xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
25 
26 #include <linux/delay.h>
27 #include <linux/notifier.h>
28 #include <linux/ptrace.h>
29 #include <linux/screen_info.h>
30 #include <linux/kdebug.h>
31 #include <linux/efi.h>
32 #include <linux/random.h>
33 #include <linux/kernel.h>
34 #include <linux/syscore_ops.h>
35 #include <clocksource/hyperv_timer.h>
36 #include "hyperv_vmbus.h"
37 
38 struct vmbus_dynid {
39 	struct list_head node;
40 	struct hv_vmbus_device_id id;
41 };
42 
43 static struct acpi_device  *hv_acpi_dev;
44 
45 static struct completion probe_event;
46 
47 static int hyperv_cpuhp_online;
48 
49 static void *hv_panic_page;
50 
51 /* Values parsed from ACPI DSDT */
52 static int vmbus_irq;
53 int vmbus_interrupt;
54 
55 /*
56  * Boolean to control whether to report panic messages over Hyper-V.
57  *
58  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
59  */
60 static int sysctl_record_panic_msg = 1;
61 
62 static int hyperv_report_reg(void)
63 {
64 	return !sysctl_record_panic_msg || !hv_panic_page;
65 }
66 
67 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
68 			      void *args)
69 {
70 	struct pt_regs *regs;
71 
72 	vmbus_initiate_unload(true);
73 
74 	/*
75 	 * Hyper-V should be notified only once about a panic.  If we will be
76 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
77 	 * the notification here.
78 	 */
79 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
80 	    && hyperv_report_reg()) {
81 		regs = current_pt_regs();
82 		hyperv_report_panic(regs, val, false);
83 	}
84 	return NOTIFY_DONE;
85 }
86 
87 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
88 			    void *args)
89 {
90 	struct die_args *die = args;
91 	struct pt_regs *regs = die->regs;
92 
93 	/* Don't notify Hyper-V if the die event is other than oops */
94 	if (val != DIE_OOPS)
95 		return NOTIFY_DONE;
96 
97 	/*
98 	 * Hyper-V should be notified only once about a panic.  If we will be
99 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
100 	 * the notification here.
101 	 */
102 	if (hyperv_report_reg())
103 		hyperv_report_panic(regs, val, true);
104 	return NOTIFY_DONE;
105 }
106 
107 static struct notifier_block hyperv_die_block = {
108 	.notifier_call = hyperv_die_event,
109 };
110 static struct notifier_block hyperv_panic_block = {
111 	.notifier_call = hyperv_panic_event,
112 };
113 
114 static const char *fb_mmio_name = "fb_range";
115 static struct resource *fb_mmio;
116 static struct resource *hyperv_mmio;
117 static DEFINE_MUTEX(hyperv_mmio_lock);
118 
119 static int vmbus_exists(void)
120 {
121 	if (hv_acpi_dev == NULL)
122 		return -ENODEV;
123 
124 	return 0;
125 }
126 
127 static u8 channel_monitor_group(const struct vmbus_channel *channel)
128 {
129 	return (u8)channel->offermsg.monitorid / 32;
130 }
131 
132 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
133 {
134 	return (u8)channel->offermsg.monitorid % 32;
135 }
136 
137 static u32 channel_pending(const struct vmbus_channel *channel,
138 			   const struct hv_monitor_page *monitor_page)
139 {
140 	u8 monitor_group = channel_monitor_group(channel);
141 
142 	return monitor_page->trigger_group[monitor_group].pending;
143 }
144 
145 static u32 channel_latency(const struct vmbus_channel *channel,
146 			   const struct hv_monitor_page *monitor_page)
147 {
148 	u8 monitor_group = channel_monitor_group(channel);
149 	u8 monitor_offset = channel_monitor_offset(channel);
150 
151 	return monitor_page->latency[monitor_group][monitor_offset];
152 }
153 
154 static u32 channel_conn_id(struct vmbus_channel *channel,
155 			   struct hv_monitor_page *monitor_page)
156 {
157 	u8 monitor_group = channel_monitor_group(channel);
158 	u8 monitor_offset = channel_monitor_offset(channel);
159 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
160 }
161 
162 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
163 		       char *buf)
164 {
165 	struct hv_device *hv_dev = device_to_hv_device(dev);
166 
167 	if (!hv_dev->channel)
168 		return -ENODEV;
169 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
170 }
171 static DEVICE_ATTR_RO(id);
172 
173 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
174 			  char *buf)
175 {
176 	struct hv_device *hv_dev = device_to_hv_device(dev);
177 
178 	if (!hv_dev->channel)
179 		return -ENODEV;
180 	return sprintf(buf, "%d\n", hv_dev->channel->state);
181 }
182 static DEVICE_ATTR_RO(state);
183 
184 static ssize_t monitor_id_show(struct device *dev,
185 			       struct device_attribute *dev_attr, char *buf)
186 {
187 	struct hv_device *hv_dev = device_to_hv_device(dev);
188 
189 	if (!hv_dev->channel)
190 		return -ENODEV;
191 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
192 }
193 static DEVICE_ATTR_RO(monitor_id);
194 
195 static ssize_t class_id_show(struct device *dev,
196 			       struct device_attribute *dev_attr, char *buf)
197 {
198 	struct hv_device *hv_dev = device_to_hv_device(dev);
199 
200 	if (!hv_dev->channel)
201 		return -ENODEV;
202 	return sprintf(buf, "{%pUl}\n",
203 		       &hv_dev->channel->offermsg.offer.if_type);
204 }
205 static DEVICE_ATTR_RO(class_id);
206 
207 static ssize_t device_id_show(struct device *dev,
208 			      struct device_attribute *dev_attr, char *buf)
209 {
210 	struct hv_device *hv_dev = device_to_hv_device(dev);
211 
212 	if (!hv_dev->channel)
213 		return -ENODEV;
214 	return sprintf(buf, "{%pUl}\n",
215 		       &hv_dev->channel->offermsg.offer.if_instance);
216 }
217 static DEVICE_ATTR_RO(device_id);
218 
219 static ssize_t modalias_show(struct device *dev,
220 			     struct device_attribute *dev_attr, char *buf)
221 {
222 	struct hv_device *hv_dev = device_to_hv_device(dev);
223 
224 	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
225 }
226 static DEVICE_ATTR_RO(modalias);
227 
228 #ifdef CONFIG_NUMA
229 static ssize_t numa_node_show(struct device *dev,
230 			      struct device_attribute *attr, char *buf)
231 {
232 	struct hv_device *hv_dev = device_to_hv_device(dev);
233 
234 	if (!hv_dev->channel)
235 		return -ENODEV;
236 
237 	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
238 }
239 static DEVICE_ATTR_RO(numa_node);
240 #endif
241 
242 static ssize_t server_monitor_pending_show(struct device *dev,
243 					   struct device_attribute *dev_attr,
244 					   char *buf)
245 {
246 	struct hv_device *hv_dev = device_to_hv_device(dev);
247 
248 	if (!hv_dev->channel)
249 		return -ENODEV;
250 	return sprintf(buf, "%d\n",
251 		       channel_pending(hv_dev->channel,
252 				       vmbus_connection.monitor_pages[0]));
253 }
254 static DEVICE_ATTR_RO(server_monitor_pending);
255 
256 static ssize_t client_monitor_pending_show(struct device *dev,
257 					   struct device_attribute *dev_attr,
258 					   char *buf)
259 {
260 	struct hv_device *hv_dev = device_to_hv_device(dev);
261 
262 	if (!hv_dev->channel)
263 		return -ENODEV;
264 	return sprintf(buf, "%d\n",
265 		       channel_pending(hv_dev->channel,
266 				       vmbus_connection.monitor_pages[1]));
267 }
268 static DEVICE_ATTR_RO(client_monitor_pending);
