xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision e620a1e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
25 
26 #include <asm/mshyperv.h>
27 #include <linux/delay.h>
28 #include <linux/notifier.h>
29 #include <linux/ptrace.h>
30 #include <linux/screen_info.h>
31 #include <linux/kdebug.h>
32 #include <linux/efi.h>
33 #include <linux/random.h>
34 #include <linux/syscore_ops.h>
35 #include <clocksource/hyperv_timer.h>
36 #include "hyperv_vmbus.h"
37 
38 struct vmbus_dynid {
39 	struct list_head node;
40 	struct hv_vmbus_device_id id;
41 };
42 
43 static struct acpi_device  *hv_acpi_dev;
44 
45 static struct completion probe_event;
46 
47 static int hyperv_cpuhp_online;
48 
49 static void *hv_panic_page;
50 
51 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
52 			      void *args)
53 {
54 	struct pt_regs *regs;
55 
56 	regs = current_pt_regs();
57 
58 	hyperv_report_panic(regs, val);
59 	return NOTIFY_DONE;
60 }
61 
62 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
63 			    void *args)
64 {
65 	struct die_args *die = (struct die_args *)args;
66 	struct pt_regs *regs = die->regs;
67 
68 	hyperv_report_panic(regs, val);
69 	return NOTIFY_DONE;
70 }
71 
72 static struct notifier_block hyperv_die_block = {
73 	.notifier_call = hyperv_die_event,
74 };
75 static struct notifier_block hyperv_panic_block = {
76 	.notifier_call = hyperv_panic_event,
77 };
78 
79 static const char *fb_mmio_name = "fb_range";
80 static struct resource *fb_mmio;
81 static struct resource *hyperv_mmio;
82 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
83 
84 static int vmbus_exists(void)
85 {
86 	if (hv_acpi_dev == NULL)
87 		return -ENODEV;
88 
89 	return 0;
90 }
91 
92 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
93 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
94 {
95 	int i;
96 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
97 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
98 }
99 
100 static u8 channel_monitor_group(const struct vmbus_channel *channel)
101 {
102 	return (u8)channel->offermsg.monitorid / 32;
103 }
104 
105 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
106 {
107 	return (u8)channel->offermsg.monitorid % 32;
108 }
109 
110 static u32 channel_pending(const struct vmbus_channel *channel,
111 			   const struct hv_monitor_page *monitor_page)
112 {
113 	u8 monitor_group = channel_monitor_group(channel);
114 
115 	return monitor_page->trigger_group[monitor_group].pending;
116 }
117 
118 static u32 channel_latency(const struct vmbus_channel *channel,
119 			   const struct hv_monitor_page *monitor_page)
120 {
121 	u8 monitor_group = channel_monitor_group(channel);
122 	u8 monitor_offset = channel_monitor_offset(channel);
123 
124 	return monitor_page->latency[monitor_group][monitor_offset];
125 }
126 
127 static u32 channel_conn_id(struct vmbus_channel *channel,
128 			   struct hv_monitor_page *monitor_page)
129 {
130 	u8 monitor_group = channel_monitor_group(channel);
131 	u8 monitor_offset = channel_monitor_offset(channel);
132 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
133 }
134 
135 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
136 		       char *buf)
137 {
138 	struct hv_device *hv_dev = device_to_hv_device(dev);
139 
140 	if (!hv_dev->channel)
141 		return -ENODEV;
142 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
143 }
144 static DEVICE_ATTR_RO(id);
145 
146 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
147 			  char *buf)
148 {
149 	struct hv_device *hv_dev = device_to_hv_device(dev);
150 
151 	if (!hv_dev->channel)
152 		return -ENODEV;
153 	return sprintf(buf, "%d\n", hv_dev->channel->state);
154 }
155 static DEVICE_ATTR_RO(state);
156 
157 static ssize_t monitor_id_show(struct device *dev,
158 			       struct device_attribute *dev_attr, char *buf)
159 {
160 	struct hv_device *hv_dev = device_to_hv_device(dev);
161 
162 	if (!hv_dev->channel)
163 		return -ENODEV;
164 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
165 }
166 static DEVICE_ATTR_RO(monitor_id);
167 
168 static ssize_t class_id_show(struct device *dev,
169 			       struct device_attribute *dev_attr, char *buf)
170 {
171 	struct hv_device *hv_dev = device_to_hv_device(dev);
172 
173 	if (!hv_dev->channel)
174 		return -ENODEV;
175 	return sprintf(buf, "{%pUl}\n",
176 		       hv_dev->channel->offermsg.offer.if_type.b);
177 }
178 static DEVICE_ATTR_RO(class_id);
179 
180 static ssize_t device_id_show(struct device *dev,
181 			      struct device_attribute *dev_attr, char *buf)
182 {
183 	struct hv_device *hv_dev = device_to_hv_device(dev);
184 
185 	if (!hv_dev->channel)
186 		return -ENODEV;
187 	return sprintf(buf, "{%pUl}\n",
188 		       hv_dev->channel->offermsg.offer.if_instance.b);
189 }
190 static DEVICE_ATTR_RO(device_id);
191 
192 static ssize_t modalias_show(struct device *dev,
193 			     struct device_attribute *dev_attr, char *buf)
194 {
195 	struct hv_device *hv_dev = device_to_hv_device(dev);
196 	char alias_name[VMBUS_ALIAS_LEN + 1];
197 
198 	print_alias_name(hv_dev, alias_name);
199 	return sprintf(buf, "vmbus:%s\n", alias_name);
200 }
201 static DEVICE_ATTR_RO(modalias);
202 
203 #ifdef CONFIG_NUMA
204 static ssize_t numa_node_show(struct device *dev,
205 			      struct device_attribute *attr, char *buf)
206 {
207 	struct hv_device *hv_dev = device_to_hv_device(dev);
208 
209 	if (!hv_dev->channel)
210 		return -ENODEV;
211 
212 	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
213 }
214 static DEVICE_ATTR_RO(numa_node);
215 #endif
216 
217 static ssize_t server_monitor_pending_show(struct device *dev,
218 					   struct device_attribute *dev_attr,
219 					   char *buf)
220 {
221 	struct hv_device *hv_dev = device_to_hv_device(dev);
222 
223 	if (!hv_dev->channel)
224 		return -ENODEV;
225 	return sprintf(buf, "%d\n",
226 		       channel_pending(hv_dev->channel,
227 				       vmbus_connection.monitor_pages[0]));
228 }
229 static DEVICE_ATTR_RO(server_monitor_pending);
230 
231 static ssize_t client_monitor_pending_show(struct device *dev,
232 					   struct device_attribute *dev_attr,
233 					   char *buf)
234 {
235 	struct hv_device *hv_dev = device_to_hv_device(dev);
236 
237 	if (!hv_dev->channel)
238 		return -ENODEV;
239 	return sprintf(buf, "%d\n",
240 		       channel_pending(hv_dev->channel,
241 				       vmbus_connection.monitor_pages[1]));
242 }
243 static DEVICE_ATTR_RO(client_monitor_pending);
244 
245 static ssize_t server_monitor_latency_show(struct device *dev,
246 					   struct device_attribute *dev_attr,
247 					   char *buf)
248 {
249 	struct hv_device *hv_dev = device_to_hv_device(dev);
250 
251 	if (!hv_dev->channel)
252 		return -ENODEV;
253 	return sprintf(buf, "%d\n",
254 		       channel_latency(hv_dev->channel,
255 				       vmbus_connection.monitor_pages[0]));
256 }
257 static DEVICE_ATTR_RO(server_monitor_latency);
258 
259 static ssize_t client_monitor_latency_show(struct device *dev,
260 					   struct device_attribute *dev_attr,
261 					   char *buf)
262 {
263 	struct hv_device *hv_dev = device_to_hv_device(dev);
264 
265 	if (!hv_dev->channel)
266 		return -ENODEV;
267 	return sprintf(buf, "%d\n",
268 		       channel_latency(hv_dev->channel,
269 				       vmbus_connection.monitor_pages[1]));
270 }
271 static DEVICE_ATTR_RO(client_monitor_latency);
272 
273 static ssize_t server_monitor_conn_id_show(struct device *dev,
274 					   struct device_attribute *dev_attr,
275 					   char *buf)
276 {
277 	struct hv_device *hv_dev = device_to_hv_device(dev);
278 
279 	if (!hv_dev->channel)
280 		return -ENODEV;
281 	return sprintf(buf, "%d\n",
282 		       channel_conn_id(hv_dev->channel,
283 				       vmbus_connection.monitor_pages[0]));
284 }
285 static DEVICE_ATTR_RO(server_monitor_conn_id);
286 
287 static ssize_t client_monitor_conn_id_show(struct device *dev,
288 					   struct device_attribute *dev_attr,
289 					   char *buf)
290 {
291 	struct hv_device *hv_dev = device_to_hv_device(dev);
292 
293 	if (!hv_dev->channel)
294 		return -ENODEV;
295 	return sprintf(buf, "%d\n",
296 		       channel_conn_id(hv_dev->channel,
297 				       vmbus_connection.monitor_pages[1]));
298 }
299 static DEVICE_ATTR_RO(client_monitor_conn_id);
300 
301 static ssize_t out_intr_mask_show(struct device *dev,
302 				  struct device_attribute *dev_attr, char *buf)
303 {
304 	struct hv_device *hv_dev = device_to_hv_device(dev);
305 	struct hv_ring_buffer_debug_info outbound;
306 	int ret;
307 
308 	if (!hv_dev->channel)
309 		return -ENODEV;
310 
311 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
312 					  &outbound);
313 	if (ret < 0)
314 		return ret;
315 
316 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
317 }
318 static DEVICE_ATTR_RO(out_intr_mask);
319 
320 static ssize_t out_read_index_show(struct device *dev,
321 				   struct device_attribute *dev_attr, char *buf)
322 {
