1 /* 2 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 */ 18 /* 19 * This driver supports the sensor part of the first and second revision of 20 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because 21 * of lack of specs the CPU/RAM voltage & frequency control is not supported! 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/module.h> 27 #include <linux/sched.h> 28 #include <linux/init.h> 29 #include <linux/slab.h> 30 #include <linux/jiffies.h> 31 #include <linux/mutex.h> 32 #include <linux/err.h> 33 #include <linux/delay.h> 34 #include <linux/platform_device.h> 35 #include <linux/hwmon.h> 36 #include <linux/hwmon-sysfs.h> 37 #include <linux/dmi.h> 38 #include <linux/io.h> 39 40 /* Banks */ 41 #define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */ 42 #define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */ 43 #define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */ 44 #define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */ 45 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */ 46 #define ABIT_UGURU_MAX_BANK1_SENSORS 16 47 /* 48 * Warning if you increase one of the 2 MAX defines below to 10 or higher you 49 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! 50 */ 51 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */ 52 #define ABIT_UGURU_MAX_BANK2_SENSORS 6 53 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ 54 #define ABIT_UGURU_MAX_PWMS 5 55 /* uGuru sensor bank 1 flags */ /* Alarm if: */ 56 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */ 57 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */ 58 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */ 59 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */ 60 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */ 61 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */ 62 /* uGuru sensor bank 2 flags */ /* Alarm if: */ 63 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */ 64 /* uGuru sensor bank common flags */ 65 #define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */ 66 #define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */ 67 /* uGuru fan PWM (speed control) flags */ 68 #define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */ 69 /* Values used for conversion */ 70 #define ABIT_UGURU_FAN_MAX 15300 /* RPM */ 71 /* Bank1 sensor types */ 72 #define ABIT_UGURU_IN_SENSOR 0 73 #define ABIT_UGURU_TEMP_SENSOR 1 74 #define ABIT_UGURU_NC 2 75 /* 76 * In many cases we need to wait for the uGuru to reach a certain status, most 77 * of the time it will reach this status within 30 - 90 ISA reads, and thus we 78 * can best busy wait. This define gives the total amount of reads to try. 79 */ 80 #define ABIT_UGURU_WAIT_TIMEOUT 125 81 /* 82 * However sometimes older versions of the uGuru seem to be distracted and they 83 * do not respond for a long time. To handle this we sleep before each of the 84 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. 85 */ 86 #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5 87 /* 88 * Normally all expected status in abituguru_ready, are reported after the 89 * first read, but sometimes not and we need to poll. 90 */ 91 #define ABIT_UGURU_READY_TIMEOUT 5 92 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ 93 #define ABIT_UGURU_MAX_RETRIES 3 94 #define ABIT_UGURU_RETRY_DELAY (HZ/5) 95 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */ 96 #define ABIT_UGURU_MAX_TIMEOUTS 2 97 /* utility macros */ 98 #define ABIT_UGURU_NAME "abituguru" 99 #define ABIT_UGURU_DEBUG(level, format, arg...) \ 100 do { \ 101 if (level <= verbose) \ 102 pr_debug(format , ## arg); \ 103 } while (0) 104 105 /* Macros to help calculate the sysfs_names array length */ 106 /* 107 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0, 108 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 109 */ 110 #define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14) 111 /* 112 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0, 113 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 114 */ 115 #define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16) 116 /* 117 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0, 118 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 119 */ 120 #define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14) 121 /* 122 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0, 123 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 124 */ 125 #define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22) 126 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */ 127 #define ABITUGURU_SYSFS_NAMES_LENGTH ( \ 128 ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \ 129 ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \ 130 ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH) 131 132 /* 133 * All the macros below are named identical to the oguru and oguru2 programs 134 * reverse engineered by Olle Sandberg, hence the names might not be 100% 135 * logical. I could come up with better names, but I prefer keeping the names 136 * identical so that this driver can be compared with his work more easily. 137 */ 138 /* Two i/o-ports are used by uGuru */ 139 #define ABIT_UGURU_BASE 0x00E0 140 /* Used to tell uGuru what to read and to read the actual data */ 141 #define ABIT_UGURU_CMD 0x00 142 /* Mostly used to check if uGuru is busy */ 143 #define ABIT_UGURU_DATA 0x04 144 #define ABIT_UGURU_REGION_LENGTH 5 145 /* uGuru status' */ 146 #define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */ 147 #define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */ 148 #define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */ 149 #define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */ 150 151 /* Constants */ 152 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ 153 static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; 154 /* 155 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values 156 * correspond to 300-3000 RPM 157 */ 158 static const u8 abituguru_bank2_min_threshold = 5; 159 static const u8 abituguru_bank2_max_threshold = 50; 160 /* 161 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 162 * are temperature trip points. 163 */ 164 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; 165 /* 166 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a 167 * special case the minimum allowed pwm% setting for this is 30% (77) on 168 * some MB's this special case is handled in the code! 169 */ 170 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; 171 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; 172 173 174 /* Insmod parameters */ 175 static bool force; 176 module_param(force, bool, 0); 177 MODULE_PARM_DESC(force, "Set to one to force detection."); 178 static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1, 179 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; 180 module_param_array(bank1_types, int, NULL, 0); 181 MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n" 182 " -1 autodetect\n" 183 " 0 volt sensor\n" 184 " 1 temp sensor\n" 185 " 2 not connected"); 186 static int fan_sensors; 187 module_param(fan_sensors, int, 0); 188 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " 189 "(0 = autodetect)"); 190 static int pwms; 191 module_param(pwms, int, 0); 192 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " 193 "(0 = autodetect)"); 194 195 /* Default verbose is 2, since this driver is still in the testing phase */ 196 static int verbose = 2; 197 module_param(verbose, int, 0644); 198 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" 199 " 0 normal output\n" 200 " 1 + verbose error reporting\n" 201 " 2 + sensors type probing info\n" 202 " 3 + retryable error reporting"); 203 204 205 /* 206 * For the Abit uGuru, we need to keep some data in memory. 