xref: /openbmc/linux/drivers/hwmon/abituguru.c (revision 4f3db074)
1 /*
2  * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 /*
19  * This driver supports the sensor part of the first and second revision of
20  * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
21  * of lack of specs the CPU/RAM voltage & frequency control is not supported!
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/sched.h>
28 #include <linux/init.h>
29 #include <linux/slab.h>
30 #include <linux/jiffies.h>
31 #include <linux/mutex.h>
32 #include <linux/err.h>
33 #include <linux/delay.h>
34 #include <linux/platform_device.h>
35 #include <linux/hwmon.h>
36 #include <linux/hwmon-sysfs.h>
37 #include <linux/dmi.h>
38 #include <linux/io.h>
39 
40 /* Banks */
41 #define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
42 #define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
43 #define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
44 #define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
45 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
46 #define ABIT_UGURU_MAX_BANK1_SENSORS		16
47 /*
48  * Warning if you increase one of the 2 MAX defines below to 10 or higher you
49  * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
50  */
51 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
52 #define ABIT_UGURU_MAX_BANK2_SENSORS		6
53 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
54 #define ABIT_UGURU_MAX_PWMS			5
55 /* uGuru sensor bank 1 flags */			     /* Alarm if: */
56 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
57 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
58 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
59 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
60 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
61 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
62 /* uGuru sensor bank 2 flags */			     /* Alarm if: */
63 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
64 /* uGuru sensor bank common flags */
65 #define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
66 #define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
67 /* uGuru fan PWM (speed control) flags */
68 #define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
69 /* Values used for conversion */
70 #define ABIT_UGURU_FAN_MAX			15300 /* RPM */
71 /* Bank1 sensor types */
72 #define ABIT_UGURU_IN_SENSOR			0
73 #define ABIT_UGURU_TEMP_SENSOR			1
74 #define ABIT_UGURU_NC				2
75 /*
76  * In many cases we need to wait for the uGuru to reach a certain status, most
77  * of the time it will reach this status within 30 - 90 ISA reads, and thus we
78  * can best busy wait. This define gives the total amount of reads to try.
79  */
80 #define ABIT_UGURU_WAIT_TIMEOUT			125
81 /*
82  * However sometimes older versions of the uGuru seem to be distracted and they
83  * do not respond for a long time. To handle this we sleep before each of the
84  * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
85  */
86 #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
87 /*
88  * Normally all expected status in abituguru_ready, are reported after the
89  * first read, but sometimes not and we need to poll.
90  */
91 #define ABIT_UGURU_READY_TIMEOUT		5
92 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
93 #define ABIT_UGURU_MAX_RETRIES			3
94 #define ABIT_UGURU_RETRY_DELAY			(HZ/5)
95 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
96 #define ABIT_UGURU_MAX_TIMEOUTS			2
97 /* utility macros */
98 #define ABIT_UGURU_NAME				"abituguru"
99 #define ABIT_UGURU_DEBUG(level, format, arg...)		\
100 	do {						\
101 		if (level <= verbose)			\
102 			pr_debug(format , ## arg);	\
103 	} while (0)
104 
105 /* Macros to help calculate the sysfs_names array length */
106 /*
107  * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
108  * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
109  */
110 #define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
111 /*
112  * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
113  * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
114  */
115 #define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
116 /*
117  * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
118  * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
119  */
120 #define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
121 /*
122  * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
123  * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
124  */
125 #define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
126 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
127 #define ABITUGURU_SYSFS_NAMES_LENGTH	( \
128 	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
129 	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
130 	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
131 
132 /*
133  * All the macros below are named identical to the oguru and oguru2 programs
134  * reverse engineered by Olle Sandberg, hence the names might not be 100%
135  * logical. I could come up with better names, but I prefer keeping the names
136  * identical so that this driver can be compared with his work more easily.
137  */
138 /* Two i/o-ports are used by uGuru */
139 #define ABIT_UGURU_BASE				0x00E0
140 /* Used to tell uGuru what to read and to read the actual data */
141 #define ABIT_UGURU_CMD				0x00
142 /* Mostly used to check if uGuru is busy */
143 #define ABIT_UGURU_DATA				0x04
144 #define ABIT_UGURU_REGION_LENGTH		5
145 /* uGuru status' */
146 #define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
147 #define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
148 #define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
149 #define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
150 
151 /* Constants */
152 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
153 static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
154 /*
155  * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
156  * correspond to 300-3000 RPM
157  */
158 static const u8 abituguru_bank2_min_threshold = 5;
159 static const u8 abituguru_bank2_max_threshold = 50;
160 /*
161  * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
162  * are temperature trip points.
163  */
164 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
165 /*
166  * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
167  * special case the minimum allowed pwm% setting for this is 30% (77) on
168  * some MB's this special case is handled in the code!
169  */
170 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
171 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
172 
173 
174 /* Insmod parameters */
175 static bool force;
176 module_param(force, bool, 0);
177 MODULE_PARM_DESC(force, "Set to one to force detection.");
178 static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
179 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
180 module_param_array(bank1_types, int, NULL, 0);
181 MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
182 	"   -1 autodetect\n"
183 	"    0 volt sensor\n"
184 	"    1 temp sensor\n"
185 	"    2 not connected");
186 static int fan_sensors;
187 module_param(fan_sensors, int, 0);
188 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
189 	"(0 = autodetect)");
190 static int pwms;
191 module_param(pwms, int, 0);
192 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
193 	"(0 = autodetect)");
194 
195 /* Default verbose is 2, since this driver is still in the testing phase */
196 static int verbose = 2;
197 module_param(verbose, int, 0644);
198 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
199 	"   0 normal output\n"
200 	"   1 + verbose error reporting\n"
201 	"   2 + sensors type probing info\n"
202 	"   3 + retryable error reporting");
203 
204 
205 /*
206  * For the Abit uGuru, we need to keep some data in memory.
207  * The structure is dynamically allocated, at the same time when a new
208  * abituguru device is allocated.
209  */
210 struct abituguru_data {
211 	struct device *hwmon_dev;	/* hwmon registered device */
212 	struct mutex update_lock;	/* protect access to data and uGuru */
213 	unsigned long last_updated;	/* In jiffies */
214 	unsigned short addr;		/* uguru base address */
215 	char uguru_ready;		/* is the uguru in ready state? */
216 	unsigned char update_timeouts;	/*
217 					 * number of update timeouts since last
218 					 * successful update
219 					 */
220 
221 	/*
222 	 * The sysfs attr and their names are generated automatically, for bank1
223 	 * we cannot use a predefined array because we don't know beforehand
224 	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
225 	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
226 	 * sysfs entries per sensor, for bank2 and pwms 6.