323 	struct hv_device *hv_dev = device_to_hv_device(dev);
324 	struct hv_ring_buffer_debug_info outbound;
325 	int ret;
326 
327 	if (!hv_dev->channel)
328 		return -ENODEV;
329 
330 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
331 					  &outbound);
332 	if (ret < 0)
333 		return ret;
334 	return sprintf(buf, "%d\n", outbound.current_read_index);
335 }
336 static DEVICE_ATTR_RO(out_read_index);
337 
338 static ssize_t out_write_index_show(struct device *dev,
339 				    struct device_attribute *dev_attr,
340 				    char *buf)
341 {
342 	struct hv_device *hv_dev = device_to_hv_device(dev);
343 	struct hv_ring_buffer_debug_info outbound;
344 	int ret;
345 
346 	if (!hv_dev->channel)
347 		return -ENODEV;
348 
349 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
350 					  &outbound);
351 	if (ret < 0)
352 		return ret;
353 	return sprintf(buf, "%d\n", outbound.current_write_index);
354 }
355 static DEVICE_ATTR_RO(out_write_index);
356 
357 static ssize_t out_read_bytes_avail_show(struct device *dev,
358 					 struct device_attribute *dev_attr,
359 					 char *buf)
360 {
361 	struct hv_device *hv_dev = device_to_hv_device(dev);
362 	struct hv_ring_buffer_debug_info outbound;
363 	int ret;
364 
365 	if (!hv_dev->channel)
366 		return -ENODEV;
367 
368 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
369 					  &outbound);
370 	if (ret < 0)
371 		return ret;
372 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
373 }
374 static DEVICE_ATTR_RO(out_read_bytes_avail);
375 
376 static ssize_t out_write_bytes_avail_show(struct device *dev,
377 					  struct device_attribute *dev_attr,
378 					  char *buf)
379 {
380 	struct hv_device *hv_dev = device_to_hv_device(dev);
381 	struct hv_ring_buffer_debug_info outbound;
382 	int ret;
383 
384 	if (!hv_dev->channel)
385 		return -ENODEV;
386 
387 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
388 					  &outbound);
389 	if (ret < 0)
390 		return ret;
391 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
392 }
393 static DEVICE_ATTR_RO(out_write_bytes_avail);
394 
395 static ssize_t in_intr_mask_show(struct device *dev,
396 				 struct device_attribute *dev_attr, char *buf)
397 {
398 	struct hv_device *hv_dev = device_to_hv_device(dev);
399 	struct hv_ring_buffer_debug_info inbound;
400 	int ret;
401 
402 	if (!hv_dev->channel)
403 		return -ENODEV;
404 
405 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
406 	if (ret < 0)
407 		return ret;
408 
409 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
410 }
411 static DEVICE_ATTR_RO(in_intr_mask);
412 
413 static ssize_t in_read_index_show(struct device *dev,
414 				  struct device_attribute *dev_attr, char *buf)
415 {
416 	struct hv_device *hv_dev = device_to_hv_device(dev);
417 	struct hv_ring_buffer_debug_info inbound;
418 	int ret;
419 
420 	if (!hv_dev->channel)
421 		return -ENODEV;
422 
423 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
424 	if (ret < 0)
425 		return ret;
426 
427 	return sprintf(buf, "%d\n", inbound.current_read_index);
428 }
429 static DEVICE_ATTR_RO(in_read_index);
430 
431 static ssize_t in_write_index_show(struct device *dev,
432 				   struct device_attribute *dev_attr, char *buf)
433 {
434 	struct hv_device *hv_dev = device_to_hv_device(dev);
435 	struct hv_ring_buffer_debug_info inbound;
436 	int ret;
437 
438 	if (!hv_dev->channel)
439 		return -ENODEV;
440 
441 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442 	if (ret < 0)
443 		return ret;
444 
445 	return sprintf(buf, "%d\n", inbound.current_write_index);
446 }
447 static DEVICE_ATTR_RO(in_write_index);
448 
449 static ssize_t in_read_bytes_avail_show(struct device *dev,
450 					struct device_attribute *dev_attr,
451 					char *buf)
452 {
453 	struct hv_device *hv_dev = device_to_hv_device(dev);
454 	struct hv_ring_buffer_debug_info inbound;
455 	int ret;
456 
457 	if (!hv_dev->channel)
458 		return -ENODEV;
459 
460 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
461 	if (ret < 0)
462 		return ret;
463 
464 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
465 }
466 static DEVICE_ATTR_RO(in_read_bytes_avail);
467 
468 static ssize_t in_write_bytes_avail_show(struct device *dev,
469 					 struct device_attribute *dev_attr,
470 					 char *buf)
471 {
472 	struct hv_device *hv_dev = device_to_hv_device(dev);
473 	struct hv_ring_buffer_debug_info inbound;
474 	int ret;
475 
476 	if (!hv_dev->channel)
477 		return -ENODEV;
478 
479 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
480 	if (ret < 0)
481 		return ret;
482 
483 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
484 }
485 static DEVICE_ATTR_RO(in_write_bytes_avail);
486 
487 static ssize_t channel_vp_mapping_show(struct device *dev,
488 				       struct device_attribute *dev_attr,
489 				       char *buf)
490 {
491 	struct hv_device *hv_dev = device_to_hv_device(dev);
492 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
493 	unsigned long flags;
494 	int buf_size = PAGE_SIZE, n_written, tot_written;
495 	struct list_head *cur;
496 
497 	if (!channel)
498 		return -ENODEV;
499 
500 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
501 		channel->offermsg.child_relid, channel->target_cpu);
502 
503 	spin_lock_irqsave(&channel->lock, flags);
504 
505 	list_for_each(cur, &channel->sc_list) {
506 		if (tot_written >= buf_size - 1)
507 			break;
508 
509 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
510 		n_written = scnprintf(buf + tot_written,
511 				     buf_size - tot_written,
512 				     "%u:%u\n",
513 				     cur_sc->offermsg.child_relid,
514 				     cur_sc->target_cpu);
515 		tot_written += n_written;
516 	}
517 
518 	spin_unlock_irqrestore(&channel->lock, flags);
519 
520 	return tot_written;
521 }
522 static DEVICE_ATTR_RO(channel_vp_mapping);
523 
524 static ssize_t vendor_show(struct device *dev,
525 			   struct device_attribute *dev_attr,
526 			   char *buf)
527 {
528 	struct hv_device *hv_dev = device_to_hv_device(dev);
529 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
530 }
531 static DEVICE_ATTR_RO(vendor);
532 
533 static ssize_t device_show(struct device *dev,
534 			   struct device_attribute *dev_attr,
535 			   char *buf)
536 {
537 	struct hv_device *hv_dev = device_to_hv_device(dev);
538 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
539 }
540 static DEVICE_ATTR_RO(device);
541 
542 static ssize_t driver_override_store(struct device *dev,
543 				     struct device_attribute *attr,
544 				     const char *buf, size_t count)
545 {
546 	struct hv_device *hv_dev = device_to_hv_device(dev);
547 	char *driver_override, *old, *cp;
548 
549 	/* We need to keep extra room for a newline */
550 	if (count >= (PAGE_SIZE - 1))
551 		return -EINVAL;
552 
553 	driver_override = kstrndup(buf, count, GFP_KERNEL);
554 	if (!driver_override)
555 		return -ENOMEM;
556 
557 	cp = strchr(driver_override, '\n');
558 	if (cp)
559 		*cp = '\0';
560 
561 	device_lock(dev);
562 	old = hv_dev->driver_override;
563 	if (strlen(driver_override)) {
564 		hv_dev->driver_override = driver_override;
565 	} else {
566 		kfree(driver_override);
567 		hv_dev->driver_override = NULL;
568 	}
569 	device_unlock(dev);
570 
571 	kfree(old);
572 
573 	return count;
574 }
575 
576 static ssize_t driver_override_show(struct device *dev,
577 				    struct device_attribute *attr, char *buf)
578 {
579 	struct hv_device *hv_dev = device_to_hv_device(dev);
580 	ssize_t len;
581 
582 	device_lock(dev);
583 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
584 	device_unlock(dev);
585 
586 	return len;
587 }
588 static DEVICE_ATTR_RW(driver_override);
589 
590 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
591 static struct attribute *vmbus_dev_attrs[] = {
592 	&dev_attr_id.attr,
593 	&dev_attr_state.attr,
594 	&dev_attr_monitor_id.attr,
595 	&dev_attr_class_id.attr,
596 	&dev_attr_device_id.attr,
597 	&dev_attr_modalias.attr,
598 #ifdef CONFIG_NUMA
599 	&dev_attr_numa_node.attr,
600 #endif
601 	&dev_attr_server_monitor_pending.attr,
602 	&dev_attr_client_monitor_pending.attr,
603 	&dev_attr_server_monitor_latency.attr,
604 	&dev_attr_client_monitor_latency.attr,
605 	&dev_attr_server_monitor_conn_id.attr,
606 	&dev_attr_client_monitor_conn_id.attr,
607 	&dev_attr_out_intr_mask.attr,
608 	&dev_attr_out_read_index.attr,
609 	&dev_attr_out_write_index.attr,
610 	&dev_attr_out_read_bytes_avail.attr,
611 	&dev_attr_out_write_bytes_avail.attr,
612 	&dev_attr_in_intr_mask.attr,
613 	&dev_attr_in_read_index.attr,
614 	&dev_attr_in_write_index.attr,
615 	&dev_attr_in_read_bytes_avail.attr,
616 	&dev_attr_in_write_bytes_avail.attr,
617 	&dev_attr_channel_vp_mapping.attr,
618 	&dev_attr_vendor.attr,
619 	&dev_attr_device.attr,
620 	&dev_attr_driver_override.attr,
621 	NULL,
622 };
623 
624 /*
625  * Device-level attribute_group callback function. Returns the permission for
626  * each attribute, and returns 0 if an attribute is not visible.
