xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision f7af616c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
25 
26 #include <linux/delay.h>
27 #include <linux/notifier.h>
28 #include <linux/ptrace.h>
29 #include <linux/screen_info.h>
30 #include <linux/kdebug.h>
31 #include <linux/efi.h>
32 #include <linux/random.h>
33 #include <linux/kernel.h>
34 #include <linux/syscore_ops.h>
35 #include <clocksource/hyperv_timer.h>
36 #include "hyperv_vmbus.h"
37 
38 struct vmbus_dynid {
39 	struct list_head node;
40 	struct hv_vmbus_device_id id;
41 };
42 
43 static struct acpi_device  *hv_acpi_dev;
44 
45 static struct completion probe_event;
46 
47 static int hyperv_cpuhp_online;
48 
49 static void *hv_panic_page;
50 
51 static long __percpu *vmbus_evt;
52 
53 /* Values parsed from ACPI DSDT */
54 int vmbus_irq;
55 int vmbus_interrupt;
56 
57 /*
58  * Boolean to control whether to report panic messages over Hyper-V.
59  *
60  * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
61  */
62 static int sysctl_record_panic_msg = 1;
63 
64 static int hyperv_report_reg(void)
65 {
66 	return !sysctl_record_panic_msg || !hv_panic_page;
67 }
68 
69 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
70 			      void *args)
71 {
72 	struct pt_regs *regs;
73 
74 	vmbus_initiate_unload(true);
75 
76 	/*
77 	 * Hyper-V should be notified only once about a panic.  If we will be
78 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
79 	 * the notification here.
80 	 */
81 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
82 	    && hyperv_report_reg()) {
83 		regs = current_pt_regs();
84 		hyperv_report_panic(regs, val, false);
85 	}
86 	return NOTIFY_DONE;
87 }
88 
89 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
90 			    void *args)
91 {
92 	struct die_args *die = args;
93 	struct pt_regs *regs = die->regs;
94 
95 	/* Don't notify Hyper-V if the die event is other than oops */
96 	if (val != DIE_OOPS)
97 		return NOTIFY_DONE;
98 
99 	/*
100 	 * Hyper-V should be notified only once about a panic.  If we will be
101 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
102 	 * the notification here.
103 	 */
104 	if (hyperv_report_reg())
105 		hyperv_report_panic(regs, val, true);
106 	return NOTIFY_DONE;
107 }
108 
109 static struct notifier_block hyperv_die_block = {
110 	.notifier_call = hyperv_die_event,
111 };
112 static struct notifier_block hyperv_panic_block = {
113 	.notifier_call = hyperv_panic_event,
114 };
115 
116 static const char *fb_mmio_name = "fb_range";
117 static struct resource *fb_mmio;
118 static struct resource *hyperv_mmio;
119 static DEFINE_MUTEX(hyperv_mmio_lock);
120 
121 static int vmbus_exists(void)
122 {
123 	if (hv_acpi_dev == NULL)
124 		return -ENODEV;
125 
126 	return 0;
127 }
128 
129 static u8 channel_monitor_group(const struct vmbus_channel *channel)
130 {
131 	return (u8)channel->offermsg.monitorid / 32;
132 }
133 
134 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
135 {
136 	return (u8)channel->offermsg.monitorid % 32;
137 }
138 
139 static u32 channel_pending(const struct vmbus_channel *channel,
140 			   const struct hv_monitor_page *monitor_page)
141 {
142 	u8 monitor_group = channel_monitor_group(channel);
143 
144 	return monitor_page->trigger_group[monitor_group].pending;
145 }
146 
147 static u32 channel_latency(const struct vmbus_channel *channel,
148 			   const struct hv_monitor_page *monitor_page)
149 {
150 	u8 monitor_group = channel_monitor_group(channel);
151 	u8 monitor_offset = channel_monitor_offset(channel);
152 
153 	return monitor_page->latency[monitor_group][monitor_offset];
154 }
155 
156 static u32 channel_conn_id(struct vmbus_channel *channel,
157 			   struct hv_monitor_page *monitor_page)
158 {
159 	u8 monitor_group = channel_monitor_group(channel);
160 	u8 monitor_offset = channel_monitor_offset(channel);
161 
162 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
163 }
164 
165 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
166 		       char *buf)
167 {
168 	struct hv_device *hv_dev = device_to_hv_device(dev);
169 
170 	if (!hv_dev->channel)
171 		return -ENODEV;
172 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
173 }
174 static DEVICE_ATTR_RO(id);
175 
176 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
177 			  char *buf)
178 {
179 	struct hv_device *hv_dev = device_to_hv_device(dev);
180 
181 	if (!hv_dev->channel)
182 		return -ENODEV;
183 	return sprintf(buf, "%d\n", hv_dev->channel->state);
184 }
185 static DEVICE_ATTR_RO(state);
186 
187 static ssize_t monitor_id_show(struct device *dev,
188 			       struct device_attribute *dev_attr, char *buf)
189 {
190 	struct hv_device *hv_dev = device_to_hv_device(dev);
191 
192 	if (!hv_dev->channel)
193 		return -ENODEV;
194 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
195 }
196 static DEVICE_ATTR_RO(monitor_id);
197 
198 static ssize_t class_id_show(struct device *dev,
199 			       struct device_attribute *dev_attr, char *buf)
200 {
201 	struct hv_device *hv_dev = device_to_hv_device(dev);
202 
203 	if (!hv_dev->channel)
204 		return -ENODEV;
205 	return sprintf(buf, "{%pUl}\n",
206 		       &hv_dev->channel->offermsg.offer.if_type);
207 }
208 static DEVICE_ATTR_RO(class_id);
209 
210 static ssize_t device_id_show(struct device *dev,
211 			      struct device_attribute *dev_attr, char *buf)
212 {
213 	struct hv_device *hv_dev = device_to_hv_device(dev);
214 
215 	if (!hv_dev->channel)
216 		return -ENODEV;
217 	return sprintf(buf, "{%pUl}\n",
218 		       &hv_dev->channel->offermsg.offer.if_instance);
219 }
220 static DEVICE_ATTR_RO(device_id);
221 
222 static ssize_t modalias_show(struct device *dev,
223 			     struct device_attribute *dev_attr, char *buf)
224 {
225 	struct hv_device *hv_dev = device_to_hv_device(dev);
226 
227 	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
228 }
229 static DEVICE_ATTR_RO(modalias);
230 
231 #ifdef CONFIG_NUMA
232 static ssize_t numa_node_show(struct device *dev,
233 			      struct device_attribute *attr, char *buf)
234 {
235 	struct hv_device *hv_dev = device_to_hv_device(dev);
236 
237 	if (!hv_dev->channel)
238 		return -ENODEV;
239 
240 	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
241 }
242 static DEVICE_ATTR_RO(numa_node);
243 #endif
244 
245 static ssize_t server_monitor_pending_show(struct device *dev,
246 					   struct device_attribute *dev_attr,
247 					   char *buf)
248 {
249 	struct hv_device *hv_dev = device_to_hv_device(dev);
250 
251 	if (!hv_dev->channel)
252 		return -ENODEV;
253 	return sprintf(buf, "%d\n",
254 		       channel_pending(hv_dev->channel,
255 				       vmbus_connection.monitor_pages[0]));
256 }
257 static DEVICE_ATTR_RO(server_monitor_pending);
258 
259 static ssize_t client_monitor_pending_show(struct device *dev,
260 					   struct device_attribute *dev_attr,
261 					   char *buf)
262 {
263 	struct hv_device *hv_dev = device_to_hv_device(dev);
264 
265 	if (!hv_dev->channel)
266 		return -ENODEV;
267 	return sprintf(buf, "%d\n",
268 		       channel_pending(hv_dev->channel,
269 				       vmbus_connection.monitor_pages[1]));
270 }
271 static DEVICE_ATTR_RO(client_monitor_pending);
272 
273 static ssize_t server_monitor_latency_show(struct device *dev,
274 					   struct device_attribute *dev_attr,
275 					   char *buf)
276 {
277 	struct hv_device *hv_dev = device_to_hv_device(dev);
278 
279 	if (!hv_dev->channel)
280 		return -ENODEV;
281 	return sprintf(buf, "%d\n",
282 		       channel_latency(hv_dev->channel,
283 				       vmbus_connection.monitor_pages[0]));
284 }
285 static DEVICE_ATTR_RO(server_monitor_latency);
286 
287 static ssize_t client_monitor_latency_show(struct device *dev,
288 					   struct device_attribute *dev_attr,
289 					   char *buf)
290 {
291 	struct hv_device *hv_dev = device_to_hv_device(dev);
292 
293 	if (!hv_dev->channel)
294 		return -ENODEV;
295 	return sprintf(buf, "%d\n",
296 		       channel_latency(hv_dev->channel,
297 				       vmbus_connection.monitor_pages[1]));
298 }
299 static DEVICE_ATTR_RO(client_monitor_latency);
300 
301 static ssize_t server_monitor_conn_id_show(struct device *dev,
302 					   struct device_attribute *dev_attr,
303 					   char *buf)
304 {
305 	struct hv_device *hv_dev = device_to_hv_device(dev);
306 
307 	if (!hv_dev->channel)
308 		return -ENODEV;
309 	return sprintf(buf, "%d\n",
310 		       channel_conn_id(hv_dev->channel,
311 				       vmbus_connection.monitor_pages[0]));
312 }
313 static DEVICE_ATTR_RO(server_monitor_conn_id);
314 
315 static ssize_t client_monitor_conn_id_show(struct device *dev,
316 					   struct device_attribute *dev_attr,
317 					   char *buf)
318 {
319 	struct hv_device *hv_dev = device_to_hv_device(dev);
320 
321 	if (!hv_dev->channel)
322 		return -ENODEV;
323 	return sprintf(buf, "%d\n",
324 		       channel_conn_id(hv_dev->channel,
325 				       vmbus_connection.monitor_pages[1]));
326 }
327 static DEVICE_ATTR_RO(client_monitor_conn_id);
328 
329 static ssize_t out_intr_mask_show(struct device *dev,
330 				  struct device_attribute *dev_attr, char *buf)
331 {
332 	struct hv_device *hv_dev = device_to_hv_device(dev);
333 	struct hv_ring_buffer_debug_info outbound;
334 	int ret;
335 
336 	if (!hv_dev->channel)
337 		return -ENODEV;
338 
339 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
340 					  &outbound);
341 	if (ret < 0)
342 		return ret;
343 
344 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
345 }
346 static DEVICE_ATTR_RO(out_intr_mask);
347 
348 static ssize_t out_read_index_show(struct device *dev,
349 				   struct device_attribute *dev_attr, char *buf)
350 {
351 	struct hv_device *hv_dev = device_to_hv_device(dev);
352 	struct hv_ring_buffer_debug_info outbound;
353 	int ret;
354 
355 	if (!hv_dev->channel)
356 		return -ENODEV;
357 
358 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
359 					  &outbound);
360 	if (ret < 0)
361 		return ret;
362 	return sprintf(buf, "%d\n", outbound.current_read_index);
363 }
364 static DEVICE_ATTR_RO(out_read_index);
365 
366 static ssize_t out_write_index_show(struct device *dev,
367 				    struct device_attribute *dev_attr,
368 				    char *buf)
369 {
370 	struct hv_device *hv_dev = device_to_hv_device(dev);
371 	struct hv_ring_buffer_debug_info outbound;