227 	 */
228 	struct sensor_device_attribute_2 sysfs_attr[
229 		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
230 		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
231 	/* Buffer to store the dynamically generated sysfs names */
232 	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
233 
234 	/* Bank 1 data */
235 	/* number of and addresses of [0] in, [1] temp sensors */
236 	u8 bank1_sensors[2];
237 	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
238 	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
239 	/*
240 	 * This array holds 3 entries per sensor for the bank 1 sensor settings
241 	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
242 	 */
243 	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
244 	/*
245 	 * Maximum value for each sensor used for scaling in mV/millidegrees
246 	 * Celsius.
247 	 */
248 	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
249 
250 	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
251 	u8 bank2_sensors; /* actual number of bank2 sensors found */
252 	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
253 	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
254 
255 	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
256 	u8 alarms[3];
257 
258 	/* Fan PWM (speed control) 5 bytes per PWM */
259 	u8 pwms; /* actual number of pwms found */
260 	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
261 };
262 
263 static const char *never_happen = "This should never happen.";
264 static const char *report_this =
265 	"Please report this to the abituguru maintainer (see MAINTAINERS)";
266 
267 /* wait till the uguru is in the specified state */
268 static int abituguru_wait(struct abituguru_data *data, u8 state)
269 {
270 	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
271 
272 	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
273 		timeout--;
274 		if (timeout == 0)
275 			return -EBUSY;
276 		/*
277 		 * sleep a bit before our last few tries, see the comment on
278 		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
279 		 */
280 		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
281 			msleep(0);
282 	}
283 	return 0;
284 }
285 
286 /* Put the uguru in ready for input state */
287 static int abituguru_ready(struct abituguru_data *data)
288 {
289 	int timeout = ABIT_UGURU_READY_TIMEOUT;
290 
291 	if (data->uguru_ready)
292 		return 0;
293 
294 	/* Reset? / Prepare for next read/write cycle */
295 	outb(0x00, data->addr + ABIT_UGURU_DATA);
296 
297 	/* Wait till the uguru is ready */
298 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
299 		ABIT_UGURU_DEBUG(1,
300 			"timeout exceeded waiting for ready state\n");
301 		return -EIO;
302 	}
303 
304 	/* Cmd port MUST be read now and should contain 0xAC */
305 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
306 		timeout--;
307 		if (timeout == 0) {
308 			ABIT_UGURU_DEBUG(1,
309 			   "CMD reg does not hold 0xAC after ready command\n");
310 			return -EIO;
311 		}
312 		msleep(0);
313 	}
314 
315 	/*
316 	 * After this the ABIT_UGURU_DATA port should contain
317 	 * ABIT_UGURU_STATUS_INPUT
318 	 */
319 	timeout = ABIT_UGURU_READY_TIMEOUT;
320 	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
321 		timeout--;
322 		if (timeout == 0) {
323 			ABIT_UGURU_DEBUG(1,
324 				"state != more input after ready command\n");
325 			return -EIO;
326 		}
327 		msleep(0);
328 	}
329 
330 	data->uguru_ready = 1;
331 	return 0;
332 }
333 
334 /*
335  * Send the bank and then sensor address to the uGuru for the next read/write
336  * cycle. This function gets called as the first part of a read/write by
337  * abituguru_read and abituguru_write. This function should never be
338  * called by any other function.
339  */
340 static int abituguru_send_address(struct abituguru_data *data,
341 	u8 bank_addr, u8 sensor_addr, int retries)
342 {
343 	/*
344 	 * assume the caller does error handling itself if it has not requested
345 	 * any retries, and thus be quiet.
346 	 */
347 	int report_errors = retries;
348 
349 	for (;;) {
350 		/*
351 		 * Make sure the uguru is ready and then send the bank address,
352 		 * after this the uguru is no longer "ready".
353 		 */
354 		if (abituguru_ready(data) != 0)
355 			return -EIO;
356 		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
357 		data->uguru_ready = 0;
358 
359 		/*
360 		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
361 		 * and send the sensor addr
362 		 */
363 		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
364 			if (retries) {
365 				ABIT_UGURU_DEBUG(3, "timeout exceeded "
366 					"waiting for more input state, %d "
367 					"tries remaining\n", retries);
368 				set_current_state(TASK_UNINTERRUPTIBLE);
369 				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
370 				retries--;
371 				continue;
372 			}
373 			if (report_errors)
374 				ABIT_UGURU_DEBUG(1, "timeout exceeded "
375 					"waiting for more input state "
376 					"(bank: %d)\n", (int)bank_addr);
377 			return -EBUSY;
378 		}
379 		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
380 		return 0;
381 	}
382 }
383 
384 /*
385  * Read count bytes from sensor sensor_addr in bank bank_addr and store the
386  * result in buf, retry the send address part of the read retries times.
387  */
388 static int abituguru_read(struct abituguru_data *data,
389 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
390 {
391 	int i;
392 
393 	/* Send the address */
394 	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
395 	if (i)
396 		return i;
397 
398 	/* And read the data */
399 	for (i = 0; i < count; i++) {
400 		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
401 			ABIT_UGURU_DEBUG(retries ? 1 : 3,
402 				"timeout exceeded waiting for "
403 				"read state (bank: %d, sensor: %d)\n",
404 				(int)bank_addr, (int)sensor_addr);
405 			break;
406 		}
407 		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
408 	}
409 
410 	/* Last put the chip back in ready state */
411 	abituguru_ready(data);
412 
413 	return i;
414 }
415 
416 /*
417  * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
418  * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
419  */
420 static int abituguru_write(struct abituguru_data *data,
421 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
422 {
423 	/*
424 	 * We use the ready timeout as we have to wait for 0xAC just like the
425 	 * ready function
426 	 */
427 	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
428 
429 	/* Send the address */
430 	i = abituguru_send_address(data, bank_addr, sensor_addr,
431 		ABIT_UGURU_MAX_RETRIES);
432 	if (i)
433 		return i;
434 
435 	/* And write the data */
436 	for (i = 0; i < count; i++) {
437 		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
438 			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
439 				"write state (bank: %d, sensor: %d)\n",
440 				(int)bank_addr, (int)sensor_addr);
441 			break;
442 		}
443 		outb(buf[i], data->addr + ABIT_UGURU_CMD);
444 	}
445 
446 	/*
447 	 * Now we need to wait till the chip is ready to be read again,
448 	 * so that we can read 0xAC as confirmation that our write has
449 	 * succeeded.
