xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision e5c86679)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38 
39 #include <asm/hyperv.h>
40 #include <asm/hypervisor.h>
41 #include <asm/mshyperv.h>
42 #include <linux/notifier.h>
43 #include <linux/ptrace.h>
44 #include <linux/screen_info.h>
45 #include <linux/kdebug.h>
46 #include <linux/efi.h>
47 #include <linux/random.h>
48 #include "hyperv_vmbus.h"
49 
50 struct vmbus_dynid {
51 	struct list_head node;
52 	struct hv_vmbus_device_id id;
53 };
54 
55 static struct acpi_device  *hv_acpi_dev;
56 
57 static struct completion probe_event;
58 
59 static int hyperv_cpuhp_online;
60 
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 			      void *args)
63 {
64 	struct pt_regs *regs;
65 
66 	regs = current_pt_regs();
67 
68 	hyperv_report_panic(regs);
69 	return NOTIFY_DONE;
70 }
71 
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 			    void *args)
74 {
75 	struct die_args *die = (struct die_args *)args;
76 	struct pt_regs *regs = die->regs;
77 
78 	hyperv_report_panic(regs);
79 	return NOTIFY_DONE;
80 }
81 
82 static struct notifier_block hyperv_die_block = {
83 	.notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 	.notifier_call = hyperv_panic_event,
87 };
88 
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93 
94 static int vmbus_exists(void)
95 {
96 	if (hv_acpi_dev == NULL)
97 		return -ENODEV;
98 
99 	return 0;
100 }
101 
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 	int i;
106 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109 
110 static u8 channel_monitor_group(struct vmbus_channel *channel)
111 {
112 	return (u8)channel->offermsg.monitorid / 32;
113 }
114 
115 static u8 channel_monitor_offset(struct vmbus_channel *channel)
116 {
117 	return (u8)channel->offermsg.monitorid % 32;
118 }
119 
120 static u32 channel_pending(struct vmbus_channel *channel,
121 			   struct hv_monitor_page *monitor_page)
122 {
123 	u8 monitor_group = channel_monitor_group(channel);
124 	return monitor_page->trigger_group[monitor_group].pending;
125 }
126 
127 static u32 channel_latency(struct vmbus_channel *channel,
128 			   struct hv_monitor_page *monitor_page)
129 {
130 	u8 monitor_group = channel_monitor_group(channel);
131 	u8 monitor_offset = channel_monitor_offset(channel);
132 	return monitor_page->latency[monitor_group][monitor_offset];
133 }
134 
135 static u32 channel_conn_id(struct vmbus_channel *channel,
136 			   struct hv_monitor_page *monitor_page)
137 {
138 	u8 monitor_group = channel_monitor_group(channel);
139 	u8 monitor_offset = channel_monitor_offset(channel);
140 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
141 }
142 
143 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
144 		       char *buf)
145 {
146 	struct hv_device *hv_dev = device_to_hv_device(dev);
147 
148 	if (!hv_dev->channel)
149 		return -ENODEV;
150 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
151 }
152 static DEVICE_ATTR_RO(id);
153 
154 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
155 			  char *buf)
156 {
157 	struct hv_device *hv_dev = device_to_hv_device(dev);
158 
159 	if (!hv_dev->channel)
160 		return -ENODEV;
161 	return sprintf(buf, "%d\n", hv_dev->channel->state);
162 }
163 static DEVICE_ATTR_RO(state);
164 
165 static ssize_t monitor_id_show(struct device *dev,
166 			       struct device_attribute *dev_attr, char *buf)
167 {
168 	struct hv_device *hv_dev = device_to_hv_device(dev);
169 
170 	if (!hv_dev->channel)
171 		return -ENODEV;
172 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
173 }
174 static DEVICE_ATTR_RO(monitor_id);
175 
176 static ssize_t class_id_show(struct device *dev,
177 			       struct device_attribute *dev_attr, char *buf)
178 {
179 	struct hv_device *hv_dev = device_to_hv_device(dev);
180 
181 	if (!hv_dev->channel)
182 		return -ENODEV;
183 	return sprintf(buf, "{%pUl}\n",
184 		       hv_dev->channel->offermsg.offer.if_type.b);
185 }
186 static DEVICE_ATTR_RO(class_id);
187 
188 static ssize_t device_id_show(struct device *dev,
189 			      struct device_attribute *dev_attr, char *buf)
190 {
191 	struct hv_device *hv_dev = device_to_hv_device(dev);
192 
193 	if (!hv_dev->channel)
194 		return -ENODEV;
195 	return sprintf(buf, "{%pUl}\n",
196 		       hv_dev->channel->offermsg.offer.if_instance.b);
197 }
198 static DEVICE_ATTR_RO(device_id);
199 
200 static ssize_t modalias_show(struct device *dev,
201 			     struct device_attribute *dev_attr, char *buf)
202 {
203 	struct hv_device *hv_dev = device_to_hv_device(dev);
204 	char alias_name[VMBUS_ALIAS_LEN + 1];
205 
206 	print_alias_name(hv_dev, alias_name);
207 	return sprintf(buf, "vmbus:%s\n", alias_name);
208 }
209 static DEVICE_ATTR_RO(modalias);
210 
211 static ssize_t server_monitor_pending_show(struct device *dev,
212 					   struct device_attribute *dev_attr,
213 					   char *buf)
214 {
215 	struct hv_device *hv_dev = device_to_hv_device(dev);
216 
217 	if (!hv_dev->channel)
218 		return -ENODEV;
219 	return sprintf(buf, "%d\n",
220 		       channel_pending(hv_dev->channel,
221 				       vmbus_connection.monitor_pages[1]));
222 }
223 static DEVICE_ATTR_RO(server_monitor_pending);
224 
225 static ssize_t client_monitor_pending_show(struct device *dev,
226 					   struct device_attribute *dev_attr,
227 					   char *buf)
228 {
229 	struct hv_device *hv_dev = device_to_hv_device(dev);
230 
231 	if (!hv_dev->channel)
232 		return -ENODEV;
233 	return sprintf(buf, "%d\n",
234 		       channel_pending(hv_dev->channel,
235 				       vmbus_connection.monitor_pages[1]));
236 }
237 static DEVICE_ATTR_RO(client_monitor_pending);
238 
239 static ssize_t server_monitor_latency_show(struct device *dev,
240 					   struct device_attribute *dev_attr,
241 					   char *buf)
242 {
243 	struct hv_device *hv_dev = device_to_hv_device(dev);
244 
245 	if (!hv_dev->channel)
246 		return -ENODEV;
247 	return sprintf(buf, "%d\n",
248 		       channel_latency(hv_dev->channel,
249 				       vmbus_connection.monitor_pages[0]));
250 }
251 static DEVICE_ATTR_RO(server_monitor_latency);
252 
253 static ssize_t client_monitor_latency_show(struct device *dev,