627  */
628 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
629 					 struct attribute *attr, int idx)
630 {
631 	struct device *dev = kobj_to_dev(kobj);
632 	const struct hv_device *hv_dev = device_to_hv_device(dev);
633 
634 	/* Hide the monitor attributes if the monitor mechanism is not used. */
635 	if (!hv_dev->channel->offermsg.monitor_allocated &&
636 	    (attr == &dev_attr_monitor_id.attr ||
637 	     attr == &dev_attr_server_monitor_pending.attr ||
638 	     attr == &dev_attr_client_monitor_pending.attr ||
639 	     attr == &dev_attr_server_monitor_latency.attr ||
640 	     attr == &dev_attr_client_monitor_latency.attr ||
641 	     attr == &dev_attr_server_monitor_conn_id.attr ||
642 	     attr == &dev_attr_client_monitor_conn_id.attr))
643 		return 0;
644 
645 	return attr->mode;
646 }
647 
648 static const struct attribute_group vmbus_dev_group = {
649 	.attrs = vmbus_dev_attrs,
650 	.is_visible = vmbus_dev_attr_is_visible
651 };
652 __ATTRIBUTE_GROUPS(vmbus_dev);
653 
654 /*
655  * vmbus_uevent - add uevent for our device
656  *
657  * This routine is invoked when a device is added or removed on the vmbus to
658  * generate a uevent to udev in the userspace. The udev will then look at its
659  * rule and the uevent generated here to load the appropriate driver
660  *
661  * The alias string will be of the form vmbus:guid where guid is the string
662  * representation of the device guid (each byte of the guid will be
663  * represented with two hex characters.
664  */
665 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
666 {
667 	struct hv_device *dev = device_to_hv_device(device);
668 	int ret;
669 	char alias_name[VMBUS_ALIAS_LEN + 1];
670 
671 	print_alias_name(dev, alias_name);
672 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
673 	return ret;
674 }
675 
676 static const struct hv_vmbus_device_id *
677 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
678 {
679 	if (id == NULL)
680 		return NULL; /* empty device table */
681 
682 	for (; !guid_is_null(&id->guid); id++)
683 		if (guid_equal(&id->guid, guid))
684 			return id;
685 
686 	return NULL;
687 }
688 
689 static const struct hv_vmbus_device_id *
690 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
691 {
692 	const struct hv_vmbus_device_id *id = NULL;
693 	struct vmbus_dynid *dynid;
694 
695 	spin_lock(&drv->dynids.lock);
696 	list_for_each_entry(dynid, &drv->dynids.list, node) {
697 		if (guid_equal(&dynid->id.guid, guid)) {
698 			id = &dynid->id;
699 			break;
700 		}
701 	}
702 	spin_unlock(&drv->dynids.lock);
703 
704 	return id;
705 }
706 
707 static const struct hv_vmbus_device_id vmbus_device_null;
708 
709 /*
710  * Return a matching hv_vmbus_device_id pointer.
711  * If there is no match, return NULL.
712  */
713 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
714 							struct hv_device *dev)
715 {
716 	const guid_t *guid = &dev->dev_type;
717 	const struct hv_vmbus_device_id *id;
718 
719 	/* When driver_override is set, only bind to the matching driver */
720 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
721 		return NULL;
722 
723 	/* Look at the dynamic ids first, before the static ones */
724 	id = hv_vmbus_dynid_match(drv, guid);
725 	if (!id)
726 		id = hv_vmbus_dev_match(drv->id_table, guid);
727 
728 	/* driver_override will always match, send a dummy id */
729 	if (!id && dev->driver_override)
730 		id = &vmbus_device_null;
731 
732 	return id;
733 }
734 
735 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
736 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
737 {
738 	struct vmbus_dynid *dynid;
739 
740 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
741 	if (!dynid)
742 		return -ENOMEM;
743 
744 	dynid->id.guid = *guid;
745 
746 	spin_lock(&drv->dynids.lock);
747 	list_add_tail(&dynid->node, &drv->dynids.list);
748 	spin_unlock(&drv->dynids.lock);
749 
750 	return driver_attach(&drv->driver);
751 }
752 
753 static void vmbus_free_dynids(struct hv_driver *drv)
754 {
755 	struct vmbus_dynid *dynid, *n;
756 
757 	spin_lock(&drv->dynids.lock);
758 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
759 		list_del(&dynid->node);
760 		kfree(dynid);
761 	}
762 	spin_unlock(&drv->dynids.lock);
763 }
764 
765 /*
766  * store_new_id - sysfs frontend to vmbus_add_dynid()
767  *
768  * Allow GUIDs to be added to an existing driver via sysfs.
769  */
770 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
771 			    size_t count)
772 {
773 	struct hv_driver *drv = drv_to_hv_drv(driver);
774 	guid_t guid;
775 	ssize_t retval;
776 
777 	retval = guid_parse(buf, &guid);
778 	if (retval)
779 		return retval;
780 
781 	if (hv_vmbus_dynid_match(drv, &guid))
782 		return -EEXIST;
783 
784 	retval = vmbus_add_dynid(drv, &guid);
785 	if (retval)
786 		return retval;
787 	return count;
788 }
789 static DRIVER_ATTR_WO(new_id);
790 
791 /*
792  * store_remove_id - remove a PCI device ID from this driver
793  *
794  * Removes a dynamic pci device ID to this driver.
795  */
796 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
797 			       size_t count)
798 {
799 	struct hv_driver *drv = drv_to_hv_drv(driver);
800 	struct vmbus_dynid *dynid, *n;
801 	guid_t guid;
802 	ssize_t retval;
803 
804 	retval = guid_parse(buf, &guid);
805 	if (retval)
806 		return retval;
807 
808 	retval = -ENODEV;
809 	spin_lock(&drv->dynids.lock);
810 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
811 		struct hv_vmbus_device_id *id = &dynid->id;
812 
813 		if (guid_equal(&id->guid, &guid)) {
814 			list_del(&dynid->node);
815 			kfree(dynid);
816 			retval = count;
817 			break;
818 		}
819 	}
820 	spin_unlock(&drv->dynids.lock);
821 
822 	return retval;
823 }
824 static DRIVER_ATTR_WO(remove_id);
825 
826 static struct attribute *vmbus_drv_attrs[] = {
827 	&driver_attr_new_id.attr,
828 	&driver_attr_remove_id.attr,
829 	NULL,
830 };
831 ATTRIBUTE_GROUPS(vmbus_drv);
832 
833 
834 /*
835  * vmbus_match - Attempt to match the specified device to the specified driver
836  */
837 static int vmbus_match(struct device *device, struct device_driver *driver)
838 {
839 	struct hv_driver *drv = drv_to_hv_drv(driver);
840 	struct hv_device *hv_dev = device_to_hv_device(device);
841 
842 	/* The hv_sock driver handles all hv_sock offers. */
843 	if (is_hvsock_channel(hv_dev->channel))
844 		return drv->hvsock;
845 
846 	if (hv_vmbus_get_id(drv, hv_dev))
847 		return 1;
848 
849 	return 0;
850 }
851 
852 /*
853  * vmbus_probe - Add the new vmbus's child device
854  */
855 static int vmbus_probe(struct device *child_device)
856 {
857 	int ret = 0;
858 	struct hv_driver *drv =
859 			drv_to_hv_drv(child_device->driver);
860 	struct hv_device *dev = device_to_hv_device(child_device);
861 	const struct hv_vmbus_device_id *dev_id;
862 
863 	dev_id = hv_vmbus_get_id(drv, dev);
864 	if (drv->probe) {
865 		ret = drv->probe(dev, dev_id);
866 		if (ret != 0)
867 			pr_err("probe failed for device %s (%d)\n",
868 			       dev_name(child_device), ret);
869 
870 	} else {
871 		pr_err("probe not set for driver %s\n",
872 		       dev_name(child_device));
873 		ret = -ENODEV;
874 	}
875 	return ret;
876 }
877 
878 /*
879  * vmbus_remove - Remove a vmbus device
880  */
881 static int vmbus_remove(struct device *child_device)
882 {
883 	struct hv_driver *drv;
884 	struct hv_device *dev = device_to_hv_device(child_device);
885 
886 	if (child_device->driver) {
887 		drv = drv_to_hv_drv(child_device->driver);
888 		if (drv->remove)
889 			drv->remove(dev);
890 	}
891 
892 	return 0;
893 }
894 
895 
896 /*
897  * vmbus_shutdown - Shutdown a vmbus device
898  */
899 static void vmbus_shutdown(struct device *child_device)
900 {
901 	struct hv_driver *drv;
902 	struct hv_device *dev = device_to_hv_device(child_device);
903 
904 
905 	/* The device may not be attached yet */
906 	if (!child_device->driver)
907 		return;
908 
909 	drv = drv_to_hv_drv(child_device->driver);
910 
911 	if (drv->shutdown)
912 		drv->shutdown(dev);
913 }
914 
915 /*
916  * vmbus_suspend - Suspend a vmbus device
917  */
918 static int vmbus_suspend(struct device *child_device)
919 {
920 	struct hv_driver *drv;
921 	struct hv_device *dev = device_to_hv_device(child_device);
922 
923 	/* The device may not be attached yet */
924 	if (!child_device->driver)
925 		return 0;
926 
927 	drv = drv_to_hv_drv(child_device->driver);
928 	if (!drv->suspend)
929 		return -EOPNOTSUPP;
930 
931 	return drv->suspend(dev);
932 }
933 
934 /*
935  * vmbus_resume - Resume a vmbus device
936  */
937 static int vmbus_resume(struct device *child_device)
938 {
939 	struct hv_driver *drv;
940 	struct hv_device *dev = device_to_hv_device(child_device);
941 
942 	/* The device may not be attached yet */
943 	if (!child_device->driver)
944 		return 0;
945 
946 	drv = drv_to_hv_drv(child_device->driver);
947 	if (!drv->resume)
948 		return -EOPNOTSUPP;
949 
950 	return drv->resume(dev);
951 }
952 
953 /*
954  * vmbus_device_release - Final callback release of the vmbus child device
955  */
956 static void vmbus_device_release(struct device *device)
957 {
958 	struct hv_device *hv_dev = device_to_hv_device(device);
959 	struct vmbus_channel *channel = hv_dev->channel;
960 
961 	mutex_lock(&vmbus_connection.channel_mutex);
962 	hv_process_channel_removal(channel);
963 	mutex_unlock(&vmbus_connection.channel_mutex);
964 	kfree(hv_dev);
965 }
966 
967 /*
968  * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
969  * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm.