450 	 */
451 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
452 		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
453 			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
454 			(int)sensor_addr);
455 		return -EIO;
456 	}
457 
458 	/* Cmd port MUST be read now and should contain 0xAC */
459 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
460 		timeout--;
461 		if (timeout == 0) {
462 			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
463 				"write (bank: %d, sensor: %d)\n",
464 				(int)bank_addr, (int)sensor_addr);
465 			return -EIO;
466 		}
467 		msleep(0);
468 	}
469 
470 	/* Last put the chip back in ready state */
471 	abituguru_ready(data);
472 
473 	return i;
474 }
475 
476 /*
477  * Detect sensor type. Temp and Volt sensors are enabled with
478  * different masks and will ignore enable masks not meant for them.
479  * This enables us to test what kind of sensor we're dealing with.
480  * By setting the alarm thresholds so that we will always get an
481  * alarm for sensor type X and then enabling the sensor as sensor type
482  * X, if we then get an alarm it is a sensor of type X.
483  */
484 static int
485 abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
486 				   u8 sensor_addr)
487 {
488 	u8 val, test_flag, buf[3];
489 	int i, ret = -ENODEV; /* error is the most common used retval :| */
490 
491 	/* If overriden by the user return the user selected type */
492 	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
493 			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
494 		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
495 			"%d because of \"bank1_types\" module param\n",
496 			bank1_types[sensor_addr], (int)sensor_addr);
497 		return bank1_types[sensor_addr];
498 	}
499 
500 	/* First read the sensor and the current settings */
501 	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
502 			1, ABIT_UGURU_MAX_RETRIES) != 1)
503 		return -ENODEV;
504 
505 	/* Test val is sane / usable for sensor type detection. */
506 	if ((val < 10u) || (val > 250u)) {
507 		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
508 			"unable to determine sensor type, skipping sensor\n",
509 			(int)sensor_addr, (int)val);
510 		/*
511 		 * assume no sensor is there for sensors for which we can't
512 		 * determine the sensor type because their reading is too close
513 		 * to their limits, this usually means no sensor is there.
514 		 */
515 		return ABIT_UGURU_NC;
516 	}
517 
518 	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
519 	/*
520 	 * Volt sensor test, enable volt low alarm, set min value ridiculously
521 	 * high, or vica versa if the reading is very high. If its a volt
522 	 * sensor this should always give us an alarm.
523 	 */
524 	if (val <= 240u) {
525 		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
526 		buf[1] = 245;
527 		buf[2] = 250;
528 		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
529 	} else {
530 		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
531 		buf[1] = 5;
532 		buf[2] = 10;
533 		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
534 	}
535 
536 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
537 			buf, 3) != 3)
538 		goto abituguru_detect_bank1_sensor_type_exit;
539 	/*
540 	 * Now we need 20 ms to give the uguru time to read the sensors
541 	 * and raise a voltage alarm
542 	 */
543 	set_current_state(TASK_UNINTERRUPTIBLE);
544 	schedule_timeout(HZ/50);
545 	/* Check for alarm and check the alarm is a volt low alarm. */
546 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
547 			ABIT_UGURU_MAX_RETRIES) != 3)
548 		goto abituguru_detect_bank1_sensor_type_exit;
549 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
550 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
551 				sensor_addr, buf, 3,
552 				ABIT_UGURU_MAX_RETRIES) != 3)
553 			goto abituguru_detect_bank1_sensor_type_exit;
554 		if (buf[0] & test_flag) {
555 			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
556 			ret = ABIT_UGURU_IN_SENSOR;
557 			goto abituguru_detect_bank1_sensor_type_exit;
558 		} else
559 			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
560 				"sensor test, but volt range flag not set\n");
561 	} else
562 		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
563 			"test\n");
564 
565 	/*
566 	 * Temp sensor test, enable sensor as a temp sensor, set beep value
567 	 * ridiculously low (but not too low, otherwise uguru ignores it).
568 	 * If its a temp sensor this should always give us an alarm.
569 	 */
570 	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
571 	buf[1] = 5;
572 	buf[2] = 10;
573 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
574 			buf, 3) != 3)
575 		goto abituguru_detect_bank1_sensor_type_exit;
576 	/*
577 	 * Now we need 50 ms to give the uguru time to read the sensors
578 	 * and raise a temp alarm
579 	 */
580 	set_current_state(TASK_UNINTERRUPTIBLE);
581 	schedule_timeout(HZ/20);
582 	/* Check for alarm and check the alarm is a temp high alarm. */
583 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
584 			ABIT_UGURU_MAX_RETRIES) != 3)
585 		goto abituguru_detect_bank1_sensor_type_exit;
586 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
587 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
588 				sensor_addr, buf, 3,
589 				ABIT_UGURU_MAX_RETRIES) != 3)
590 			goto abituguru_detect_bank1_sensor_type_exit;
591 		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
592 			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
593 			ret = ABIT_UGURU_TEMP_SENSOR;
594 			goto abituguru_detect_bank1_sensor_type_exit;
595 		} else
596 			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
597 				"sensor test, but temp high flag not set\n");
598 	} else
599 		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
600 			"test\n");
601 
602 	ret = ABIT_UGURU_NC;
603 abituguru_detect_bank1_sensor_type_exit:
604 	/*
605 	 * Restore original settings, failing here is really BAD, it has been
606 	 * reported that some BIOS-es hang when entering the uGuru menu with
607 	 * invalid settings present in the uGuru, so we try this 3 times.
608 	 */
609 	for (i = 0; i < 3; i++)
610 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
611 				sensor_addr, data->bank1_settings[sensor_addr],
612 				3) == 3)
613 			break;
614 	if (i == 3) {
615 		pr_err("Fatal error could not restore original settings. %s %s\n",
616 		       never_happen, report_this);
617 		return -ENODEV;
618 	}
619 	return ret;
620 }
621 
622 /*
623  * These functions try to find out how many sensors there are in bank2 and how
624  * many pwms there are. The purpose of this is to make sure that we don't give
625  * the user the possibility to change settings for non-existent sensors / pwm.
626  * The uGuru will happily read / write whatever memory happens to be after the
627  * memory storing the PWM settings when reading/writing to a PWM which is not
628  * there. Notice even if we detect a PWM which doesn't exist we normally won't
629  * write to it, unless the user tries to change the settings.
630  *
631  * Although the uGuru allows reading (settings) from non existing bank2
632  * sensors, my version of the uGuru does seem to stop writing to them, the
633  * write function above aborts in this case with:
634  * "CMD reg does not hold 0xAC after write"
635  *
636  * Notice these 2 tests are non destructive iow read-only tests, otherwise
637  * they would defeat their purpose. Although for the bank2_sensors detection a
638  * read/write test would be feasible because of the reaction above, I've
639  * however opted to stay on the safe side.