254 					   struct device_attribute *dev_attr,
255 					   char *buf)
256 {
257 	struct hv_device *hv_dev = device_to_hv_device(dev);
258 
259 	if (!hv_dev->channel)
260 		return -ENODEV;
261 	return sprintf(buf, "%d\n",
262 		       channel_latency(hv_dev->channel,
263 				       vmbus_connection.monitor_pages[1]));
264 }
265 static DEVICE_ATTR_RO(client_monitor_latency);
266 
267 static ssize_t server_monitor_conn_id_show(struct device *dev,
268 					   struct device_attribute *dev_attr,
269 					   char *buf)
270 {
271 	struct hv_device *hv_dev = device_to_hv_device(dev);
272 
273 	if (!hv_dev->channel)
274 		return -ENODEV;
275 	return sprintf(buf, "%d\n",
276 		       channel_conn_id(hv_dev->channel,
277 				       vmbus_connection.monitor_pages[0]));
278 }
279 static DEVICE_ATTR_RO(server_monitor_conn_id);
280 
281 static ssize_t client_monitor_conn_id_show(struct device *dev,
282 					   struct device_attribute *dev_attr,
283 					   char *buf)
284 {
285 	struct hv_device *hv_dev = device_to_hv_device(dev);
286 
287 	if (!hv_dev->channel)
288 		return -ENODEV;
289 	return sprintf(buf, "%d\n",
290 		       channel_conn_id(hv_dev->channel,
291 				       vmbus_connection.monitor_pages[1]));
292 }
293 static DEVICE_ATTR_RO(client_monitor_conn_id);
294 
295 static ssize_t out_intr_mask_show(struct device *dev,
296 				  struct device_attribute *dev_attr, char *buf)
297 {
298 	struct hv_device *hv_dev = device_to_hv_device(dev);
299 	struct hv_ring_buffer_debug_info outbound;
300 
301 	if (!hv_dev->channel)
302 		return -ENODEV;
303 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
304 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
305 }
306 static DEVICE_ATTR_RO(out_intr_mask);
307 
308 static ssize_t out_read_index_show(struct device *dev,
309 				   struct device_attribute *dev_attr, char *buf)
310 {
311 	struct hv_device *hv_dev = device_to_hv_device(dev);
312 	struct hv_ring_buffer_debug_info outbound;
313 
314 	if (!hv_dev->channel)
315 		return -ENODEV;
316 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317 	return sprintf(buf, "%d\n", outbound.current_read_index);
318 }
319 static DEVICE_ATTR_RO(out_read_index);
320 
321 static ssize_t out_write_index_show(struct device *dev,
322 				    struct device_attribute *dev_attr,
323 				    char *buf)
324 {
325 	struct hv_device *hv_dev = device_to_hv_device(dev);
326 	struct hv_ring_buffer_debug_info outbound;
327 
328 	if (!hv_dev->channel)
329 		return -ENODEV;
330 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
331 	return sprintf(buf, "%d\n", outbound.current_write_index);
332 }
333 static DEVICE_ATTR_RO(out_write_index);
334 
335 static ssize_t out_read_bytes_avail_show(struct device *dev,
336 					 struct device_attribute *dev_attr,
337 					 char *buf)
338 {
339 	struct hv_device *hv_dev = device_to_hv_device(dev);
340 	struct hv_ring_buffer_debug_info outbound;
341 
342 	if (!hv_dev->channel)
343 		return -ENODEV;
344 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
345 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
346 }
347 static DEVICE_ATTR_RO(out_read_bytes_avail);
348 
349 static ssize_t out_write_bytes_avail_show(struct device *dev,
350 					  struct device_attribute *dev_attr,
351 					  char *buf)
352 {
353 	struct hv_device *hv_dev = device_to_hv_device(dev);
354 	struct hv_ring_buffer_debug_info outbound;
355 
356 	if (!hv_dev->channel)
357 		return -ENODEV;
358 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
359 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
360 }
361 static DEVICE_ATTR_RO(out_write_bytes_avail);
362 
363 static ssize_t in_intr_mask_show(struct device *dev,
364 				 struct device_attribute *dev_attr, char *buf)
365 {
366 	struct hv_device *hv_dev = device_to_hv_device(dev);
367 	struct hv_ring_buffer_debug_info inbound;
368 
369 	if (!hv_dev->channel)
370 		return -ENODEV;
371 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
372 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
373 }
374 static DEVICE_ATTR_RO(in_intr_mask);
375 
376 static ssize_t in_read_index_show(struct device *dev,
377 				  struct device_attribute *dev_attr, char *buf)
378 {
379 	struct hv_device *hv_dev = device_to_hv_device(dev);
380 	struct hv_ring_buffer_debug_info inbound;
381 
382 	if (!hv_dev->channel)
383 		return -ENODEV;
384 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385 	return sprintf(buf, "%d\n", inbound.current_read_index);
386 }
387 static DEVICE_ATTR_RO(in_read_index);
388 
389 static ssize_t in_write_index_show(struct device *dev,
390 				   struct device_attribute *dev_attr, char *buf)
391 {
392 	struct hv_device *hv_dev = device_to_hv_device(dev);
393 	struct hv_ring_buffer_debug_info inbound;
394 
395 	if (!hv_dev->channel)
396 		return -ENODEV;
397 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398 	return sprintf(buf, "%d\n", inbound.current_write_index);
399 }
400 static DEVICE_ATTR_RO(in_write_index);
401 
402 static ssize_t in_read_bytes_avail_show(struct device *dev,
403 					struct device_attribute *dev_attr,
404 					char *buf)
405 {
406 	struct hv_device *hv_dev = device_to_hv_device(dev);
407 	struct hv_ring_buffer_debug_info inbound;
408 
409 	if (!hv_dev->channel)
410 		return -ENODEV;
411 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
412 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
413 }
414 static DEVICE_ATTR_RO(in_read_bytes_avail);
415 
416 static ssize_t in_write_bytes_avail_show(struct device *dev,
417 					 struct device_attribute *dev_attr,
418 					 char *buf)
419 {
420 	struct hv_device *hv_dev = device_to_hv_device(dev);
421 	struct hv_ring_buffer_debug_info inbound;
422 
423 	if (!hv_dev->channel)
424 		return -ENODEV;
425 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
427 }
428 static DEVICE_ATTR_RO(in_write_bytes_avail);
429 
430 static ssize_t channel_vp_mapping_show(struct device *dev,
431 				       struct device_attribute *dev_attr,
432 				       char *buf)
433 {
434 	struct hv_device *hv_dev = device_to_hv_device(dev);
435 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
436 	unsigned long flags;