372 	int ret;
373 
374 	if (!hv_dev->channel)
375 		return -ENODEV;
376 
377 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
378 					  &outbound);
379 	if (ret < 0)
380 		return ret;
381 	return sprintf(buf, "%d\n", outbound.current_write_index);
382 }
383 static DEVICE_ATTR_RO(out_write_index);
384 
385 static ssize_t out_read_bytes_avail_show(struct device *dev,
386 					 struct device_attribute *dev_attr,
387 					 char *buf)
388 {
389 	struct hv_device *hv_dev = device_to_hv_device(dev);
390 	struct hv_ring_buffer_debug_info outbound;
391 	int ret;
392 
393 	if (!hv_dev->channel)
394 		return -ENODEV;
395 
396 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
397 					  &outbound);
398 	if (ret < 0)
399 		return ret;
400 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
401 }
402 static DEVICE_ATTR_RO(out_read_bytes_avail);
403 
404 static ssize_t out_write_bytes_avail_show(struct device *dev,
405 					  struct device_attribute *dev_attr,
406 					  char *buf)
407 {
408 	struct hv_device *hv_dev = device_to_hv_device(dev);
409 	struct hv_ring_buffer_debug_info outbound;
410 	int ret;
411 
412 	if (!hv_dev->channel)
413 		return -ENODEV;
414 
415 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
416 					  &outbound);
417 	if (ret < 0)
418 		return ret;
419 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
420 }
421 static DEVICE_ATTR_RO(out_write_bytes_avail);
422 
423 static ssize_t in_intr_mask_show(struct device *dev,
424 				 struct device_attribute *dev_attr, char *buf)
425 {
426 	struct hv_device *hv_dev = device_to_hv_device(dev);
427 	struct hv_ring_buffer_debug_info inbound;
428 	int ret;
429 
430 	if (!hv_dev->channel)
431 		return -ENODEV;
432 
433 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
434 	if (ret < 0)
435 		return ret;
436 
437 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
438 }
439 static DEVICE_ATTR_RO(in_intr_mask);
440 
441 static ssize_t in_read_index_show(struct device *dev,
442 				  struct device_attribute *dev_attr, char *buf)
443 {
444 	struct hv_device *hv_dev = device_to_hv_device(dev);
445 	struct hv_ring_buffer_debug_info inbound;
446 	int ret;
447 
448 	if (!hv_dev->channel)
449 		return -ENODEV;
450 
451 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
452 	if (ret < 0)
453 		return ret;
454 
455 	return sprintf(buf, "%d\n", inbound.current_read_index);
456 }
457 static DEVICE_ATTR_RO(in_read_index);
458 
459 static ssize_t in_write_index_show(struct device *dev,
460 				   struct device_attribute *dev_attr, char *buf)
461 {
462 	struct hv_device *hv_dev = device_to_hv_device(dev);
463 	struct hv_ring_buffer_debug_info inbound;
464 	int ret;
465 
466 	if (!hv_dev->channel)
467 		return -ENODEV;
468 
469 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
470 	if (ret < 0)
471 		return ret;
472 
473 	return sprintf(buf, "%d\n", inbound.current_write_index);
474 }
475 static DEVICE_ATTR_RO(in_write_index);
476 
477 static ssize_t in_read_bytes_avail_show(struct device *dev,
478 					struct device_attribute *dev_attr,
479 					char *buf)
480 {
481 	struct hv_device *hv_dev = device_to_hv_device(dev);
482 	struct hv_ring_buffer_debug_info inbound;
483 	int ret;
484 
485 	if (!hv_dev->channel)
486 		return -ENODEV;
487 
488 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
489 	if (ret < 0)
490 		return ret;
491 
492 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
493 }
494 static DEVICE_ATTR_RO(in_read_bytes_avail);
495 
496 static ssize_t in_write_bytes_avail_show(struct device *dev,
497 					 struct device_attribute *dev_attr,
498 					 char *buf)
499 {
500 	struct hv_device *hv_dev = device_to_hv_device(dev);
501 	struct hv_ring_buffer_debug_info inbound;
502 	int ret;
503 
504 	if (!hv_dev->channel)
505 		return -ENODEV;
506 
507 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
508 	if (ret < 0)
509 		return ret;
510 
511 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
512 }
513 static DEVICE_ATTR_RO(in_write_bytes_avail);
514 
515 static ssize_t channel_vp_mapping_show(struct device *dev,
516 				       struct device_attribute *dev_attr,
517 				       char *buf)
518 {
519 	struct hv_device *hv_dev = device_to_hv_device(dev);
520 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
521 	int buf_size = PAGE_SIZE, n_written, tot_written;
522 	struct list_head *cur;
523 
524 	if (!channel)
525 		return -ENODEV;
526 
527 	mutex_lock(&vmbus_connection.channel_mutex);
528 
529 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
530 		channel->offermsg.child_relid, channel->target_cpu);
531 
532 	list_for_each(cur, &channel->sc_list) {
533 		if (tot_written >= buf_size - 1)
534 			break;
535 
536 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
537 		n_written = scnprintf(buf + tot_written,
538 				     buf_size - tot_written,
539 				     "%u:%u\n",
540 				     cur_sc->offermsg.child_relid,
541 				     cur_sc->target_cpu);
542 		tot_written += n_written;
543 	}
544 
545 	mutex_unlock(&vmbus_connection.channel_mutex);
546 
547 	return tot_written;
548 }
549 static DEVICE_ATTR_RO(channel_vp_mapping);
550 
551 static ssize_t vendor_show(struct device *dev,
552 			   struct device_attribute *dev_attr,
553 			   char *buf)
554 {
555 	struct hv_device *hv_dev = device_to_hv_device(dev);
556 
557 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
558 }
559 static DEVICE_ATTR_RO(vendor);
560 
561 static ssize_t device_show(struct device *dev,
562 			   struct device_attribute *dev_attr,
563 			   char *buf)
564 {
565 	struct hv_device *hv_dev = device_to_hv_device(dev);
566 
567 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
568 }
569 static DEVICE_ATTR_RO(device);
570 
571 static ssize_t driver_override_store(struct device *dev,
572 				     struct device_attribute *attr,
573 				     const char *buf, size_t count)
574 {
575 	struct hv_device *hv_dev = device_to_hv_device(dev);
576 	char *driver_override, *old, *cp;
577 
578 	/* We need to keep extra room for a newline */
579 	if (count >= (PAGE_SIZE - 1))
580 		return -EINVAL;
581 
582 	driver_override = kstrndup(buf, count, GFP_KERNEL);
583 	if (!driver_override)
584 		return -ENOMEM;
585 
586 	cp = strchr(driver_override, '\n');
587 	if (cp)
588 		*cp = '\0';
589 
590 	device_lock(dev);
591 	old = hv_dev->driver_override;
592 	if (strlen(driver_override)) {
593 		hv_dev->driver_override = driver_override;
594 	} else {
595 		kfree(driver_override);
596 		hv_dev->driver_override = NULL;
597 	}
598 	device_unlock(dev);
599 
600 	kfree(old);
601 
602 	return count;
603 }
604 
605 static ssize_t driver_override_show(struct device *dev,
606 				    struct device_attribute *attr, char *buf)
607 {
608 	struct hv_device *hv_dev = device_to_hv_device(dev);
609 	ssize_t len;
610 
611 	device_lock(dev);
612 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
613 	device_unlock(dev);
614 
615 	return len;
616 }
617 static DEVICE_ATTR_RW(driver_override);
618 
619 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
620 static struct attribute *vmbus_dev_attrs[] = {
621 	&dev_attr_id.attr,
622 	&dev_attr_state.attr,
623 	&dev_attr_monitor_id.attr,
624 	&dev_attr_class_id.attr,
625 	&dev_attr_device_id.attr,
626 	&dev_attr_modalias.attr,
627 #ifdef CONFIG_NUMA
628 	&dev_attr_numa_node.attr,
629 #endif
630 	&dev_attr_server_monitor_pending.attr,
631 	&dev_attr_client_monitor_pending.attr,
632 	&dev_attr_server_monitor_latency.attr,
633 	&dev_attr_client_monitor_latency.attr,
634 	&dev_attr_server_monitor_conn_id.attr,
635 	&dev_attr_client_monitor_conn_id.attr,
636 	&dev_attr_out_intr_mask.attr,
637 	&dev_attr_out_read_index.attr,
638 	&dev_attr_out_write_index.attr,
639 	&dev_attr_out_read_bytes_avail.attr,
640 	&dev_attr_out_write_bytes_avail.attr,
641 	&dev_attr_in_intr_mask.attr,
642 	&dev_attr_in_read_index.attr,
643 	&dev_attr_in_write_index.attr,
644 	&dev_attr_in_read_bytes_avail.attr,
645 	&dev_attr_in_write_bytes_avail.attr,
646 	&dev_attr_channel_vp_mapping.attr,
647 	&dev_attr_vendor.attr,
648 	&dev_attr_device.attr,
649 	&dev_attr_driver_override.attr,
650 	NULL,
651 };
652 
653 /*
654  * Device-level attribute_group callback function. Returns the permission for
655  * each attribute, and returns 0 if an attribute is not visible.
656  */
657 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
658 					 struct attribute *attr, int idx)
659 {
660 	struct device *dev = kobj_to_dev(kobj);
661 	const struct hv_device *hv_dev = device_to_hv_device(dev);
662 
663 	/* Hide the monitor attributes if the monitor mechanism is not used. */
664 	if (!hv_dev->channel->offermsg.monitor_allocated &&
665 	    (attr == &dev_attr_monitor_id.attr ||
666 	     attr == &dev_attr_server_monitor_pending.attr ||
667 	     attr == &dev_attr_client_monitor_pending.attr ||
668 	     attr == &dev_attr_server_monitor_latency.attr ||
669 	     attr == &dev_attr_client_monitor_latency.attr ||
670 	     attr == &dev_attr_server_monitor_conn_id.attr ||
671 	     attr == &dev_attr_client_monitor_conn_id.attr))
672 		return 0;
673 
674 	return attr->mode;
675 }
676 
677 static const struct attribute_group vmbus_dev_group = {
678 	.attrs = vmbus_dev_attrs,
679 	.is_visible = vmbus_dev_attr_is_visible
680 };
681 __ATTRIBUTE_GROUPS(vmbus_dev);
682 
683 /* Set up the attribute for /sys/bus/vmbus/hibernation */
684 static ssize_t hibernation_show(struct bus_type *bus, char *buf)
685 {
686 	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
687 }
688 
689 static BUS_ATTR_RO(hibernation);
690 
691 static struct attribute *vmbus_bus_attrs[] = {
692 	&bus_attr_hibernation.attr,
693 	NULL,
694 };
695 static const struct attribute_group vmbus_bus_group = {
696 	.attrs = vmbus_bus_attrs,
697 };
698 __ATTRIBUTE_GROUPS(vmbus_bus);
699 
700 /*
701  * vmbus_uevent - add uevent for our device
702  *
703  * This routine is invoked when a device is added or removed on the vmbus to
704  * generate a uevent to udev in the userspace. The udev will then look at its
705  * rule and the uevent generated here to load the appropriate driver
706  *
707  * The alias string will be of the form vmbus:guid where guid is the string
708  * representation of the device guid (each byte of the guid will be
709  * represented with two hex characters.