970  */
971 static const struct dev_pm_ops vmbus_pm = {
972 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume)
973 };
974 
975 /* The one and only one */
976 static struct bus_type  hv_bus = {
977 	.name =		"vmbus",
978 	.match =		vmbus_match,
979 	.shutdown =		vmbus_shutdown,
980 	.remove =		vmbus_remove,
981 	.probe =		vmbus_probe,
982 	.uevent =		vmbus_uevent,
983 	.dev_groups =		vmbus_dev_groups,
984 	.drv_groups =		vmbus_drv_groups,
985 	.pm =			&vmbus_pm,
986 };
987 
988 struct onmessage_work_context {
989 	struct work_struct work;
990 	struct hv_message msg;
991 };
992 
993 static void vmbus_onmessage_work(struct work_struct *work)
994 {
995 	struct onmessage_work_context *ctx;
996 
997 	/* Do not process messages if we're in DISCONNECTED state */
998 	if (vmbus_connection.conn_state == DISCONNECTED)
999 		return;
1000 
1001 	ctx = container_of(work, struct onmessage_work_context,
1002 			   work);
1003 	vmbus_onmessage(&ctx->msg);
1004 	kfree(ctx);
1005 }
1006 
1007 void vmbus_on_msg_dpc(unsigned long data)
1008 {
1009 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1010 	void *page_addr = hv_cpu->synic_message_page;
1011 	struct hv_message *msg = (struct hv_message *)page_addr +
1012 				  VMBUS_MESSAGE_SINT;
1013 	struct vmbus_channel_message_header *hdr;
1014 	const struct vmbus_channel_message_table_entry *entry;
1015 	struct onmessage_work_context *ctx;
1016 	u32 message_type = msg->header.message_type;
1017 
1018 	if (message_type == HVMSG_NONE)
1019 		/* no msg */
1020 		return;
1021 
1022 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1023 
1024 	trace_vmbus_on_msg_dpc(hdr);
1025 
1026 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
1027 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1028 		goto msg_handled;
1029 	}
1030 
1031 	entry = &channel_message_table[hdr->msgtype];
1032 	if (entry->handler_type	== VMHT_BLOCKING) {
1033 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
1034 		if (ctx == NULL)
1035 			return;
1036 
1037 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1038 		memcpy(&ctx->msg, msg, sizeof(*msg));
1039 
1040 		/*
1041 		 * The host can generate a rescind message while we
1042 		 * may still be handling the original offer. We deal with
1043 		 * this condition by ensuring the processing is done on the
1044 		 * same CPU.
1045 		 */
1046 		switch (hdr->msgtype) {
1047 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1048 			/*
1049 			 * If we are handling the rescind message;
1050 			 * schedule the work on the global work queue.
1051 			 */
1052 			schedule_work_on(vmbus_connection.connect_cpu,
1053 					 &ctx->work);
1054 			break;
1055 
1056 		case CHANNELMSG_OFFERCHANNEL:
1057 			atomic_inc(&vmbus_connection.offer_in_progress);
1058 			queue_work_on(vmbus_connection.connect_cpu,
1059 				      vmbus_connection.work_queue,
1060 				      &ctx->work);
1061 			break;
1062 
1063 		default:
1064 			queue_work(vmbus_connection.work_queue, &ctx->work);
1065 		}
1066 	} else
1067 		entry->message_handler(hdr);
1068 
1069 msg_handled:
1070 	vmbus_signal_eom(msg, message_type);
1071 }
1072 
1073 /*
1074  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1075  * hibernation, because hv_sock connections can not persist across hibernation.
1076  */
1077 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1078 {
1079 	struct onmessage_work_context *ctx;
1080 	struct vmbus_channel_rescind_offer *rescind;
1081 
1082 	WARN_ON(!is_hvsock_channel(channel));
1083 
1084 	/*
1085 	 * sizeof(*ctx) is small and the allocation should really not fail,
1086 	 * otherwise the state of the hv_sock connections ends up in limbo.
1087 	 */
1088 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);
1089 
1090 	/*
1091 	 * So far, these are not really used by Linux. Just set them to the
1092 	 * reasonable values conforming to the definitions of the fields.
1093 	 */
1094 	ctx->msg.header.message_type = 1;
1095 	ctx->msg.header.payload_size = sizeof(*rescind);
1096 
1097 	/* These values are actually used by Linux. */
1098 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.u.payload;
1099 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1100 	rescind->child_relid = channel->offermsg.child_relid;
1101 
1102 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1103 
1104 	queue_work_on(vmbus_connection.connect_cpu,
1105 		      vmbus_connection.work_queue,
1106 		      &ctx->work);
1107 }
1108 
1109 /*
1110  * Direct callback for channels using other deferred processing
1111  */
1112 static void vmbus_channel_isr(struct vmbus_channel *channel)
1113 {
1114 	void (*callback_fn)(void *);
1115 
1116 	callback_fn = READ_ONCE(channel->onchannel_callback);
1117 	if (likely(callback_fn != NULL))
1118 		(*callback_fn)(channel->channel_callback_context);
1119 }
1120 
1121 /*
1122  * Schedule all channels with events pending
1123  */
1124 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1125 {
1126 	unsigned long *recv_int_page;
1127 	u32 maxbits, relid;
1128 
1129 	if (vmbus_proto_version < VERSION_WIN8) {
1130 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1131 		recv_int_page = vmbus_connection.recv_int_page;
1132 	} else {
1133 		/*
1134 		 * When the host is win8 and beyond, the event page
1135 		 * can be directly checked to get the id of the channel
1136 		 * that has the interrupt pending.
1137 		 */
1138 		void *page_addr = hv_cpu->synic_event_page;
1139 		union hv_synic_event_flags *event
1140 			= (union hv_synic_event_flags *)page_addr +
1141 						 VMBUS_MESSAGE_SINT;
1142 
1143 		maxbits = HV_EVENT_FLAGS_COUNT;
1144 		recv_int_page = event->flags;
1145 	}
1146 
1147 	if (unlikely(!recv_int_page))
1148 		return;
1149 
1150 	for_each_set_bit(relid, recv_int_page, maxbits) {
1151 		struct vmbus_channel *channel;
1152 
1153 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1154 			continue;
1155 
1156 		/* Special case - vmbus channel protocol msg */
1157 		if (relid == 0)
1158 			continue;
1159 
1160 		rcu_read_lock();
1161 
1162 		/* Find channel based on relid */
1163 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1164 			if (channel->offermsg.child_relid != relid)
1165 				continue;
1166 
1167 			if (channel->rescind)
1168 				continue;
1169 
1170 			trace_vmbus_chan_sched(channel);
1171 
1172 			++channel->interrupts;
1173 
1174 			switch (channel->callback_mode) {
1175 			case HV_CALL_ISR:
1176 				vmbus_channel_isr(channel);
1177 				break;
1178 
1179 			case HV_CALL_BATCHED:
1180 				hv_begin_read(&channel->inbound);
1181 				/* fallthrough */
1182 			case HV_CALL_DIRECT:
1183 				tasklet_schedule(&channel->callback_event);
1184 			}
1185 		}
1186 
1187 		rcu_read_unlock();
1188 	}
1189 }
1190 
1191 static void vmbus_isr(void)
1192 {
1193 	struct hv_per_cpu_context *hv_cpu
1194 		= this_cpu_ptr(hv_context.cpu_context);
1195 	void *page_addr = hv_cpu->synic_event_page;
1196 	struct hv_message *msg;
1197 	union hv_synic_event_flags *event;
1198 	bool handled = false;
1199 
1200 	if (unlikely(page_addr == NULL))
1201 		return;
1202 
1203 	event = (union hv_synic_event_flags *)page_addr +
1204 					 VMBUS_MESSAGE_SINT;
1205 	/*
1206 	 * Check for events before checking for messages. This is the order
1207 	 * in which events and messages are checked in Windows guests on
1208 	 * Hyper-V, and the Windows team suggested we do the same.