640  */
641 static void
642 abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
643 {
644 	int i;
645 
646 	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
647 		data->bank2_sensors = fan_sensors;
648 		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
649 			"\"fan_sensors\" module param\n",
650 			(int)data->bank2_sensors);
651 		return;
652 	}
653 
654 	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
655 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
656 		/*
657 		 * 0x89 are the known used bits:
658 		 * -0x80 enable shutdown
659 		 * -0x08 enable beep
660 		 * -0x01 enable alarm
661 		 * All other bits should be 0, but on some motherboards
662 		 * 0x40 (bit 6) is also high for some of the fans??
663 		 */
664 		if (data->bank2_settings[i][0] & ~0xC9) {
665 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
666 				"to be a fan sensor: settings[0] = %02X\n",
667 				i, (unsigned int)data->bank2_settings[i][0]);
668 			break;
669 		}
670 
671 		/* check if the threshold is within the allowed range */
672 		if (data->bank2_settings[i][1] <
673 				abituguru_bank2_min_threshold) {
674 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
675 				"to be a fan sensor: the threshold (%d) is "
676 				"below the minimum (%d)\n", i,
677 				(int)data->bank2_settings[i][1],
678 				(int)abituguru_bank2_min_threshold);
679 			break;
680 		}
681 		if (data->bank2_settings[i][1] >
682 				abituguru_bank2_max_threshold) {
683 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
684 				"to be a fan sensor: the threshold (%d) is "
685 				"above the maximum (%d)\n", i,
686 				(int)data->bank2_settings[i][1],
687 				(int)abituguru_bank2_max_threshold);
688 			break;
689 		}
690 	}
691 
692 	data->bank2_sensors = i;
693 	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
694 		(int)data->bank2_sensors);
695 }
696 
697 static void
698 abituguru_detect_no_pwms(struct abituguru_data *data)
699 {
700 	int i, j;
701 
702 	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
703 		data->pwms = pwms;
704 		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
705 			"\"pwms\" module param\n", (int)data->pwms);
706 		return;
707 	}
708 
709 	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
710 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
711 		/*
712 		 * 0x80 is the enable bit and the low
713 		 * nibble is which temp sensor to use,
714 		 * the other bits should be 0
715 		 */
716 		if (data->pwm_settings[i][0] & ~0x8F) {
717 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
718 				"to be a pwm channel: settings[0] = %02X\n",
719 				i, (unsigned int)data->pwm_settings[i][0]);
720 			break;
721 		}
722 
723 		/*
724 		 * the low nibble must correspond to one of the temp sensors
725 		 * we've found
726 		 */
727 		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
728 				j++) {
729 			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
730 					(data->pwm_settings[i][0] & 0x0F))
731 				break;
732 		}
733 		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
734 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
735 				"to be a pwm channel: %d is not a valid temp "
736 				"sensor address\n", i,
737 				data->pwm_settings[i][0] & 0x0F);
738 			break;
739 		}
740 
741 		/* check if all other settings are within the allowed range */
742 		for (j = 1; j < 5; j++) {
743 			u8 min;
744 			/* special case pwm1 min pwm% */
745 			if ((i == 0) && ((j == 1) || (j == 2)))
746 				min = 77;
747 			else
748 				min = abituguru_pwm_min[j];
749 			if (data->pwm_settings[i][j] < min) {
750 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
751 					"not seem to be a pwm channel: "
752 					"setting %d (%d) is below the minimum "
753 					"value (%d)\n", i, j,
754 					(int)data->pwm_settings[i][j],
755 					(int)min);
756 				goto abituguru_detect_no_pwms_exit;
757 			}
758 			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
759 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
760 					"not seem to be a pwm channel: "
761 					"setting %d (%d) is above the maximum "
762 					"value (%d)\n", i, j,
763 					(int)data->pwm_settings[i][j],
764 					(int)abituguru_pwm_max[j]);
765 				goto abituguru_detect_no_pwms_exit;
766 			}
767 		}
768 
769 		/* check that min temp < max temp and min pwm < max pwm */
770 		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
771 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
772 				"to be a pwm channel: min pwm (%d) >= "
773 				"max pwm (%d)\n", i,
774 				(int)data->pwm_settings[i][1],
775 				(int)data->pwm_settings[i][2]);
776 			break;
777 		}
778 		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
779 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
780 				"to be a pwm channel: min temp (%d) >= "
781 				"max temp (%d)\n", i,
782 				(int)data->pwm_settings[i][3],
783 				(int)data->pwm_settings[i][4]);
784 			break;
785 		}
786 	}
787 
788 abituguru_detect_no_pwms_exit:
789 	data->pwms = i;
790 	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
791 }
792 
793 /*
794  * Following are the sysfs callback functions. These functions expect:
795  * sensor_device_attribute_2->index:   sensor address/offset in the bank
796  * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
797  */
798 static struct abituguru_data *abituguru_update_device(struct device *dev);
799 
800 static ssize_t show_bank1_value(struct device *dev,
801 	struct device_attribute *devattr, char *buf)
802 {
803 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
804 	struct abituguru_data *data = abituguru_update_device(dev);
805 	if (!data)
806 		return -EIO;
807 	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
808 		data->bank1_max_value[attr->index] + 128) / 255);
809 }
810 
811 static ssize_t show_bank1_setting(struct device *dev,
812 	struct device_attribute *devattr, char *buf)
813 {
814 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
815 	struct abituguru_data *data = dev_get_drvdata(dev);
816 	return sprintf(buf, "%d\n",
817 		(data->bank1_settings[attr->index][attr->nr] *
818 		data->bank1_max_value[attr->index] + 128) / 255);
819 }
820 
821 static ssize_t show_bank2_value(struct device *dev,
822 	struct device_attribute *devattr, char *buf)
823 {
824 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
825 	struct abituguru_data *data = abituguru_update_device(dev);
826 	if (!data)
827 		return -EIO;
828 	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
829 		ABIT_UGURU_FAN_MAX + 128) / 255);
830 }
831 
832 static ssize_t show_bank2_setting(struct device *dev,
833 	struct device_attribute *devattr, char *buf)
834 {
835 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
836 	struct abituguru_data *data = dev_get_drvdata(dev);
837 	return sprintf(buf, "%d\n",
838 		(data->bank2_settings[attr->index][attr->nr] *
839 		ABIT_UGURU_FAN_MAX + 128) / 255);
840 }
841 
842 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
843 	*devattr, const char *buf, size_t count)
844 {
845 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
846 	struct abituguru_data *data = dev_get_drvdata(dev);
847 	unsigned long val;
848 	ssize_t ret;
849 
850 	ret = kstrtoul(buf, 10, &val);
851 	if (ret)
852 		return ret;
853 
854 	ret = count;
855 	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
856 		data->bank1_max_value[attr->index];
857 	if (val > 255)
