = platform_device_add(abituguru_pdev); 1621 if (err) { 1622 pr_err("Device addition failed (%d)\n", err); 1623 goto exit_device_put; 1624 } 1625 1626 return 0; 1627 1628 exit_device_put: 1629 platform_device_put(abituguru_pdev); 1630 exit_driver_unregister: 1631 platform_driver_unregister(&abituguru_driver); 1632 exit: 1633 return err; 1634 } 1635 1636 static void __exit abituguru_exit(void) 1637 { 1638 platform_device_unregister(abituguru_pdev); 1639 platform_driver_unregister(&abituguru_driver); 1640 } 1641 1642 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>"); 1643 MODULE_DESCRIPTION("Abit uGuru Sensor device"); 1644 MODULE_LICENSE("GPL"); 1645 1646 module_init(abituguru_init); 1647 module_exit(abituguru_exit); 1648