437 	int buf_size = PAGE_SIZE, n_written, tot_written;
438 	struct list_head *cur;
439 
440 	if (!channel)
441 		return -ENODEV;
442 
443 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
444 		channel->offermsg.child_relid, channel->target_cpu);
445 
446 	spin_lock_irqsave(&channel->lock, flags);
447 
448 	list_for_each(cur, &channel->sc_list) {
449 		if (tot_written >= buf_size - 1)
450 			break;
451 
452 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
453 		n_written = scnprintf(buf + tot_written,
454 				     buf_size - tot_written,
455 				     "%u:%u\n",
456 				     cur_sc->offermsg.child_relid,
457 				     cur_sc->target_cpu);
458 		tot_written += n_written;
459 	}
460 
461 	spin_unlock_irqrestore(&channel->lock, flags);
462 
463 	return tot_written;
464 }
465 static DEVICE_ATTR_RO(channel_vp_mapping);
466 
467 static ssize_t vendor_show(struct device *dev,
468 			   struct device_attribute *dev_attr,
469 			   char *buf)
470 {
471 	struct hv_device *hv_dev = device_to_hv_device(dev);
472 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
473 }
474 static DEVICE_ATTR_RO(vendor);
475 
476 static ssize_t device_show(struct device *dev,
477 			   struct device_attribute *dev_attr,
478 			   char *buf)
479 {
480 	struct hv_device *hv_dev = device_to_hv_device(dev);
481 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
482 }
483 static DEVICE_ATTR_RO(device);
484 
485 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
486 static struct attribute *vmbus_dev_attrs[] = {
487 	&dev_attr_id.attr,
488 	&dev_attr_state.attr,
489 	&dev_attr_monitor_id.attr,
490 	&dev_attr_class_id.attr,
491 	&dev_attr_device_id.attr,
492 	&dev_attr_modalias.attr,
493 	&dev_attr_server_monitor_pending.attr,
494 	&dev_attr_client_monitor_pending.attr,
495 	&dev_attr_server_monitor_latency.attr,
496 	&dev_attr_client_monitor_latency.attr,
497 	&dev_attr_server_monitor_conn_id.attr,
498 	&dev_attr_client_monitor_conn_id.attr,
499 	&dev_attr_out_intr_mask.attr,
500 	&dev_attr_out_read_index.attr,
501 	&dev_attr_out_write_index.attr,
502 	&dev_attr_out_read_bytes_avail.attr,
503 	&dev_attr_out_write_bytes_avail.attr,
504 	&dev_attr_in_intr_mask.attr,
505 	&dev_attr_in_read_index.attr,
506 	&dev_attr_in_write_index.attr,
507 	&dev_attr_in_read_bytes_avail.attr,
508 	&dev_attr_in_write_bytes_avail.attr,
509 	&dev_attr_channel_vp_mapping.attr,
510 	&dev_attr_vendor.attr,
511 	&dev_attr_device.attr,
512 	NULL,
513 };
514 ATTRIBUTE_GROUPS(vmbus_dev);
515 
516 /*
517  * vmbus_uevent - add uevent for our device
518  *
519  * This routine is invoked when a device is added or removed on the vmbus to
520  * generate a uevent to udev in the userspace. The udev will then look at its
521  * rule and the uevent generated here to load the appropriate driver
522  *
523  * The alias string will be of the form vmbus:guid where guid is the string
524  * representation of the device guid (each byte of the guid will be
525  * represented with two hex characters.
526  */
527 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
528 {
529 	struct hv_device *dev = device_to_hv_device(device);
530 	int ret;
531 	char alias_name[VMBUS_ALIAS_LEN + 1];
532 
533 	print_alias_name(dev, alias_name);
534 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
535 	return ret;
536 }
537 
538 static const uuid_le null_guid;
539 
540 static inline bool is_null_guid(const uuid_le *guid)
541 {
542 	if (uuid_le_cmp(*guid, null_guid))
543 		return false;
544 	return true;
545 }
546 
547 /*
548  * Return a matching hv_vmbus_device_id pointer.
549  * If there is no match, return NULL.
550  */
551 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
552 					const uuid_le *guid)
553 {
554 	const struct hv_vmbus_device_id *id = NULL;
555 	struct vmbus_dynid *dynid;
556 
557 	/* Look at the dynamic ids first, before the static ones */
558 	spin_lock(&drv->dynids.lock);
559 	list_for_each_entry(dynid, &drv->dynids.list, node) {
560 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
561 			id = &dynid->id;
562 			break;
563 		}
564 	}
565 	spin_unlock(&drv->dynids.lock);
566 
567 	if (id)
568 		return id;
569 
570 	id = drv->id_table;
571 	if (id == NULL)
572 		return NULL; /* empty device table */
573 
574 	for (; !is_null_guid(&id->guid); id++)
575 		if (!uuid_le_cmp(id->guid, *guid))
576 			return id;
577 
578 	return NULL;
579 }
580 
581 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
582 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
583 {
584 	struct vmbus_dynid *dynid;
585 
586 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
587 	if (!dynid)
588 		return -ENOMEM;
589 
590 	dynid->id.guid = *guid;
591 
592 	spin_lock(&drv->dynids.lock);
593 	list_add_tail(&dynid->node, &drv->dynids.list);
594 	spin_unlock(&drv->dynids.lock);
595 
596 	return driver_attach(&drv->driver);
597 }
598 
599 static void vmbus_free_dynids(struct hv_driver *drv)
600 {
601 	struct vmbus_dynid *dynid, *n;
602 
603 	spin_lock(&drv->dynids.lock);
604 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
605 		list_del(&dynid->node);
606 		kfree(dynid);
607 	}
608 	spin_unlock(&drv->dynids.lock);
609 }
610 
611 /* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */
612 static int get_uuid_le(const char *str, uuid_le *uu)
613 {
614 	unsigned int b[16];
615 	int i;
616 
617 	if (strlen(str) < 37)
618 		return -1;
619 
620 	for (i = 0; i < 36; i++) {
621 		switch (i) {
622 		case 8: case 13: case 18: case 23:
623 			if (str[i] != '-')
624 				return -1;
625 			break;
626 		default:
627 			if (!isxdigit(str[i]))
628 				return -1;
629 		}
630 	}
631 
632 	/* unparse little endian output byte order */
633 	if (sscanf(str,
634 		   "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x",
635 		   &b[3], &b[2], &b[1], &b[0],
636 		   &b[5], &b[4], &b[7], &b[6], &b[8], &b[9],
637 		   &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16)
638 		return -1;
639 
640 	for (i = 0; i < 16; i++)
641 		uu->b[i] = b[i];
642 	return 0;
643 }
644 
645 /*
646  * store_new_id - sysfs frontend to vmbus_add_dynid()
647  *
648  * Allow GUIDs to be added to an existing driver via sysfs.