858 		return -EINVAL;
859 
860 	mutex_lock(&data->update_lock);
861 	if (data->bank1_settings[attr->index][attr->nr] != val) {
862 		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
863 		data->bank1_settings[attr->index][attr->nr] = val;
864 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
865 				attr->index, data->bank1_settings[attr->index],
866 				3) <= attr->nr) {
867 			data->bank1_settings[attr->index][attr->nr] = orig_val;
868 			ret = -EIO;
869 		}
870 	}
871 	mutex_unlock(&data->update_lock);
872 	return ret;
873 }
874 
875 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
876 	*devattr, const char *buf, size_t count)
877 {
878 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
879 	struct abituguru_data *data = dev_get_drvdata(dev);
880 	unsigned long val;
881 	ssize_t ret;
882 
883 	ret = kstrtoul(buf, 10, &val);
884 	if (ret)
885 		return ret;
886 
887 	ret = count;
888 	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
889 
890 	/* this check can be done before taking the lock */
891 	if (val < abituguru_bank2_min_threshold ||
892 			val > abituguru_bank2_max_threshold)
893 		return -EINVAL;
894 
895 	mutex_lock(&data->update_lock);
896 	if (data->bank2_settings[attr->index][attr->nr] != val) {
897 		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
898 		data->bank2_settings[attr->index][attr->nr] = val;
899 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
900 				attr->index, data->bank2_settings[attr->index],
901 				2) <= attr->nr) {
902 			data->bank2_settings[attr->index][attr->nr] = orig_val;
903 			ret = -EIO;
904 		}
905 	}
906 	mutex_unlock(&data->update_lock);
907 	return ret;
908 }
909 
910 static ssize_t show_bank1_alarm(struct device *dev,
911 	struct device_attribute *devattr, char *buf)
912 {
913 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
914 	struct abituguru_data *data = abituguru_update_device(dev);
915 	if (!data)
916 		return -EIO;
917 	/*
918 	 * See if the alarm bit for this sensor is set, and if the
919 	 * alarm matches the type of alarm we're looking for (for volt
920 	 * it can be either low or high). The type is stored in a few
921 	 * readonly bits in the settings part of the relevant sensor.
922 	 * The bitmask of the type is passed to us in attr->nr.
923 	 */
924 	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
925 			(data->bank1_settings[attr->index][0] & attr->nr))
926 		return sprintf(buf, "1\n");
927 	else
928 		return sprintf(buf, "0\n");
929 }
930 
931 static ssize_t show_bank2_alarm(struct device *dev,
932 	struct device_attribute *devattr, char *buf)
933 {
934 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
935 	struct abituguru_data *data = abituguru_update_device(dev);
936 	if (!data)
937 		return -EIO;
938 	if (data->alarms[2] & (0x01 << attr->index))
939 		return sprintf(buf, "1\n");
940 	else
941 		return sprintf(buf, "0\n");
942 }
943 
944 static ssize_t show_bank1_mask(struct device *dev,
945 	struct device_attribute *devattr, char *buf)
946 {
947 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
948 	struct abituguru_data *data = dev_get_drvdata(dev);
949 	if (data->bank1_settings[attr->index][0] & attr->nr)
950 		return sprintf(buf, "1\n");
951 	else
952 		return sprintf(buf, "0\n");
953 }
954 
955 static ssize_t show_bank2_mask(struct device *dev,
956 	struct device_attribute *devattr, char *buf)
957 {
958 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
959 	struct abituguru_data *data = dev_get_drvdata(dev);
960 	if (data->bank2_settings[attr->index][0] & attr->nr)
961 		return sprintf(buf, "1\n");
962 	else
963 		return sprintf(buf, "0\n");
964 }
965 
966 static ssize_t store_bank1_mask(struct device *dev,
967 	struct device_attribute *devattr, const char *buf, size_t count)
968 {
969 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
970 	struct abituguru_data *data = dev_get_drvdata(dev);
971 	ssize_t ret;
972 	u8 orig_val;
973 	unsigned long mask;
974 
975 	ret = kstrtoul(buf, 10, &mask);
976 	if (ret)
977 		return ret;
978 
979 	ret = count;
980 	mutex_lock(&data->update_lock);
981 	orig_val = data->bank1_settings[attr->index][0];
982 
983 	if (mask)
984 		data->bank1_settings[attr->index][0] |= attr->nr;
985 	else
986 		data->bank1_settings[attr->index][0] &= ~attr->nr;
987 
988 	if ((data->bank1_settings[attr->index][0] != orig_val) &&
989 			(abituguru_write(data,
990 			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
991 			data->bank1_settings[attr->index], 3) < 1)) {
992 		data->bank1_settings[attr->index][0] = orig_val;
993 		ret = -EIO;
994 	}
995 	mutex_unlock(&data->update_lock);
996 	return ret;
997 }
998 
999 static ssize_t store_bank2_mask(struct device *dev,
1000 	struct device_attribute *devattr, const char *buf, size_t count)
1001 {
1002 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1003 	struct abituguru_data *data = dev_get_drvdata(dev);
1004 	ssize_t ret;
1005 	u8 orig_val;
1006 	unsigned long mask;
1007 
1008 	ret = kstrtoul(buf, 10, &mask);
1009 	if (ret)
1010 		return ret;
1011 
1012 	ret = count;
1013 	mutex_lock(&data->update_lock);
1014 	orig_val = data->bank2_settings[attr->index][0];
1015 
1016 	if (mask)
1017 		data->bank2_settings[attr->index][0] |= attr->nr;
1018 	else
1019 		data->bank2_settings[attr->index][0] &= ~attr->nr;
1020 
1021 	if ((data->bank2_settings[attr->index][0] != orig_val) &&
1022 			(abituguru_write(data,
1023 			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1024 			data->bank2_settings[attr->index], 2) < 1)) {
1025 		data->bank2_settings[attr->index][0] = orig_val;
1026 		ret = -EIO;
1027 	}
1028 	mutex_unlock(&data->update_lock);
1029 	return ret;
1030 }
1031 
1032 /* Fan PWM (speed control) */
1033 static ssize_t show_pwm_setting(struct device *dev,
1034 	struct device_attribute *devattr, char *buf)
1035 {
1036 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1037 	struct abituguru_data *data = dev_get_drvdata(dev);
1038 	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1039 		abituguru_pwm_settings_multiplier[attr->nr]);
1040 }
1041 
1042 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1043 	*devattr, const char *buf, size_t count)
1044 {
1045 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1046 	struct abituguru_data *data = dev_get_drvdata(dev);
1047 	u8 min;
1048 	unsigned long val;
1049 	ssize_t ret;
1050 
1051 	ret = kstrtoul(buf, 10, &val);
1052 	if (ret)
1053 		return ret;
1054 
1055 	ret = count;
1056 	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1057 				abituguru_pwm_settings_multiplier[attr->nr];
1058 
1059 	/* special case pwm1 min pwm% */
1060 	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1061 		min = 77;
1062 	else
1063 		min = abituguru_pwm_min[attr->nr];
1064 
1065 	/* this check can be done before taking the lock */
1066 	if (val < min || val > abituguru_pwm_max[attr->nr])
1067 		return -EINVAL;
1068 
1069 	mutex_lock(&data->update_lock);
1070 	/* this check needs to be done after taking the lock */
1071 	if ((attr->nr & 1) &&
1072 			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
1073 		ret = -EINVAL;
1074 	else if (!(attr->nr & 1) &&
1075 			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
1076 		ret = -EINVAL;
1077 	else if (data->pwm_settings[attr->index][attr->nr] != val) {
1078 		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1079 		data->pwm_settings[attr->index][attr->nr] = val;