207 * The structure is dynamically allocated, at the same time when a new 208 * abituguru device is allocated. 209 */ 210 struct abituguru_data { 211 struct device *hwmon_dev; /* hwmon registered device */ 212 struct mutex update_lock; /* protect access to data and uGuru */ 213 unsigned long last_updated; /* In jiffies */ 214 unsigned short addr; /* uguru base address */ 215 char uguru_ready; /* is the uguru in ready state? */ 216 unsigned char update_timeouts; /* 217 * number of update timeouts since last 218 * successful update 219 */ 220 221 /* 222 * The sysfs attr and their names are generated automatically, for bank1 223 * we cannot use a predefined array because we don't know beforehand 224 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its 225 * easier todo things the same way. For in sensors we have 9 (temp 7) 226 * sysfs entries per sensor, for bank2 and pwms 6. 227 */ 228 struct sensor_device_attribute_2 sysfs_attr[ 229 ABIT_UGURU_MAX_BANK1_SENSORS * 9 + 230 ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; 231 /* Buffer to store the dynamically generated sysfs names */ 232 char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH]; 233 234 /* Bank 1 data */ 235 /* number of and addresses of [0] in, [1] temp sensors */ 236 u8 bank1_sensors[2]; 237 u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS]; 238 u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS]; 239 /* 240 * This array holds 3 entries per sensor for the bank 1 sensor settings 241 * (flags, min, max for voltage / flags, warn, shutdown for temp). 242 */ 243 u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3]; 244 /* 245 * Maximum value for each sensor used for scaling in mV/millidegrees 246 * Celsius. 247 */ 248 int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS]; 249 250 /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ 251 u8 bank2_sensors; /* actual number of bank2 sensors found */ 252 u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; 253 u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ 254 255 /* Alarms 2 bytes for bank1, 1 byte for bank2 */ 256 u8 alarms[3]; 257 258 /* Fan PWM (speed control) 5 bytes per PWM */ 259 u8 pwms; /* actual number of pwms found */ 260 u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; 261 }; 262 263 static const char *never_happen = "This should never happen."; 264 static const char *report_this = 265 "Please report this to the abituguru maintainer (see MAINTAINERS)"; 266 267 /* wait till the uguru is in the specified state */ 268 static int abituguru_wait(struct abituguru_data *data, u8 state) 269 { 270 int timeout = ABIT_UGURU_WAIT_TIMEOUT; 271 272 while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { 273 timeout--; 274 if (timeout == 0) 275 return -EBUSY; 276 /* 277 * sleep a bit before our last few tries, see the comment on 278 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. 279 */ 280 if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP) 281 msleep(0); 282 } 283 return 0; 284 } 285 286 /* Put the uguru in ready for input state */ 287 static int abituguru_ready(struct abituguru_data *data) 288 { 289 int timeout = ABIT_UGURU_READY_TIMEOUT; 290 291 if (data->uguru_ready) 292 return 0; 293 294 /* Reset? / Prepare for next read/write cycle */ 295 outb(0x00, data->addr + ABIT_UGURU_DATA); 296 297 /* Wait till the uguru is ready */ 298 if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { 299 ABIT_UGURU_DEBUG(1, 300 "timeout exceeded waiting for ready state\n"); 301 return -EIO; 302 } 303 304 /* Cmd port MUST be read now and should contain 0xAC */ 305 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { 306 timeout--; 307 if (timeout == 0) { 308 ABIT_UGURU_DEBUG(1, 309 "CMD reg does not hold 0xAC after ready command\n"); 310 return -EIO; 311 } 312 msleep(0); 313 } 314 315 /* 316 * After this the ABIT_UGURU_DATA port should contain 317 * ABIT_UGURU_STATUS_INPUT 318 */ 319 timeout = ABIT_UGURU_READY_TIMEOUT; 320 while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { 321 timeout--; 322 if (timeout == 0) { 323 ABIT_UGURU_DEBUG(1, 324 "state != more input after ready command\n"); 325 return -EIO; 326 } 327 msleep(0); 328 } 329 330 data->uguru_ready = 1; 331 return 0; 332 } 333 334 /* 335 * Send the bank and then sensor address to the uGuru for the next read/write 336 * cycle. This function gets called as the first part of a read/write by 337 * abituguru_read and abituguru_write. This function should never be 338 * called by any other function. 339 */ 340 static int abituguru_send_address(struct abituguru_data *data, 341 u8 bank_addr, u8 sensor_addr, int retries) 342 { 343 /* 344 * assume the caller does error handling itself if it has not requested 345 * any retries, and thus be quiet. 346 */ 347 int report_errors = retries; 348 349 for (;;) { 350 /* 351 * Make sure the uguru is ready and then send the bank address, 352 * after this the uguru is no longer "ready". 353 */ 354 if (abituguru_ready(data) != 0) 355 return -EIO; 356 outb(bank_addr, data->addr + ABIT_UGURU_DATA); 357 data->uguru_ready = 0; 358 359 /* 360 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again 361 * and send the sensor addr 362 */ 363 if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { 364 if (retries) { 365 ABIT_UGURU_DEBUG(3, "timeout exceeded " 366 "waiting for more input state, %d " 367 "tries remaining\n", retries); 368 set_current_state(TASK_UNINTERRUPTIBLE); 369 schedule_timeout(ABIT_UGURU_RETRY_DELAY); 370 retries--; 371 continue; 372 } 373 if (report_errors) 374 ABIT_UGURU_DEBUG(1, "timeout exceeded " 375 "waiting for more input state " 376 "(bank: %d)\n", (int)bank_addr); 377 return -EBUSY; 378 } 379 outb(sensor_addr, data->addr + ABIT_UGURU_CMD); 380 return 0; 381 } 382 } 383 384 /* 385 * Read count bytes from sensor sensor_addr in bank bank_addr and store the 386 * result in buf, retry the send address part of the read retries times. 387 */ 388 static int abituguru_read(struct abituguru_data *data, 389 u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) 390 { 391 int i; 392 393 /* Send the address */ 394 i = abituguru_send_address(data, bank_addr, sensor_addr, retries); 395 if (i) 396 return i; 397 398 /* And read the data */ 399 for (i = 0; i < count; i++) { 400 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { 401 ABIT_UGURU_DEBUG(retries ? 