649  */
650 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
651 			    size_t count)
652 {
653 	struct hv_driver *drv = drv_to_hv_drv(driver);
654 	uuid_le guid = NULL_UUID_LE;
655 	ssize_t retval;
656 
657 	if (get_uuid_le(buf, &guid) != 0)
658 		return -EINVAL;
659 
660 	if (hv_vmbus_get_id(drv, &guid))
661 		return -EEXIST;
662 
663 	retval = vmbus_add_dynid(drv, &guid);
664 	if (retval)
665 		return retval;
666 	return count;
667 }
668 static DRIVER_ATTR_WO(new_id);
669 
670 /*
671  * store_remove_id - remove a PCI device ID from this driver
672  *
673  * Removes a dynamic pci device ID to this driver.
674  */
675 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
676 			       size_t count)
677 {
678 	struct hv_driver *drv = drv_to_hv_drv(driver);
679 	struct vmbus_dynid *dynid, *n;
680 	uuid_le guid = NULL_UUID_LE;
681 	size_t retval = -ENODEV;
682 
683 	if (get_uuid_le(buf, &guid))
684 		return -EINVAL;
685 
686 	spin_lock(&drv->dynids.lock);
687 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
688 		struct hv_vmbus_device_id *id = &dynid->id;
689 
690 		if (!uuid_le_cmp(id->guid, guid)) {
691 			list_del(&dynid->node);
692 			kfree(dynid);
693 			retval = count;
694 			break;
695 		}
696 	}
697 	spin_unlock(&drv->dynids.lock);
698 
699 	return retval;
700 }
701 static DRIVER_ATTR_WO(remove_id);
702 
703 static struct attribute *vmbus_drv_attrs[] = {
704 	&driver_attr_new_id.attr,
705 	&driver_attr_remove_id.attr,
706 	NULL,
707 };
708 ATTRIBUTE_GROUPS(vmbus_drv);
709 
710 
711 /*
712  * vmbus_match - Attempt to match the specified device to the specified driver
713  */
714 static int vmbus_match(struct device *device, struct device_driver *driver)
715 {
716 	struct hv_driver *drv = drv_to_hv_drv(driver);
717 	struct hv_device *hv_dev = device_to_hv_device(device);
718 
719 	/* The hv_sock driver handles all hv_sock offers. */
720 	if (is_hvsock_channel(hv_dev->channel))
721 		return drv->hvsock;
722 
723 	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
724 		return 1;
725 
726 	return 0;
727 }
728 
729 /*
730  * vmbus_probe - Add the new vmbus's child device
731  */
732 static int vmbus_probe(struct device *child_device)
733 {
734 	int ret = 0;
735 	struct hv_driver *drv =
736 			drv_to_hv_drv(child_device->driver);
737 	struct hv_device *dev = device_to_hv_device(child_device);
738 	const struct hv_vmbus_device_id *dev_id;
739 
740 	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
741 	if (drv->probe) {
742 		ret = drv->probe(dev, dev_id);
743 		if (ret != 0)
744 			pr_err("probe failed for device %s (%d)\n",
745 			       dev_name(child_device), ret);
746 
747 	} else {
748 		pr_err("probe not set for driver %s\n",
749 		       dev_name(child_device));
750 		ret = -ENODEV;
751 	}
752 	return ret;
753 }
754 
755 /*
756  * vmbus_remove - Remove a vmbus device
757  */
758 static int vmbus_remove(struct device *child_device)
759 {
760 	struct hv_driver *drv;
761 	struct hv_device *dev = device_to_hv_device(child_device);
762 
763 	if (child_device->driver) {
764 		drv = drv_to_hv_drv(child_device->driver);
765 		if (drv->remove)
766 			drv->remove(dev);
767 	}
768 
769 	return 0;
770 }
771 
772 
773 /*
774  * vmbus_shutdown - Shutdown a vmbus device
775  */
776 static void vmbus_shutdown(struct device *child_device)
777 {
778 	struct hv_driver *drv;
779 	struct hv_device *dev = device_to_hv_device(child_device);
780 
781 
782 	/* The device may not be attached yet */
783 	if (!child_device->driver)
784 		return;
785 
786 	drv = drv_to_hv_drv(child_device->driver);
787 
788 	if (drv->shutdown)
789 		drv->shutdown(dev);
790 
791 	return;
792 }
793 
794 
795 /*
796  * vmbus_device_release - Final callback release of the vmbus child device
797  */
798 static void vmbus_device_release(struct device *device)
799 {
800 	struct hv_device *hv_dev = device_to_hv_device(device);
801 	struct vmbus_channel *channel = hv_dev->channel;
802 
803 	hv_process_channel_removal(channel,
804 				   channel->offermsg.child_relid);
805 	kfree(hv_dev);
806 
807 }
808 
809 /* The one and only one */
810 static struct bus_type  hv_bus = {
811 	.name =		"vmbus",
812 	.match =		vmbus_match,
813 	.shutdown =		vmbus_shutdown,
814 	.remove =		vmbus_remove,
815 	.probe =		vmbus_probe,
816 	.uevent =		vmbus_uevent,
817 	.dev_groups =		vmbus_dev_groups,
818 	.drv_groups =		vmbus_drv_groups,
819 };
820 
821 struct onmessage_work_context {
822 	struct work_struct work;
823 	struct hv_message msg;
824 };
825 
826 static void vmbus_onmessage_work(struct work_struct *work)
827 {
828 	struct onmessage_work_context *ctx;
829 
830 	/* Do not process messages if we're in DISCONNECTED state */
831 	if (vmbus_connection.conn_state == DISCONNECTED)
832 		return;
833 
834 	ctx = container_of(work, struct onmessage_work_context,