269 
270 static ssize_t server_monitor_latency_show(struct device *dev,
271 					   struct device_attribute *dev_attr,
272 					   char *buf)
273 {
274 	struct hv_device *hv_dev = device_to_hv_device(dev);
275 
276 	if (!hv_dev->channel)
277 		return -ENODEV;
278 	return sprintf(buf, "%d\n",
279 		       channel_latency(hv_dev->channel,
280 				       vmbus_connection.monitor_pages[0]));
281 }
282 static DEVICE_ATTR_RO(server_monitor_latency);
283 
284 static ssize_t client_monitor_latency_show(struct device *dev,
285 					   struct device_attribute *dev_attr,
286 					   char *buf)
287 {
288 	struct hv_device *hv_dev = device_to_hv_device(dev);
289 
290 	if (!hv_dev->channel)
291 		return -ENODEV;
292 	return sprintf(buf, "%d\n",
293 		       channel_latency(hv_dev->channel,
294 				       vmbus_connection.monitor_pages[1]));
295 }
296 static DEVICE_ATTR_RO(client_monitor_latency);
297 
298 static ssize_t server_monitor_conn_id_show(struct device *dev,
299 					   struct device_attribute *dev_attr,
300 					   char *buf)
301 {
302 	struct hv_device *hv_dev = device_to_hv_device(dev);
303 
304 	if (!hv_dev->channel)
305 		return -ENODEV;
306 	return sprintf(buf, "%d\n",
307 		       channel_conn_id(hv_dev->channel,
308 				       vmbus_connection.monitor_pages[0]));
309 }
310 static DEVICE_ATTR_RO(server_monitor_conn_id);
311 
312 static ssize_t client_monitor_conn_id_show(struct device *dev,
313 					   struct device_attribute *dev_attr,
314 					   char *buf)
315 {
316 	struct hv_device *hv_dev = device_to_hv_device(dev);
317 
318 	if (!hv_dev->channel)
319 		return -ENODEV;
320 	return sprintf(buf, "%d\n",
321 		       channel_conn_id(hv_dev->channel,
322 				       vmbus_connection.monitor_pages[1]));
323 }
324 static DEVICE_ATTR_RO(client_monitor_conn_id);
325 
326 static ssize_t out_intr_mask_show(struct device *dev,
327 				  struct device_attribute *dev_attr, char *buf)
328 {
329 	struct hv_device *hv_dev = device_to_hv_device(dev);
330 	struct hv_ring_buffer_debug_info outbound;
331 	int ret;
332 
333 	if (!hv_dev->channel)
334 		return -ENODEV;
335 
336 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
337 					  &outbound);
338 	if (ret < 0)
339 		return ret;
340 
341 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
342 }
343 static DEVICE_ATTR_RO(out_intr_mask);
344 
345 static ssize_t out_read_index_show(struct device *dev,
346 				   struct device_attribute *dev_attr, char *buf)
347 {
348 	struct hv_device *hv_dev = device_to_hv_device(dev);
349 	struct hv_ring_buffer_debug_info outbound;
350 	int ret;
351 
352 	if (!hv_dev->channel)
353 		return -ENODEV;
354 
355 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
356 					  &outbound);
357 	if (ret < 0)
358 		return ret;
359 	return sprintf(buf, "%d\n", outbound.current_read_index);
360 }
361 static DEVICE_ATTR_RO(out_read_index);
362 
363 static ssize_t out_write_index_show(struct device *dev,
364 				    struct device_attribute *dev_attr,
365 				    char *buf)
366 {
367 	struct hv_device *hv_dev = device_to_hv_device(dev);
368 	struct hv_ring_buffer_debug_info outbound;
369 	int ret;
370 
371 	if (!hv_dev->channel)
372 		return -ENODEV;
373 
374 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
375 					  &outbound);
376 	if (ret < 0)
377 		return ret;
378 	return sprintf(buf, "%d\n", outbound.current_write_index);
379 }
380 static DEVICE_ATTR_RO(out_write_index);
381 
382 static ssize_t out_read_bytes_avail_show(struct device *dev,
383 					 struct device_attribute *dev_attr,
384 					 char *buf)
385 {
386 	struct hv_device *hv_dev = device_to_hv_device(dev);
387 	struct hv_ring_buffer_debug_info outbound;
388 	int ret;
389 
390 	if (!hv_dev->channel)
391 		return -ENODEV;
392 
393 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
394 					  &outbound);
395 	if (ret < 0)
396 		return ret;
397 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
398 }
399 static DEVICE_ATTR_RO(out_read_bytes_avail);
400 
401 static ssize_t out_write_bytes_avail_show(struct device *dev,
402 					  struct device_attribute *dev_attr,
403 					  char *buf)
404 {
405 	struct hv_device *hv_dev = device_to_hv_device(dev);
406 	struct hv_ring_buffer_debug_info outbound;
407 	int ret;
408 
409 	if (!hv_dev->channel)
410 		return -ENODEV;
411 
412 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
413 					  &outbound);
414 	if (ret < 0)
415 		return ret;
416 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
417 }
418 static DEVICE_ATTR_RO(out_write_bytes_avail);
419 
420 static ssize_t in_intr_mask_show(struct device *dev,
421 				 struct device_attribute *dev_attr, char *buf)
422 {
423 	struct hv_device *hv_dev = device_to_hv_device(dev);
424 	struct hv_ring_buffer_debug_info inbound;
425 	int ret;
426 
427 	if (!hv_dev->channel)
428 		return -ENODEV;
429 
430 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
431 	if (ret < 0)
432 		return ret;
433 
434 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
435 }
436 static DEVICE_ATTR_RO(in_intr_mask);
437 
438 static ssize_t in_read_index_show(struct device *dev,
439 				  struct device_attribute *dev_attr, char *buf)
440 {
441 	struct hv_device *hv_dev = device_to_hv_device(dev);
442 	struct hv_ring_buffer_debug_info inbound;
443 	int ret;
444 
445 	if (!hv_dev->channel)
446 		return -ENODEV;
447 
448 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
449 	if (ret < 0)
450 		return ret;
451 
452 	return sprintf(buf, "%d\n", inbound.current_read_index);
453 }
454 static DEVICE_ATTR_RO(in_read_index);
455 
456 static ssize_t in_write_index_show(struct device *dev,
457 				   struct device_attribute *dev_attr, char *buf)
458 {
459 	struct hv_device *hv_dev = device_to_hv_device(dev);
460 	struct hv_ring_buffer_debug_info inbound;
461 	int ret;
462 
463 	if (!hv_dev->channel)
464 		return -ENODEV;
465 
466 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
467 	if (ret < 0)
468 		return ret;
469 
470 	return sprintf(buf, "%d\n", inbound.current_write_index);
471 }
472 static DEVICE_ATTR_RO(in_write_index);
473 
474 static ssize_t in_read_bytes_avail_show(struct device *dev,
475 					struct device_attribute *dev_attr,
476 					char *buf)
477 {
478 	struct hv_device *hv_dev = device_to_hv_device(dev);
479 	struct hv_ring_buffer_debug_info inbound;
480 	int ret;
481 
482 	if (!hv_dev->channel)
483 		return -ENODEV;
484 
485 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
486 	if (ret < 0)
487 		return ret;
488 
489 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
490 }
491 static DEVICE_ATTR_RO(in_read_bytes_avail);
492 
493 static ssize_t in_write_bytes_avail_show(struct device *dev,
494 					 struct device_attribute *dev_attr,
495 					 char *buf)
496 {
497 	struct hv_device *hv_dev = device_to_hv_device(dev);
498 	struct hv_ring_buffer_debug_info inbound;
499 	int ret;
500 
501 	if (!hv_dev->channel)
502 		return -ENODEV;
503 
504 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
505 	if (ret < 0)
506 		return ret;
507 