1 : 3, 402 "timeout exceeded waiting for " 403 "read state (bank: %d, sensor: %d)\n", 404 (int)bank_addr, (int)sensor_addr); 405 break; 406 } 407 buf[i] = inb(data->addr + ABIT_UGURU_CMD); 408 } 409 410 /* Last put the chip back in ready state */ 411 abituguru_ready(data); 412 413 return i; 414 } 415 416 /* 417 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send 418 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. 419 */ 420 static int abituguru_write(struct abituguru_data *data, 421 u8 bank_addr, u8 sensor_addr, u8 *buf, int count) 422 { 423 /* 424 * We use the ready timeout as we have to wait for 0xAC just like the 425 * ready function 426 */ 427 int i, timeout = ABIT_UGURU_READY_TIMEOUT; 428 429 /* Send the address */ 430 i = abituguru_send_address(data, bank_addr, sensor_addr, 431 ABIT_UGURU_MAX_RETRIES); 432 if (i) 433 return i; 434 435 /* And write the data */ 436 for (i = 0; i < count; i++) { 437 if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { 438 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " 439 "write state (bank: %d, sensor: %d)\n", 440 (int)bank_addr, (int)sensor_addr); 441 break; 442 } 443 outb(buf[i], data->addr + ABIT_UGURU_CMD); 444 } 445 446 /* 447 * Now we need to wait till the chip is ready to be read again, 448 * so that we can read 0xAC as confirmation that our write has 449 * succeeded. 450 */ 451 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { 452 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " 453 "after write (bank: %d, sensor: %d)\n", (int)bank_addr, 454 (int)sensor_addr); 455 return -EIO; 456 } 457 458 /* Cmd port MUST be read now and should contain 0xAC */ 459 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { 460 timeout--; 461 if (timeout == 0) { 462 ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after " 463 "write (bank: %d, sensor: %d)\n", 464 (int)bank_addr, (int)sensor_addr); 465 return -EIO; 466 } 467 msleep(0); 468 } 469 470 /* Last put the chip back in ready state */ 471 abituguru_ready(data); 472 473 return i; 474 } 475 476 /* 477 * Detect sensor type. Temp and Volt sensors are enabled with 478 * different masks and will ignore enable masks not meant for them. 479 * This enables us to test what kind of sensor we're dealing with. 480 * By setting the alarm thresholds so that we will always get an 481 * alarm for sensor type X and then enabling the sensor as sensor type 482 * X, if we then get an alarm it is a sensor of type X. 483 */ 484 static int 485 abituguru_detect_bank1_sensor_type(struct abituguru_data *data, 486 u8 sensor_addr) 487 { 488 u8 val, test_flag, buf[3]; 489 int i, ret = -ENODEV; /* error is the most common used retval :| */ 490 491 /* If overriden by the user return the user selected type */ 492 if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR && 493 bank1_types[sensor_addr] <= ABIT_UGURU_NC) { 494 ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor " 495 "%d because of \"bank1_types\" module param\n", 496 bank1_types[sensor_addr], (int)sensor_addr); 497 return bank1_types[sensor_addr]; 498 } 499 500 /* First read the sensor and the current settings */ 501 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, 502 1, ABIT_UGURU_MAX_RETRIES) != 1) 503 return -ENODEV; 504 505 /* Test val is sane / usable for sensor type detection. */ 506 if ((val < 10u) || (val > 250u)) { 507 pr_warn("bank1-sensor: %d reading (%d) too close to limits, " 508 "unable to determine sensor type, skipping sensor\n", 509 (int)sensor_addr, (int)val); 510 /* 511 * assume no sensor is there for sensors for which we can't 512 * determine the sensor type because their reading is too close 513 * to their limits, this usually means no sensor is there. 514 */ 515 return ABIT_UGURU_NC; 516 } 517 518 ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); 519 /* 520 * Volt sensor test, enable volt low alarm, set min value ridiculously 521 * high, or vica versa if the reading is very high. If its a volt 522 * sensor this should always give us an alarm. 523 */ 524 if (val <= 240u) { 525 buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; 526 buf[1] = 245; 527 buf[2] = 250; 528 test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG; 529 } else { 530 buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE; 531 buf[1] = 5; 532 buf[2] = 10; 533 test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG; 534 } 535 536 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, 537 buf, 3) != 3) 538 goto abituguru_detect_bank1_sensor_type_exit; 539 /* 540 * Now we need 20 ms to give the uguru time to read the sensors 541 * and raise a voltage alarm 542 */ 543 set_current_state(TASK_UNINTERRUPTIBLE); 544 schedule_timeout(HZ/50); 545 /* Check for alarm and check the alarm is a volt low alarm. */ 546 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, 547 ABIT_UGURU_MAX_RETRIES) != 3) 548 goto abituguru_detect_bank1_sensor_type_exit; 549 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { 550 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, 551 sensor_addr, buf, 3, 552 ABIT_UGURU_MAX_RETRIES) != 3) 553 goto abituguru_detect_bank1_sensor_type_exit; 554 if (buf[0] & test_flag) { 555 ABIT_UGURU_DEBUG(2, " found volt sensor\n"); 556 ret = ABIT_UGURU_IN_SENSOR; 557 goto abituguru_detect_bank1_sensor_type_exit; 558 } else 559 ABIT_UGURU_DEBUG(2, " alarm raised during volt " 560 "sensor test, but volt range flag not set\n"); 561 } else 562 ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor " 563 "test\n"); 564 565 /* 566 * Temp sensor test, enable sensor as a temp sensor, set beep value 567 * ridiculously low (but not too low, otherwise uguru ignores it). 568 * If its a temp sensor this should always give us an alarm. 569 */ 570 buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; 571 buf[1] = 5; 572 buf[2] = 10; 573 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, 574 buf, 3) != 3) 575 goto abituguru_detect_bank1_sensor_type_exit; 576 /* 577 * Now we need 50 ms to give the uguru time to read the sensors 578 * and raise a temp alarm 579 */ 580 set_current_state(TASK_UNINTERRUPTIBLE); 581 schedule_timeout(HZ/20); 582 /* Check for alarm and check the alarm is a temp high alarm. */ 583 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, 584 ABIT_UGURU_MAX_RETRIES) != 3) 585 goto abituguru_detect_bank1_sensor_type_exit; 586 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { 587 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, 588 sensor_addr, buf, 3, 589 ABIT_UGURU_MAX_RETRIES) != 3) 590 goto abituguru_detect_bank1_sensor_type_exit; 591 if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { 592 ABIT_UGURU_DEBUG(2, " found temp sensor\n"); 593 ret = ABIT_UGURU_TEMP_SENSOR; 594 goto abituguru_detect_bank1_sensor_type_exit; 595 } else 596 ABIT_UGURU_DEBUG(2, " alarm raised during temp " 597 "sensor test, but temp high flag not set\n"); 598 } else 599 ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor " 600 "test\n"); 601 602 ret = ABIT_UGURU_NC; 603 abituguru_detect_bank1_sensor_type_exit: 604 /* 605 * Restore original settings, failing here is really BAD, it has been 606 * reported that some BIOS-es hang when entering the uGuru menu with 607 * invalid settings present in the uGuru, so we try this 3 times. 