835 			   work);
836 	vmbus_onmessage(&ctx->msg);
837 	kfree(ctx);
838 }
839 
840 static void hv_process_timer_expiration(struct hv_message *msg,
841 					struct hv_per_cpu_context *hv_cpu)
842 {
843 	struct clock_event_device *dev = hv_cpu->clk_evt;
844 
845 	if (dev->event_handler)
846 		dev->event_handler(dev);
847 
848 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
849 }
850 
851 void vmbus_on_msg_dpc(unsigned long data)
852 {
853 	struct hv_per_cpu_context *hv_cpu = (void *)data;
854 	void *page_addr = hv_cpu->synic_message_page;
855 	struct hv_message *msg = (struct hv_message *)page_addr +
856 				  VMBUS_MESSAGE_SINT;
857 	struct vmbus_channel_message_header *hdr;
858 	struct vmbus_channel_message_table_entry *entry;
859 	struct onmessage_work_context *ctx;
860 	u32 message_type = msg->header.message_type;
861 
862 	if (message_type == HVMSG_NONE)
863 		/* no msg */
864 		return;
865 
866 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
867 
868 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
869 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
870 		goto msg_handled;
871 	}
872 
873 	entry = &channel_message_table[hdr->msgtype];
874 	if (entry->handler_type	== VMHT_BLOCKING) {
875 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
876 		if (ctx == NULL)
877 			return;
878 
879 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
880 		memcpy(&ctx->msg, msg, sizeof(*msg));
881 
882 		queue_work(vmbus_connection.work_queue, &ctx->work);
883 	} else
884 		entry->message_handler(hdr);
885 
886 msg_handled:
887 	vmbus_signal_eom(msg, message_type);
888 }
889 
890 
891 /*
892  * Direct callback for channels using other deferred processing
893  */
894 static void vmbus_channel_isr(struct vmbus_channel *channel)
895 {
896 	void (*callback_fn)(void *);
897 
898 	callback_fn = READ_ONCE(channel->onchannel_callback);
899 	if (likely(callback_fn != NULL))
900 		(*callback_fn)(channel->channel_callback_context);
901 }
902 
903 /*
904  * Schedule all channels with events pending
905  */
906 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
907 {
908 	unsigned long *recv_int_page;
909 	u32 maxbits, relid;
910 
911 	if (vmbus_proto_version < VERSION_WIN8) {
912 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
913 		recv_int_page = vmbus_connection.recv_int_page;
914 	} else {
915 		/*
916 		 * When the host is win8 and beyond, the event page
917 		 * can be directly checked to get the id of the channel
918 		 * that has the interrupt pending.
919 		 */
920 		void *page_addr = hv_cpu->synic_event_page;
921 		union hv_synic_event_flags *event
922 			= (union hv_synic_event_flags *)page_addr +
923 						 VMBUS_MESSAGE_SINT;
924 
925 		maxbits = HV_EVENT_FLAGS_COUNT;
926 		recv_int_page = event->flags;
927 	}
928 
929 	if (unlikely(!recv_int_page))
930 		return;
931 
932 	for_each_set_bit(relid, recv_int_page, maxbits) {
933 		struct vmbus_channel *channel;
934 
935 		if (!sync_test_and_clear_bit(relid, recv_int_page))
936 			continue;
937 
938 		/* Special case - vmbus channel protocol msg */
939 		if (relid == 0)
940 			continue;
941 
942 		rcu_read_lock();
943 
944 		/* Find channel based on relid */
945 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
946 			if (channel->offermsg.child_relid != relid)
947 				continue;
948 
949 			switch (channel->callback_mode) {
950 			case HV_CALL_ISR:
951 				vmbus_channel_isr(channel);
952 				break;
953 
954 			case HV_CALL_BATCHED:
955 				hv_begin_read(&channel->inbound);
956 				/* fallthrough */
957 			case HV_CALL_DIRECT:
958 				tasklet_schedule(&channel->callback_event);
959 			}
960 		}
961 
962 		rcu_read_unlock();
963 	}
964 }
965 
966 static void vmbus_isr(void)
967 {
968 	struct hv_per_cpu_context *hv_cpu
969 		= this_cpu_ptr(hv_context.cpu_context);
970 	void *page_addr = hv_cpu->synic_event_page;
971 	struct hv_message *msg;
972 	union hv_synic_event_flags *event;
973 	bool handled = false;
974 
975 	if (unlikely(page_addr == NULL))
976 		return;
977 
978 	event = (union hv_synic_event_flags *)page_addr +
979 					 VMBUS_MESSAGE_SINT;
980 	/*
981 	 * Check for events before checking for messages. This is the order
982 	 * in which events and messages are checked in Windows guests on
983 	 * Hyper-V, and the Windows team suggested we do the same.
984 	 */
985 
986 	if ((vmbus_proto_version == VERSION_WS2008) ||
987 		(vmbus_proto_version == VERSION_WIN7)) {
988 
989 		/* Since we are a child, we only need to check bit 0 */
990 		if (sync_test_and_clear_bit(0, event->flags))
991 			handled = true;
992 	} else {
993 		/*
994 		 * Our host is win8 or above. The signaling mechanism
995 		 * has changed and we can directly look at the event page.
996 		 * If bit n is set then we have an interrup on the channel
997 		 * whose id is n.