508 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
509 }
510 static DEVICE_ATTR_RO(in_write_bytes_avail);
511 
512 static ssize_t channel_vp_mapping_show(struct device *dev,
513 				       struct device_attribute *dev_attr,
514 				       char *buf)
515 {
516 	struct hv_device *hv_dev = device_to_hv_device(dev);
517 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
518 	int buf_size = PAGE_SIZE, n_written, tot_written;
519 	struct list_head *cur;
520 
521 	if (!channel)
522 		return -ENODEV;
523 
524 	mutex_lock(&vmbus_connection.channel_mutex);
525 
526 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
527 		channel->offermsg.child_relid, channel->target_cpu);
528 
529 	list_for_each(cur, &channel->sc_list) {
530 		if (tot_written >= buf_size - 1)
531 			break;
532 
533 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
534 		n_written = scnprintf(buf + tot_written,
535 				     buf_size - tot_written,
536 				     "%u:%u\n",
537 				     cur_sc->offermsg.child_relid,
538 				     cur_sc->target_cpu);
539 		tot_written += n_written;
540 	}
541 
542 	mutex_unlock(&vmbus_connection.channel_mutex);
543 
544 	return tot_written;
545 }
546 static DEVICE_ATTR_RO(channel_vp_mapping);
547 
548 static ssize_t vendor_show(struct device *dev,
549 			   struct device_attribute *dev_attr,
550 			   char *buf)
551 {
552 	struct hv_device *hv_dev = device_to_hv_device(dev);
553 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
554 }
555 static DEVICE_ATTR_RO(vendor);
556 
557 static ssize_t device_show(struct device *dev,
558 			   struct device_attribute *dev_attr,
559 			   char *buf)
560 {
561 	struct hv_device *hv_dev = device_to_hv_device(dev);
562 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
563 }
564 static DEVICE_ATTR_RO(device);
565 
566 static ssize_t driver_override_store(struct device *dev,
567 				     struct device_attribute *attr,
568 				     const char *buf, size_t count)
569 {
570 	struct hv_device *hv_dev = device_to_hv_device(dev);
571 	char *driver_override, *old, *cp;
572 
573 	/* We need to keep extra room for a newline */
574 	if (count >= (PAGE_SIZE - 1))
575 		return -EINVAL;
576 
577 	driver_override = kstrndup(buf, count, GFP_KERNEL);
578 	if (!driver_override)
579 		return -ENOMEM;
580 
581 	cp = strchr(driver_override, '\n');
582 	if (cp)
583 		*cp = '\0';
584 
585 	device_lock(dev);
586 	old = hv_dev->driver_override;
587 	if (strlen(driver_override)) {
588 		hv_dev->driver_override = driver_override;
589 	} else {
590 		kfree(driver_override);
591 		hv_dev->driver_override = NULL;
592 	}
593 	device_unlock(dev);
594 
595 	kfree(old);
596 
597 	return count;
598 }
599 
600 static ssize_t driver_override_show(struct device *dev,
601 				    struct device_attribute *attr, char *buf)
602 {
603 	struct hv_device *hv_dev = device_to_hv_device(dev);
604 	ssize_t len;
605 
606 	device_lock(dev);
607 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
608 	device_unlock(dev);
609 
610 	return len;
611 }
612 static DEVICE_ATTR_RW(driver_override);
613 
614 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
615 static struct attribute *vmbus_dev_attrs[] = {
616 	&dev_attr_id.attr,
617 	&dev_attr_state.attr,
618 	&dev_attr_monitor_id.attr,
619 	&dev_attr_class_id.attr,
620 	&dev_attr_device_id.attr,
621 	&dev_attr_modalias.attr,
622 #ifdef CONFIG_NUMA
623 	&dev_attr_numa_node.attr,
624 #endif
625 	&dev_attr_server_monitor_pending.attr,
626 	&dev_attr_client_monitor_pending.attr,
627 	&dev_attr_server_monitor_latency.attr,
628 	&dev_attr_client_monitor_latency.attr,
629 	&dev_attr_server_monitor_conn_id.attr,
630 	&dev_attr_client_monitor_conn_id.attr,
631 	&dev_attr_out_intr_mask.attr,
632 	&dev_attr_out_read_index.attr,
633 	&dev_attr_out_write_index.attr,
634 	&dev_attr_out_read_bytes_avail.attr,
635 	&dev_attr_out_write_bytes_avail.attr,
636 	&dev_attr_in_intr_mask.attr,
637 	&dev_attr_in_read_index.attr,
638 	&dev_attr_in_write_index.attr,
639 	&dev_attr_in_read_bytes_avail.attr,
640 	&dev_attr_in_write_bytes_avail.attr,
641 	&dev_attr_channel_vp_mapping.attr,
642 	&dev_attr_vendor.attr,
643 	&dev_attr_device.attr,
644 	&dev_attr_driver_override.attr,
645 	NULL,
646 };
647 
648 /*
649  * Device-level attribute_group callback function. Returns the permission for
650  * each attribute, and returns 0 if an attribute is not visible.
651  */
652 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
653 					 struct attribute *attr, int idx)
654 {
655 	struct device *dev = kobj_to_dev(kobj);
656 	const struct hv_device *hv_dev = device_to_hv_device(dev);
657 
658 	/* Hide the monitor attributes if the monitor mechanism is not used. */
659 	if (!hv_dev->channel->offermsg.monitor_allocated &&
660 	    (attr == &dev_attr_monitor_id.attr ||
661 	     attr == &dev_attr_server_monitor_pending.attr ||
662 	     attr == &dev_attr_client_monitor_pending.attr ||
663 	     attr == &dev_attr_server_monitor_latency.attr ||
664 	     attr == &dev_attr_client_monitor_latency.attr ||
665 	     attr == &dev_attr_server_monitor_conn_id.attr ||
666 	     attr == &dev_attr_client_monitor_conn_id.attr))
667 		return 0;
668 
669 	return attr->mode;
670 }
671 
672 static const struct attribute_group vmbus_dev_group = {
673 	.attrs = vmbus_dev_attrs,
674 	.is_visible = vmbus_dev_attr_is_visible
675 };
676 __ATTRIBUTE_GROUPS(vmbus_dev);
677 
678 /*
679  * vmbus_uevent - add uevent for our device
680  *
681  * This routine is invoked when a device is added or removed on the vmbus to
682  * generate a uevent to udev in the userspace. The udev will then look at its
683  * rule and the uevent generated here to load the appropriate driver
684  *
685  * The alias string will be of the form vmbus:guid where guid is the string
686  * representation of the device guid (each byte of the guid will be
687  * represented with two hex characters.
688  */
689 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
690 {
691 	struct hv_device *dev = device_to_hv_device(device);
692 	const char *format = "MODALIAS=vmbus:%*phN";
693 
694 	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
695 }
696 
697 static const struct hv_vmbus_device_id *
698 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
699 {
700 	if (id == NULL)
701 		return NULL; /* empty device table */
702 
703 	for (; !guid_is_null(&id->guid); id++)
704 		if (guid_equal(&id->guid, guid))
705 			return id;
706 
707 	return NULL;
708 }
709 
710 static const struct hv_vmbus_device_id *
711 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
712 {
713 	const struct hv_vmbus_device_id *id = NULL;
714 	struct vmbus_dynid *dynid;
715 
716 	spin_lock(&drv->dynids.lock);
717 	list_for_each_entry(dynid, &drv->dynids.list, node) {
718 		if (guid_equal(&dynid->id.guid, guid)) {
719 			id = &dynid->id;
720 			break;
721 		}
722 	}
723 	spin_unlock(&drv->dynids.lock);
724 
725 	return id;
726 }
727 
728 static const struct hv_vmbus_device_id vmbus_device_null;
729 
730 /*
731  * Return a matching hv_vmbus_device_id pointer.
732  * If there is no match, return NULL.