608 */ 609 for (i = 0; i < 3; i++) 610 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, 611 sensor_addr, data->bank1_settings[sensor_addr], 612 3) == 3) 613 break; 614 if (i == 3) { 615 pr_err("Fatal error could not restore original settings. %s %s\n", 616 never_happen, report_this); 617 return -ENODEV; 618 } 619 return ret; 620 } 621 622 /* 623 * These functions try to find out how many sensors there are in bank2 and how 624 * many pwms there are. The purpose of this is to make sure that we don't give 625 * the user the possibility to change settings for non-existent sensors / pwm. 626 * The uGuru will happily read / write whatever memory happens to be after the 627 * memory storing the PWM settings when reading/writing to a PWM which is not 628 * there. Notice even if we detect a PWM which doesn't exist we normally won't 629 * write to it, unless the user tries to change the settings. 630 * 631 * Although the uGuru allows reading (settings) from non existing bank2 632 * sensors, my version of the uGuru does seem to stop writing to them, the 633 * write function above aborts in this case with: 634 * "CMD reg does not hold 0xAC after write" 635 * 636 * Notice these 2 tests are non destructive iow read-only tests, otherwise 637 * they would defeat their purpose. Although for the bank2_sensors detection a 638 * read/write test would be feasible because of the reaction above, I've 639 * however opted to stay on the safe side. 640 */ 641 static void 642 abituguru_detect_no_bank2_sensors(struct abituguru_data *data) 643 { 644 int i; 645 646 if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) { 647 data->bank2_sensors = fan_sensors; 648 ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " 649 "\"fan_sensors\" module param\n", 650 (int)data->bank2_sensors); 651 return; 652 } 653 654 ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); 655 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { 656 /* 657 * 0x89 are the known used bits: 658 * -0x80 enable shutdown 659 * -0x08 enable beep 660 * -0x01 enable alarm 661 * All other bits should be 0, but on some motherboards 662 * 0x40 (bit 6) is also high for some of the fans?? 663 */ 664 if (data->bank2_settings[i][0] & ~0xC9) { 665 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " 666 "to be a fan sensor: settings[0] = %02X\n", 667 i, (unsigned int)data->bank2_settings[i][0]); 668 break; 669 } 670 671 /* check if the threshold is within the allowed range */ 672 if (data->bank2_settings[i][1] < 673 abituguru_bank2_min_threshold) { 674 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " 675 "to be a fan sensor: the threshold (%d) is " 676 "below the minimum (%d)\n", i, 677 (int)data->bank2_settings[i][1], 678 (int)abituguru_bank2_min_threshold); 679 break; 680 } 681 if (data->bank2_settings[i][1] > 682 abituguru_bank2_max_threshold) { 683 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " 684 "to be a fan sensor: the threshold (%d) is " 685 "above the maximum (%d)\n", i, 686 (int)data->bank2_settings[i][1], 687 (int)abituguru_bank2_max_threshold); 688 break; 689 } 690 } 691 692 data->bank2_sensors = i; 693 ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", 694 (int)data->bank2_sensors); 695 } 696 697 static void 698 abituguru_detect_no_pwms(struct abituguru_data *data) 699 { 700 int i, j; 701 702 if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) { 703 data->pwms = pwms; 704 ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " 705 "\"pwms\" module param\n", (int)data->pwms); 706 return; 707 } 708 709 ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); 710 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { 711 /* 712 * 0x80 is the enable bit and the low 713 * nibble is which temp sensor to use, 714 * the other bits should be 0 715 */ 716 if (data->pwm_settings[i][0] & ~0x8F) { 717 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 718 "to be a pwm channel: settings[0] = %02X\n", 719 i, (unsigned int)data->pwm_settings[i][0]); 720 break; 721 } 722 723 /* 724 * the low nibble must correspond to one of the temp sensors 725 * we've found 726 */ 727 for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; 728 j++) { 729 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == 730 (data->pwm_settings[i][0] & 0x0F)) 731 break; 732 } 733 if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { 734 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 735 "to be a pwm channel: %d is not a valid temp " 736 "sensor address\n", i, 737 data->pwm_settings[i][0] & 0x0F); 738 break; 739 } 740 741 /* check if all other settings are within the allowed range */ 742 for (j = 1; j < 5; j++) { 743 u8 min; 744 /* special case pwm1 min pwm% */ 745 if ((i == 0) && ((j == 1) || (j == 2))) 746 min = 77; 747 else 748 min = abituguru_pwm_min[j]; 749 if (data->pwm_settings[i][j] < min) { 750 ABIT_UGURU_DEBUG(2, " pwm channel %d does " 751 "not seem to be a pwm channel: " 752 "setting %d (%d) is below the minimum " 753 "value (%d)\n", i, j, 754 (int)data->pwm_settings[i][j], 755 (int)min); 756 goto abituguru_detect_no_pwms_exit; 757 } 758 if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { 759 ABIT_UGURU_DEBUG(2, " pwm channel %d does " 760 "not seem to be a pwm channel: " 761 "setting %d (%d) is above the maximum " 762 "value (%d)\n", i, j, 763 (int)data->pwm_settings[i][j], 764 (int)abituguru_pwm_max[j]); 765 goto abituguru_detect_no_pwms_exit; 766 } 767 } 768 769 /* check that min temp < max temp and min pwm < max pwm */ 770 if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { 771 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 772 "to be a pwm channel: min pwm (%d) >= " 773 "max pwm (%d)\n", i, 774 (int)data->pwm_settings[i][1], 775 (int)data->pwm_settings[i][2]); 776 break; 777 } 778 if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { 779 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 780 "to be a pwm channel: min temp (%d) >= " 781 "max temp (%d)\n", i, 782 (int)data->pwm_settings[i][3], 783 (int)data->pwm_settings[i][4]); 784 break; 785 } 786 } 787 788 abituguru_detect_no_pwms_exit: 789 data->pwms = i; 790 ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); 791 } 792 793 /* 794 * Following are the sysfs callback functions. These functions expect: 795 * sensor_device_attribute_2->index: sensor address/offset in the bank 796 * sensor_device_attribute_2->nr: register offset, bitmask or NA. 797 */ 798 static struct abituguru_data *abituguru_update_device(struct device *dev); 799 800 static ssize_t show_bank1_value(struct device *dev, 801 struct device_attribute *devattr, char *buf) 802 { 803 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 804 struct abituguru_data *data = abituguru_update_device(dev); 805 if (!data) 806 return -EIO; 807 return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * 808 data->bank1_max_value[attr->index] + 128) / 255); 809 } 810 811 static ssize_t show_bank1_setting(struct device *dev, 812 struct