1080 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1081 				attr->index, data->pwm_settings[attr->index],
1082 				5) <= attr->nr) {
1083 			data->pwm_settings[attr->index][attr->nr] =
1084 				orig_val;
1085 			ret = -EIO;
1086 		}
1087 	}
1088 	mutex_unlock(&data->update_lock);
1089 	return ret;
1090 }
1091 
1092 static ssize_t show_pwm_sensor(struct device *dev,
1093 	struct device_attribute *devattr, char *buf)
1094 {
1095 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1096 	struct abituguru_data *data = dev_get_drvdata(dev);
1097 	int i;
1098 	/*
1099 	 * We need to walk to the temp sensor addresses to find what
1100 	 * the userspace id of the configured temp sensor is.
1101 	 */
1102 	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1103 		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1104 				(data->pwm_settings[attr->index][0] & 0x0F))
1105 			return sprintf(buf, "%d\n", i+1);
1106 
1107 	return -ENXIO;
1108 }
1109 
1110 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1111 	*devattr, const char *buf, size_t count)
1112 {
1113 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1114 	struct abituguru_data *data = dev_get_drvdata(dev);
1115 	ssize_t ret;
1116 	unsigned long val;
1117 	u8 orig_val;
1118 	u8 address;
1119 
1120 	ret = kstrtoul(buf, 10, &val);
1121 	if (ret)
1122 		return ret;
1123 
1124 	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1125 		return -EINVAL;
1126 
1127 	val -= 1;
1128 	ret = count;
1129 	mutex_lock(&data->update_lock);
1130 	orig_val = data->pwm_settings[attr->index][0];
1131 	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1132 	data->pwm_settings[attr->index][0] &= 0xF0;
1133 	data->pwm_settings[attr->index][0] |= address;
1134 	if (data->pwm_settings[attr->index][0] != orig_val) {
1135 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1136 				    data->pwm_settings[attr->index], 5) < 1) {
1137 			data->pwm_settings[attr->index][0] = orig_val;
1138 			ret = -EIO;
1139 		}
1140 	}
1141 	mutex_unlock(&data->update_lock);
1142 	return ret;
1143 }
1144 
1145 static ssize_t show_pwm_enable(struct device *dev,
1146 	struct device_attribute *devattr, char *buf)
1147 {
1148 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1149 	struct abituguru_data *data = dev_get_drvdata(dev);
1150 	int res = 0;
1151 	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1152 		res = 2;
1153 	return sprintf(buf, "%d\n", res);
1154 }
1155 
1156 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1157 	*devattr, const char *buf, size_t count)
1158 {
1159 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1160 	struct abituguru_data *data = dev_get_drvdata(dev);
1161 	u8 orig_val;
1162 	ssize_t ret;
1163 	unsigned long user_val;
1164 
1165 	ret = kstrtoul(buf, 10, &user_val);
1166 	if (ret)
1167 		return ret;
1168 
1169 	ret = count;
1170 	mutex_lock(&data->update_lock);
1171 	orig_val = data->pwm_settings[attr->index][0];
1172 	switch (user_val) {
1173 	case 0:
1174 		data->pwm_settings[attr->index][0] &=
1175 			~ABIT_UGURU_FAN_PWM_ENABLE;
1176 		break;
1177 	case 2:
1178 		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1179 		break;
1180 	default:
1181 		ret = -EINVAL;
1182 	}
1183 	if ((data->pwm_settings[attr->index][0] != orig_val) &&
1184 			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1185 			attr->index, data->pwm_settings[attr->index],
1186 			5) < 1)) {
1187 		data->pwm_settings[attr->index][0] = orig_val;
1188 		ret = -EIO;
1189 	}
1190 	mutex_unlock(&data->update_lock);
1191 	return ret;
1192 }
1193 
1194 static ssize_t show_name(struct device *dev,
1195 	struct device_attribute *devattr, char *buf)
1196 {
1197 	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1198 }
1199 
1200 /* Sysfs attr templates, the real entries are generated automatically. */
1201 static const
1202 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1203 	{
1204 	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1205 	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1206 		store_bank1_setting, 1, 0),
1207 	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1208 		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1209 	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1210 		store_bank1_setting, 2, 0),
1211 	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1212 		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1213 	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1214 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1215 	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1216 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1217 	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1218 		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1219 	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1220 		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1221 	}, {
1222 	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1223 	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1224 		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1225 	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1226 		store_bank1_setting, 1, 0),
1227 	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1228 		store_bank1_setting, 2, 0),
1229 	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1230 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1231 	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1232 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1233 	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1234 		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1235 	}
1236 };
1237 
1238 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1239 	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1240 	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1241 	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1242 		store_bank2_setting, 1, 0),
1243 	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1244 		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1245 	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1246 		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1247 	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1248 		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1249 };
1250 
1251 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1252 	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1253 		store_pwm_enable, 0, 0),
1254 	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1255 		store_pwm_sensor, 0, 0),
1256 	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1257 		store_pwm_setting, 1, 0),
1258 	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1259 		store_pwm_setting, 2, 0),
1260 	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1261 		store_pwm_setting, 3, 0),
1262 	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1263 		store_pwm_setting, 4, 0),
1264 };
1265 
1266 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1267 	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1268 };
1269 
1270 static int abituguru_probe(struct platform_device *pdev)
1271 {
1272 	struct abituguru_data *data;
1273 	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1274 	char *sysfs_filename;
1275 
1276 	/*
1277 	 * El weirdo probe order, to keep the sysfs order identical to the
1278 	 * BIOS and window-appliction listing order.