733  */
734 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
735 							struct hv_device *dev)
736 {
737 	const guid_t *guid = &dev->dev_type;
738 	const struct hv_vmbus_device_id *id;
739 
740 	/* When driver_override is set, only bind to the matching driver */
741 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
742 		return NULL;
743 
744 	/* Look at the dynamic ids first, before the static ones */
745 	id = hv_vmbus_dynid_match(drv, guid);
746 	if (!id)
747 		id = hv_vmbus_dev_match(drv->id_table, guid);
748 
749 	/* driver_override will always match, send a dummy id */
750 	if (!id && dev->driver_override)
751 		id = &vmbus_device_null;
752 
753 	return id;
754 }
755 
756 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
757 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
758 {
759 	struct vmbus_dynid *dynid;
760 
761 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
762 	if (!dynid)
763 		return -ENOMEM;
764 
765 	dynid->id.guid = *guid;
766 
767 	spin_lock(&drv->dynids.lock);
768 	list_add_tail(&dynid->node, &drv->dynids.list);
769 	spin_unlock(&drv->dynids.lock);
770 
771 	return driver_attach(&drv->driver);
772 }
773 
774 static void vmbus_free_dynids(struct hv_driver *drv)
775 {
776 	struct vmbus_dynid *dynid, *n;
777 
778 	spin_lock(&drv->dynids.lock);
779 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
780 		list_del(&dynid->node);
781 		kfree(dynid);
782 	}
783 	spin_unlock(&drv->dynids.lock);
784 }
785 
786 /*
787  * store_new_id - sysfs frontend to vmbus_add_dynid()
788  *
789  * Allow GUIDs to be added to an existing driver via sysfs.
790  */
791 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
792 			    size_t count)
793 {
794 	struct hv_driver *drv = drv_to_hv_drv(driver);
795 	guid_t guid;
796 	ssize_t retval;
797 
798 	retval = guid_parse(buf, &guid);
799 	if (retval)
800 		return retval;
801 
802 	if (hv_vmbus_dynid_match(drv, &guid))
803 		return -EEXIST;
804 
805 	retval = vmbus_add_dynid(drv, &guid);
806 	if (retval)
807 		return retval;
808 	return count;
809 }
810 static DRIVER_ATTR_WO(new_id);
811 
812 /*
813  * store_remove_id - remove a PCI device ID from this driver
814  *
815  * Removes a dynamic pci device ID to this driver.
816  */
817 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
818 			       size_t count)
819 {
820 	struct hv_driver *drv = drv_to_hv_drv(driver);
821 	struct vmbus_dynid *dynid, *n;
822 	guid_t guid;
823 	ssize_t retval;
824 
825 	retval = guid_parse(buf, &guid);
826 	if (retval)
827 		return retval;
828 
829 	retval = -ENODEV;
830 	spin_lock(&drv->dynids.lock);
831 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
832 		struct hv_vmbus_device_id *id = &dynid->id;
833 
834 		if (guid_equal(&id->guid, &guid)) {
835 			list_del(&dynid->node);
836 			kfree(dynid);
837 			retval = count;
838 			break;
839 		}
840 	}
841 	spin_unlock(&drv->dynids.lock);
842 
843 	return retval;
844 }
845 static DRIVER_ATTR_WO(remove_id);
846 
847 static struct attribute *vmbus_drv_attrs[] = {
848 	&driver_attr_new_id.attr,
849 	&driver_attr_remove_id.attr,
850 	NULL,
851 };
852 ATTRIBUTE_GROUPS(vmbus_drv);
853 
854 
855 /*
856  * vmbus_match - Attempt to match the specified device to the specified driver
857  */
858 static int vmbus_match(struct device *device, struct device_driver *driver)
859 {
860 	struct hv_driver *drv = drv_to_hv_drv(driver);
861 	struct hv_device *hv_dev = device_to_hv_device(device);
862 
863 	/* The hv_sock driver handles all hv_sock offers. */
864 	if (is_hvsock_channel(hv_dev->channel))
865 		return drv->hvsock;
866 
867 	if (hv_vmbus_get_id(drv, hv_dev))
868 		return 1;
869 
870 	return 0;
871 }
872 
873 /*
874  * vmbus_probe - Add the new vmbus's child device
875  */
876 static int vmbus_probe(struct device *child_device)
877 {
878 	int ret = 0;
879 	struct hv_driver *drv =
880 			drv_to_hv_drv(child_device->driver);
881 	struct hv_device *dev = device_to_hv_device(child_device);
882 	const struct hv_vmbus_device_id *dev_id;
883 
884 	dev_id = hv_vmbus_get_id(drv, dev);
885 	if (drv->probe) {
886 		ret = drv->probe(dev, dev_id);
887 		if (ret != 0)
888 			pr_err("probe failed for device %s (%d)\n",
889 			       dev_name(child_device), ret);
890 
891 	} else {
892 		pr_err("probe not set for driver %s\n",
893 		       dev_name(child_device));
894 		ret = -ENODEV;
895 	}
896 	return ret;
897 }
898 
899 /*
900  * vmbus_remove - Remove a vmbus device
901  */
902 static int vmbus_remove(struct device *child_device)
903 {
904 	struct hv_driver *drv;
905 	struct hv_device *dev = device_to_hv_device(child_device);
906 
907 	if (child_device->driver) {
908 		drv = drv_to_hv_drv(child_device->driver);
909 		if (drv->remove)
910 			drv->remove(dev);
911 	}
912 
913 	return 0;
914 }
915 
916 
917 /*
918  * vmbus_shutdown - Shutdown a vmbus device
919  */
920 static void vmbus_shutdown(struct device *child_device)
921 {
922 	struct hv_driver *drv;
923 	struct hv_device *dev = device_to_hv_device(child_device);
924 
925 
926 	/* The device may not be attached yet */
927 	if (!child_device->driver)
928 		return;
929 
930 	drv = drv_to_hv_drv(child_device->driver);
931 
932 	if (drv->shutdown)
933 		drv->shutdown(dev);
934 }
935 
936 #ifdef CONFIG_PM_SLEEP
937 /*
938  * vmbus_suspend - Suspend a vmbus device
939  */
940 static int vmbus_suspend(struct device *child_device)
941 {
942 	struct hv_driver *drv;
943 	struct hv_device *dev = device_to_hv_device(child_device);
944 
945 	/* The device may not be attached yet */
946 	if (!child_device->driver)
947 		return 0;
948 
949 	drv = drv_to_hv_drv(child_device->driver);
950 	if (!drv->suspend)
951 		return -EOPNOTSUPP;
952 
953 	return drv->suspend(dev);
954 }
955 
956 /*
957  * vmbus_resume - Resume a vmbus device
958  */
959 static int vmbus_resume(struct device *child_device)
960 {
961 	struct hv_driver *drv;
962 	struct hv_device *dev = device_to_hv_device(child_device);
963 
964 	/* The device may not be attached yet */
965 	if (!child_device->driver)
966 		return 0;
967 
968 	drv = drv_to_hv_drv(child_device->driver);
969 	if (!drv->resume)
970 		return -EOPNOTSUPP;
971 
972 	return drv->resume(dev);
973 }
974 #else
975 #define vmbus_suspend NULL
976 #define vmbus_resume NULL
977 #endif /* CONFIG_PM_SLEEP */
978 
979 /*
980  * vmbus_device_release - Final callback release of the vmbus child device
981  */
982 static void vmbus_device_release(struct device *device)
983 {
984 	struct hv_device *hv_dev = device_to_hv_device(device);
985 	struct vmbus_channel *channel = hv_dev->channel;
986 
987 	hv_debug_rm_dev_dir(hv_dev);
988 
989 	mutex_lock(&vmbus_connection.channel_mutex);
990 	hv_process_channel_removal(channel);
991 	mutex_unlock(&vmbus_connection.channel_mutex);
992 	kfree(hv_dev);
993 }
994 
995 /*
996  * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
997  *
998  * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
999  * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1000  * is no way to wake up a Generation-2 VM.
1001  *
1002  * The other 4 ops are for hibernation.