device_attribute *devattr, char *buf) 813 { 814 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 815 struct abituguru_data *data = dev_get_drvdata(dev); 816 return sprintf(buf, "%d\n", 817 (data->bank1_settings[attr->index][attr->nr] * 818 data->bank1_max_value[attr->index] + 128) / 255); 819 } 820 821 static ssize_t show_bank2_value(struct device *dev, 822 struct device_attribute *devattr, char *buf) 823 { 824 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 825 struct abituguru_data *data = abituguru_update_device(dev); 826 if (!data) 827 return -EIO; 828 return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * 829 ABIT_UGURU_FAN_MAX + 128) / 255); 830 } 831 832 static ssize_t show_bank2_setting(struct device *dev, 833 struct device_attribute *devattr, char *buf) 834 { 835 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 836 struct abituguru_data *data = dev_get_drvdata(dev); 837 return sprintf(buf, "%d\n", 838 (data->bank2_settings[attr->index][attr->nr] * 839 ABIT_UGURU_FAN_MAX + 128) / 255); 840 } 841 842 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute 843 *devattr, const char *buf, size_t count) 844 { 845 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 846 struct abituguru_data *data = dev_get_drvdata(dev); 847 unsigned long val; 848 ssize_t ret; 849 850 ret = kstrtoul(buf, 10, &val); 851 if (ret) 852 return ret; 853 854 ret = count; 855 val = (val * 255 + data->bank1_max_value[attr->index] / 2) / 856 data->bank1_max_value[attr->index]; 857 if (val > 255) 858 return -EINVAL; 859 860 mutex_lock(&data->update_lock); 861 if (data->bank1_settings[attr->index][attr->nr] != val) { 862 u8 orig_val = data->bank1_settings[attr->index][attr->nr]; 863 data->bank1_settings[attr->index][attr->nr] = val; 864 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, 865 attr->index, data->bank1_settings[attr->index], 866 3) <= attr->nr) { 867 data->bank1_settings[attr->index][attr->nr] = orig_val; 868 ret = -EIO; 869 } 870 } 871 mutex_unlock(&data->update_lock); 872 return ret; 873 } 874 875 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute 876 *devattr, const char *buf, size_t count) 877 { 878 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 879 struct abituguru_data *data = dev_get_drvdata(dev); 880 unsigned long val; 881 ssize_t ret; 882 883 ret = kstrtoul(buf, 10, &val); 884 if (ret) 885 return ret; 886 887 ret = count; 888 val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX; 889 890 /* this check can be done before taking the lock */ 891 if (val < abituguru_bank2_min_threshold || 892 val > abituguru_bank2_max_threshold) 893 return -EINVAL; 894 895 mutex_lock(&data->update_lock); 896 if (data->bank2_settings[attr->index][attr->nr] != val) { 897 u8 orig_val = data->bank2_settings[attr->index][attr->nr]; 898 data->bank2_settings[attr->index][attr->nr] = val; 899 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, 900 attr->index, data->bank2_settings[attr->index], 901 2) <= attr->nr) { 902 data->bank2_settings[attr->index][attr->nr] = orig_val; 903 ret = -EIO; 904 } 905 } 906 mutex_unlock(&data->update_lock); 907 return ret; 908 } 909 910 static ssize_t show_bank1_alarm(struct device *dev, 911 struct device_attribute *devattr, char *buf) 912 { 913 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 914 struct abituguru_data *data = abituguru_update_device(dev); 915 if (!data) 916 return -EIO; 917 /* 918 * See if the alarm bit for this sensor is set, and if the 919 * alarm matches the type of alarm we're looking for (for volt 920 * it can be either low or high). The type is stored in a few 921 * readonly bits in the settings part of the relevant sensor. 922 * The bitmask of the type is passed to us in attr->nr. 923 */ 924 if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && 925 (data->bank1_settings[attr->index][0] & attr->nr)) 926 return sprintf(buf, "1\n"); 927 else 928 return sprintf(buf, "0\n"); 929 } 930 931 static ssize_t show_bank2_alarm(struct device *dev, 932 struct device_attribute *devattr, char *buf) 933 { 934 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 935 struct abituguru_data *data = abituguru_update_device(dev); 936 if (!data) 937 return -EIO; 938 if (data->alarms[2] & (0x01 << attr->index)) 939 return sprintf(buf, "1\n"); 940 else 941 return sprintf(buf, "0\n"); 942 } 943 944 static ssize_t show_bank1_mask(struct device *dev, 945 struct device_attribute *devattr, char *buf) 946 { 947 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 948 struct abituguru_data *data = dev_get_drvdata(dev); 949 if (data->bank1_settings[attr->index][0] & attr->nr) 950 return sprintf(buf, "1\n"); 951 else 952 return sprintf(buf, "0\n"); 953 } 954 955 static ssize_t show_bank2_mask(struct device *dev, 956 struct device_attribute *devattr, char *buf) 957 { 958 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 959 struct abituguru_data *data = dev_get_drvdata(dev); 960 if (data->bank2_settings[attr->index][0] & attr->nr) 961 return sprintf(buf, "1\n"); 962 else 963 return sprintf(buf, "0\n"); 964 } 965 966 static ssize_t store_bank1_mask(struct device *dev, 967 struct device_attribute *devattr, const char *buf, size_t count) 968 { 969 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 970 struct abituguru_data *data = dev_get_drvdata(dev); 971 ssize_t ret; 972 u8 orig_val; 973 unsigned long mask; 974 975 ret = kstrtoul(buf, 10, &mask); 976 if (ret) 977 return ret; 978 979 ret = count; 980 mutex_lock(&data->update_lock); 981 orig_val = data->bank1_settings[attr->index][0]; 982 983 if (mask) 984 data->bank1_settings[attr->index][0] |= attr->nr; 985 else 986 data->bank1_settings[attr->index][0] &= ~attr->nr; 987 988 if ((data->bank1_settings[attr->index][0] != orig_val) && 989 (abituguru_write(data, 990 ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, 991 data->bank1_settings[attr->index], 3) < 1)) { 992 data->bank1_settings[attr->index][0] = orig_val; 993 ret = -EIO; 994 } 995 mutex_unlock(&data->update_lock); 996 return ret; 997 } 998 999 static ssize_t store_bank2_mask(struct device *dev, 1000 struct device_attribute *devattr, const char *buf, size_t count) 1001 { 1002 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1003 struct abituguru_data *data = dev_get_drvdata(dev); 1004 ssize_t ret; 1005 u8 orig_val; 1006 unsigned long mask; 1007 1008 ret = kstrtoul(buf, 10, &mask); 1009 if (ret) 1010 return ret; 1011 1012 ret = count; 1013 mutex_lock(&data->update_lock); 1014 orig_val = data->bank2_settings[attr->index][0]; 1015 1016 if (mask) 1017 data->bank2_settings[attr->index][0] |= attr->nr; 1018 else 1019 data->bank2_settings[attr->index][0] &= ~attr->nr; 1020 1021 if ((data->bank2_settings[attr->index][0] != orig_val) && 1022 (abituguru_write(data, 1023 ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, 1024 data->bank2_settings[attr->index], 2) < 1)) { 1025 data->bank2_settings[attr->index][0] = orig_val; 1026 ret = -EIO; 1027 } 1028 mutex_unlock(&data->update_lock); 1029 return ret; 1030 } 1031 1032 /* Fan PWM (speed control) */ 1033 static ssize_t show_pwm_setting(struct