1279 	 */
1280 	const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1281 		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1282 		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1283 
1284 	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1285 			    GFP_KERNEL);
1286 	if (!data)
1287 		return -ENOMEM;
1288 
1289 	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1290 	mutex_init(&data->update_lock);
1291 	platform_set_drvdata(pdev, data);
1292 
1293 	/* See if the uGuru is ready */
1294 	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1295 		data->uguru_ready = 1;
1296 
1297 	/*
1298 	 * Completely read the uGuru this has 2 purposes:
1299 	 * - testread / see if one really is there.
1300 	 * - make an in memory copy of all the uguru settings for future use.
1301 	 */
1302 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1303 			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1304 		goto abituguru_probe_error;
1305 
1306 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1307 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1308 				&data->bank1_value[i], 1,
1309 				ABIT_UGURU_MAX_RETRIES) != 1)
1310 			goto abituguru_probe_error;
1311 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1312 				data->bank1_settings[i], 3,
1313 				ABIT_UGURU_MAX_RETRIES) != 3)
1314 			goto abituguru_probe_error;
1315 	}
1316 	/*
1317 	 * Note: We don't know how many bank2 sensors / pwms there really are,
1318 	 * but in order to "detect" this we need to read the maximum amount
1319 	 * anyways. If we read sensors/pwms not there we'll just read crap
1320 	 * this can't hurt. We need the detection because we don't want
1321 	 * unwanted writes, which will hurt!
1322 	 */
1323 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1324 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1325 				&data->bank2_value[i], 1,
1326 				ABIT_UGURU_MAX_RETRIES) != 1)
1327 			goto abituguru_probe_error;
1328 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1329 				data->bank2_settings[i], 2,
1330 				ABIT_UGURU_MAX_RETRIES) != 2)
1331 			goto abituguru_probe_error;
1332 	}
1333 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1334 		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1335 				data->pwm_settings[i], 5,
1336 				ABIT_UGURU_MAX_RETRIES) != 5)
1337 			goto abituguru_probe_error;
1338 	}
1339 	data->last_updated = jiffies;
1340 
1341 	/* Detect sensor types and fill the sysfs attr for bank1 */
1342 	sysfs_attr_i = 0;
1343 	sysfs_filename = data->sysfs_names;
1344 	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1345 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1346 		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1347 		if (res < 0)
1348 			goto abituguru_probe_error;
1349 		if (res == ABIT_UGURU_NC)
1350 			continue;
1351 
1352 		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1353 		for (j = 0; j < (res ? 7 : 9); j++) {
1354 			used = snprintf(sysfs_filename, sysfs_names_free,
1355 				abituguru_sysfs_bank1_templ[res][j].dev_attr.
1356 				attr.name, data->bank1_sensors[res] + res)
1357 				+ 1;
1358 			data->sysfs_attr[sysfs_attr_i] =
1359 				abituguru_sysfs_bank1_templ[res][j];
1360 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1361 				sysfs_filename;
1362 			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1363 			sysfs_filename += used;
1364 			sysfs_names_free -= used;
1365 			sysfs_attr_i++;
1366 		}
1367 		data->bank1_max_value[probe_order[i]] =
1368 			abituguru_bank1_max_value[res];
1369 		data->bank1_address[res][data->bank1_sensors[res]] =
1370 			probe_order[i];
1371 		data->bank1_sensors[res]++;
1372 	}
1373 	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1374 	abituguru_detect_no_bank2_sensors(data);
1375 	for (i = 0; i < data->bank2_sensors; i++) {
1376 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1377 			used = snprintf(sysfs_filename, sysfs_names_free,
1378 				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1379 				i + 1) + 1;
1380 			data->sysfs_attr[sysfs_attr_i] =
1381 				abituguru_sysfs_fan_templ[j];
1382 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1383 				sysfs_filename;
1384 			data->sysfs_attr[sysfs_attr_i].index = i;
1385 			sysfs_filename += used;
1386 			sysfs_names_free -= used;
1387 			sysfs_attr_i++;
1388 		}
1389 	}
1390 	/* Detect number of sensors and fill the sysfs attr for pwms */
1391 	abituguru_detect_no_pwms(data);
1392 	for (i = 0; i < data->pwms; i++) {
1393 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1394 			used = snprintf(sysfs_filename, sysfs_names_free,
1395 				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1396 				i + 1) + 1;
1397 			data->sysfs_attr[sysfs_attr_i] =
1398 				abituguru_sysfs_pwm_templ[j];
1399 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1400 				sysfs_filename;
1401 			data->sysfs_attr[sysfs_attr_i].index = i;
1402 			sysfs_filename += used;
1403 			sysfs_names_free -= used;
1404 			sysfs_attr_i++;
1405 		}
1406 	}
1407 	/* Fail safe check, this should never happen! */
1408 	if (sysfs_names_free < 0) {
1409 		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1410 		       never_happen, report_this);
1411 		res = -ENAMETOOLONG;
1412 		goto abituguru_probe_error;
1413 	}
1414 	pr_info("found Abit uGuru\n");
1415 
1416 	/* Register sysfs hooks */
1417 	for (i = 0; i < sysfs_attr_i; i++) {
1418 		res = device_create_file(&pdev->dev,
1419 					 &data->sysfs_attr[i].dev_attr);
1420 		if (res)
1421 			goto abituguru_probe_error;
1422 	}
1423 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1424 		res = device_create_file(&pdev->dev,
1425 					 &abituguru_sysfs_attr[i].dev_attr);
1426 		if (res)
1427 			goto abituguru_probe_error;
1428 	}
1429 
1430 	data->hwmon_dev = hwmon_device_register(&pdev->dev);
1431 	if (!IS_ERR(data->hwmon_dev))
1432 		return 0; /* success */
1433 
1434 	res = PTR_ERR(data->hwmon_dev);
1435 abituguru_probe_error:
1436 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1437 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1438 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1439 		device_remove_file(&pdev->dev,
1440 			&abituguru_sysfs_attr[i].dev_attr);
1441 	return res;
1442 }
1443 
1444 static int abituguru_remove(struct platform_device *pdev)
1445 {
1446 	int i;
1447 	struct abituguru_data *data = platform_get_drvdata(pdev);