710  */
711 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
712 {
713 	struct hv_device *dev = device_to_hv_device(device);
714 	const char *format = "MODALIAS=vmbus:%*phN";
715 
716 	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
717 }
718 
719 static const struct hv_vmbus_device_id *
720 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
721 {
722 	if (id == NULL)
723 		return NULL; /* empty device table */
724 
725 	for (; !guid_is_null(&id->guid); id++)
726 		if (guid_equal(&id->guid, guid))
727 			return id;
728 
729 	return NULL;
730 }
731 
732 static const struct hv_vmbus_device_id *
733 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
734 {
735 	const struct hv_vmbus_device_id *id = NULL;
736 	struct vmbus_dynid *dynid;
737 
738 	spin_lock(&drv->dynids.lock);
739 	list_for_each_entry(dynid, &drv->dynids.list, node) {
740 		if (guid_equal(&dynid->id.guid, guid)) {
741 			id = &dynid->id;
742 			break;
743 		}
744 	}
745 	spin_unlock(&drv->dynids.lock);
746 
747 	return id;
748 }
749 
750 static const struct hv_vmbus_device_id vmbus_device_null;
751 
752 /*
753  * Return a matching hv_vmbus_device_id pointer.
754  * If there is no match, return NULL.
755  */
756 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
757 							struct hv_device *dev)
758 {
759 	const guid_t *guid = &dev->dev_type;
760 	const struct hv_vmbus_device_id *id;
761 
762 	/* When driver_override is set, only bind to the matching driver */
763 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
764 		return NULL;
765 
766 	/* Look at the dynamic ids first, before the static ones */
767 	id = hv_vmbus_dynid_match(drv, guid);
768 	if (!id)
769 		id = hv_vmbus_dev_match(drv->id_table, guid);
770 
771 	/* driver_override will always match, send a dummy id */
772 	if (!id && dev->driver_override)
773 		id = &vmbus_device_null;
774 
775 	return id;
776 }
777 
778 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
779 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
780 {
781 	struct vmbus_dynid *dynid;
782 
783 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
784 	if (!dynid)
785 		return -ENOMEM;
786 
787 	dynid->id.guid = *guid;
788 
789 	spin_lock(&drv->dynids.lock);
790 	list_add_tail(&dynid->node, &drv->dynids.list);
791 	spin_unlock(&drv->dynids.lock);
792 
793 	return driver_attach(&drv->driver);
794 }
795 
796 static void vmbus_free_dynids(struct hv_driver *drv)
797 {
798 	struct vmbus_dynid *dynid, *n;
799 
800 	spin_lock(&drv->dynids.lock);
801 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
802 		list_del(&dynid->node);
803 		kfree(dynid);
804 	}
805 	spin_unlock(&drv->dynids.lock);
806 }
807 
808 /*
809  * store_new_id - sysfs frontend to vmbus_add_dynid()
810  *
811  * Allow GUIDs to be added to an existing driver via sysfs.
812  */
813 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
814 			    size_t count)
815 {
816 	struct hv_driver *drv = drv_to_hv_drv(driver);
817 	guid_t guid;
818 	ssize_t retval;
819 
820 	retval = guid_parse(buf, &guid);
821 	if (retval)
822 		return retval;
823 
824 	if (hv_vmbus_dynid_match(drv, &guid))
825 		return -EEXIST;
826 
827 	retval = vmbus_add_dynid(drv, &guid);
828 	if (retval)
829 		return retval;
830 	return count;
831 }
832 static DRIVER_ATTR_WO(new_id);
833 
834 /*
835  * store_remove_id - remove a PCI device ID from this driver
836  *
837  * Removes a dynamic pci device ID to this driver.
838  */
839 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
840 			       size_t count)
841 {
842 	struct hv_driver *drv = drv_to_hv_drv(driver);
843 	struct vmbus_dynid *dynid, *n;
844 	guid_t guid;
845 	ssize_t retval;
846 
847 	retval = guid_parse(buf, &guid);
848 	if (retval)
849 		return retval;
850 
851 	retval = -ENODEV;
852 	spin_lock(&drv->dynids.lock);
853 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
854 		struct hv_vmbus_device_id *id = &dynid->id;
855 
856 		if (guid_equal(&id->guid, &guid)) {
857 			list_del(&dynid->node);
858 			kfree(dynid);
859 			retval = count;
860 			break;
861 		}
862 	}
863 	spin_unlock(&drv->dynids.lock);
864 
865 	return retval;
866 }
867 static DRIVER_ATTR_WO(remove_id);
868 
869 static struct attribute *vmbus_drv_attrs[] = {
870 	&driver_attr_new_id.attr,
871 	&driver_attr_remove_id.attr,
872 	NULL,
873 };
874 ATTRIBUTE_GROUPS(vmbus_drv);
875 
876 
877 /*
878  * vmbus_match - Attempt to match the specified device to the specified driver
879  */
880 static int vmbus_match(struct device *device, struct device_driver *driver)
881 {
882 	struct hv_driver *drv = drv_to_hv_drv(driver);
883 	struct hv_device *hv_dev = device_to_hv_device(device);
884 
885 	/* The hv_sock driver handles all hv_sock offers. */
886 	if (is_hvsock_channel(hv_dev->channel))
887 		return drv->hvsock;
888 
889 	if (hv_vmbus_get_id(drv, hv_dev))
890 		return 1;
891 
892 	return 0;
893 }
894 
895 /*
896  * vmbus_probe - Add the new vmbus's child device
897  */
898 static int vmbus_probe(struct device *child_device)
899 {
900 	int ret = 0;
901 	struct hv_driver *drv =
902 			drv_to_hv_drv(child_device->driver);
903 	struct hv_device *dev = device_to_hv_device(child_device);
904 	const struct hv_vmbus_device_id *dev_id;
905 
906 	dev_id = hv_vmbus_get_id(drv, dev);
907 	if (drv->probe) {
908 		ret = drv->probe(dev, dev_id);
909 		if (ret != 0)
910 			pr_err("probe failed for device %s (%d)\n",
911 			       dev_name(child_device), ret);
912 
913 	} else {
914 		pr_err("probe not set for driver %s\n",
915 		       dev_name(child_device));
916 		ret = -ENODEV;
917 	}
918 	return ret;
919 }
920 
921 /*
922  * vmbus_remove - Remove a vmbus device
923  */
924 static int vmbus_remove(struct device *child_device)
925 {
926 	struct hv_driver *drv;
927 	struct hv_device *dev = device_to_hv_device(child_device);
928 
929 	if (child_device->driver) {
930 		drv = drv_to_hv_drv(child_device->driver);
931 		if (drv->remove)
932 			drv->remove(dev);
933 	}
934 
935 	return 0;
936 }
937 
938 
939 /*
940  * vmbus_shutdown - Shutdown a vmbus device
941  */
942 static void vmbus_shutdown(struct device *child_device)
943 {
944 	struct hv_driver *drv;
945 	struct hv_device *dev = device_to_hv_device(child_device);
946 
947 
948 	/* The device may not be attached yet */
949 	if (!child_device->driver)
950 		return;
951 
952 	drv = drv_to_hv_drv(child_device->driver);
953 
954 	if (drv->shutdown)
955 		drv->shutdown(dev);
956 }
957 
958 #ifdef CONFIG_PM_SLEEP
959 /*
960  * vmbus_suspend - Suspend a vmbus device
961  */
962 static int vmbus_suspend(struct device *child_device)
963 {
964 	struct hv_driver *drv;
965 	struct hv_device *dev = device_to_hv_device(child_device);
966 
967 	/* The device may not be attached yet */
968 	if (!child_device->driver)
969 		return 0;
970 
971 	drv = drv_to_hv_drv(child_device->driver);
972 	if (!drv->suspend)
973 		return -EOPNOTSUPP;
974 
975 	return drv->suspend(dev);
976 }
977 
978 /*
979  * vmbus_resume - Resume a vmbus device
980  */
981 static int vmbus_resume(struct device *child_device)
982 {
983 	struct hv_driver *drv;
984 	struct hv_device *dev = device_to_hv_device(child_device);
985 
986 	/* The device may not be attached yet */
987 	if (!child_device->driver)
988 		return 0;
989 
990 	drv = drv_to_hv_drv(child_device->driver);
991 	if (!drv->resume)
992 		return -EOPNOTSUPP;
993 
994 	return drv->resume(dev);
995 }
996 #else
997 #define vmbus_suspend NULL
998 #define vmbus_resume NULL
999 #endif /* CONFIG_PM_SLEEP */
1000 
1001 /*
1002  * vmbus_device_release - Final callback release of the vmbus child device
1003  */
1004 static void vmbus_device_release(struct device *device)
1005 {
1006 	struct hv_device *hv_dev = device_to_hv_device(device);
1007 	struct vmbus_channel *channel = hv_dev->channel;
1008 
1009 	hv_debug_rm_dev_dir(hv_dev);
1010 
1011 	mutex_lock(&vmbus_connection.channel_mutex);
1012 	hv_process_channel_removal(channel);
1013 	mutex_unlock(&vmbus_connection.channel_mutex);
1014 	kfree(hv_dev);
1015 }
1016 
1017 /*
1018  * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1019  *
1020  * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1021  * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1022  * is no way to wake up a Generation-2 VM.
1023  *
1024  * The other 4 ops are for hibernation.
1025  */
1026 
1027 static const struct dev_pm_ops vmbus_pm = {
1028 	.suspend_noirq	= NULL,
1029 	.resume_noirq	= NULL,
1030 	.freeze_noirq	= vmbus_suspend,
1031 	.thaw_noirq	= vmbus_resume,
1032 	.poweroff_noirq	= vmbus_suspend,
1033 	.restore_noirq	= vmbus_resume,
1034 };
1035 
1036 /* The one and only one */
1037 static struct bus_type  hv_bus = {
1038 	.name =		"vmbus",
1039 	.match =		vmbus_match,
1040 	.shutdown =		vmbus_shutdown,
1041 	.remove =		vmbus_remove,
1042 	.probe =		vmbus_probe,
1043 	.uevent =		vmbus_uevent,
1044 	.dev_groups =		vmbus_dev_groups,
1045 	.drv_groups =		vmbus_drv_groups,
1046 	.bus_groups =		vmbus_bus_groups,
1047 	.pm =			&vmbus_pm,
1048 };
1049 
1050 struct onmessage_work_context {
1051 	struct work_struct work;
1052 	struct {
1053 		struct hv_message_header header;
1054 		u8 payload[];
1055 	} msg;
1056 };
1057 
1058 static void vmbus_onmessage_work(struct work_struct *work)
1059 {
1060 	struct onmessage_work_context *ctx;
1061 
1062 	/* Do not process messages if we're in DISCONNECTED state */
1063 	if (vmbus_connection.conn_state == DISCONNECTED)
1064 		return;
1065 
1066 	ctx = container_of(work, struct onmessage_work_context,
1067 			   work);
1068 	vmbus_onmessage((struct vmbus_channel_message_header *)
1069 			&ctx->msg.payload);
1070 	kfree(ctx);
1071 }
1072 
1073 void vmbus_on_msg_dpc(unsigned long data)
1074 {
1075 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1076 	void *page_addr = hv_cpu->synic_message_page;
1077 	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1078 				  VMBUS_MESSAGE_SINT;
1079 	struct vmbus_channel_message_header *hdr;
1080 	enum vmbus_channel_message_type msgtype;
1081 	const struct vmbus_channel_message_table_entry *entry;
1082 	struct onmessage_work_context *ctx;
1083 	__u8 payload_size;
1084 	u32 message_type;
1085 
1086 	/*
1087 	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1088 	 * it is being used in 'struct vmbus_channel_message_header' definition
1089 	 * which is supposed to match hypervisor ABI.