device *dev, 1034 struct device_attribute *devattr, char *buf) 1035 { 1036 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1037 struct abituguru_data *data = dev_get_drvdata(dev); 1038 return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * 1039 abituguru_pwm_settings_multiplier[attr->nr]); 1040 } 1041 1042 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute 1043 *devattr, const char *buf, size_t count) 1044 { 1045 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1046 struct abituguru_data *data = dev_get_drvdata(dev); 1047 u8 min; 1048 unsigned long val; 1049 ssize_t ret; 1050 1051 ret = kstrtoul(buf, 10, &val); 1052 if (ret) 1053 return ret; 1054 1055 ret = count; 1056 val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) / 1057 abituguru_pwm_settings_multiplier[attr->nr]; 1058 1059 /* special case pwm1 min pwm% */ 1060 if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) 1061 min = 77; 1062 else 1063 min = abituguru_pwm_min[attr->nr]; 1064 1065 /* this check can be done before taking the lock */ 1066 if (val < min || val > abituguru_pwm_max[attr->nr]) 1067 return -EINVAL; 1068 1069 mutex_lock(&data->update_lock); 1070 /* this check needs to be done after taking the lock */ 1071 if ((attr->nr & 1) && 1072 (val >= data->pwm_settings[attr->index][attr->nr + 1])) 1073 ret = -EINVAL; 1074 else if (!(attr->nr & 1) && 1075 (val <= data->pwm_settings[attr->index][attr->nr - 1])) 1076 ret = -EINVAL; 1077 else if (data->pwm_settings[attr->index][attr->nr] != val) { 1078 u8 orig_val = data->pwm_settings[attr->index][attr->nr]; 1079 data->pwm_settings[attr->index][attr->nr] = val; 1080 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, 1081 attr->index, data->pwm_settings[attr->index], 1082 5) <= attr->nr) { 1083 data->pwm_settings[attr->index][attr->nr] = 1084 orig_val; 1085 ret = -EIO; 1086 } 1087 } 1088 mutex_unlock(&data->update_lock); 1089 return ret; 1090 } 1091 1092 static ssize_t show_pwm_sensor(struct device *dev, 1093 struct device_attribute *devattr, char *buf) 1094 { 1095 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1096 struct abituguru_data *data = dev_get_drvdata(dev); 1097 int i; 1098 /* 1099 * We need to walk to the temp sensor addresses to find what 1100 * the userspace id of the configured temp sensor is. 1101 */ 1102 for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) 1103 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == 1104 (data->pwm_settings[attr->index][0] & 0x0F)) 1105 return sprintf(buf, "%d\n", i+1); 1106 1107 return -ENXIO; 1108 } 1109 1110 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute 1111 *devattr, const char *buf, size_t count) 1112 { 1113 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1114 struct abituguru_data *data = dev_get_drvdata(dev); 1115 ssize_t ret; 1116 unsigned long val; 1117 u8 orig_val; 1118 u8 address; 1119 1120 ret = kstrtoul(buf, 10, &val); 1121 if (ret) 1122 return ret; 1123 1124 if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) 1125 return -EINVAL; 1126 1127 val -= 1; 1128 ret = count; 1129 mutex_lock(&data->update_lock); 1130 orig_val = data->pwm_settings[attr->index][0]; 1131 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; 1132 data->pwm_settings[attr->index][0] &= 0xF0; 1133 data->pwm_settings[attr->index][0] |= address; 1134 if (data->pwm_settings[attr->index][0] != orig_val) { 1135 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index, 1136 data->pwm_settings[attr->index], 5) < 1) { 1137 data->pwm_settings[attr->index][0] = orig_val; 1138 ret = -EIO; 1139 } 1140 } 1141 mutex_unlock(&data->update_lock); 1142 return ret; 1143 } 1144 1145 static ssize_t show_pwm_enable(struct device *dev, 1146 struct device_attribute *devattr, char *buf) 1147 { 1148 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1149 struct abituguru_data *data = dev_get_drvdata(dev); 1150 int res = 0; 1151 if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) 1152 res = 2; 1153 return sprintf(buf, "%d\n", res); 1154 } 1155 1156 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute 1157 *devattr, const char *buf, size_t count) 1158 { 1159 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1160 struct abituguru_data *data = dev_get_drvdata(dev); 1161 u8 orig_val; 1162 ssize_t ret; 1163 unsigned long user_val; 1164 1165 ret = kstrtoul(buf, 10, &user_val); 1166 if (ret) 1167 return ret; 1168 1169 ret = count; 1170 mutex_lock(&data->update_lock); 1171 orig_val = data->pwm_settings[attr->index][0]; 1172 switch (user_val) { 1173 case 0: 1174 data->pwm_settings[attr->index][0] &= 1175 ~ABIT_UGURU_FAN_PWM_ENABLE; 1176 break; 1177 case 2: 1178 data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE; 1179 break; 1180 default: 1181 ret = -EINVAL; 1182 } 1183 if ((data->pwm_settings[attr->index][0] != orig_val) && 1184 (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, 1185 attr->index, data->pwm_settings[attr->index], 1186 5) < 1)) { 1187 data->pwm_settings[attr->index][0] = orig_val; 1188 ret = -EIO; 1189 } 1190 mutex_unlock(&data->update_lock); 1191 return ret; 1192 } 1193 1194 static ssize_t show_name(struct device *dev, 1195 struct device_attribute *devattr, char *buf) 1196 { 1197 return sprintf(buf, "%s\n", ABIT_UGURU_NAME); 1198 } 1199 1200 /* Sysfs attr templates, the real entries are generated automatically. */ 1201 static const 1202 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { 1203 { 1204 SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), 1205 SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, 1206 store_bank1_setting, 1, 0), 1207 SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, 1208 ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), 1209 SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, 1210 store_bank1_setting, 2, 0), 1211 SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, 1212 ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), 1213 SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, 1214 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), 1215 SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, 1216 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), 1217 SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, 1218 store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), 1219 SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, 1220 store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), 1221 }, { 1222 SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), 1223 SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, 1224 ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), 1225 SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, 1226 store_bank1_setting, 1, 0), 1227 SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, 1228 store_bank1_setting, 2, 0), 1229 SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, 1230 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), 1231 SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, 1232 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), 1233 SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, 