998 		 */
999 		handled = true;
1000 	}
1001 
1002 	if (handled)
1003 		vmbus_chan_sched(hv_cpu);
1004 
1005 	page_addr = hv_cpu->synic_message_page;
1006 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1007 
1008 	/* Check if there are actual msgs to be processed */
1009 	if (msg->header.message_type != HVMSG_NONE) {
1010 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1011 			hv_process_timer_expiration(msg, hv_cpu);
1012 		else
1013 			tasklet_schedule(&hv_cpu->msg_dpc);
1014 	}
1015 
1016 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1017 }
1018 
1019 
1020 /*
1021  * vmbus_bus_init -Main vmbus driver initialization routine.
1022  *
1023  * Here, we
1024  *	- initialize the vmbus driver context
1025  *	- invoke the vmbus hv main init routine
1026  *	- retrieve the channel offers
1027  */
1028 static int vmbus_bus_init(void)
1029 {
1030 	int ret;
1031 
1032 	/* Hypervisor initialization...setup hypercall page..etc */
1033 	ret = hv_init();
1034 	if (ret != 0) {
1035 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1036 		return ret;
1037 	}
1038 
1039 	ret = bus_register(&hv_bus);
1040 	if (ret)
1041 		return ret;
1042 
1043 	hv_setup_vmbus_irq(vmbus_isr);
1044 
1045 	ret = hv_synic_alloc();
1046 	if (ret)
1047 		goto err_alloc;
1048 	/*
1049 	 * Initialize the per-cpu interrupt state and
1050 	 * connect to the host.
1051 	 */
1052 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
1053 				hv_synic_init, hv_synic_cleanup);
1054 	if (ret < 0)
1055 		goto err_alloc;
1056 	hyperv_cpuhp_online = ret;
1057 
1058 	ret = vmbus_connect();
1059 	if (ret)
1060 		goto err_connect;
1061 
1062 	/*
1063 	 * Only register if the crash MSRs are available
1064 	 */
1065 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1066 		register_die_notifier(&hyperv_die_block);
1067 		atomic_notifier_chain_register(&panic_notifier_list,
1068 					       &hyperv_panic_block);
1069 	}
1070 
1071 	vmbus_request_offers();
1072 
1073 	return 0;
1074 
1075 err_connect:
1076 	cpuhp_remove_state(hyperv_cpuhp_online);
1077 err_alloc:
1078 	hv_synic_free();
1079 	hv_remove_vmbus_irq();
1080 
1081 	bus_unregister(&hv_bus);
1082 
1083 	return ret;
1084 }
1085 
1086 /**
1087  * __vmbus_child_driver_register() - Register a vmbus's driver
1088  * @hv_driver: Pointer to driver structure you want to register
1089  * @owner: owner module of the drv
1090  * @mod_name: module name string
1091  *
1092  * Registers the given driver with Linux through the 'driver_register()' call
1093  * and sets up the hyper-v vmbus handling for this driver.
1094  * It will return the state of the 'driver_register()' call.
1095  *
1096  */
1097 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1098 {
1099 	int ret;
1100 
1101 	pr_info("registering driver %s\n", hv_driver->name);
1102 
1103 	ret = vmbus_exists();
1104 	if (ret < 0)
1105 		return ret;
1106 
1107 	hv_driver->driver.name = hv_driver->name;
1108 	hv_driver->driver.owner = owner;
1109 	hv_driver->driver.mod_name = mod_name;
1110 	hv_driver->driver.bus = &hv_bus;
1111 
1112 	spin_lock_init(&hv_driver->dynids.lock);
1113 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1114 
1115 	ret = driver_register(&hv_driver->driver);
1116 
1117 	return ret;
1118 }
1119 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1120 
1121 /**
1122  * vmbus_driver_unregister() - Unregister a vmbus's driver
1123  * @hv_driver: Pointer to driver structure you want to
1124  *             un-register
1125  *
1126  * Un-register the given driver that was previous registered with a call to
1127  * vmbus_driver_register()
1128  */
1129 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1130 {
1131 	pr_info("unregistering driver %s\n", hv_driver->name);
1132 
1133 	if (!vmbus_exists()) {
1134 		driver_unregister(&hv_driver->driver);
1135 		vmbus_free_dynids(hv_driver);
1136 	}
1137 }
1138 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1139 
1140 /*
1141  * vmbus_device_create - Creates and registers a new child device
1142  * on the vmbus.
1143  */
1144 struct hv_device *vmbus_device_create(const uuid_le *type,
1145 				      const uuid_le *instance,
1146 				      struct vmbus_channel *channel)
1147 {
1148 	struct hv_device *child_device_obj;
1149 
1150 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1151 	if (!child_device_obj) {
1152 		pr_err("Unable to allocate device object for child device\n");
1153 		return NULL;
1154 	}
1155 
1156 	child_device_obj->channel = channel;
1157 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1158 	memcpy(&child_device_obj->dev_instance, instance,
1159 	       sizeof(uuid_le));
1160 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1161 
1162 
1163 	return child_device_obj;
1164 }
1165 
1166 /*
1167  * vmbus_device_register - Register the child device
1168  */
1169 int vmbus_device_register(struct hv_device *child_device_obj)
1170 {
1171 	int ret = 0;
1172 
1173 	dev_set_name(&child_device_obj->device, "%pUl",
1174 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1175 
1176 	child_device_obj->device.bus = &hv_bus;
1177 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1178 	child_device_obj->device.release = vmbus_device_release;
1179 
1180 	/*
1181 	 * Register with the LDM. This will kick off the driver/device
1182 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1183 	 */
1184 	ret = device_register(&child_device_obj->device);
1185 
1186 	if (ret)
1187 		pr_err("Unable to register child device\n");
1188 	else
1189 		pr_debug("child device %s registered\n",
1190 			dev_name(&child_device_obj->device));
1191 
1192 	return ret;
1193 }
1194 
1195 /*
1196  * vmbus_device_unregister - Remove the specified child device
1197  * from the vmbus.
1198  */
1199 void vmbus_device_unregister(struct hv_device *device_obj)
1200 {
1201 	pr_debug("child device %s unregistered\n",
1202 		dev_name(&device_obj->device));
1203 
1204 	/*
1205 	 * Kick off the process of unregistering the device.
1206 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1207 	 */
1208 	device_unregister(&device_obj->device);
1209 }
1210 
1211 
1212 /*
1213  * VMBUS is an acpi enumerated device. Get the information we
1214  * need from DSDT.