1003  */
1004 
1005 static const struct dev_pm_ops vmbus_pm = {
1006 	.suspend_noirq	= NULL,
1007 	.resume_noirq	= NULL,
1008 	.freeze_noirq	= vmbus_suspend,
1009 	.thaw_noirq	= vmbus_resume,
1010 	.poweroff_noirq	= vmbus_suspend,
1011 	.restore_noirq	= vmbus_resume,
1012 };
1013 
1014 /* The one and only one */
1015 static struct bus_type  hv_bus = {
1016 	.name =		"vmbus",
1017 	.match =		vmbus_match,
1018 	.shutdown =		vmbus_shutdown,
1019 	.remove =		vmbus_remove,
1020 	.probe =		vmbus_probe,
1021 	.uevent =		vmbus_uevent,
1022 	.dev_groups =		vmbus_dev_groups,
1023 	.drv_groups =		vmbus_drv_groups,
1024 	.pm =			&vmbus_pm,
1025 };
1026 
1027 struct onmessage_work_context {
1028 	struct work_struct work;
1029 	struct {
1030 		struct hv_message_header header;
1031 		u8 payload[];
1032 	} msg;
1033 };
1034 
1035 static void vmbus_onmessage_work(struct work_struct *work)
1036 {
1037 	struct onmessage_work_context *ctx;
1038 
1039 	/* Do not process messages if we're in DISCONNECTED state */
1040 	if (vmbus_connection.conn_state == DISCONNECTED)
1041 		return;
1042 
1043 	ctx = container_of(work, struct onmessage_work_context,
1044 			   work);
1045 	vmbus_onmessage((struct vmbus_channel_message_header *)
1046 			&ctx->msg.payload);
1047 	kfree(ctx);
1048 }
1049 
1050 void vmbus_on_msg_dpc(unsigned long data)
1051 {
1052 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1053 	void *page_addr = hv_cpu->synic_message_page;
1054 	struct hv_message *msg = (struct hv_message *)page_addr +
1055 				  VMBUS_MESSAGE_SINT;
1056 	struct vmbus_channel_message_header *hdr;
1057 	const struct vmbus_channel_message_table_entry *entry;
1058 	struct onmessage_work_context *ctx;
1059 	u32 message_type = msg->header.message_type;
1060 
1061 	/*
1062 	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1063 	 * it is being used in 'struct vmbus_channel_message_header' definition
1064 	 * which is supposed to match hypervisor ABI.
1065 	 */
1066 	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1067 
1068 	if (message_type == HVMSG_NONE)
1069 		/* no msg */
1070 		return;
1071 
1072 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1073 
1074 	trace_vmbus_on_msg_dpc(hdr);
1075 
1076 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
1077 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1078 		goto msg_handled;
1079 	}
1080 
1081 	if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1082 		WARN_ONCE(1, "payload size is too large (%d)\n",
1083 			  msg->header.payload_size);
1084 		goto msg_handled;
1085 	}
1086 
1087 	entry = &channel_message_table[hdr->msgtype];
1088 
1089 	if (!entry->message_handler)
1090 		goto msg_handled;
1091 
1092 	if (msg->header.payload_size < entry->min_payload_len) {
1093 		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n",
1094 			  hdr->msgtype, msg->header.payload_size);
1095 		goto msg_handled;
1096 	}
1097 
1098 	if (entry->handler_type	== VMHT_BLOCKING) {
1099 		ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size,
1100 			      GFP_ATOMIC);
1101 		if (ctx == NULL)
1102 			return;
1103 
1104 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1105 		memcpy(&ctx->msg, msg, sizeof(msg->header) +
1106 		       msg->header.payload_size);
1107 
1108 		/*
1109 		 * The host can generate a rescind message while we
1110 		 * may still be handling the original offer. We deal with
1111 		 * this condition by relying on the synchronization provided
1112 		 * by offer_in_progress and by channel_mutex.  See also the
1113 		 * inline comments in vmbus_onoffer_rescind().
1114 		 */
1115 		switch (hdr->msgtype) {
1116 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1117 			/*
1118 			 * If we are handling the rescind message;
1119 			 * schedule the work on the global work queue.
1120 			 *
1121 			 * The OFFER message and the RESCIND message should
1122 			 * not be handled by the same serialized work queue,
1123 			 * because the OFFER handler may call vmbus_open(),
1124 			 * which tries to open the channel by sending an
1125 			 * OPEN_CHANNEL message to the host and waits for
1126 			 * the host's response; however, if the host has
1127 			 * rescinded the channel before it receives the
1128 			 * OPEN_CHANNEL message, the host just silently
1129 			 * ignores the OPEN_CHANNEL message; as a result,
1130 			 * the guest's OFFER handler hangs for ever, if we
1131 			 * handle the RESCIND message in the same serialized
1132 			 * work queue: the RESCIND handler can not start to
1133 			 * run before the OFFER handler finishes.
1134 			 */
1135 			schedule_work(&ctx->work);
1136 			break;
1137 
1138 		case CHANNELMSG_OFFERCHANNEL:
1139 			/*
1140 			 * The host sends the offer message of a given channel
1141 			 * before sending the rescind message of the same
1142 			 * channel.  These messages are sent to the guest's
1143 			 * connect CPU; the guest then starts processing them
1144 			 * in the tasklet handler on this CPU:
1145 			 *
1146 			 * VMBUS_CONNECT_CPU
1147 			 *
1148 			 * [vmbus_on_msg_dpc()]
1149 			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1150 			 * queue_work()
1151 			 * ...
1152 			 * [vmbus_on_msg_dpc()]
1153 			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1154 			 *
1155 			 * We rely on the memory-ordering properties of the
1156 			 * queue_work() and schedule_work() primitives, which
1157 			 * guarantee that the atomic increment will be visible
1158 			 * to the CPUs which will execute the offer & rescind
1159 			 * works by the time these works will start execution.
1160 			 */
1161 			atomic_inc(&vmbus_connection.offer_in_progress);
1162 			fallthrough;
1163 
1164 		default:
1165 			queue_work(vmbus_connection.work_queue, &ctx->work);
1166 		}
1167 	} else
1168 		entry->message_handler(hdr);
1169 
1170 msg_handled:
1171 	vmbus_signal_eom(msg, message_type);
1172 }
1173 
1174 #ifdef CONFIG_PM_SLEEP
1175 /*
1176  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1177  * hibernation, because hv_sock connections can not persist across hibernation.
1178  */
1179 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1180 {
1181 	struct onmessage_work_context *ctx;
1182 	struct vmbus_channel_rescind_offer *rescind;
1183 
1184 	WARN_ON(!is_hvsock_channel(channel));
1185 
1186 	/*
1187 	 * Allocation size is small and the allocation should really not fail,
1188 	 * otherwise the state of the hv_sock connections ends up in limbo.
1189 	 */
1190 	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1191 		      GFP_KERNEL | __GFP_NOFAIL);
1192 
1193 	/*
1194 	 * So far, these are not really used by Linux. Just set them to the
1195 	 * reasonable values conforming to the definitions of the fields.
1196 	 */
1197 	ctx->msg.header.message_type = 1;
1198 	ctx->msg.header.payload_size = sizeof(*rescind);
1199 
1200 	/* These values are actually used by Linux. */
1201 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1202 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1203 	rescind->child_relid = channel->offermsg.child_relid;
1204 
1205 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1206 
1207 	queue_work(vmbus_connection.work_queue, &ctx->work);
1208 }
1209 #endif /* CONFIG_PM_SLEEP */
1210 
1211 /*
1212  * Schedule all channels with events pending
1213  */
1214 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1215 {
1216 	unsigned long *recv_int_page;
1217 	u32 maxbits, relid;
1218 
1219 	if (vmbus_proto_version < VERSION_WIN8) {
1220 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1221 		recv_int_page = vmbus_connection.recv_int_page;
1222 	} else {
1223 		/*
1224 		 * When the host is win8 and beyond, the event page
1225 		 * can be directly checked to get the id of the channel
1226 		 * that has the interrupt pending.