1090 	 */
1091 	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1092 
1093 	/*
1094 	 * Since the message is in memory shared with the host, an erroneous or
1095 	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1096 	 * or individual message handlers are executing; to prevent this, copy
1097 	 * the message into private memory.
1098 	 */
1099 	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1100 
1101 	message_type = msg_copy.header.message_type;
1102 	if (message_type == HVMSG_NONE)
1103 		/* no msg */
1104 		return;
1105 
1106 	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1107 	msgtype = hdr->msgtype;
1108 
1109 	trace_vmbus_on_msg_dpc(hdr);
1110 
1111 	if (msgtype >= CHANNELMSG_COUNT) {
1112 		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1113 		goto msg_handled;
1114 	}
1115 
1116 	payload_size = msg_copy.header.payload_size;
1117 	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1118 		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1119 		goto msg_handled;
1120 	}
1121 
1122 	entry = &channel_message_table[msgtype];
1123 
1124 	if (!entry->message_handler)
1125 		goto msg_handled;
1126 
1127 	if (payload_size < entry->min_payload_len) {
1128 		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1129 		goto msg_handled;
1130 	}
1131 
1132 	if (entry->handler_type	== VMHT_BLOCKING) {
1133 		ctx = kmalloc(sizeof(*ctx) + payload_size, GFP_ATOMIC);
1134 		if (ctx == NULL)
1135 			return;
1136 
1137 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1138 		memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size);
1139 
1140 		/*
1141 		 * The host can generate a rescind message while we
1142 		 * may still be handling the original offer. We deal with
1143 		 * this condition by relying on the synchronization provided
1144 		 * by offer_in_progress and by channel_mutex.  See also the
1145 		 * inline comments in vmbus_onoffer_rescind().
1146 		 */
1147 		switch (msgtype) {
1148 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1149 			/*
1150 			 * If we are handling the rescind message;
1151 			 * schedule the work on the global work queue.
1152 			 *
1153 			 * The OFFER message and the RESCIND message should
1154 			 * not be handled by the same serialized work queue,
1155 			 * because the OFFER handler may call vmbus_open(),
1156 			 * which tries to open the channel by sending an
1157 			 * OPEN_CHANNEL message to the host and waits for
1158 			 * the host's response; however, if the host has
1159 			 * rescinded the channel before it receives the
1160 			 * OPEN_CHANNEL message, the host just silently
1161 			 * ignores the OPEN_CHANNEL message; as a result,
1162 			 * the guest's OFFER handler hangs for ever, if we
1163 			 * handle the RESCIND message in the same serialized
1164 			 * work queue: the RESCIND handler can not start to
1165 			 * run before the OFFER handler finishes.
1166 			 */
1167 			schedule_work(&ctx->work);
1168 			break;
1169 
1170 		case CHANNELMSG_OFFERCHANNEL:
1171 			/*
1172 			 * The host sends the offer message of a given channel
1173 			 * before sending the rescind message of the same
1174 			 * channel.  These messages are sent to the guest's
1175 			 * connect CPU; the guest then starts processing them
1176 			 * in the tasklet handler on this CPU:
1177 			 *
1178 			 * VMBUS_CONNECT_CPU
1179 			 *
1180 			 * [vmbus_on_msg_dpc()]
1181 			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1182 			 * queue_work()
1183 			 * ...
1184 			 * [vmbus_on_msg_dpc()]
1185 			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1186 			 *
1187 			 * We rely on the memory-ordering properties of the
1188 			 * queue_work() and schedule_work() primitives, which
1189 			 * guarantee that the atomic increment will be visible
1190 			 * to the CPUs which will execute the offer & rescind
1191 			 * works by the time these works will start execution.
1192 			 */
1193 			atomic_inc(&vmbus_connection.offer_in_progress);
1194 			fallthrough;
1195 
1196 		default:
1197 			queue_work(vmbus_connection.work_queue, &ctx->work);
1198 		}
1199 	} else
1200 		entry->message_handler(hdr);
1201 
1202 msg_handled:
1203 	vmbus_signal_eom(msg, message_type);
1204 }
1205 
1206 #ifdef CONFIG_PM_SLEEP
1207 /*
1208  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1209  * hibernation, because hv_sock connections can not persist across hibernation.
1210  */
1211 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1212 {
1213 	struct onmessage_work_context *ctx;
1214 	struct vmbus_channel_rescind_offer *rescind;
1215 
1216 	WARN_ON(!is_hvsock_channel(channel));
1217 
1218 	/*
1219 	 * Allocation size is small and the allocation should really not fail,
1220 	 * otherwise the state of the hv_sock connections ends up in limbo.
1221 	 */
1222 	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1223 		      GFP_KERNEL | __GFP_NOFAIL);
1224 
1225 	/*
1226 	 * So far, these are not really used by Linux. Just set them to the
1227 	 * reasonable values conforming to the definitions of the fields.
1228 	 */
1229 	ctx->msg.header.message_type = 1;
1230 	ctx->msg.header.payload_size = sizeof(*rescind);
1231 
1232 	/* These values are actually used by Linux. */
1233 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1234 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1235 	rescind->child_relid = channel->offermsg.child_relid;
1236 
1237 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1238 
1239 	queue_work(vmbus_connection.work_queue, &ctx->work);
1240 }
1241 #endif /* CONFIG_PM_SLEEP */
1242 
1243 /*
1244  * Schedule all channels with events pending
1245  */
1246 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1247 {
1248 	unsigned long *recv_int_page;
1249 	u32 maxbits, relid;
1250 
1251 	if (vmbus_proto_version < VERSION_WIN8) {
1252 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1253 		recv_int_page = vmbus_connection.recv_int_page;
1254 	} else {
1255 		/*
1256 		 * When the host is win8 and beyond, the event page
1257 		 * can be directly checked to get the id of the channel
1258 		 * that has the interrupt pending.
1259 		 */
1260 		void *page_addr = hv_cpu->synic_event_page;
1261 		union hv_synic_event_flags *event
1262 			= (union hv_synic_event_flags *)page_addr +
1263 						 VMBUS_MESSAGE_SINT;
1264 
1265 		maxbits = HV_EVENT_FLAGS_COUNT;
1266 		recv_int_page = event->flags;
1267 	}
1268 
1269 	if (unlikely(!recv_int_page))
1270 		return;
1271 
1272 	for_each_set_bit(relid, recv_int_page, maxbits) {
1273 		void (*callback_fn)(void *context);
1274 		struct vmbus_channel *channel;
1275 
1276 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1277 			continue;
1278 
1279 		/* Special case - vmbus channel protocol msg */
1280 		if (relid == 0)
1281 			continue;
1282 
1283 		/*
1284 		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1285 		 * Guarantees that the channel data structure doesn't
1286 		 * get freed while the channel pointer below is being
1287 		 * dereferenced.
1288 		 */
1289 		rcu_read_lock();
1290 
1291 		/* Find channel based on relid */
1292 		channel = relid2channel(relid);
1293 		if (channel == NULL)
1294 			goto sched_unlock_rcu;
1295 
1296 		if (channel->rescind)
1297 			goto sched_unlock_rcu;
1298 
1299 		/*
1300 		 * Make sure that the ring buffer data structure doesn't get
1301 		 * freed while we dereference the ring buffer pointer.  Test
1302 		 * for the channel's onchannel_callback being NULL within a
1303 		 * sched_lock critical section.  See also the inline comments
1304 		 * in vmbus_reset_channel_cb().
1305 		 */
1306 		spin_lock(&channel->sched_lock);
1307 
1308 		callback_fn = channel->onchannel_callback;
1309 		if (unlikely(callback_fn == NULL))
1310 			goto sched_unlock;
1311 
1312 		trace_vmbus_chan_sched(channel);
1313 
1314 		++channel->interrupts;
1315 
1316 		switch (channel->callback_mode) {
1317 		case HV_CALL_ISR:
1318 			(*callback_fn)(channel->channel_callback_context);
1319 			break;
1320 
1321 		case HV_CALL_BATCHED:
1322 			hv_begin_read(&channel->inbound);
1323 			fallthrough;
1324 		case HV_CALL_DIRECT:
1325 			tasklet_schedule(&channel->callback_event);
1326 		}
1327 
1328 sched_unlock:
1329 		spin_unlock(&channel->sched_lock);
1330 sched_unlock_rcu:
1331 		rcu_read_unlock();
1332 	}
1333 }
1334 
1335 static void vmbus_isr(void)
1336 {
1337 	struct hv_per_cpu_context *hv_cpu
1338 		= this_cpu_ptr(hv_context.cpu_context);
1339 	void *page_addr = hv_cpu->synic_event_page;
1340 	struct hv_message *msg;
1341 	union hv_synic_event_flags *event;
1342 	bool handled = false;
1343 
1344 	if (unlikely(page_addr == NULL))
1345 		return;
1346 
1347 	event = (union hv_synic_event_flags *)page_addr +
1348 					 VMBUS_MESSAGE_SINT;
1349 	/*
1350 	 * Check for events before checking for messages. This is the order
1351 	 * in which events and messages are checked in Windows guests on
1352 	 * Hyper-V, and the Windows team suggested we do the same.
1353 	 */
1354 
1355 	if ((vmbus_proto_version == VERSION_WS2008) ||
1356 		(vmbus_proto_version == VERSION_WIN7)) {
1357 
1358 		/* Since we are a child, we only need to check bit 0 */
1359 		if (sync_test_and_clear_bit(0, event->flags))
1360 			handled = true;
1361 	} else {
1362 		/*
1363 		 * Our host is win8 or above. The signaling mechanism
1364 		 * has changed and we can directly look at the event page.
1365 		 * If bit n is set then we have an interrup on the channel
1366 		 * whose id is n.