1209 	 */
1210 
1211 	if ((vmbus_proto_version == VERSION_WS2008) ||
1212 		(vmbus_proto_version == VERSION_WIN7)) {
1213 
1214 		/* Since we are a child, we only need to check bit 0 */
1215 		if (sync_test_and_clear_bit(0, event->flags))
1216 			handled = true;
1217 	} else {
1218 		/*
1219 		 * Our host is win8 or above. The signaling mechanism
1220 		 * has changed and we can directly look at the event page.
1221 		 * If bit n is set then we have an interrup on the channel
1222 		 * whose id is n.
1223 		 */
1224 		handled = true;
1225 	}
1226 
1227 	if (handled)
1228 		vmbus_chan_sched(hv_cpu);
1229 
1230 	page_addr = hv_cpu->synic_message_page;
1231 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1232 
1233 	/* Check if there are actual msgs to be processed */
1234 	if (msg->header.message_type != HVMSG_NONE) {
1235 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1236 			hv_stimer0_isr();
1237 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1238 		} else
1239 			tasklet_schedule(&hv_cpu->msg_dpc);
1240 	}
1241 
1242 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1243 }
1244 
1245 /*
1246  * Boolean to control whether to report panic messages over Hyper-V.
1247  *
1248  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1249  */
1250 static int sysctl_record_panic_msg = 1;
1251 
1252 /*
1253  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1254  * buffer and call into Hyper-V to transfer the data.
1255  */
1256 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1257 			 enum kmsg_dump_reason reason)
1258 {
1259 	size_t bytes_written;
1260 	phys_addr_t panic_pa;
1261 
1262 	/* We are only interested in panics. */
1263 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1264 		return;
1265 
1266 	panic_pa = virt_to_phys(hv_panic_page);
1267 
1268 	/*
1269 	 * Write dump contents to the page. No need to synchronize; panic should
1270 	 * be single-threaded.
1271 	 */
1272 	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1273 			     &bytes_written);
1274 	if (bytes_written)
1275 		hyperv_report_panic_msg(panic_pa, bytes_written);
1276 }
1277 
1278 static struct kmsg_dumper hv_kmsg_dumper = {
1279 	.dump = hv_kmsg_dump,
1280 };
1281 
1282 static struct ctl_table_header *hv_ctl_table_hdr;
1283 
1284 /*
1285  * sysctl option to allow the user to control whether kmsg data should be
1286  * reported to Hyper-V on panic.
1287  */
1288 static struct ctl_table hv_ctl_table[] = {
1289 	{
1290 		.procname       = "hyperv_record_panic_msg",
1291 		.data           = &sysctl_record_panic_msg,
1292 		.maxlen         = sizeof(int),
1293 		.mode           = 0644,
1294 		.proc_handler   = proc_dointvec_minmax,
1295 		.extra1		= SYSCTL_ZERO,
1296 		.extra2		= SYSCTL_ONE
1297 	},
1298 	{}
1299 };
1300 
1301 static struct ctl_table hv_root_table[] = {
1302 	{
1303 		.procname	= "kernel",
1304 		.mode		= 0555,
1305 		.child		= hv_ctl_table
1306 	},
1307 	{}
1308 };
1309 
1310 /*
1311  * vmbus_bus_init -Main vmbus driver initialization routine.
1312  *
1313  * Here, we
1314  *	- initialize the vmbus driver context
1315  *	- invoke the vmbus hv main init routine
1316  *	- retrieve the channel offers
1317  */
1318 static int vmbus_bus_init(void)
1319 {
1320 	int ret;
1321 
1322 	/* Hypervisor initialization...setup hypercall page..etc */
1323 	ret = hv_init();
1324 	if (ret != 0) {
1325 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1326 		return ret;
1327 	}
1328 
1329 	ret = bus_register(&hv_bus);
1330 	if (ret)
1331 		return ret;
1332 
1333 	hv_setup_vmbus_irq(vmbus_isr);
1334 
1335 	ret = hv_synic_alloc();
1336 	if (ret)
1337 		goto err_alloc;
1338 
1339 	ret = hv_stimer_alloc(VMBUS_MESSAGE_SINT);
1340 	if (ret < 0)
1341 		goto err_alloc;
1342 
1343 	/*
1344 	 * Initialize the per-cpu interrupt state and stimer state.
1345 	 * Then connect to the host.
1346 	 */
1347 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1348 				hv_synic_init, hv_synic_cleanup);
1349 	if (ret < 0)
1350 		goto err_cpuhp;
1351 	hyperv_cpuhp_online = ret;
1352 
1353 	ret = vmbus_connect();
1354 	if (ret)
1355 		goto err_connect;
1356 
1357 	/*
1358 	 * Only register if the crash MSRs are available
1359 	 */
1360 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1361 		u64 hyperv_crash_ctl;
1362 		/*
1363 		 * Sysctl registration is not fatal, since by default
1364 		 * reporting is enabled.
1365 		 */
1366 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1367 		if (!hv_ctl_table_hdr)
1368 			pr_err("Hyper-V: sysctl table register error");
1369 
1370 		/*
1371 		 * Register for panic kmsg callback only if the right
1372 		 * capability is supported by the hypervisor.
1373 		 */
1374 		hv_get_crash_ctl(hyperv_crash_ctl);
1375 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1376 			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1377 			if (hv_panic_page) {
1378 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1379 				if (ret)
1380 					pr_err("Hyper-V: kmsg dump register "
1381 						"error 0x%x\n", ret);
1382 			} else
1383 				pr_err("Hyper-V: panic message page memory "
1384 					"allocation failed");
1385 		}
1386 
1387 		register_die_notifier(&hyperv_die_block);
1388 		atomic_notifier_chain_register(&panic_notifier_list,
1389 					       &hyperv_panic_block);
1390 	}
1391 
1392 	vmbus_request_offers();
1393 
1394 	return 0;
1395 
1396 err_connect:
1397 	cpuhp_remove_state(hyperv_cpuhp_online);
1398 err_cpuhp:
1399 	hv_stimer_free();
1400 err_alloc:
1401 	hv_synic_free();
1402 	hv_remove_vmbus_irq();
1403 
1404 	bus_unregister(&hv_bus);
1405 	free_page((unsigned long)hv_panic_page);
1406 	unregister_sysctl_table(hv_ctl_table_hdr);
1407 	hv_ctl_table_hdr = NULL;
1408 	return ret;
1409 }
1410 
1411 /**
1412  * __vmbus_child_driver_register() - Register a vmbus's driver
1413  * @hv_driver: Pointer to driver structure you want to register
1414  * @owner: owner module of the drv
1415  * @mod_name: module name string
1416  *
1417  * Registers the given driver with Linux through the 'driver_register()' call
1418  * and sets up the hyper-v vmbus handling for this driver.
1419  * It will return the state of the 'driver_register()' call.
1420  *
1421  */
1422 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1423 {
1424 	int ret;
1425 
1426 	pr_info("registering driver %s\n", hv_driver->name);
1427 
1428 	ret = vmbus_exists();
1429 	if (ret < 0)
1430 		return ret;
1431 
1432 	hv_driver->driver.name = hv_driver->name;
1433 	hv_driver->driver.owner = owner;
1434 	hv_driver->driver.mod_name = mod_name;
1435 	hv_driver->driver.bus = &hv_bus;
1436 
1437 	spin_lock_init(&hv_driver->dynids.lock);
1438 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1439 
1440 	ret = driver_register(&hv_driver->driver);
1441 
1442 	return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1445 
1446 /**
1447  * vmbus_driver_unregister() - Unregister a vmbus's driver
1448  * @hv_driver: Pointer to driver structure you want to
1449  *             un-register
1450  *
1451  * Un-register the given driver that was previous registered with a call to
1452  * vmbus_driver_register()
1453  */
1454 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1455 {
1456 	pr_info("unregistering driver %s\n", hv_driver->name);
1457 
1458 	if (!vmbus_exists()) {
1459 		driver_unregister(&hv_driver->driver);
1460 		vmbus_free_dynids(hv_driver);
1461 	}
1462 }
1463 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1464 
1465 
1466 /*
1467  * Called when last reference to channel is gone.