1227 		 */
1228 		void *page_addr = hv_cpu->synic_event_page;
1229 		union hv_synic_event_flags *event
1230 			= (union hv_synic_event_flags *)page_addr +
1231 						 VMBUS_MESSAGE_SINT;
1232 
1233 		maxbits = HV_EVENT_FLAGS_COUNT;
1234 		recv_int_page = event->flags;
1235 	}
1236 
1237 	if (unlikely(!recv_int_page))
1238 		return;
1239 
1240 	for_each_set_bit(relid, recv_int_page, maxbits) {
1241 		void (*callback_fn)(void *context);
1242 		struct vmbus_channel *channel;
1243 
1244 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1245 			continue;
1246 
1247 		/* Special case - vmbus channel protocol msg */
1248 		if (relid == 0)
1249 			continue;
1250 
1251 		/*
1252 		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1253 		 * Guarantees that the channel data structure doesn't
1254 		 * get freed while the channel pointer below is being
1255 		 * dereferenced.
1256 		 */
1257 		rcu_read_lock();
1258 
1259 		/* Find channel based on relid */
1260 		channel = relid2channel(relid);
1261 		if (channel == NULL)
1262 			goto sched_unlock_rcu;
1263 
1264 		if (channel->rescind)
1265 			goto sched_unlock_rcu;
1266 
1267 		/*
1268 		 * Make sure that the ring buffer data structure doesn't get
1269 		 * freed while we dereference the ring buffer pointer.  Test
1270 		 * for the channel's onchannel_callback being NULL within a
1271 		 * sched_lock critical section.  See also the inline comments
1272 		 * in vmbus_reset_channel_cb().
1273 		 */
1274 		spin_lock(&channel->sched_lock);
1275 
1276 		callback_fn = channel->onchannel_callback;
1277 		if (unlikely(callback_fn == NULL))
1278 			goto sched_unlock;
1279 
1280 		trace_vmbus_chan_sched(channel);
1281 
1282 		++channel->interrupts;
1283 
1284 		switch (channel->callback_mode) {
1285 		case HV_CALL_ISR:
1286 			(*callback_fn)(channel->channel_callback_context);
1287 			break;
1288 
1289 		case HV_CALL_BATCHED:
1290 			hv_begin_read(&channel->inbound);
1291 			fallthrough;
1292 		case HV_CALL_DIRECT:
1293 			tasklet_schedule(&channel->callback_event);
1294 		}
1295 
1296 sched_unlock:
1297 		spin_unlock(&channel->sched_lock);
1298 sched_unlock_rcu:
1299 		rcu_read_unlock();
1300 	}
1301 }
1302 
1303 static void vmbus_isr(void)
1304 {
1305 	struct hv_per_cpu_context *hv_cpu
1306 		= this_cpu_ptr(hv_context.cpu_context);
1307 	void *page_addr = hv_cpu->synic_event_page;
1308 	struct hv_message *msg;
1309 	union hv_synic_event_flags *event;
1310 	bool handled = false;
1311 
1312 	if (unlikely(page_addr == NULL))
1313 		return;
1314 
1315 	event = (union hv_synic_event_flags *)page_addr +
1316 					 VMBUS_MESSAGE_SINT;
1317 	/*
1318 	 * Check for events before checking for messages. This is the order
1319 	 * in which events and messages are checked in Windows guests on
1320 	 * Hyper-V, and the Windows team suggested we do the same.
1321 	 */
1322 
1323 	if ((vmbus_proto_version == VERSION_WS2008) ||
1324 		(vmbus_proto_version == VERSION_WIN7)) {
1325 
1326 		/* Since we are a child, we only need to check bit 0 */
1327 		if (sync_test_and_clear_bit(0, event->flags))
1328 			handled = true;
1329 	} else {
1330 		/*
1331 		 * Our host is win8 or above. The signaling mechanism
1332 		 * has changed and we can directly look at the event page.
1333 		 * If bit n is set then we have an interrup on the channel
1334 		 * whose id is n.
1335 		 */
1336 		handled = true;
1337 	}
1338 
1339 	if (handled)
1340 		vmbus_chan_sched(hv_cpu);
1341 
1342 	page_addr = hv_cpu->synic_message_page;
1343 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1344 
1345 	/* Check if there are actual msgs to be processed */
1346 	if (msg->header.message_type != HVMSG_NONE) {
1347 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1348 			hv_stimer0_isr();
1349 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1350 		} else
1351 			tasklet_schedule(&hv_cpu->msg_dpc);
1352 	}
1353 
1354 	add_interrupt_randomness(hv_get_vector(), 0);
1355 }
1356 
1357 /*
1358  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1359  * buffer and call into Hyper-V to transfer the data.
1360  */
1361 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1362 			 enum kmsg_dump_reason reason)
1363 {
1364 	size_t bytes_written;
1365 	phys_addr_t panic_pa;
1366 
1367 	/* We are only interested in panics. */
1368 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1369 		return;
1370 
1371 	panic_pa = virt_to_phys(hv_panic_page);
1372 
1373 	/*
1374 	 * Write dump contents to the page. No need to synchronize; panic should
1375 	 * be single-threaded.
1376 	 */
1377 	kmsg_dump_get_buffer(dumper, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1378 			     &bytes_written);
1379 	if (bytes_written)
1380 		hyperv_report_panic_msg(panic_pa, bytes_written);
1381 }
1382 
1383 static struct kmsg_dumper hv_kmsg_dumper = {
1384 	.dump = hv_kmsg_dump,
1385 };
1386 
1387 static struct ctl_table_header *hv_ctl_table_hdr;
1388 
1389 /*
1390  * sysctl option to allow the user to control whether kmsg data should be
1391  * reported to Hyper-V on panic.
1392  */
1393 static struct ctl_table hv_ctl_table[] = {
1394 	{
1395 		.procname       = "hyperv_record_panic_msg",
1396 		.data           = &sysctl_record_panic_msg,
1397 		.maxlen         = sizeof(int),
1398 		.mode           = 0644,
1399 		.proc_handler   = proc_dointvec_minmax,
1400 		.extra1		= SYSCTL_ZERO,
1401 		.extra2		= SYSCTL_ONE
1402 	},
1403 	{}
1404 };
1405 
1406 static struct ctl_table hv_root_table[] = {
1407 	{
1408 		.procname	= "kernel",
1409 		.mode		= 0555,
1410 		.child		= hv_ctl_table
1411 	},
1412 	{}
1413 };
1414 
1415 /*
1416  * vmbus_bus_init -Main vmbus driver initialization routine.
1417  *
1418  * Here, we
1419  *	- initialize the vmbus driver context
1420  *	- invoke the vmbus hv main init routine
1421  *	- retrieve the channel offers
1422  */
1423 static int vmbus_bus_init(void)
1424 {
1425 	int ret;
1426 
1427 	ret = hv_init();
1428 	if (ret != 0) {
1429 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1430 		return ret;
1431 	}
1432 
1433 	ret = bus_register(&hv_bus);
1434 	if (ret)
1435 		return ret;
1436 
1437 	ret = hv_setup_vmbus_irq(vmbus_irq, vmbus_isr);
1438 	if (ret)
1439 		goto err_setup;
1440 
1441 	ret = hv_synic_alloc();
1442 	if (ret)
1443 		goto err_alloc;
1444 
1445 	/*
1446 	 * Initialize the per-cpu interrupt state and stimer state.
1447 	 * Then connect to the host.
1448 	 */
1449 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1450 				hv_synic_init, hv_synic_cleanup);
1451 	if (ret < 0)
1452 		goto err_cpuhp;
1453 	hyperv_cpuhp_online = ret;
1454 
1455 	ret = vmbus_connect();
1456 	if (ret)
1457 		goto err_connect;
1458 
1459 	/*
1460 	 * Only register if the crash MSRs are available
1461 	 */
1462 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1463 		u64 hyperv_crash_ctl;
1464 		/*
1465 		 * Sysctl registration is not fatal, since by default
1466 		 * reporting is enabled.