1367 		 */
1368 		handled = true;
1369 	}
1370 
1371 	if (handled)
1372 		vmbus_chan_sched(hv_cpu);
1373 
1374 	page_addr = hv_cpu->synic_message_page;
1375 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1376 
1377 	/* Check if there are actual msgs to be processed */
1378 	if (msg->header.message_type != HVMSG_NONE) {
1379 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1380 			hv_stimer0_isr();
1381 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1382 		} else
1383 			tasklet_schedule(&hv_cpu->msg_dpc);
1384 	}
1385 
1386 	add_interrupt_randomness(vmbus_interrupt, 0);
1387 }
1388 
1389 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1390 {
1391 	vmbus_isr();
1392 	return IRQ_HANDLED;
1393 }
1394 
1395 /*
1396  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1397  * buffer and call into Hyper-V to transfer the data.
1398  */
1399 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1400 			 enum kmsg_dump_reason reason)
1401 {
1402 	struct kmsg_dump_iter iter;
1403 	size_t bytes_written;
1404 
1405 	/* We are only interested in panics. */
1406 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1407 		return;
1408 
1409 	/*
1410 	 * Write dump contents to the page. No need to synchronize; panic should
1411 	 * be single-threaded.
1412 	 */
1413 	kmsg_dump_rewind(&iter);
1414 	kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1415 			     &bytes_written);
1416 	if (!bytes_written)
1417 		return;
1418 	/*
1419 	 * P3 to contain the physical address of the panic page & P4 to
1420 	 * contain the size of the panic data in that page. Rest of the
1421 	 * registers are no-op when the NOTIFY_MSG flag is set.
1422 	 */
1423 	hv_set_register(HV_REGISTER_CRASH_P0, 0);
1424 	hv_set_register(HV_REGISTER_CRASH_P1, 0);
1425 	hv_set_register(HV_REGISTER_CRASH_P2, 0);
1426 	hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
1427 	hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
1428 
1429 	/*
1430 	 * Let Hyper-V know there is crash data available along with
1431 	 * the panic message.
1432 	 */
1433 	hv_set_register(HV_REGISTER_CRASH_CTL,
1434 	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
1435 }
1436 
1437 static struct kmsg_dumper hv_kmsg_dumper = {
1438 	.dump = hv_kmsg_dump,
1439 };
1440 
1441 static void hv_kmsg_dump_register(void)
1442 {
1443 	int ret;
1444 
1445 	hv_panic_page = hv_alloc_hyperv_zeroed_page();
1446 	if (!hv_panic_page) {
1447 		pr_err("Hyper-V: panic message page memory allocation failed\n");
1448 		return;
1449 	}
1450 
1451 	ret = kmsg_dump_register(&hv_kmsg_dumper);
1452 	if (ret) {
1453 		pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1454 		hv_free_hyperv_page((unsigned long)hv_panic_page);
1455 		hv_panic_page = NULL;
1456 	}
1457 }
1458 
1459 static struct ctl_table_header *hv_ctl_table_hdr;
1460 
1461 /*
1462  * sysctl option to allow the user to control whether kmsg data should be
1463  * reported to Hyper-V on panic.
1464  */
1465 static struct ctl_table hv_ctl_table[] = {
1466 	{
1467 		.procname       = "hyperv_record_panic_msg",
1468 		.data           = &sysctl_record_panic_msg,
1469 		.maxlen         = sizeof(int),
1470 		.mode           = 0644,
1471 		.proc_handler   = proc_dointvec_minmax,
1472 		.extra1		= SYSCTL_ZERO,
1473 		.extra2		= SYSCTL_ONE
1474 	},
1475 	{}
1476 };
1477 
1478 static struct ctl_table hv_root_table[] = {
1479 	{
1480 		.procname	= "kernel",
1481 		.mode		= 0555,
1482 		.child		= hv_ctl_table
1483 	},
1484 	{}
1485 };
1486 
1487 /*
1488  * vmbus_bus_init -Main vmbus driver initialization routine.
1489  *
1490  * Here, we
1491  *	- initialize the vmbus driver context
1492  *	- invoke the vmbus hv main init routine
1493  *	- retrieve the channel offers
1494  */
1495 static int vmbus_bus_init(void)
1496 {
1497 	int ret;
1498 
1499 	ret = hv_init();
1500 	if (ret != 0) {
1501 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1502 		return ret;
1503 	}
1504 
1505 	ret = bus_register(&hv_bus);
1506 	if (ret)
1507 		return ret;
1508 
1509 	/*
1510 	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1511 	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1512 	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1513 	 * If not on such an architecture (e.g., x86/x64), then rely on
1514 	 * code in the arch-specific portion of the code tree to connect
1515 	 * the VMbus interrupt handler.
1516 	 */
1517 
1518 	if (vmbus_irq == -1) {
1519 		hv_setup_vmbus_handler(vmbus_isr);
1520 	} else {
1521 		vmbus_evt = alloc_percpu(long);
1522 		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1523 				"Hyper-V VMbus", vmbus_evt);
1524 		if (ret) {
1525 			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1526 					vmbus_irq, ret);
1527 			free_percpu(vmbus_evt);
1528 			goto err_setup;
1529 		}
1530 	}
1531 
1532 	ret = hv_synic_alloc();
1533 	if (ret)
1534 		goto err_alloc;
1535 
1536 	/*
1537 	 * Initialize the per-cpu interrupt state and stimer state.
1538 	 * Then connect to the host.
1539 	 */
1540 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1541 				hv_synic_init, hv_synic_cleanup);
1542 	if (ret < 0)
1543 		goto err_cpuhp;
1544 	hyperv_cpuhp_online = ret;
1545 
1546 	ret = vmbus_connect();
1547 	if (ret)
1548 		goto err_connect;
1549 
1550 	/*
1551 	 * Only register if the crash MSRs are available
1552 	 */
1553 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1554 		u64 hyperv_crash_ctl;
1555 		/*
1556 		 * Sysctl registration is not fatal, since by default
1557 		 * reporting is enabled.
1558 		 */
1559 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1560 		if (!hv_ctl_table_hdr)
1561 			pr_err("Hyper-V: sysctl table register error");
1562 
1563 		/*
1564 		 * Register for panic kmsg callback only if the right
1565 		 * capability is supported by the hypervisor.
1566 		 */
1567 		hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
1568 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1569 			hv_kmsg_dump_register();
1570 
1571 		register_die_notifier(&hyperv_die_block);
1572 	}
1573 
1574 	/*
1575 	 * Always register the panic notifier because we need to unload
1576 	 * the VMbus channel connection to prevent any VMbus
1577 	 * activity after the VM panics.
1578 	 */
1579 	atomic_notifier_chain_register(&panic_notifier_list,
1580 			       &hyperv_panic_block);
1581 
1582 	vmbus_request_offers();
1583 
1584 	return 0;
1585 
1586 err_connect:
1587 	cpuhp_remove_state(hyperv_cpuhp_online);
1588 err_cpuhp:
1589 	hv_synic_free();
1590 err_alloc:
1591 	if (vmbus_irq == -1) {
1592 		hv_remove_vmbus_handler();
1593 	} else {
1594 		free_percpu_irq(vmbus_irq, vmbus_evt);
1595 		free_percpu(vmbus_evt);
1596 	}
1597 err_setup:
1598 	bus_unregister(&hv_bus);
1599 	unregister_sysctl_table(hv_ctl_table_hdr);
1600 	hv_ctl_table_hdr = NULL;
1601 	return ret;
1602 }
1603 
1604 /**
1605  * __vmbus_child_driver_register() - Register a vmbus's driver
1606  * @hv_driver: Pointer to driver structure you want to register
1607  * @owner: owner module of the drv
1608  * @mod_name: module name string
1609  *
1610  * Registers the given driver with Linux through the 'driver_register()' call
1611  * and sets up the hyper-v vmbus handling for this driver.
1612  * It will return the state of the 'driver_register()' call.
1613  *
1614  */
1615 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1616 {
1617 	int ret;
1618 
1619 	pr_info("registering driver %s\n", hv_driver->name);
1620 
1621 	ret = vmbus_exists();
1622 	if (ret < 0)
1623 		return ret;
1624 
1625 	hv_driver->driver.name = hv_driver->name;
1626 	hv_driver->driver.owner = owner;
1627 	hv_driver->driver.mod_name = mod_name;
1628 	hv_driver->driver.bus = &hv_bus;
1629 
1630 	spin_lock_init(&hv_driver->dynids.lock);
1631 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1632 
1633 	ret = driver_register(&hv_driver->driver);
1634 
1635 	return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1638 
1639 /**
1640  * vmbus_driver_unregister() - Unregister a vmbus's driver
1641  * @hv_driver: Pointer to driver structure you want to
1642  *             un-register
1643  *
1644  * Un-register the given driver that was previous registered with a call to
1645  * vmbus_driver_register()
1646  */
1647 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1648 {
1649 	pr_info("unregistering driver %s\n", hv_driver->name);
1650 
1651 	if (!vmbus_exists()) {
1652 		driver_unregister(&hv_driver->driver);
1653 		vmbus_free_dynids(hv_driver);
1654 	}
1655 }
1656 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1657 
1658 
1659 /*
1660  * Called when last reference to channel is gone.