1468  */
1469 static void vmbus_chan_release(struct kobject *kobj)
1470 {
1471 	struct vmbus_channel *channel
1472 		= container_of(kobj, struct vmbus_channel, kobj);
1473 
1474 	kfree_rcu(channel, rcu);
1475 }
1476 
1477 struct vmbus_chan_attribute {
1478 	struct attribute attr;
1479 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1480 	ssize_t (*store)(struct vmbus_channel *chan,
1481 			 const char *buf, size_t count);
1482 };
1483 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1484 	struct vmbus_chan_attribute chan_attr_##_name \
1485 		= __ATTR(_name, _mode, _show, _store)
1486 #define VMBUS_CHAN_ATTR_RW(_name) \
1487 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1488 #define VMBUS_CHAN_ATTR_RO(_name) \
1489 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1490 #define VMBUS_CHAN_ATTR_WO(_name) \
1491 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1492 
1493 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1494 				    struct attribute *attr, char *buf)
1495 {
1496 	const struct vmbus_chan_attribute *attribute
1497 		= container_of(attr, struct vmbus_chan_attribute, attr);
1498 	struct vmbus_channel *chan
1499 		= container_of(kobj, struct vmbus_channel, kobj);
1500 
1501 	if (!attribute->show)
1502 		return -EIO;
1503 
1504 	return attribute->show(chan, buf);
1505 }
1506 
1507 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1508 	.show = vmbus_chan_attr_show,
1509 };
1510 
1511 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1512 {
1513 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1514 	ssize_t ret;
1515 
1516 	mutex_lock(&rbi->ring_buffer_mutex);
1517 	if (!rbi->ring_buffer) {
1518 		mutex_unlock(&rbi->ring_buffer_mutex);
1519 		return -EINVAL;
1520 	}
1521 
1522 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1523 	mutex_unlock(&rbi->ring_buffer_mutex);
1524 	return ret;
1525 }
1526 static VMBUS_CHAN_ATTR_RO(out_mask);
1527 
1528 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1529 {
1530 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1531 	ssize_t ret;
1532 
1533 	mutex_lock(&rbi->ring_buffer_mutex);
1534 	if (!rbi->ring_buffer) {
1535 		mutex_unlock(&rbi->ring_buffer_mutex);
1536 		return -EINVAL;
1537 	}
1538 
1539 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1540 	mutex_unlock(&rbi->ring_buffer_mutex);
1541 	return ret;
1542 }
1543 static VMBUS_CHAN_ATTR_RO(in_mask);
1544 
1545 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1546 {
1547 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1548 	ssize_t ret;
1549 
1550 	mutex_lock(&rbi->ring_buffer_mutex);
1551 	if (!rbi->ring_buffer) {
1552 		mutex_unlock(&rbi->ring_buffer_mutex);
1553 		return -EINVAL;
1554 	}
1555 
1556 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1557 	mutex_unlock(&rbi->ring_buffer_mutex);
1558 	return ret;
1559 }
1560 static VMBUS_CHAN_ATTR_RO(read_avail);
1561 
1562 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1563 {
1564 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1565 	ssize_t ret;
1566 
1567 	mutex_lock(&rbi->ring_buffer_mutex);
1568 	if (!rbi->ring_buffer) {
1569 		mutex_unlock(&rbi->ring_buffer_mutex);
1570 		return -EINVAL;
1571 	}
1572 
1573 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1574 	mutex_unlock(&rbi->ring_buffer_mutex);
1575 	return ret;
1576 }
1577 static VMBUS_CHAN_ATTR_RO(write_avail);
1578 
1579 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1580 {
1581 	return sprintf(buf, "%u\n", channel->target_cpu);
1582 }
1583 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1584 
1585 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1586 				    char *buf)
1587 {
1588 	return sprintf(buf, "%d\n",
1589 		       channel_pending(channel,
1590 				       vmbus_connection.monitor_pages[1]));
1591 }
1592 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1593 
1594 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1595 				    char *buf)
1596 {
1597 	return sprintf(buf, "%d\n",
1598 		       channel_latency(channel,
1599 				       vmbus_connection.monitor_pages[1]));
1600 }
1601 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1602 
1603 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1604 {
1605 	return sprintf(buf, "%llu\n", channel->interrupts);
1606 }
1607 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1608 
1609 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1610 {
1611 	return sprintf(buf, "%llu\n", channel->sig_events);
1612 }
1613 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1614 
1615 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1616 					 char *buf)
1617 {
1618 	return sprintf(buf, "%llu\n",
1619 		       (unsigned long long)channel->intr_in_full);
1620 }
1621 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1622 
1623 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1624 					   char *buf)
1625 {
1626 	return sprintf(buf, "%llu\n",
1627 		       (unsigned long long)channel->intr_out_empty);
1628 }
1629 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1630 
1631 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1632 					   char *buf)
1633 {
1634 	return sprintf(buf, "%llu\n",
1635 		       (unsigned long long)channel->out_full_first);
1636 }
1637 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1638 
1639 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1640 					   char *buf)
1641 {
1642 	return sprintf(buf, "%llu\n",
1643 		       (unsigned long long)channel->out_full_total);
1644 }
1645 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1646 
1647 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1648 					  char *buf)
1649 {
1650 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1651 }
1652 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1653 
1654 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1655 				  char *buf)
1656 {
1657 	return sprintf(buf, "%u\n",
1658 		       channel->offermsg.offer.sub_channel_index);
1659 }
1660 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1661 
1662 static struct attribute *vmbus_chan_attrs[] = {
1663 	&chan_attr_out_mask.attr,
1664 	&chan_attr_in_mask.attr,
1665 	&chan_attr_read_avail.attr,
1666 	&chan_attr_write_avail.attr,
1667 	&chan_attr_cpu.attr,
1668 	&chan_attr_pending.attr,
1669 	&chan_attr_latency.attr,
1670 	&chan_attr_interrupts.attr,
1671 	&chan_attr_events.attr,
1672 	&chan_attr_intr_in_full.attr,
1673 	&chan_attr_intr_out_empty.attr,
1674 	&chan_attr_out_full_first.attr,
1675 	&chan_attr_out_full_total.attr,
1676 	&chan_attr_monitor_id.attr,
1677 	&chan_attr_subchannel_id.attr,
1678 	NULL
1679 };
1680 
1681 /*
1682  * Channel-level attribute_group callback function. Returns the permission for
1683  * each attribute, and returns 0 if an attribute is not visible.
1684  */
1685 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1686 					  struct attribute *attr, int idx)
1687 {
1688 	const struct vmbus_channel *channel =
1689 		container_of(kobj, struct vmbus_channel, kobj);
1690 
1691 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1692 	if (!channel->offermsg.monitor_allocated &&
1693 	    (attr == &chan_attr_pending.attr ||
1694 	     attr == &chan_attr_latency.attr ||
1695 	     attr == &chan_attr_monitor_id.attr))
1696 		return 0;
1697 
1698 	return attr->mode;
1699 }
1700 
1701 static struct attribute_group vmbus_chan_group = {
1702 	.attrs = vmbus_chan_attrs,
1703 	.is_visible = vmbus_chan_attr_is_visible
1704 };
1705 
1706 static struct kobj_type vmbus_chan_ktype = {
1707 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1708 	.release = vmbus_chan_release,
1709 };
1710 
1711 /*
1712  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1713  */
1714 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1715 {
1716 	const struct device *device = &dev->device;
1717 	struct kobject *kobj = &channel->kobj;
1718 	u32 relid = channel->offermsg.child_relid;
1719 	int ret;
1720 
1721 	kobj->kset = dev->channels_kset;
1722 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1723 				   "%u", relid);
1724 	if (ret)
1725 		return ret;
1726 
1727 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1728 
1729 	if (ret) {
1730 		/*
1731 		 * The calling functions' error handling paths will cleanup the
1732 		 * empty channel directory.
1733 		 */
1734 		dev_err(device, "Unable to set up channel sysfs files\n");
1735 		return ret;
1736 	}
1737 
1738 	kobject_uevent(kobj, KOBJ_ADD);
1739 
1740 	return 0;
1741 }
1742 
1743 /*
1744  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1745  */
1746 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1747 {
1748 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1749 }
1750 
1751 /*
1752  * vmbus_device_create - Creates and registers a new child device
1753  * on the vmbus.
1754  */
1755 struct hv_device *vmbus_device_create(const guid_t *type,
1756 				      const guid_t *instance,
1757 				      struct vmbus_channel *channel)
1758 {
1759 	struct hv_device *child_device_obj;
1760 
1761 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1762 	if (!child_device_obj) {
1763 		pr_err("Unable to allocate device object for child device\n");
1764 		return NULL;
1765 	}
1766 
1767 	child_device_obj->channel = channel;
1768 	guid_copy(&child_device_obj->dev_type, type);
1769 	guid_copy(&child_device_obj->dev_instance, instance);
1770 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1771 
1772 	return child_device_obj;
1773 }
1774 
1775 /*
1776  * vmbus_device_register - Register the child device
1777  */
1778 int vmbus_device_register(struct hv_device *child_device_obj)
1779 {
1780 	struct kobject *kobj = &child_device_obj->device.kobj;
1781 	int ret;
1782 
1783 	dev_set_name(&child_device_obj->device, "%pUl",
1784 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1785 
1786 	child_device_obj->device.bus = &hv_bus;
1787 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1788 	child_device_obj->device.release = vmbus_device_release;
1789 
1790 	/*
1791 	 * Register with the LDM. This will kick off the driver/device
1792 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1793 	 */
1794 	ret = device_register(&child_device_obj->device);
1795 	if (ret) {
1796 		pr_err("Unable to register child device\n");
1797 		return ret;
1798 	}
1799 
1800 	child_device_obj->channels_kset = kset_create_and_add("channels",
1801 							      NULL, kobj);
1802 	if (!child_device_obj->channels_kset) {
1803 		ret = -ENOMEM;
1804 		goto err_dev_unregister;
1805 	}
1806 
1807 	ret = vmbus_add_channel_kobj(child_device_obj,
1808 				     child_device_obj->channel);
1809 	if (ret) {
1810 		pr_err("Unable to register primary channeln");
1811 		goto err_kset_unregister;
1812 	}
1813 
1814 	return 0;
1815 
1816 err_kset_unregister:
1817 	kset_unregister(child_device_obj->channels_kset);
1818 
1819 err_dev_unregister:
1820 	device_unregister(&child_device_obj->device);
1821 	return ret;
1822 }
1823 
1824 /*
1825  * vmbus_device_unregister - Remove the specified child device
1826  * from the vmbus.