1448 
1449 	hwmon_device_unregister(data->hwmon_dev);
1450 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1451 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1452 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1453 		device_remove_file(&pdev->dev,
1454 			&abituguru_sysfs_attr[i].dev_attr);
1455 
1456 	return 0;
1457 }
1458 
1459 static struct abituguru_data *abituguru_update_device(struct device *dev)
1460 {
1461 	int i, err;
1462 	struct abituguru_data *data = dev_get_drvdata(dev);
1463 	/* fake a complete successful read if no update necessary. */
1464 	char success = 1;
1465 
1466 	mutex_lock(&data->update_lock);
1467 	if (time_after(jiffies, data->last_updated + HZ)) {
1468 		success = 0;
1469 		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1470 				     data->alarms, 3, 0);
1471 		if (err != 3)
1472 			goto LEAVE_UPDATE;
1473 		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1474 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1475 					     i, &data->bank1_value[i], 1, 0);
1476 			if (err != 1)
1477 				goto LEAVE_UPDATE;
1478 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1479 					     i, data->bank1_settings[i], 3, 0);
1480 			if (err != 3)
1481 				goto LEAVE_UPDATE;
1482 		}
1483 		for (i = 0; i < data->bank2_sensors; i++) {
1484 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1485 					     &data->bank2_value[i], 1, 0);
1486 			if (err != 1)
1487 				goto LEAVE_UPDATE;
1488 		}
1489 		/* success! */
1490 		success = 1;
1491 		data->update_timeouts = 0;
1492 LEAVE_UPDATE:
1493 		/* handle timeout condition */
1494 		if (!success && (err == -EBUSY || err >= 0)) {
1495 			/* No overflow please */
1496 			if (data->update_timeouts < 255u)
1497 				data->update_timeouts++;
1498 			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1499 				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1500 					"try again next update\n");
1501 				/* Just a timeout, fake a successful read */
1502 				success = 1;
1503 			} else
1504 				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1505 					"times waiting for more input state\n",
1506 					(int)data->update_timeouts);
1507 		}
1508 		/* On success set last_updated */
1509 		if (success)
1510 			data->last_updated = jiffies;
1511 	}
1512 	mutex_unlock(&data->update_lock);
1513 
1514 	if (success)
1515 		return data;
1516 	else
1517 		return NULL;
1518 }
1519 
1520 #ifdef CONFIG_PM_SLEEP
1521 static int abituguru_suspend(struct device *dev)
1522 {
1523 	struct abituguru_data *data = dev_get_drvdata(dev);
1524 	/*
1525 	 * make sure all communications with the uguru are done and no new
1526 	 * ones are started
1527 	 */
1528 	mutex_lock(&data->update_lock);
1529 	return 0;
1530 }
1531 
1532 static int abituguru_resume(struct device *dev)
1533 {
1534 	struct abituguru_data *data = dev_get_drvdata(dev);
1535 	/* See if the uGuru is still ready */
1536 	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1537 		data->uguru_ready = 0;
1538 	mutex_unlock(&data->update_lock);
1539 	return 0;
1540 }
1541 
1542 static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1543 #define ABIT_UGURU_PM	(&abituguru_pm)
1544 #else
1545 #define ABIT_UGURU_PM	NULL
1546 #endif /* CONFIG_PM */
1547 
1548 static struct platform_driver abituguru_driver = {
1549 	.driver = {
1550 		.name	= ABIT_UGURU_NAME,
1551 		.pm	= ABIT_UGURU_PM,
1552 	},
1553 	.probe		= abituguru_probe,
1554 	.remove		= abituguru_remove,
1555 };
1556 
1557 static int __init abituguru_detect(void)
1558 {
1559 	/*
1560 	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
1561 	 * at DATA and 0xAC, when this driver has already been loaded once
1562 	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1563 	 * scenario but some will hold 0x00.
1564 	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1565 	 * after reading CMD first, so CMD must be read first!
1566 	 */
1567 	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1568 	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1569 	if (((data_val == 0x00) || (data_val == 0x08)) &&
1570 	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1571 		return ABIT_UGURU_BASE;
1572 
1573 	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1574 		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1575 
1576 	if (force) {
1577 		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1578 		return ABIT_UGURU_BASE;
1579 	}
1580 
1581 	/* No uGuru found */
1582 	return -ENODEV;
1583 }
1584 
1585 static struct platform_device *abituguru_pdev;
1586 
1587 static int __init abituguru_init(void)
1588 {
1589 	int address, err;
1590 	struct resource res = { .flags = IORESOURCE_IO };
1591 	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1592 
1593 	/* safety check, refuse to load on non Abit motherboards */
1594 	if (!force && (!board_vendor ||
1595 			strcmp(board_vendor, "http://www.abit.com.tw/")))
1596 		return -ENODEV;
1597 
1598 	address = abituguru_detect();
1599 	if (address < 0)
1600 		return address;
1601 
1602 	err = platform_driver_register(&abituguru_driver);
1603 	if (err)
1604 		goto exit;
1605 
1606 	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1607 	if (!abituguru_pdev) {
1608 		pr_err("Device allocation failed\n");
1609 		err = -ENOMEM;
1610 		goto exit_driver_unregister;
1611 	}
1612 
1613 	res.start = address;
1614 	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1615 	res.name = ABIT_UGURU_NAME;
1616 
1617 	err = platform_device_add_resources(abituguru_pdev, &res, 1);
1618 	if (err) {
1619 		pr_err("Device resource addition failed (%d)\n", err);
1620 		goto exit_device_put;
1621 	}
1622 
1623 	err = platform_device_add(abituguru_pdev);
1624 	if (err) {
1625 		pr_err("Device addition failed (%d)\n", err);
1626 		goto exit_device_put;
1627 	}
1628 
1629 	return 0;
1630 
1631 exit_device_put:
1632 	platform_device_put(abituguru_pdev);
1633 exit_driver_unregister:
1634 	platform_driver_unregister(&abituguru_driver);
1635 exit:
1636 	return err;
1637 }
1638 
1639 static void __exit abituguru_exit(void)
1640 {
1641 	platform_device_unregister(abituguru_pdev);
1642 	platform_driver_unregister(&abituguru_driver);
1643 }
1644 
1645 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1646 MODULE_DESCRIPTION("Abit uGuru Sensor device");
1647 MODULE_LICENSE("GPL");
1648 
1649 module_init(abituguru_init);
1650 module_exit(abituguru_exit);
1651