1661  */
1662 static void vmbus_chan_release(struct kobject *kobj)
1663 {
1664 	struct vmbus_channel *channel
1665 		= container_of(kobj, struct vmbus_channel, kobj);
1666 
1667 	kfree_rcu(channel, rcu);
1668 }
1669 
1670 struct vmbus_chan_attribute {
1671 	struct attribute attr;
1672 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1673 	ssize_t (*store)(struct vmbus_channel *chan,
1674 			 const char *buf, size_t count);
1675 };
1676 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1677 	struct vmbus_chan_attribute chan_attr_##_name \
1678 		= __ATTR(_name, _mode, _show, _store)
1679 #define VMBUS_CHAN_ATTR_RW(_name) \
1680 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1681 #define VMBUS_CHAN_ATTR_RO(_name) \
1682 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1683 #define VMBUS_CHAN_ATTR_WO(_name) \
1684 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1685 
1686 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1687 				    struct attribute *attr, char *buf)
1688 {
1689 	const struct vmbus_chan_attribute *attribute
1690 		= container_of(attr, struct vmbus_chan_attribute, attr);
1691 	struct vmbus_channel *chan
1692 		= container_of(kobj, struct vmbus_channel, kobj);
1693 
1694 	if (!attribute->show)
1695 		return -EIO;
1696 
1697 	return attribute->show(chan, buf);
1698 }
1699 
1700 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1701 				     struct attribute *attr, const char *buf,
1702 				     size_t count)
1703 {
1704 	const struct vmbus_chan_attribute *attribute
1705 		= container_of(attr, struct vmbus_chan_attribute, attr);
1706 	struct vmbus_channel *chan
1707 		= container_of(kobj, struct vmbus_channel, kobj);
1708 
1709 	if (!attribute->store)
1710 		return -EIO;
1711 
1712 	return attribute->store(chan, buf, count);
1713 }
1714 
1715 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1716 	.show = vmbus_chan_attr_show,
1717 	.store = vmbus_chan_attr_store,
1718 };
1719 
1720 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1721 {
1722 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1723 	ssize_t ret;
1724 
1725 	mutex_lock(&rbi->ring_buffer_mutex);
1726 	if (!rbi->ring_buffer) {
1727 		mutex_unlock(&rbi->ring_buffer_mutex);
1728 		return -EINVAL;
1729 	}
1730 
1731 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1732 	mutex_unlock(&rbi->ring_buffer_mutex);
1733 	return ret;
1734 }
1735 static VMBUS_CHAN_ATTR_RO(out_mask);
1736 
1737 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1738 {
1739 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1740 	ssize_t ret;
1741 
1742 	mutex_lock(&rbi->ring_buffer_mutex);
1743 	if (!rbi->ring_buffer) {
1744 		mutex_unlock(&rbi->ring_buffer_mutex);
1745 		return -EINVAL;
1746 	}
1747 
1748 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1749 	mutex_unlock(&rbi->ring_buffer_mutex);
1750 	return ret;
1751 }
1752 static VMBUS_CHAN_ATTR_RO(in_mask);
1753 
1754 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1755 {
1756 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1757 	ssize_t ret;
1758 
1759 	mutex_lock(&rbi->ring_buffer_mutex);
1760 	if (!rbi->ring_buffer) {
1761 		mutex_unlock(&rbi->ring_buffer_mutex);
1762 		return -EINVAL;
1763 	}
1764 
1765 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1766 	mutex_unlock(&rbi->ring_buffer_mutex);
1767 	return ret;
1768 }
1769 static VMBUS_CHAN_ATTR_RO(read_avail);
1770 
1771 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1772 {
1773 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1774 	ssize_t ret;
1775 
1776 	mutex_lock(&rbi->ring_buffer_mutex);
1777 	if (!rbi->ring_buffer) {
1778 		mutex_unlock(&rbi->ring_buffer_mutex);
1779 		return -EINVAL;
1780 	}
1781 
1782 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1783 	mutex_unlock(&rbi->ring_buffer_mutex);
1784 	return ret;
1785 }
1786 static VMBUS_CHAN_ATTR_RO(write_avail);
1787 
1788 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1789 {
1790 	return sprintf(buf, "%u\n", channel->target_cpu);
1791 }
1792 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1793 				const char *buf, size_t count)
1794 {
1795 	u32 target_cpu, origin_cpu;
1796 	ssize_t ret = count;
1797 
1798 	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1799 		return -EIO;
1800 
1801 	if (sscanf(buf, "%uu", &target_cpu) != 1)
1802 		return -EIO;
1803 
1804 	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1805 	if (target_cpu >= nr_cpumask_bits)
1806 		return -EINVAL;
1807 
1808 	/* No CPUs should come up or down during this. */
1809 	cpus_read_lock();
1810 
1811 	if (!cpu_online(target_cpu)) {
1812 		cpus_read_unlock();
1813 		return -EINVAL;
1814 	}
1815 
1816 	/*
1817 	 * Synchronizes target_cpu_store() and channel closure:
1818 	 *
1819 	 * { Initially: state = CHANNEL_OPENED }
1820 	 *
1821 	 * CPU1				CPU2
1822 	 *
1823 	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1824 	 *
1825 	 * LOCK channel_mutex		LOCK channel_mutex
1826 	 * LOAD r1 = state		LOAD r2 = state
1827 	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1828 	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1829 	 *   [...]			  SEND CLOSECHANNEL
1830 	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1831 	 *
1832 	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1833 	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1834 	 *
1835 	 * Note.  The host processes the channel messages "sequentially", in
1836 	 * the order in which they are received on a per-partition basis.
1837 	 */
1838 	mutex_lock(&vmbus_connection.channel_mutex);
1839 
1840 	/*
1841 	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1842 	 * avoid sending the message and fail here for such channels.
1843 	 */
1844 	if (channel->state != CHANNEL_OPENED_STATE) {
1845 		ret = -EIO;
1846 		goto cpu_store_unlock;
1847 	}
1848 
1849 	origin_cpu = channel->target_cpu;
1850 	if (target_cpu == origin_cpu)
1851 		goto cpu_store_unlock;
1852 
1853 	if (vmbus_send_modifychannel(channel,
1854 				     hv_cpu_number_to_vp_number(target_cpu))) {
1855 		ret = -EIO;
1856 		goto cpu_store_unlock;
1857 	}
1858 
1859 	/*
1860 	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1861 	 *
1862 	 * Warning.  At this point, there is *no* guarantee that the host will
1863 	 * have successfully processed the vmbus_send_modifychannel() request.
1864 	 * See the header comment of vmbus_send_modifychannel() for more info.
1865 	 *
1866 	 * Lags in the processing of the above vmbus_send_modifychannel() can
1867 	 * result in missed interrupts if the "old" target CPU is taken offline
1868 	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1869 	 * But apart from this offlining scenario, the code tolerates such
1870 	 * lags.  It will function correctly even if a channel interrupt comes
1871 	 * in on a CPU that is different from the channel target_cpu value.
1872 	 */
1873 
1874 	channel->target_cpu = target_cpu;
1875 
1876 	/* See init_vp_index(). */
1877 	if (hv_is_perf_channel(channel))
1878 		hv_update_alloced_cpus(origin_cpu, target_cpu);
1879 
1880 	/* Currently set only for storvsc channels. */
1881 	if (channel->change_target_cpu_callback) {
1882 		(*channel->change_target_cpu_callback)(channel,
1883 				origin_cpu, target_cpu);
1884 	}
1885 
1886 cpu_store_unlock:
1887 	mutex_unlock(&vmbus_connection.channel_mutex);
1888 	cpus_read_unlock();
1889 	return ret;
1890 }
1891 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1892 
1893 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1894 				    char *buf)
1895 {
1896 	return sprintf(buf, "%d\n",
1897 		       channel_pending(channel,
1898 				       vmbus_connection.monitor_pages[1]));
1899 }
1900 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1901 
1902 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1903 				    char *buf)
1904 {
1905 	return sprintf(buf, "%d\n",
1906 		       channel_latency(channel,
1907 				       vmbus_connection.monitor_pages[1]));
1908 }
1909 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1910 
1911 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1912 {
1913 	return sprintf(buf, "%llu\n", channel->interrupts);
1914 }
1915 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1916 
1917 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1918 {
1919 	return sprintf(buf, "%llu\n", channel->sig_events);
1920 }
1921 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1922 
1923 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1924 					 char *buf)
1925 {
1926 	return sprintf(buf, "%llu\n",
1927 		       (unsigned long long)channel->intr_in_full);
1928 }
1929 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1930 
1931 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1932 					   char *buf)
1933 {
1934 	return sprintf(buf, "%llu\n",
1935 		       (unsigned long long)channel->intr_out_empty);
1936 }
1937 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1938 
1939 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1940 					   char *buf)
1941 {
1942 	return sprintf(buf, "%llu\n",
1943 		       (unsigned long long)channel->out_full_first);
1944 }
1945 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1946 
1947 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1948 					   char *buf)
1949 {
1950 	return sprintf(buf, "%llu\n",
1951 		       (unsigned long long)channel->out_full_total);
1952 }
1953 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1954 
1955 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1956 					  char *buf)
1957 {
1958 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1959 }
1960 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1961 
1962 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1963 				  char *buf)
1964 {
1965 	return sprintf(buf, "%u\n",
1966 		       channel->offermsg.offer.sub_channel_index);
1967 }
1968 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1969 
1970 static struct attribute *vmbus_chan_attrs[] = {
1971 	&chan_attr_out_mask.attr,
1972 	&chan_attr_in_mask.attr,
1973 	&chan_attr_read_avail.attr,
1974 	&chan_attr_write_avail.attr,
1975 	&chan_attr_cpu.attr,
1976 	&chan_attr_pending.attr,
1977 	&chan_attr_latency.attr,
1978 	&chan_attr_interrupts.attr,
1979 	&chan_attr_events.attr,
1980 	&chan_attr_intr_in_full.attr,
1981 	&chan_attr_intr_out_empty.attr,
1982 	&chan_attr_out_full_first.attr,
1983 	&chan_attr_out_full_total.attr,
1984 	&chan_attr_monitor_id.attr,
1985 	&chan_attr_subchannel_id.attr,
1986 	NULL
1987 };
1988 
1989 /*
1990  * Channel-level attribute_group callback function. Returns the permission for
1991  * each attribute, and returns 0 if an attribute is not visible.
1992  */
1993 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1994 					  struct attribute *attr, int idx)
1995 {
1996 	const struct vmbus_channel *channel =
1997 		container_of(kobj, struct vmbus_channel, kobj);
1998 
1999 	/* Hide the monitor attributes if the monitor mechanism is not used. */
2000 	if (!channel->offermsg.monitor_allocated &&
2001 	    (attr == &chan_attr_pending.attr ||
2002 	     attr == &chan_attr_latency.attr ||
2003 	     attr == &chan_attr_monitor_id.attr))
2004 		return 0;
2005 
2006 	return attr->mode;
2007 }
2008 
2009 static struct attribute_group vmbus_chan_group = {
2010 	.attrs = vmbus_chan_attrs,
2011 	.is_visible = vmbus_chan_attr_is_visible
2012 };
2013 
2014 static struct kobj_type vmbus_chan_ktype = {
2015 	.sysfs_ops = &vmbus_chan_sysfs_ops,
2016 	.release = vmbus_chan_release,
2017 };
2018 
2019 /*
2020  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
2021  */
2022 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
2023 {
2024 	const struct device *device = &dev->device;
2025 	struct kobject *kobj = &channel->kobj;
2026 	u32 relid = channel->offermsg.child_relid;
2027 	int ret;
2028 
2029 	kobj->kset = dev->channels_kset;
2030 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2031 				   "%u", relid);
2032 	if (ret)
2033 		return ret;
2034 
2035 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
2036 
2037 	if (ret) {
2038 		/*
2039 		 * The calling functions' error handling paths will cleanup the
2040 		 * empty channel directory.
2041 		 */
2042 		dev_err(device, "Unable to set up channel sysfs files\n");
2043 		return ret;
2044 	}
2045 
2046 	kobject_uevent(kobj, KOBJ_ADD);
2047 
2048 	return 0;
2049 }
2050 
2051 /*
2052  * vmbus_remove_channel_attr_group - remove the channel's attribute group
2053  */
2054 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2055 {
2056 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2057 }
2058 
2059 /*
2060  * vmbus_device_create - Creates and registers a new child device
2061  * on the vmbus.