1827  */
1828 void vmbus_device_unregister(struct hv_device *device_obj)
1829 {
1830 	pr_debug("child device %s unregistered\n",
1831 		dev_name(&device_obj->device));
1832 
1833 	kset_unregister(device_obj->channels_kset);
1834 
1835 	/*
1836 	 * Kick off the process of unregistering the device.
1837 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1838 	 */
1839 	device_unregister(&device_obj->device);
1840 }
1841 
1842 
1843 /*
1844  * VMBUS is an acpi enumerated device. Get the information we
1845  * need from DSDT.
1846  */
1847 #define VTPM_BASE_ADDRESS 0xfed40000
1848 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1849 {
1850 	resource_size_t start = 0;
1851 	resource_size_t end = 0;
1852 	struct resource *new_res;
1853 	struct resource **old_res = &hyperv_mmio;
1854 	struct resource **prev_res = NULL;
1855 
1856 	switch (res->type) {
1857 
1858 	/*
1859 	 * "Address" descriptors are for bus windows. Ignore
1860 	 * "memory" descriptors, which are for registers on
1861 	 * devices.
1862 	 */
1863 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1864 		start = res->data.address32.address.minimum;
1865 		end = res->data.address32.address.maximum;
1866 		break;
1867 
1868 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1869 		start = res->data.address64.address.minimum;
1870 		end = res->data.address64.address.maximum;
1871 		break;
1872 
1873 	default:
1874 		/* Unused resource type */
1875 		return AE_OK;
1876 
1877 	}
1878 	/*
1879 	 * Ignore ranges that are below 1MB, as they're not
1880 	 * necessary or useful here.
1881 	 */
1882 	if (end < 0x100000)
1883 		return AE_OK;
1884 
1885 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1886 	if (!new_res)
1887 		return AE_NO_MEMORY;
1888 
1889 	/* If this range overlaps the virtual TPM, truncate it. */
1890 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1891 		end = VTPM_BASE_ADDRESS;
1892 
1893 	new_res->name = "hyperv mmio";
1894 	new_res->flags = IORESOURCE_MEM;
1895 	new_res->start = start;
1896 	new_res->end = end;
1897 
1898 	/*
1899 	 * If two ranges are adjacent, merge them.
1900 	 */
1901 	do {
1902 		if (!*old_res) {
1903 			*old_res = new_res;
1904 			break;
1905 		}
1906 
1907 		if (((*old_res)->end + 1) == new_res->start) {
1908 			(*old_res)->end = new_res->end;
1909 			kfree(new_res);
1910 			break;
1911 		}
1912 
1913 		if ((*old_res)->start == new_res->end + 1) {
1914 			(*old_res)->start = new_res->start;
1915 			kfree(new_res);
1916 			break;
1917 		}
1918 
1919 		if ((*old_res)->start > new_res->end) {
1920 			new_res->sibling = *old_res;
1921 			if (prev_res)
1922 				(*prev_res)->sibling = new_res;
1923 			*old_res = new_res;
1924 			break;
1925 		}
1926 
1927 		prev_res = old_res;
1928 		old_res = &(*old_res)->sibling;
1929 
1930 	} while (1);
1931 
1932 	return AE_OK;
1933 }
1934 
1935 static int vmbus_acpi_remove(struct acpi_device *device)
1936 {
1937 	struct resource *cur_res;
1938 	struct resource *next_res;
1939 
1940 	if (hyperv_mmio) {
1941 		if (fb_mmio) {
1942 			__release_region(hyperv_mmio, fb_mmio->start,
1943 					 resource_size(fb_mmio));
1944 			fb_mmio = NULL;
1945 		}
1946 
1947 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1948 			next_res = cur_res->sibling;
1949 			kfree(cur_res);
1950 		}
1951 	}
1952 
1953 	return 0;
1954 }
1955 
1956 static void vmbus_reserve_fb(void)
1957 {
1958 	int size;
1959 	/*
1960 	 * Make a claim for the frame buffer in the resource tree under the
1961 	 * first node, which will be the one below 4GB.  The length seems to
1962 	 * be underreported, particularly in a Generation 1 VM.  So start out
1963 	 * reserving a larger area and make it smaller until it succeeds.
1964 	 */
1965 
1966 	if (screen_info.lfb_base) {
1967 		if (efi_enabled(EFI_BOOT))
1968 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1969 		else
1970 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1971 
1972 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1973 			fb_mmio = __request_region(hyperv_mmio,
1974 						   screen_info.lfb_base, size,
1975 						   fb_mmio_name, 0);
1976 		}
1977 	}
1978 }
1979 
1980 /**
1981  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1982  * @new:		If successful, supplied a pointer to the
1983  *			allocated MMIO space.
1984  * @device_obj:		Identifies the caller
1985  * @min:		Minimum guest physical address of the
1986  *			allocation
1987  * @max:		Maximum guest physical address
1988  * @size:		Size of the range to be allocated
1989  * @align:		Alignment of the range to be allocated
1990  * @fb_overlap_ok:	Whether this allocation can be allowed
1991  *			to overlap the video frame buffer.
1992  *
1993  * This function walks the resources granted to VMBus by the
1994  * _CRS object in the ACPI namespace underneath the parent
1995  * "bridge" whether that's a root PCI bus in the Generation 1
1996  * case or a Module Device in the Generation 2 case.  It then
1997  * attempts to allocate from the global MMIO pool in a way that
1998  * matches the constraints supplied in these parameters and by
1999  * that _CRS.
2000  *
2001  * Return: 0 on success, -errno on failure
2002  */
2003 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2004 			resource_size_t min, resource_size_t max,
2005 			resource_size_t size, resource_size_t align,
2006 			bool fb_overlap_ok)
2007 {
2008 	struct resource *iter, *shadow;
2009 	resource_size_t range_min, range_max, start;
2010 	const char *dev_n = dev_name(&device_obj->device);
2011 	int retval;
2012 
2013 	retval = -ENXIO;
2014 	down(&hyperv_mmio_lock);
2015 
2016 	/*
2017 	 * If overlaps with frame buffers are allowed, then first attempt to
2018 	 * make the allocation from within the reserved region.  Because it
2019 	 * is already reserved, no shadow allocation is necessary.
2020 	 */
2021 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2022 	    !(max < fb_mmio->start)) {
2023 
2024 		range_min = fb_mmio->start;
2025 		range_max = fb_mmio->end;
2026 		start = (range_min + align - 1) & ~(align - 1);
2027 		for (; start + size - 1 <= range_max; start += align) {
2028 			*new = request_mem_region_exclusive(start, size, dev_n);
2029 			if (*new) {
2030 				retval = 0;
2031 				goto exit;
2032 			}
2033 		}
2034 	}
2035 
2036 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2037 		if ((iter->start >= max) || (iter->end <= min))
2038 			continue;
2039 
2040 		range_min = iter->start;
2041 		range_max = iter->end;
2042 		start = (range_min + align - 1) & ~(align - 1);
2043 		for (; start + size - 1 <= range_max; start += align) {
2044 			shadow = __request_region(iter, start, size, NULL,
2045 						  IORESOURCE_BUSY);
2046 			if (!shadow)
2047 				continue;
2048 
2049 			*new = request_mem_region_exclusive(start, size, dev_n);
2050 			if (*new) {
2051 				shadow->name = (char *)*new;
2052 				retval = 0;
2053 				goto exit;
2054 			}
2055 
2056 			__release_region(iter, start, size);
2057 		}
2058 	}
2059 
2060 exit:
2061 	up(&hyperv_mmio_lock);
2062 	return retval;
2063 }
2064 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2065 
2066 /**
2067  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2068  * @start:		Base address of region to release.
2069  * @size:		Size of the range to be allocated
2070  *
2071  * This function releases anything requested by
2072  * vmbus_mmio_allocate().
2073  */
2074 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2075 {
2076 	struct resource *iter;
2077 
2078 	down(&hyperv_mmio_lock);
2079 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2080 		if ((iter->start >= start + size) || (iter->end <= start))
2081 			continue;
2082 
2083 		__release_region(iter, start, size);
2084 	}
2085 	release_mem_region(start, size);
2086 	up(&hyperv_mmio_lock);
2087 
2088 }
2089 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2090 
2091 static int vmbus_acpi_add(struct acpi_device *device)
2092 {
2093 	acpi_status result;
2094 	int ret_val = -ENODEV;
2095 	struct acpi_device *ancestor;
2096 
2097 	hv_acpi_dev = device;
2098 
2099 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2100 					vmbus_walk_resources, NULL);
2101 
2102 	if (ACPI_FAILURE(result))
2103 		goto acpi_walk_err;
2104 	/*
2105 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2106 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2107 	 */
2108 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2109 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2110 					     vmbus_walk_resources, NULL);
2111 
2112 		if (ACPI_FAILURE(result))
2113 			continue;
2114 		if (hyperv_mmio) {
2115 			vmbus_reserve_fb();
2116 			break;
2117 		}
2118 	}
2119 	ret_val = 0;
2120 
2121 acpi_walk_err:
2122 	complete(&probe_event);
2123 	if (ret_val)
2124 		vmbus_acpi_remove(device);
2125 	return ret_val;
2126 }
2127 
2128 static int vmbus_bus_suspend(struct device *dev)
2129 {
2130 	struct vmbus_channel *channel, *sc;
2131 	unsigned long flags;
2132 
2133 	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2134 		/*
2135 		 * We wait here until the completion of any channel
2136 		 * offers that are currently in progress.