1467 		 */
1468 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1469 		if (!hv_ctl_table_hdr)
1470 			pr_err("Hyper-V: sysctl table register error");
1471 
1472 		/*
1473 		 * Register for panic kmsg callback only if the right
1474 		 * capability is supported by the hypervisor.
1475 		 */
1476 		hv_get_crash_ctl(hyperv_crash_ctl);
1477 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1478 			hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1479 			if (hv_panic_page) {
1480 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1481 				if (ret) {
1482 					pr_err("Hyper-V: kmsg dump register "
1483 						"error 0x%x\n", ret);
1484 					hv_free_hyperv_page(
1485 					    (unsigned long)hv_panic_page);
1486 					hv_panic_page = NULL;
1487 				}
1488 			} else
1489 				pr_err("Hyper-V: panic message page memory "
1490 					"allocation failed");
1491 		}
1492 
1493 		register_die_notifier(&hyperv_die_block);
1494 	}
1495 
1496 	/*
1497 	 * Always register the panic notifier because we need to unload
1498 	 * the VMbus channel connection to prevent any VMbus
1499 	 * activity after the VM panics.
1500 	 */
1501 	atomic_notifier_chain_register(&panic_notifier_list,
1502 			       &hyperv_panic_block);
1503 
1504 	vmbus_request_offers();
1505 
1506 	return 0;
1507 
1508 err_connect:
1509 	cpuhp_remove_state(hyperv_cpuhp_online);
1510 err_cpuhp:
1511 	hv_synic_free();
1512 err_alloc:
1513 	hv_remove_vmbus_irq();
1514 err_setup:
1515 	bus_unregister(&hv_bus);
1516 	unregister_sysctl_table(hv_ctl_table_hdr);
1517 	hv_ctl_table_hdr = NULL;
1518 	return ret;
1519 }
1520 
1521 /**
1522  * __vmbus_child_driver_register() - Register a vmbus's driver
1523  * @hv_driver: Pointer to driver structure you want to register
1524  * @owner: owner module of the drv
1525  * @mod_name: module name string
1526  *
1527  * Registers the given driver with Linux through the 'driver_register()' call
1528  * and sets up the hyper-v vmbus handling for this driver.
1529  * It will return the state of the 'driver_register()' call.
1530  *
1531  */
1532 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1533 {
1534 	int ret;
1535 
1536 	pr_info("registering driver %s\n", hv_driver->name);
1537 
1538 	ret = vmbus_exists();
1539 	if (ret < 0)
1540 		return ret;
1541 
1542 	hv_driver->driver.name = hv_driver->name;
1543 	hv_driver->driver.owner = owner;
1544 	hv_driver->driver.mod_name = mod_name;
1545 	hv_driver->driver.bus = &hv_bus;
1546 
1547 	spin_lock_init(&hv_driver->dynids.lock);
1548 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1549 
1550 	ret = driver_register(&hv_driver->driver);
1551 
1552 	return ret;
1553 }
1554 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1555 
1556 /**
1557  * vmbus_driver_unregister() - Unregister a vmbus's driver
1558  * @hv_driver: Pointer to driver structure you want to
1559  *             un-register
1560  *
1561  * Un-register the given driver that was previous registered with a call to
1562  * vmbus_driver_register()
1563  */
1564 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1565 {
1566 	pr_info("unregistering driver %s\n", hv_driver->name);
1567 
1568 	if (!vmbus_exists()) {
1569 		driver_unregister(&hv_driver->driver);
1570 		vmbus_free_dynids(hv_driver);
1571 	}
1572 }
1573 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1574 
1575 
1576 /*
1577  * Called when last reference to channel is gone.
1578  */
1579 static void vmbus_chan_release(struct kobject *kobj)
1580 {
1581 	struct vmbus_channel *channel
1582 		= container_of(kobj, struct vmbus_channel, kobj);
1583 
1584 	kfree_rcu(channel, rcu);
1585 }
1586 
1587 struct vmbus_chan_attribute {
1588 	struct attribute attr;
1589 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1590 	ssize_t (*store)(struct vmbus_channel *chan,
1591 			 const char *buf, size_t count);
1592 };
1593 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1594 	struct vmbus_chan_attribute chan_attr_##_name \
1595 		= __ATTR(_name, _mode, _show, _store)
1596 #define VMBUS_CHAN_ATTR_RW(_name) \
1597 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1598 #define VMBUS_CHAN_ATTR_RO(_name) \
1599 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1600 #define VMBUS_CHAN_ATTR_WO(_name) \
1601 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1602 
1603 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1604 				    struct attribute *attr, char *buf)
1605 {
1606 	const struct vmbus_chan_attribute *attribute
1607 		= container_of(attr, struct vmbus_chan_attribute, attr);
1608 	struct vmbus_channel *chan
1609 		= container_of(kobj, struct vmbus_channel, kobj);
1610 
1611 	if (!attribute->show)
1612 		return -EIO;
1613 
1614 	return attribute->show(chan, buf);
1615 }
1616 
1617 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1618 				     struct attribute *attr, const char *buf,
1619 				     size_t count)
1620 {
1621 	const struct vmbus_chan_attribute *attribute
1622 		= container_of(attr, struct vmbus_chan_attribute, attr);
1623 	struct vmbus_channel *chan
1624 		= container_of(kobj, struct vmbus_channel, kobj);
1625 
1626 	if (!attribute->store)
1627 		return -EIO;
1628 
1629 	return attribute->store(chan, buf, count);
1630 }
1631 
1632 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1633 	.show = vmbus_chan_attr_show,
1634 	.store = vmbus_chan_attr_store,
1635 };
1636 
1637 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1638 {
1639 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1640 	ssize_t ret;
1641 
1642 	mutex_lock(&rbi->ring_buffer_mutex);
1643 	if (!rbi->ring_buffer) {
1644 		mutex_unlock(&rbi->ring_buffer_mutex);
1645 		return -EINVAL;
1646 	}
1647 
1648 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1649 	mutex_unlock(&rbi->ring_buffer_mutex);
1650 	return ret;
1651 }
1652 static VMBUS_CHAN_ATTR_RO(out_mask);
1653 
1654 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1655 {
1656 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1657 	ssize_t ret;
1658 
1659 	mutex_lock(&rbi->ring_buffer_mutex);
1660 	if (!rbi->ring_buffer) {
1661 		mutex_unlock(&rbi->ring_buffer_mutex);
1662 		return -EINVAL;
1663 	}
1664 
1665 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1666 	mutex_unlock(&rbi->ring_buffer_mutex);
1667 	return ret;
1668 }
1669 static VMBUS_CHAN_ATTR_RO(in_mask);
1670 
1671 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1672 {
1673 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1674 	ssize_t ret;
1675 
1676 	mutex_lock(&rbi->ring_buffer_mutex);
1677 	if (!rbi->ring_buffer) {
1678 		mutex_unlock(&rbi->ring_buffer_mutex);
1679 		return -EINVAL;
1680 	}
1681 
1682 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1683 	mutex_unlock(&rbi->ring_buffer_mutex);
1684 	return ret;
1685 }
1686 static VMBUS_CHAN_ATTR_RO(read_avail);
1687 
1688 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1689 {
1690 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1691 	ssize_t ret;
1692 
1693 	mutex_lock(&rbi->ring_buffer_mutex);
1694 	if (!rbi->ring_buffer) {
1695 		mutex_unlock(&rbi->ring_buffer_mutex);
1696 		return -EINVAL;
1697 	}
1698 
1699 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1700 	mutex_unlock(&rbi->ring_buffer_mutex);
1701 	return ret;
1702 }
1703 static VMBUS_CHAN_ATTR_RO(write_avail);
1704 
1705 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1706 {
1707 	return sprintf(buf, "%u\n", channel->target_cpu);
1708 }
1709 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1710 				const char *buf, size_t count)
1711 {
1712 	u32 target_cpu, origin_cpu;
1713 	ssize_t ret = count;
1714 
1715 	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1716 		return -EIO;
1717 
1718 	if (sscanf(buf, "%uu", &target_cpu) != 1)
1719 		return -EIO;
1720 
1721 	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1722 	if (target_cpu >= nr_cpumask_bits)
1723 		return -EINVAL;
1724 
1725 	/* No CPUs should come up or down during this. */
1726 	cpus_read_lock();
1727 
1728 	if (!cpu_online(target_cpu)) {
1729 		cpus_read_unlock();
1730 		return -EINVAL;
1731 	}
1732 
1733 	/*
1734 	 * Synchronizes target_cpu_store() and channel closure:
1735 	 *
1736 	 * { Initially: state = CHANNEL_OPENED }
1737 	 *
1738 	 * CPU1				CPU2
1739 	 *
1740 	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1741 	 *
1742 	 * LOCK channel_mutex		LOCK channel_mutex
1743 	 * LOAD r1 = state		LOAD r2 = state
1744 	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1745 	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1746 	 *   [...]			  SEND CLOSECHANNEL
1747 	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1748 	 *
1749 	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1750 	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1751 	 *
1752 	 * Note.  The host processes the channel messages "sequentially", in
1753 	 * the order in which they are received on a per-partition basis.