2062  */
2063 struct hv_device *vmbus_device_create(const guid_t *type,
2064 				      const guid_t *instance,
2065 				      struct vmbus_channel *channel)
2066 {
2067 	struct hv_device *child_device_obj;
2068 
2069 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2070 	if (!child_device_obj) {
2071 		pr_err("Unable to allocate device object for child device\n");
2072 		return NULL;
2073 	}
2074 
2075 	child_device_obj->channel = channel;
2076 	guid_copy(&child_device_obj->dev_type, type);
2077 	guid_copy(&child_device_obj->dev_instance, instance);
2078 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
2079 
2080 	return child_device_obj;
2081 }
2082 
2083 /*
2084  * vmbus_device_register - Register the child device
2085  */
2086 int vmbus_device_register(struct hv_device *child_device_obj)
2087 {
2088 	struct kobject *kobj = &child_device_obj->device.kobj;
2089 	int ret;
2090 
2091 	dev_set_name(&child_device_obj->device, "%pUl",
2092 		     &child_device_obj->channel->offermsg.offer.if_instance);
2093 
2094 	child_device_obj->device.bus = &hv_bus;
2095 	child_device_obj->device.parent = &hv_acpi_dev->dev;
2096 	child_device_obj->device.release = vmbus_device_release;
2097 
2098 	/*
2099 	 * Register with the LDM. This will kick off the driver/device
2100 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
2101 	 */
2102 	ret = device_register(&child_device_obj->device);
2103 	if (ret) {
2104 		pr_err("Unable to register child device\n");
2105 		return ret;
2106 	}
2107 
2108 	child_device_obj->channels_kset = kset_create_and_add("channels",
2109 							      NULL, kobj);
2110 	if (!child_device_obj->channels_kset) {
2111 		ret = -ENOMEM;
2112 		goto err_dev_unregister;
2113 	}
2114 
2115 	ret = vmbus_add_channel_kobj(child_device_obj,
2116 				     child_device_obj->channel);
2117 	if (ret) {
2118 		pr_err("Unable to register primary channeln");
2119 		goto err_kset_unregister;
2120 	}
2121 	hv_debug_add_dev_dir(child_device_obj);
2122 
2123 	return 0;
2124 
2125 err_kset_unregister:
2126 	kset_unregister(child_device_obj->channels_kset);
2127 
2128 err_dev_unregister:
2129 	device_unregister(&child_device_obj->device);
2130 	return ret;
2131 }
2132 
2133 /*
2134  * vmbus_device_unregister - Remove the specified child device
2135  * from the vmbus.
2136  */
2137 void vmbus_device_unregister(struct hv_device *device_obj)
2138 {
2139 	pr_debug("child device %s unregistered\n",
2140 		dev_name(&device_obj->device));
2141 
2142 	kset_unregister(device_obj->channels_kset);
2143 
2144 	/*
2145 	 * Kick off the process of unregistering the device.
2146 	 * This will call vmbus_remove() and eventually vmbus_device_release()
2147 	 */
2148 	device_unregister(&device_obj->device);
2149 }
2150 
2151 
2152 /*
2153  * VMBUS is an acpi enumerated device. Get the information we
2154  * need from DSDT.
2155  */
2156 #define VTPM_BASE_ADDRESS 0xfed40000
2157 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2158 {
2159 	resource_size_t start = 0;
2160 	resource_size_t end = 0;
2161 	struct resource *new_res;
2162 	struct resource **old_res = &hyperv_mmio;
2163 	struct resource **prev_res = NULL;
2164 	struct resource r;
2165 
2166 	switch (res->type) {
2167 
2168 	/*
2169 	 * "Address" descriptors are for bus windows. Ignore
2170 	 * "memory" descriptors, which are for registers on
2171 	 * devices.
2172 	 */
2173 	case ACPI_RESOURCE_TYPE_ADDRESS32:
2174 		start = res->data.address32.address.minimum;
2175 		end = res->data.address32.address.maximum;
2176 		break;
2177 
2178 	case ACPI_RESOURCE_TYPE_ADDRESS64:
2179 		start = res->data.address64.address.minimum;
2180 		end = res->data.address64.address.maximum;
2181 		break;
2182 
2183 	/*
2184 	 * The IRQ information is needed only on ARM64, which Hyper-V
2185 	 * sets up in the extended format. IRQ information is present
2186 	 * on x86/x64 in the non-extended format but it is not used by
2187 	 * Linux. So don't bother checking for the non-extended format.
2188 	 */
2189 	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2190 		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2191 			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2192 			return AE_ERROR;
2193 		}
2194 		/* ARM64 INTID for VMbus */
2195 		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2196 		/* Linux IRQ number */
2197 		vmbus_irq = r.start;
2198 		return AE_OK;
2199 
2200 	default:
2201 		/* Unused resource type */
2202 		return AE_OK;
2203 
2204 	}
2205 	/*
2206 	 * Ignore ranges that are below 1MB, as they're not
2207 	 * necessary or useful here.
2208 	 */
2209 	if (end < 0x100000)
2210 		return AE_OK;
2211 
2212 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2213 	if (!new_res)
2214 		return AE_NO_MEMORY;
2215 
2216 	/* If this range overlaps the virtual TPM, truncate it. */
2217 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2218 		end = VTPM_BASE_ADDRESS;
2219 
2220 	new_res->name = "hyperv mmio";
2221 	new_res->flags = IORESOURCE_MEM;
2222 	new_res->start = start;
2223 	new_res->end = end;
2224 
2225 	/*
2226 	 * If two ranges are adjacent, merge them.
2227 	 */
2228 	do {
2229 		if (!*old_res) {
2230 			*old_res = new_res;
2231 			break;
2232 		}
2233 
2234 		if (((*old_res)->end + 1) == new_res->start) {
2235 			(*old_res)->end = new_res->end;
2236 			kfree(new_res);
2237 			break;
2238 		}
2239 
2240 		if ((*old_res)->start == new_res->end + 1) {
2241 			(*old_res)->start = new_res->start;
2242 			kfree(new_res);
2243 			break;
2244 		}
2245 
2246 		if ((*old_res)->start > new_res->end) {
2247 			new_res->sibling = *old_res;
2248 			if (prev_res)
2249 				(*prev_res)->sibling = new_res;
2250 			*old_res = new_res;
2251 			break;
2252 		}
2253 
2254 		prev_res = old_res;
2255 		old_res = &(*old_res)->sibling;
2256 
2257 	} while (1);
2258 
2259 	return AE_OK;
2260 }
2261 
2262 static int vmbus_acpi_remove(struct acpi_device *device)
2263 {
2264 	struct resource *cur_res;
2265 	struct resource *next_res;
2266 
2267 	if (hyperv_mmio) {
2268 		if (fb_mmio) {
2269 			__release_region(hyperv_mmio, fb_mmio->start,
2270 					 resource_size(fb_mmio));
2271 			fb_mmio = NULL;
2272 		}
2273 
2274 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2275 			next_res = cur_res->sibling;
2276 			kfree(cur_res);
2277 		}
2278 	}
2279 
2280 	return 0;
2281 }
2282 
2283 static void vmbus_reserve_fb(void)
2284 {
2285 	int size;
2286 	/*
2287 	 * Make a claim for the frame buffer in the resource tree under the
2288 	 * first node, which will be the one below 4GB.  The length seems to
2289 	 * be underreported, particularly in a Generation 1 VM.  So start out
2290 	 * reserving a larger area and make it smaller until it succeeds.
2291 	 */
2292 
2293 	if (screen_info.lfb_base) {
2294 		if (efi_enabled(EFI_BOOT))
2295 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2296 		else
2297 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2298 
2299 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2300 			fb_mmio = __request_region(hyperv_mmio,
2301 						   screen_info.lfb_base, size,
2302 						   fb_mmio_name, 0);
2303 		}
2304 	}
2305 }
2306 
2307 /**
2308  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2309  * @new:		If successful, supplied a pointer to the
2310  *			allocated MMIO space.
2311  * @device_obj:		Identifies the caller
2312  * @min:		Minimum guest physical address of the
2313  *			allocation
2314  * @max:		Maximum guest physical address
2315  * @size:		Size of the range to be allocated
2316  * @align:		Alignment of the range to be allocated
2317  * @fb_overlap_ok:	Whether this allocation can be allowed
2318  *			to overlap the video frame buffer.
2319  *
2320  * This function walks the resources granted to VMBus by the
2321  * _CRS object in the ACPI namespace underneath the parent
2322  * "bridge" whether that's a root PCI bus in the Generation 1
2323  * case or a Module Device in the Generation 2 case.  It then
2324  * attempts to allocate from the global MMIO pool in a way that
2325  * matches the constraints supplied in these parameters and by
2326  * that _CRS.
2327  *
2328  * Return: 0 on success, -errno on failure
2329  */
2330 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2331 			resource_size_t min, resource_size_t max,
2332 			resource_size_t size, resource_size_t align,
2333 			bool fb_overlap_ok)
2334 {
2335 	struct resource *iter, *shadow;
2336 	resource_size_t range_min, range_max, start;
2337 	const char *dev_n = dev_name(&device_obj->device);
2338 	int retval;
2339 
2340 	retval = -ENXIO;
2341 	mutex_lock(&hyperv_mmio_lock);
2342 
2343 	/*
2344 	 * If overlaps with frame buffers are allowed, then first attempt to
2345 	 * make the allocation from within the reserved region.  Because it
2346 	 * is already reserved, no shadow allocation is necessary.
2347 	 */
2348 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2349 	    !(max < fb_mmio->start)) {
2350 
2351 		range_min = fb_mmio->start;
2352 		range_max = fb_mmio->end;
2353 		start = (range_min + align - 1) & ~(align - 1);
2354 		for (; start + size - 1 <= range_max; start += align) {
2355 			*new = request_mem_region_exclusive(start, size, dev_n);
2356 			if (*new) {
2357 				retval = 0;
2358 				goto exit;
2359 			}
2360 		}
2361 	}
2362 
2363 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2364 		if ((iter->start >= max) || (iter->end <= min))
2365 			continue;
2366 
2367 		range_min = iter->start;
2368 		range_max = iter->end;
2369 		start = (range_min + align - 1) & ~(align - 1);
2370 		for (; start + size - 1 <= range_max; start += align) {
2371 			shadow = __request_region(iter, start, size, NULL,
2372 						  IORESOURCE_BUSY);
2373 			if (!shadow)
2374 				continue;
2375 
2376 			*new = request_mem_region_exclusive(start, size, dev_n);
2377 			if (*new) {
2378 				shadow->name = (char *)*new;
2379 				retval = 0;
2380 				goto exit;
2381 			}
2382 
2383 			__release_region(iter, start, size);
2384 		}
2385 	}
2386 
2387 exit:
2388 	mutex_unlock(&hyperv_mmio_lock);
2389 	return retval;
2390 }
2391 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2392 
2393 /**
2394  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2395  * @start:		Base address of region to release.
2396  * @size:		Size of the range to be allocated
2397  *
2398  * This function releases anything requested by
2399  * vmbus_mmio_allocate().
2400  */
2401 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2402 {
2403 	struct resource *iter;
2404 
2405 	mutex_lock(&hyperv_mmio_lock);
2406 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2407 		if ((iter->start >= start + size) || (iter->end <= start))
2408 			continue;
2409 
2410 		__release_region(iter, start, size);
2411 	}
2412 	release_mem_region(start, size);
2413 	mutex_unlock(&hyperv_mmio_lock);
2414 
2415 }
2416 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2417 
2418 static int vmbus_acpi_add(struct acpi_device *device)
2419 {
2420 	acpi_status result;
2421 	int ret_val = -ENODEV;
2422 	struct acpi_device *ancestor;
2423 
2424 	hv_acpi_dev = device;
2425 
2426 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2427 					vmbus_walk_resources, NULL);
2428 
2429 	if (ACPI_FAILURE(result))
2430 		goto acpi_walk_err;
2431 	/*
2432 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2433 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2434 	 */
2435 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2436 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2437 					     vmbus_walk_resources, NULL);
2438 
2439 		if (ACPI_FAILURE(result))
2440 			continue;
2441 		if (hyperv_mmio) {
2442 			vmbus_reserve_fb();
2443 			break;
2444 		}
2445 	}
2446 	ret_val = 0;
2447 
2448 acpi_walk_err:
2449 	complete(&probe_event);
2450 	if (ret_val)
2451 		vmbus_acpi_remove(device);
2452 	return ret_val;
2453 }
2454 
2455 #ifdef CONFIG_PM_SLEEP
2456 static int vmbus_bus_suspend(struct device *dev)
2457 {
2458 	struct vmbus_channel *channel, *sc;
2459 
2460 	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2461 		/*
2462 		 * We wait here until the completion of any channel
2463 		 * offers that are currently in progress.