1234 store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), 1235 } 1236 }; 1237 1238 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { 1239 SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), 1240 SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), 1241 SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, 1242 store_bank2_setting, 1, 0), 1243 SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, 1244 store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), 1245 SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, 1246 store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), 1247 SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, 1248 store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), 1249 }; 1250 1251 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { 1252 SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, 1253 store_pwm_enable, 0, 0), 1254 SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, 1255 store_pwm_sensor, 0, 0), 1256 SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, 1257 store_pwm_setting, 1, 0), 1258 SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, 1259 store_pwm_setting, 2, 0), 1260 SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, 1261 store_pwm_setting, 3, 0), 1262 SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, 1263 store_pwm_setting, 4, 0), 1264 }; 1265 1266 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { 1267 SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), 1268 }; 1269 1270 static int abituguru_probe(struct platform_device *pdev) 1271 { 1272 struct abituguru_data *data; 1273 int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV; 1274 char *sysfs_filename; 1275 1276 /* 1277 * El weirdo probe order, to keep the sysfs order identical to the 1278 * BIOS and window-appliction listing order. 1279 */ 1280 const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = { 1281 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02, 1282 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; 1283 1284 data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data), 1285 GFP_KERNEL); 1286 if (!data) 1287 return -ENOMEM; 1288 1289 data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; 1290 mutex_init(&data->update_lock); 1291 platform_set_drvdata(pdev, data); 1292 1293 /* See if the uGuru is ready */ 1294 if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) 1295 data->uguru_ready = 1; 1296 1297 /* 1298 * Completely read the uGuru this has 2 purposes: 1299 * - testread / see if one really is there. 1300 * - make an in memory copy of all the uguru settings for future use. 1301 */ 1302 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, 1303 data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) 1304 goto abituguru_probe_error; 1305 1306 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { 1307 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, 1308 &data->bank1_value[i], 1, 1309 ABIT_UGURU_MAX_RETRIES) != 1) 1310 goto abituguru_probe_error; 1311 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, 1312 data->bank1_settings[i], 3, 1313 ABIT_UGURU_MAX_RETRIES) != 3) 1314 goto abituguru_probe_error; 1315 } 1316 /* 1317 * Note: We don't know how many bank2 sensors / pwms there really are, 1318 * but in order to "detect" this we need to read the maximum amount 1319 * anyways. If we read sensors/pwms not there we'll just read crap 1320 * this can't hurt. We need the detection because we don't want 1321 * unwanted writes, which will hurt! 1322 */ 1323 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { 1324 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, 1325 &data->bank2_value[i], 1, 1326 ABIT_UGURU_MAX_RETRIES) != 1) 1327 goto abituguru_probe_error; 1328 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, 1329 data->bank2_settings[i], 2, 1330 ABIT_UGURU_MAX_RETRIES) != 2) 1331 goto abituguru_probe_error; 1332 } 1333 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { 1334 if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, 1335 data->pwm_settings[i], 5, 1336 ABIT_UGURU_MAX_RETRIES) != 5) 1337 goto abituguru_probe_error; 1338 } 1339 data->last_updated = jiffies; 1340 1341 /* Detect sensor types and fill the sysfs attr for bank1 */ 1342 sysfs_attr_i = 0; 1343 sysfs_filename = data->sysfs_names; 1344 sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH; 1345 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { 1346 res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); 1347 if (res < 0) 1348 goto abituguru_probe_error; 1349 if (res == ABIT_UGURU_NC) 1350 continue; 1351 1352 /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */ 1353 for (j = 0; j < (res ? 7 : 9); j++) { 1354 used = snprintf(sysfs_filename, sysfs_names_free, 1355 abituguru_sysfs_bank1_templ[res][j].dev_attr. 1356 attr.name, data->bank1_sensors[res] + res) 1357 + 1; 1358 data->sysfs_attr[sysfs_attr_i] = 1359 abituguru_sysfs_bank1_templ[res][j]; 1360 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = 1361 sysfs_filename; 1362 data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; 1363 sysfs_filename += used; 1364 sysfs_names_free -= used; 1365 sysfs_attr_i++; 1366 } 1367 data->bank1_max_value[probe_order[i]] = 1368 abituguru_bank1_max_value[res]; 1369 data->bank1_address[res][data->bank1_sensors[res]] = 1370 probe_order[i]; 1371 data->bank1_sensors[res]++; 1372 } 1373 /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ 1374 abituguru_detect_no_bank2_sensors(data); 1375 for (i = 0; i < data->bank2_sensors; i++) { 1376 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) { 1377 used = snprintf(sysfs_filename, sysfs_names_free, 1378 abituguru_sysfs_fan_templ[j].dev_attr.attr.name, 1379 i + 1) + 1; 1380 data->sysfs_attr[sysfs_attr_i] = 1381 abituguru_sysfs_fan_templ[j]; 1382 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = 1383 sysfs_filename; 1384 data->sysfs_attr[sysfs_attr_i].index = i; 1385 sysfs_filename += used; 1386 sysfs_names_free -= used; 1387 sysfs_attr_i++; 1388 } 1389 } 1390 /* Detect number of sensors and fill the sysfs attr for pwms */ 1391 abituguru_detect_no_pwms(data); 1392 for (i = 0; i < data->pwms; i++) { 1393 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) { 1394 used = snprintf(sysfs_filename, sysfs_names_free, 1395 abituguru_sysfs_pwm_templ[j].dev_attr.attr.name, 1396 i + 1) + 1; 1397 data->sysfs_attr[sysfs_attr_i] = 1398 abituguru_sysfs_pwm_templ[j]; 1399 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = 1400 sysfs_filename; 1401 data->sysfs_attr[sysfs_attr_i].index = i; 1402 sysfs_filename += used; 1403 sysfs_names_free -= used; 1404 sysfs_attr_i++; 1405 } 1406 } 1407 /* Fail safe check, this should never happen! */ 1408 if (sysfs_names_free < 0) { 1409 pr_err("Fatal error ran out of space for sysfs attr names. %s %s", 1410 never_happen, report_this); 1411 res = -ENAMETOOLONG; 1412 goto abituguru_probe_error; 1413 } 1414 pr_info("found Abit uGuru\n"); 1415 1416 /* Register sysfs hooks */ 1417 for (i = 0; i < sysfs_attr_i; i++) { 1418 res = device_create_file(&pdev->dev, 