1215  */
1216 #define VTPM_BASE_ADDRESS 0xfed40000
1217 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1218 {
1219 	resource_size_t start = 0;
1220 	resource_size_t end = 0;
1221 	struct resource *new_res;
1222 	struct resource **old_res = &hyperv_mmio;
1223 	struct resource **prev_res = NULL;
1224 
1225 	switch (res->type) {
1226 
1227 	/*
1228 	 * "Address" descriptors are for bus windows. Ignore
1229 	 * "memory" descriptors, which are for registers on
1230 	 * devices.
1231 	 */
1232 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1233 		start = res->data.address32.address.minimum;
1234 		end = res->data.address32.address.maximum;
1235 		break;
1236 
1237 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1238 		start = res->data.address64.address.minimum;
1239 		end = res->data.address64.address.maximum;
1240 		break;
1241 
1242 	default:
1243 		/* Unused resource type */
1244 		return AE_OK;
1245 
1246 	}
1247 	/*
1248 	 * Ignore ranges that are below 1MB, as they're not
1249 	 * necessary or useful here.
1250 	 */
1251 	if (end < 0x100000)
1252 		return AE_OK;
1253 
1254 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1255 	if (!new_res)
1256 		return AE_NO_MEMORY;
1257 
1258 	/* If this range overlaps the virtual TPM, truncate it. */
1259 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1260 		end = VTPM_BASE_ADDRESS;
1261 
1262 	new_res->name = "hyperv mmio";
1263 	new_res->flags = IORESOURCE_MEM;
1264 	new_res->start = start;
1265 	new_res->end = end;
1266 
1267 	/*
1268 	 * If two ranges are adjacent, merge them.
1269 	 */
1270 	do {
1271 		if (!*old_res) {
1272 			*old_res = new_res;
1273 			break;
1274 		}
1275 
1276 		if (((*old_res)->end + 1) == new_res->start) {
1277 			(*old_res)->end = new_res->end;
1278 			kfree(new_res);
1279 			break;
1280 		}
1281 
1282 		if ((*old_res)->start == new_res->end + 1) {
1283 			(*old_res)->start = new_res->start;
1284 			kfree(new_res);
1285 			break;
1286 		}
1287 
1288 		if ((*old_res)->start > new_res->end) {
1289 			new_res->sibling = *old_res;
1290 			if (prev_res)
1291 				(*prev_res)->sibling = new_res;
1292 			*old_res = new_res;
1293 			break;
1294 		}
1295 
1296 		prev_res = old_res;
1297 		old_res = &(*old_res)->sibling;
1298 
1299 	} while (1);
1300 
1301 	return AE_OK;
1302 }
1303 
1304 static int vmbus_acpi_remove(struct acpi_device *device)
1305 {
1306 	struct resource *cur_res;
1307 	struct resource *next_res;
1308 
1309 	if (hyperv_mmio) {
1310 		if (fb_mmio) {
1311 			__release_region(hyperv_mmio, fb_mmio->start,
1312 					 resource_size(fb_mmio));
1313 			fb_mmio = NULL;
1314 		}
1315 
1316 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1317 			next_res = cur_res->sibling;
1318 			kfree(cur_res);
1319 		}
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 static void vmbus_reserve_fb(void)
1326 {
1327 	int size;
1328 	/*
1329 	 * Make a claim for the frame buffer in the resource tree under the
1330 	 * first node, which will be the one below 4GB.  The length seems to
1331 	 * be underreported, particularly in a Generation 1 VM.  So start out
1332 	 * reserving a larger area and make it smaller until it succeeds.
1333 	 */
1334 
1335 	if (screen_info.lfb_base) {
1336 		if (efi_enabled(EFI_BOOT))
1337 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1338 		else
1339 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1340 
1341 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1342 			fb_mmio = __request_region(hyperv_mmio,
1343 						   screen_info.lfb_base, size,
1344 						   fb_mmio_name, 0);
1345 		}
1346 	}
1347 }
1348 
1349 /**
1350  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1351  * @new:		If successful, supplied a pointer to the
1352  *			allocated MMIO space.
1353  * @device_obj:		Identifies the caller
1354  * @min:		Minimum guest physical address of the
1355  *			allocation
1356  * @max:		Maximum guest physical address
1357  * @size:		Size of the range to be allocated
1358  * @align:		Alignment of the range to be allocated
1359  * @fb_overlap_ok:	Whether this allocation can be allowed
1360  *			to overlap the video frame buffer.
1361  *
1362  * This function walks the resources granted to VMBus by the
1363  * _CRS object in the ACPI namespace underneath the parent
1364  * "bridge" whether that's a root PCI bus in the Generation 1
1365  * case or a Module Device in the Generation 2 case.  It then
1366  * attempts to allocate from the global MMIO pool in a way that
1367  * matches the constraints supplied in these parameters and by
1368  * that _CRS.
1369  *
1370  * Return: 0 on success, -errno on failure
1371  */
1372 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1373 			resource_size_t min, resource_size_t max,
1374 			resource_size_t size, resource_size_t align,
1375 			bool fb_overlap_ok)
1376 {
1377 	struct resource *iter, *shadow;
1378 	resource_size_t range_min, range_max, start;
1379 	const char *dev_n = dev_name(&device_obj->device);
1380 	int retval;
1381 
1382 	retval = -ENXIO;
1383 	down(&hyperv_mmio_lock);
1384 
1385 	/*
1386 	 * If overlaps with frame buffers are allowed, then first attempt to
1387 	 * make the allocation from within the reserved region.  Because it
1388 	 * is already reserved, no shadow allocation is necessary.
1389 	 */
1390 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1391 	    !(max < fb_mmio->start)) {
1392 
1393 		range_min = fb_mmio->start;
1394 		range_max = fb_mmio->end;
1395 		start = (range_min + align - 1) & ~(align - 1);
1396 		for (; start + size - 1 <= range_max; start += align) {
1397 			*new = request_mem_region_exclusive(start, size, dev_n);
1398 			if (*new) {
1399 				retval = 0;
1400 				goto exit;
1401 			}
1402 		}
1403 	}
1404 
1405 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1406 		if ((iter->start >= max) || (iter->end <= min))
1407 			continue;
1408 
1409 		range_min = iter->start;
1410 		range_max = iter->end;
1411 		start = (range_min + align - 1) & ~(align - 1);
1412 		for (; start + size - 1 <= range_max; start += align) {
1413 			shadow = __request_region(iter, start, size, NULL,
1414 						  IORESOURCE_BUSY);
1415 			if (!shadow)
1416 				continue;
1417 
1418 			*new = request_mem_region_exclusive(start, size, dev_n);
1419 			if (*new) {
1420 				shadow->name = (char *)*new;
1421 				retval = 0;
1422 				goto exit;
1423 			}
1424 
1425 			__release_region(iter, start, size);
1426 		}
1427 	}
1428 
1429 exit:
1430 	up(&hyperv_mmio_lock);
1431 	return retval;
1432 }
1433 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1434 
1435 /**
1436  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1437  * @start:		Base address of region to release.