2464 		 */
2465 		usleep_range(1000, 2000);
2466 	}
2467 
2468 	mutex_lock(&vmbus_connection.channel_mutex);
2469 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2470 		if (!is_hvsock_channel(channel))
2471 			continue;
2472 
2473 		vmbus_force_channel_rescinded(channel);
2474 	}
2475 	mutex_unlock(&vmbus_connection.channel_mutex);
2476 
2477 	/*
2478 	 * Wait until all the sub-channels and hv_sock channels have been
2479 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2480 	 * they would conflict with the new sub-channels that will be created
2481 	 * in the resume path. hv_sock channels should also be destroyed, but
2482 	 * a hv_sock channel of an established hv_sock connection can not be
2483 	 * really destroyed since it may still be referenced by the userspace
2484 	 * application, so we just force the hv_sock channel to be rescinded
2485 	 * by vmbus_force_channel_rescinded(), and the userspace application
2486 	 * will thoroughly destroy the channel after hibernation.
2487 	 *
2488 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2489 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2490 	 */
2491 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2492 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2493 
2494 	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2495 		pr_err("Can not suspend due to a previous failed resuming\n");
2496 		return -EBUSY;
2497 	}
2498 
2499 	mutex_lock(&vmbus_connection.channel_mutex);
2500 
2501 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2502 		/*
2503 		 * Remove the channel from the array of channels and invalidate
2504 		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2505 		 * up the relid (and other fields, if necessary) and add the
2506 		 * channel back to the array.
2507 		 */
2508 		vmbus_channel_unmap_relid(channel);
2509 		channel->offermsg.child_relid = INVALID_RELID;
2510 
2511 		if (is_hvsock_channel(channel)) {
2512 			if (!channel->rescind) {
2513 				pr_err("hv_sock channel not rescinded!\n");
2514 				WARN_ON_ONCE(1);
2515 			}
2516 			continue;
2517 		}
2518 
2519 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2520 			pr_err("Sub-channel not deleted!\n");
2521 			WARN_ON_ONCE(1);
2522 		}
2523 
2524 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2525 	}
2526 
2527 	mutex_unlock(&vmbus_connection.channel_mutex);
2528 
2529 	vmbus_initiate_unload(false);
2530 
2531 	/* Reset the event for the next resume. */
2532 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2533 
2534 	return 0;
2535 }
2536 
2537 static int vmbus_bus_resume(struct device *dev)
2538 {
2539 	struct vmbus_channel_msginfo *msginfo;
2540 	size_t msgsize;
2541 	int ret;
2542 
2543 	/*
2544 	 * We only use the 'vmbus_proto_version', which was in use before
2545 	 * hibernation, to re-negotiate with the host.
2546 	 */
2547 	if (!vmbus_proto_version) {
2548 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2549 		return -EINVAL;
2550 	}
2551 
2552 	msgsize = sizeof(*msginfo) +
2553 		  sizeof(struct vmbus_channel_initiate_contact);
2554 
2555 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2556 
2557 	if (msginfo == NULL)
2558 		return -ENOMEM;
2559 
2560 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2561 
2562 	kfree(msginfo);
2563 
2564 	if (ret != 0)
2565 		return ret;
2566 
2567 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2568 
2569 	vmbus_request_offers();
2570 
2571 	if (wait_for_completion_timeout(
2572 		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2573 		pr_err("Some vmbus device is missing after suspending?\n");
2574 
2575 	/* Reset the event for the next suspend. */
2576 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2577 
2578 	return 0;
2579 }
2580 #else
2581 #define vmbus_bus_suspend NULL
2582 #define vmbus_bus_resume NULL
2583 #endif /* CONFIG_PM_SLEEP */
2584 
2585 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2586 	{"VMBUS", 0},
2587 	{"VMBus", 0},
2588 	{"", 0},
2589 };
2590 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2591 
2592 /*
2593  * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2594  * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2595  * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2596  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2597  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2598  * resume callback must also run via the "noirq" ops.
2599  *
2600  * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2601  * earlier in this file before vmbus_pm.
2602  */
2603 
2604 static const struct dev_pm_ops vmbus_bus_pm = {
2605 	.suspend_noirq	= NULL,
2606 	.resume_noirq	= NULL,
2607 	.freeze_noirq	= vmbus_bus_suspend,
2608 	.thaw_noirq	= vmbus_bus_resume,
2609 	.poweroff_noirq	= vmbus_bus_suspend,
2610 	.restore_noirq	= vmbus_bus_resume
2611 };
2612 
2613 static struct acpi_driver vmbus_acpi_driver = {
2614 	.name = "vmbus",
2615 	.ids = vmbus_acpi_device_ids,
2616 	.ops = {
2617 		.add = vmbus_acpi_add,
2618 		.remove = vmbus_acpi_remove,
2619 	},
2620 	.drv.pm = &vmbus_bus_pm,
2621 };
2622 
2623 static void hv_kexec_handler(void)
2624 {
2625 	hv_stimer_global_cleanup();
2626 	vmbus_initiate_unload(false);
2627 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2628 	mb();
2629 	cpuhp_remove_state(hyperv_cpuhp_online);
2630 };
2631 
2632 static void hv_crash_handler(struct pt_regs *regs)
2633 {
2634 	int cpu;
2635 
2636 	vmbus_initiate_unload(true);
2637 	/*
2638 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2639 	 * doing the cleanup for current CPU only. This should be sufficient
2640 	 * for kdump.
2641 	 */
2642 	cpu = smp_processor_id();
2643 	hv_stimer_cleanup(cpu);
2644 	hv_synic_disable_regs(cpu);
2645 };
2646 
2647 static int hv_synic_suspend(void)
2648 {
2649 	/*
2650 	 * When we reach here, all the non-boot CPUs have been offlined.
2651 	 * If we're in a legacy configuration where stimer Direct Mode is
2652 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2653 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2654 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2655 	 *
2656 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2657 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2658 	 * 1) it's unnecessary as interrupts remain disabled between
2659 	 * syscore_suspend() and syscore_resume(): see create_image() and
2660 	 * resume_target_kernel()
2661 	 * 2) the stimer on CPU0 is automatically disabled later by
2662 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2663 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2664 	 * 3) a warning would be triggered if we call
2665 	 * clockevents_unbind_device(), which may sleep, in an
2666 	 * interrupts-disabled context.
2667 	 */
2668 
2669 	hv_synic_disable_regs(0);
2670 
2671 	return 0;
2672 }
2673 
2674 static void hv_synic_resume(void)
2675 {
2676 	hv_synic_enable_regs(0);
2677 
2678 	/*
2679 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2680 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2681 	 * automatically re-enabled in timekeeping_resume().
2682 	 */
2683 }
2684 
2685 /* The callbacks run only on CPU0, with irqs_disabled. */
2686 static struct syscore_ops hv_synic_syscore_ops = {
2687 	.suspend = hv_synic_suspend,
2688 	.resume = hv_synic_resume,
2689 };
2690 
2691 static int __init hv_acpi_init(void)
2692 {
2693 	int ret, t;
2694 
2695 	if (!hv_is_hyperv_initialized())
2696 		return -ENODEV;
2697 
2698 	if (hv_root_partition)
2699 		return 0;
2700 
2701 	init_completion(&probe_event);
2702 
2703 	/*
2704 	 * Get ACPI resources first.
2705 	 */
2706 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2707 
2708 	if (ret)
2709 		return ret;
2710 
2711 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2712 	if (t == 0) {
2713 		ret = -ETIMEDOUT;
2714 		goto cleanup;
2715 	}
2716 
2717 	/*
2718 	 * If we're on an architecture with a hardcoded hypervisor
2719 	 * vector (i.e. x86/x64), override the VMbus interrupt found
2720 	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2721 	 * normal Linux IRQ mechanism is not used in this case.
2722 	 */
2723 #ifdef HYPERVISOR_CALLBACK_VECTOR
2724 	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2725 	vmbus_irq = -1;
2726 #endif
2727 
2728 	hv_debug_init();
2729 
2730 	ret = vmbus_bus_init();
2731 	if (ret)
2732 		goto cleanup;
2733 
2734 	hv_setup_kexec_handler(hv_kexec_handler);
2735 	hv_setup_crash_handler(hv_crash_handler);
2736 
2737 	register_syscore_ops(&hv_synic_syscore_ops);
2738 
2739 	return 0;
2740 
2741 cleanup:
2742 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2743 	hv_acpi_dev = NULL;
2744 	return ret;
2745 }
2746 
2747 static void __exit vmbus_exit(void)
2748 {
2749 	int cpu;
2750 
2751 	unregister_syscore_ops(&hv_synic_syscore_ops);
2752 
2753 	hv_remove_kexec_handler();
2754 	hv_remove_crash_handler();
2755 	vmbus_connection.conn_state = DISCONNECTED;
2756 	hv_stimer_global_cleanup();
2757 	vmbus_disconnect();
2758 	if (vmbus_irq == -1) {
2759 		hv_remove_vmbus_handler();
2760 	} else {
2761 		free_percpu_irq(vmbus_irq, vmbus_evt);
2762 		free_percpu(vmbus_evt);
2763 	}
2764 	for_each_online_cpu(cpu) {
2765 		struct hv_per_cpu_context *hv_cpu
2766 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2767 
2768 		tasklet_kill(&hv_cpu->msg_dpc);
2769 	}
2770 	hv_debug_rm_all_dir();
2771 
2772 	vmbus_free_channels();
2773 	kfree(vmbus_connection.channels);
2774 
2775 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2776 		kmsg_dump_unregister(&hv_kmsg_dumper);
2777 		unregister_die_notifier(&hyperv_die_block);
2778 		atomic_notifier_chain_unregister(&panic_notifier_list,
2779 						 &hyperv_panic_block);
2780 	}
2781 
2782 	free_page((unsigned long)hv_panic_page);
2783 	unregister_sysctl_table(hv_ctl_table_hdr);
2784 	hv_ctl_table_hdr = NULL;
2785 	bus_unregister(&hv_bus);
2786 
2787 	cpuhp_remove_state(hyperv_cpuhp_online);
2788 	hv_synic_free();
2789 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2790 }
2791 
2792 
2793 MODULE_LICENSE("GPL");
2794 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2795 
2796 subsys_initcall(hv_acpi_init);
2797 module_exit(vmbus_exit);
2798