1419 &data->sysfs_attr[i].dev_attr); 1420 if (res) 1421 goto abituguru_probe_error; 1422 } 1423 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) { 1424 res = device_create_file(&pdev->dev, 1425 &abituguru_sysfs_attr[i].dev_attr); 1426 if (res) 1427 goto abituguru_probe_error; 1428 } 1429 1430 data->hwmon_dev = hwmon_device_register(&pdev->dev); 1431 if (!IS_ERR(data->hwmon_dev)) 1432 return 0; /* success */ 1433 1434 res = PTR_ERR(data->hwmon_dev); 1435 abituguru_probe_error: 1436 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) 1437 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); 1438 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) 1439 device_remove_file(&pdev->dev, 1440 &abituguru_sysfs_attr[i].dev_attr); 1441 return res; 1442 } 1443 1444 static int abituguru_remove(struct platform_device *pdev) 1445 { 1446 int i; 1447 struct abituguru_data *data = platform_get_drvdata(pdev); 1448 1449 hwmon_device_unregister(data->hwmon_dev); 1450 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) 1451 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); 1452 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) 1453 device_remove_file(&pdev->dev, 1454 &abituguru_sysfs_attr[i].dev_attr); 1455 1456 return 0; 1457 } 1458 1459 static struct abituguru_data *abituguru_update_device(struct device *dev) 1460 { 1461 int i, err; 1462 struct abituguru_data *data = dev_get_drvdata(dev); 1463 /* fake a complete successful read if no update necessary. */ 1464 char success = 1; 1465 1466 mutex_lock(&data->update_lock); 1467 if (time_after(jiffies, data->last_updated + HZ)) { 1468 success = 0; 1469 err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, 1470 data->alarms, 3, 0); 1471 if (err != 3) 1472 goto LEAVE_UPDATE; 1473 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { 1474 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, 1475 i, &data->bank1_value[i], 1, 0); 1476 if (err != 1) 1477 goto LEAVE_UPDATE; 1478 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, 1479 i, data->bank1_settings[i], 3, 0); 1480 if (err != 3) 1481 goto LEAVE_UPDATE; 1482 } 1483 for (i = 0; i < data->bank2_sensors; i++) { 1484 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, 1485 &data->bank2_value[i], 1, 0); 1486 if (err != 1) 1487 goto LEAVE_UPDATE; 1488 } 1489 /* success! */ 1490 success = 1; 1491 data->update_timeouts = 0; 1492 LEAVE_UPDATE: 1493 /* handle timeout condition */ 1494 if (!success && (err == -EBUSY || err >= 0)) { 1495 /* No overflow please */ 1496 if (data->update_timeouts < 255u) 1497 data->update_timeouts++; 1498 if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { 1499 ABIT_UGURU_DEBUG(3, "timeout exceeded, will " 1500 "try again next update\n"); 1501 /* Just a timeout, fake a successful read */ 1502 success = 1; 1503 } else 1504 ABIT_UGURU_DEBUG(1, "timeout exceeded %d " 1505 "times waiting for more input state\n", 1506 (int)data->update_timeouts); 1507 } 1508 /* On success set last_updated */ 1509 if (success) 1510 data->last_updated = jiffies; 1511 } 1512 mutex_unlock(&data->update_lock); 1513 1514 if (success) 1515 return data; 1516 else 1517 return NULL; 1518 } 1519 1520 #ifdef CONFIG_PM_SLEEP 1521 static int abituguru_suspend(struct device *dev) 1522 { 1523 struct abituguru_data *data = dev_get_drvdata(dev); 1524 /* 1525 * make sure all communications with the uguru are done and no new 1526 * ones are started 1527 */ 1528 mutex_lock(&data->update_lock); 1529 return 0; 1530 } 1531 1532 static int abituguru_resume(struct device *dev) 1533 { 1534 struct abituguru_data *data = dev_get_drvdata(dev); 1535 /* See if the uGuru is still ready */ 1536 if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) 1537 data->uguru_ready = 0; 1538 mutex_unlock(&data->update_lock); 1539 return 0; 1540 } 1541 1542 static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume); 1543 #define ABIT_UGURU_PM (&abituguru_pm) 1544 #else 1545 #define ABIT_UGURU_PM NULL 1546 #endif /* CONFIG_PM */ 1547 1548 static struct platform_driver abituguru_driver = { 1549 .driver = { 1550 .name = ABIT_UGURU_NAME, 1551 .pm = ABIT_UGURU_PM, 1552 }, 1553 .probe = abituguru_probe, 1554 .remove = abituguru_remove, 1555 }; 1556 1557 static int __init abituguru_detect(void) 1558 { 1559 /* 1560 * See if there is an uguru there. After a reboot uGuru will hold 0x00 1561 * at DATA and 0xAC, when this driver has already been loaded once 1562 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either 1563 * scenario but some will hold 0x00. 1564 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08 1565 * after reading CMD first, so CMD must be read first! 1566 */ 1567 u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); 1568 u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); 1569 if (((data_val == 0x00) || (data_val == 0x08)) && 1570 ((cmd_val == 0x00) || (cmd_val == 0xAC))) 1571 return ABIT_UGURU_BASE; 1572 1573 ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " 1574 "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); 1575 1576 if (force) { 1577 pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n"); 1578 return ABIT_UGURU_BASE; 1579 } 1580 1581 /* No uGuru found */ 1582 return -ENODEV; 1583 } 1584 1585 static struct platform_device *abituguru_pdev; 1586 1587 static int __init abituguru_init(void) 1588 { 1589 int address, err; 1590 struct resource res = { .flags = IORESOURCE_IO }; 1591 const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR); 1592 1593 /* safety check, refuse to load on non Abit motherboards */ 1594 if (!force && (!board_vendor || 1595 strcmp(board_vendor, "http://www.abit.com.tw/"))) 1596 return -ENODEV; 1597 1598 address = abituguru_detect(); 1599 if (address < 0) 1600 return address; 1601 1602 err = platform_driver_register(&abituguru_driver); 1603 if (err) 1604 goto exit; 1605 1606 abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); 1607 if (!abituguru_pdev) { 1608 pr_err("Device allocation failed\n"); 1609 err = -ENOMEM; 1610 goto exit_driver_unregister; 1611 } 1612 1613 res.start = address; 1614 res.end = address + ABIT_UGURU_REGION_LENGTH - 1; 1615 res.name = ABIT_UGURU_NAME; 1616 1617 err = platform_device_add_resources(abituguru_pdev, &res, 1); 1618 if (err) { 1619 pr_err("Device resource addition failed (%d)\n", err); 1620 goto exit_device_put; 1621 } 1622 1623 err = platform_device_add(abituguru_pdev); 1624 if (err) { 1625 pr_err("Device addition failed (%d)\n", err); 1626 goto exit_device_put; 1627 } 1628 1629 return 0; 1630 1631 exit_device_put: 1632 platform_device_put(abituguru_pdev); 1633 exit_driver_unregister: 1634 platform_driver_unregister(&abituguru_driver); 1635 exit: 1636 return err; 1637 } 1638 1639 static void __exit abituguru_exit(void) 1640 { 1641 platform_device_unregister(abituguru_pdev); 1642 platform_driver_unregister(&abituguru_driver); 1643 } 1644 1645 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>"); 1646 MODULE_DESCRIPTION("Abit uGuru Sensor device"); 1647 MODULE_LICENSE("GPL"); 1648 1649 module_init(abituguru_init); 1650 module_exit(abituguru_exit); 1651