2137 		 */
2138 		msleep(1);
2139 	}
2140 
2141 	mutex_lock(&vmbus_connection.channel_mutex);
2142 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2143 		if (!is_hvsock_channel(channel))
2144 			continue;
2145 
2146 		vmbus_force_channel_rescinded(channel);
2147 	}
2148 	mutex_unlock(&vmbus_connection.channel_mutex);
2149 
2150 	/*
2151 	 * Wait until all the sub-channels and hv_sock channels have been
2152 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2153 	 * they would conflict with the new sub-channels that will be created
2154 	 * in the resume path. hv_sock channels should also be destroyed, but
2155 	 * a hv_sock channel of an established hv_sock connection can not be
2156 	 * really destroyed since it may still be referenced by the userspace
2157 	 * application, so we just force the hv_sock channel to be rescinded
2158 	 * by vmbus_force_channel_rescinded(), and the userspace application
2159 	 * will thoroughly destroy the channel after hibernation.
2160 	 *
2161 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2162 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2163 	 */
2164 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2165 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2166 
2167 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);
2168 
2169 	mutex_lock(&vmbus_connection.channel_mutex);
2170 
2171 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2172 		/*
2173 		 * Invalidate the field. Upon resume, vmbus_onoffer() will fix
2174 		 * up the field, and the other fields (if necessary).
2175 		 */
2176 		channel->offermsg.child_relid = INVALID_RELID;
2177 
2178 		if (is_hvsock_channel(channel)) {
2179 			if (!channel->rescind) {
2180 				pr_err("hv_sock channel not rescinded!\n");
2181 				WARN_ON_ONCE(1);
2182 			}
2183 			continue;
2184 		}
2185 
2186 		spin_lock_irqsave(&channel->lock, flags);
2187 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2188 			pr_err("Sub-channel not deleted!\n");
2189 			WARN_ON_ONCE(1);
2190 		}
2191 		spin_unlock_irqrestore(&channel->lock, flags);
2192 
2193 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2194 	}
2195 
2196 	mutex_unlock(&vmbus_connection.channel_mutex);
2197 
2198 	vmbus_initiate_unload(false);
2199 
2200 	vmbus_connection.conn_state = DISCONNECTED;
2201 
2202 	/* Reset the event for the next resume. */
2203 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2204 
2205 	return 0;
2206 }
2207 
2208 static int vmbus_bus_resume(struct device *dev)
2209 {
2210 	struct vmbus_channel_msginfo *msginfo;
2211 	size_t msgsize;
2212 	int ret;
2213 
2214 	/*
2215 	 * We only use the 'vmbus_proto_version', which was in use before
2216 	 * hibernation, to re-negotiate with the host.
2217 	 */
2218 	if (vmbus_proto_version == VERSION_INVAL ||
2219 	    vmbus_proto_version == 0) {
2220 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2221 		return -EINVAL;
2222 	}
2223 
2224 	msgsize = sizeof(*msginfo) +
2225 		  sizeof(struct vmbus_channel_initiate_contact);
2226 
2227 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2228 
2229 	if (msginfo == NULL)
2230 		return -ENOMEM;
2231 
2232 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2233 
2234 	kfree(msginfo);
2235 
2236 	if (ret != 0)
2237 		return ret;
2238 
2239 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2240 
2241 	vmbus_request_offers();
2242 
2243 	wait_for_completion(&vmbus_connection.ready_for_resume_event);
2244 
2245 	/* Reset the event for the next suspend. */
2246 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2247 
2248 	return 0;
2249 }
2250 
2251 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2252 	{"VMBUS", 0},
2253 	{"VMBus", 0},
2254 	{"", 0},
2255 };
2256 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2257 
2258 /*
2259  * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
2260  * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the
2261  * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the
2262  * pci "noirq" restore callback runs before "non-noirq" callbacks (see
2263  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2264  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2265  * resume callback must also run via the "noirq" callbacks.
2266  */
2267 static const struct dev_pm_ops vmbus_bus_pm = {
2268 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume)
2269 };
2270 
2271 static struct acpi_driver vmbus_acpi_driver = {
2272 	.name = "vmbus",
2273 	.ids = vmbus_acpi_device_ids,
2274 	.ops = {
2275 		.add = vmbus_acpi_add,
2276 		.remove = vmbus_acpi_remove,
2277 	},
2278 	.drv.pm = &vmbus_bus_pm,
2279 };
2280 
2281 static void hv_kexec_handler(void)
2282 {
2283 	hv_stimer_global_cleanup();
2284 	vmbus_initiate_unload(false);
2285 	vmbus_connection.conn_state = DISCONNECTED;
2286 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2287 	mb();
2288 	cpuhp_remove_state(hyperv_cpuhp_online);
2289 	hyperv_cleanup();
2290 };
2291 
2292 static void hv_crash_handler(struct pt_regs *regs)
2293 {
2294 	int cpu;
2295 
2296 	vmbus_initiate_unload(true);
2297 	/*
2298 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2299 	 * doing the cleanup for current CPU only. This should be sufficient
2300 	 * for kdump.
2301 	 */
2302 	vmbus_connection.conn_state = DISCONNECTED;
2303 	cpu = smp_processor_id();
2304 	hv_stimer_cleanup(cpu);
2305 	hv_synic_cleanup(cpu);
2306 	hyperv_cleanup();
2307 };
2308 
2309 static int hv_synic_suspend(void)
2310 {
2311 	/*
2312 	 * When we reach here, all the non-boot CPUs have been offlined, and
2313 	 * the stimers on them have been unbound in hv_synic_cleanup() ->
2314 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2315 	 *
2316 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. Here
2317 	 * we do not unbind the stimer on CPU0 because: 1) it's unnecessary
2318 	 * because the interrupts remain disabled between syscore_suspend()
2319 	 * and syscore_resume(): see create_image() and resume_target_kernel();
2320 	 * 2) the stimer on CPU0 is automatically disabled later by
2321 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2322 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown(); 3) a warning
2323 	 * would be triggered if we call clockevents_unbind_device(), which
2324 	 * may sleep, in an interrupts-disabled context. So, we intentionally
2325 	 * don't call hv_stimer_cleanup(0) here.
2326 	 */
2327 
2328 	hv_synic_disable_regs(0);
2329 
2330 	return 0;
2331 }
2332 
2333 static void hv_synic_resume(void)
2334 {
2335 	hv_synic_enable_regs(0);
2336 
2337 	/*
2338 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2339 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2340 	 * automatically re-enabled in timekeeping_resume().
2341 	 */
2342 }
2343 
2344 /* The callbacks run only on CPU0, with irqs_disabled. */
2345 static struct syscore_ops hv_synic_syscore_ops = {
2346 	.suspend = hv_synic_suspend,
2347 	.resume = hv_synic_resume,
2348 };
2349 
2350 static int __init hv_acpi_init(void)
2351 {
2352 	int ret, t;
2353 
2354 	if (!hv_is_hyperv_initialized())
2355 		return -ENODEV;
2356 
2357 	init_completion(&probe_event);
2358 
2359 	/*
2360 	 * Get ACPI resources first.
2361 	 */
2362 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2363 
2364 	if (ret)
2365 		return ret;
2366 
2367 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2368 	if (t == 0) {
2369 		ret = -ETIMEDOUT;
2370 		goto cleanup;
2371 	}
2372 
2373 	ret = vmbus_bus_init();
2374 	if (ret)
2375 		goto cleanup;
2376 
2377 	hv_setup_kexec_handler(hv_kexec_handler);
2378 	hv_setup_crash_handler(hv_crash_handler);
2379 
2380 	register_syscore_ops(&hv_synic_syscore_ops);
2381 
2382 	return 0;
2383 
2384 cleanup:
2385 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2386 	hv_acpi_dev = NULL;
2387 	return ret;
2388 }
2389 
2390 static void __exit vmbus_exit(void)
2391 {
2392 	int cpu;
2393 
2394 	unregister_syscore_ops(&hv_synic_syscore_ops);
2395 
2396 	hv_remove_kexec_handler();
2397 	hv_remove_crash_handler();
2398 	vmbus_connection.conn_state = DISCONNECTED;
2399 	hv_stimer_global_cleanup();
2400 	vmbus_disconnect();
2401 	hv_remove_vmbus_irq();
2402 	for_each_online_cpu(cpu) {
2403 		struct hv_per_cpu_context *hv_cpu
2404 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2405 
2406 		tasklet_kill(&hv_cpu->msg_dpc);
2407 	}
2408 	vmbus_free_channels();
2409 
2410 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2411 		kmsg_dump_unregister(&hv_kmsg_dumper);
2412 		unregister_die_notifier(&hyperv_die_block);
2413 		atomic_notifier_chain_unregister(&panic_notifier_list,
2414 						 &hyperv_panic_block);
2415 	}
2416 
2417 	free_page((unsigned long)hv_panic_page);
2418 	unregister_sysctl_table(hv_ctl_table_hdr);
2419 	hv_ctl_table_hdr = NULL;
2420 	bus_unregister(&hv_bus);
2421 
2422 	cpuhp_remove_state(hyperv_cpuhp_online);
2423 	hv_synic_free();
2424 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2425 }
2426 
2427 
2428 MODULE_LICENSE("GPL");
2429 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2430 
2431 subsys_initcall(hv_acpi_init);
2432 module_exit(vmbus_exit);
2433