1438  * @size:		Size of the range to be allocated
1439  *
1440  * This function releases anything requested by
1441  * vmbus_mmio_allocate().
1442  */
1443 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1444 {
1445 	struct resource *iter;
1446 
1447 	down(&hyperv_mmio_lock);
1448 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1449 		if ((iter->start >= start + size) || (iter->end <= start))
1450 			continue;
1451 
1452 		__release_region(iter, start, size);
1453 	}
1454 	release_mem_region(start, size);
1455 	up(&hyperv_mmio_lock);
1456 
1457 }
1458 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1459 
1460 /**
1461  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1462  * @cpu_number: CPU number in Linux terms
1463  *
1464  * This function returns the mapping between the Linux processor
1465  * number and the hypervisor's virtual processor number, useful
1466  * in making hypercalls and such that talk about specific
1467  * processors.
1468  *
1469  * Return: Virtual processor number in Hyper-V terms
1470  */
1471 int vmbus_cpu_number_to_vp_number(int cpu_number)
1472 {
1473 	return hv_context.vp_index[cpu_number];
1474 }
1475 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1476 
1477 static int vmbus_acpi_add(struct acpi_device *device)
1478 {
1479 	acpi_status result;
1480 	int ret_val = -ENODEV;
1481 	struct acpi_device *ancestor;
1482 
1483 	hv_acpi_dev = device;
1484 
1485 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1486 					vmbus_walk_resources, NULL);
1487 
1488 	if (ACPI_FAILURE(result))
1489 		goto acpi_walk_err;
1490 	/*
1491 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1492 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1493 	 */
1494 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1495 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1496 					     vmbus_walk_resources, NULL);
1497 
1498 		if (ACPI_FAILURE(result))
1499 			continue;
1500 		if (hyperv_mmio) {
1501 			vmbus_reserve_fb();
1502 			break;
1503 		}
1504 	}
1505 	ret_val = 0;
1506 
1507 acpi_walk_err:
1508 	complete(&probe_event);
1509 	if (ret_val)
1510 		vmbus_acpi_remove(device);
1511 	return ret_val;
1512 }
1513 
1514 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1515 	{"VMBUS", 0},
1516 	{"VMBus", 0},
1517 	{"", 0},
1518 };
1519 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1520 
1521 static struct acpi_driver vmbus_acpi_driver = {
1522 	.name = "vmbus",
1523 	.ids = vmbus_acpi_device_ids,
1524 	.ops = {
1525 		.add = vmbus_acpi_add,
1526 		.remove = vmbus_acpi_remove,
1527 	},
1528 };
1529 
1530 static void hv_kexec_handler(void)
1531 {
1532 	hv_synic_clockevents_cleanup();
1533 	vmbus_initiate_unload(false);
1534 	vmbus_connection.conn_state = DISCONNECTED;
1535 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1536 	mb();
1537 	cpuhp_remove_state(hyperv_cpuhp_online);
1538 	hyperv_cleanup();
1539 };
1540 
1541 static void hv_crash_handler(struct pt_regs *regs)
1542 {
1543 	vmbus_initiate_unload(true);
1544 	/*
1545 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1546 	 * doing the cleanup for current CPU only. This should be sufficient
1547 	 * for kdump.
1548 	 */
1549 	vmbus_connection.conn_state = DISCONNECTED;
1550 	hv_synic_cleanup(smp_processor_id());
1551 	hyperv_cleanup();
1552 };
1553 
1554 static int __init hv_acpi_init(void)
1555 {
1556 	int ret, t;
1557 
1558 	if (x86_hyper != &x86_hyper_ms_hyperv)
1559 		return -ENODEV;
1560 
1561 	init_completion(&probe_event);
1562 
1563 	/*
1564 	 * Get ACPI resources first.
1565 	 */
1566 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1567 
1568 	if (ret)
1569 		return ret;
1570 
1571 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1572 	if (t == 0) {
1573 		ret = -ETIMEDOUT;
1574 		goto cleanup;
1575 	}
1576 
1577 	ret = vmbus_bus_init();
1578 	if (ret)
1579 		goto cleanup;
1580 
1581 	hv_setup_kexec_handler(hv_kexec_handler);
1582 	hv_setup_crash_handler(hv_crash_handler);
1583 
1584 	return 0;
1585 
1586 cleanup:
1587 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1588 	hv_acpi_dev = NULL;
1589 	return ret;
1590 }
1591 
1592 static void __exit vmbus_exit(void)
1593 {
1594 	int cpu;
1595 
1596 	hv_remove_kexec_handler();
1597 	hv_remove_crash_handler();
1598 	vmbus_connection.conn_state = DISCONNECTED;
1599 	hv_synic_clockevents_cleanup();
1600 	vmbus_disconnect();
1601 	hv_remove_vmbus_irq();
1602 	for_each_online_cpu(cpu) {
1603 		struct hv_per_cpu_context *hv_cpu
1604 			= per_cpu_ptr(hv_context.cpu_context, cpu);
1605 
1606 		tasklet_kill(&hv_cpu->msg_dpc);
1607 	}
1608 	vmbus_free_channels();
1609 
1610 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1611 		unregister_die_notifier(&hyperv_die_block);
1612 		atomic_notifier_chain_unregister(&panic_notifier_list,
1613 						 &hyperv_panic_block);
1614 	}
1615 	bus_unregister(&hv_bus);
1616 
1617 	cpuhp_remove_state(hyperv_cpuhp_online);
1618 	hv_synic_free();
1619 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1620 }
1621 
1622 
1623 MODULE_LICENSE("GPL");
1624 
1625 subsys_initcall(hv_acpi_init);
1626 module_exit(vmbus_exit);
1627