1754 	 */
1755 	mutex_lock(&vmbus_connection.channel_mutex);
1756 
1757 	/*
1758 	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1759 	 * avoid sending the message and fail here for such channels.
1760 	 */
1761 	if (channel->state != CHANNEL_OPENED_STATE) {
1762 		ret = -EIO;
1763 		goto cpu_store_unlock;
1764 	}
1765 
1766 	origin_cpu = channel->target_cpu;
1767 	if (target_cpu == origin_cpu)
1768 		goto cpu_store_unlock;
1769 
1770 	if (vmbus_send_modifychannel(channel->offermsg.child_relid,
1771 				     hv_cpu_number_to_vp_number(target_cpu))) {
1772 		ret = -EIO;
1773 		goto cpu_store_unlock;
1774 	}
1775 
1776 	/*
1777 	 * Warning.  At this point, there is *no* guarantee that the host will
1778 	 * have successfully processed the vmbus_send_modifychannel() request.
1779 	 * See the header comment of vmbus_send_modifychannel() for more info.
1780 	 *
1781 	 * Lags in the processing of the above vmbus_send_modifychannel() can
1782 	 * result in missed interrupts if the "old" target CPU is taken offline
1783 	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1784 	 * But apart from this offlining scenario, the code tolerates such
1785 	 * lags.  It will function correctly even if a channel interrupt comes
1786 	 * in on a CPU that is different from the channel target_cpu value.
1787 	 */
1788 
1789 	channel->target_cpu = target_cpu;
1790 
1791 	/* See init_vp_index(). */
1792 	if (hv_is_perf_channel(channel))
1793 		hv_update_alloced_cpus(origin_cpu, target_cpu);
1794 
1795 	/* Currently set only for storvsc channels. */
1796 	if (channel->change_target_cpu_callback) {
1797 		(*channel->change_target_cpu_callback)(channel,
1798 				origin_cpu, target_cpu);
1799 	}
1800 
1801 cpu_store_unlock:
1802 	mutex_unlock(&vmbus_connection.channel_mutex);
1803 	cpus_read_unlock();
1804 	return ret;
1805 }
1806 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1807 
1808 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1809 				    char *buf)
1810 {
1811 	return sprintf(buf, "%d\n",
1812 		       channel_pending(channel,
1813 				       vmbus_connection.monitor_pages[1]));
1814 }
1815 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1816 
1817 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1818 				    char *buf)
1819 {
1820 	return sprintf(buf, "%d\n",
1821 		       channel_latency(channel,
1822 				       vmbus_connection.monitor_pages[1]));
1823 }
1824 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1825 
1826 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1827 {
1828 	return sprintf(buf, "%llu\n", channel->interrupts);
1829 }
1830 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1831 
1832 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1833 {
1834 	return sprintf(buf, "%llu\n", channel->sig_events);
1835 }
1836 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1837 
1838 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1839 					 char *buf)
1840 {
1841 	return sprintf(buf, "%llu\n",
1842 		       (unsigned long long)channel->intr_in_full);
1843 }
1844 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1845 
1846 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1847 					   char *buf)
1848 {
1849 	return sprintf(buf, "%llu\n",
1850 		       (unsigned long long)channel->intr_out_empty);
1851 }
1852 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1853 
1854 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1855 					   char *buf)
1856 {
1857 	return sprintf(buf, "%llu\n",
1858 		       (unsigned long long)channel->out_full_first);
1859 }
1860 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1861 
1862 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1863 					   char *buf)
1864 {
1865 	return sprintf(buf, "%llu\n",
1866 		       (unsigned long long)channel->out_full_total);
1867 }
1868 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1869 
1870 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1871 					  char *buf)
1872 {
1873 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1874 }
1875 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1876 
1877 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1878 				  char *buf)
1879 {
1880 	return sprintf(buf, "%u\n",
1881 		       channel->offermsg.offer.sub_channel_index);
1882 }
1883 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1884 
1885 static struct attribute *vmbus_chan_attrs[] = {
1886 	&chan_attr_out_mask.attr,
1887 	&chan_attr_in_mask.attr,
1888 	&chan_attr_read_avail.attr,
1889 	&chan_attr_write_avail.attr,
1890 	&chan_attr_cpu.attr,
1891 	&chan_attr_pending.attr,
1892 	&chan_attr_latency.attr,
1893 	&chan_attr_interrupts.attr,
1894 	&chan_attr_events.attr,
1895 	&chan_attr_intr_in_full.attr,
1896 	&chan_attr_intr_out_empty.attr,
1897 	&chan_attr_out_full_first.attr,
1898 	&chan_attr_out_full_total.attr,
1899 	&chan_attr_monitor_id.attr,
1900 	&chan_attr_subchannel_id.attr,
1901 	NULL
1902 };
1903 
1904 /*
1905  * Channel-level attribute_group callback function. Returns the permission for
1906  * each attribute, and returns 0 if an attribute is not visible.
1907  */
1908 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1909 					  struct attribute *attr, int idx)
1910 {
1911 	const struct vmbus_channel *channel =
1912 		container_of(kobj, struct vmbus_channel, kobj);
1913 
1914 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1915 	if (!channel->offermsg.monitor_allocated &&
1916 	    (attr == &chan_attr_pending.attr ||
1917 	     attr == &chan_attr_latency.attr ||
1918 	     attr == &chan_attr_monitor_id.attr))
1919 		return 0;
1920 
1921 	return attr->mode;
1922 }
1923 
1924 static struct attribute_group vmbus_chan_group = {
1925 	.attrs = vmbus_chan_attrs,
1926 	.is_visible = vmbus_chan_attr_is_visible
1927 };
1928 
1929 static struct kobj_type vmbus_chan_ktype = {
1930 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1931 	.release = vmbus_chan_release,
1932 };
1933 
1934 /*
1935  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1936  */
1937 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1938 {
1939 	const struct device *device = &dev->device;
1940 	struct kobject *kobj = &channel->kobj;
1941 	u32 relid = channel->offermsg.child_relid;
1942 	int ret;
1943 
1944 	kobj->kset = dev->channels_kset;
1945 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1946 				   "%u", relid);
1947 	if (ret)
1948 		return ret;
1949 
1950 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1951 
1952 	if (ret) {
1953 		/*
1954 		 * The calling functions' error handling paths will cleanup the
1955 		 * empty channel directory.
1956 		 */
1957 		dev_err(device, "Unable to set up channel sysfs files\n");
1958 		return ret;
1959 	}
1960 
1961 	kobject_uevent(kobj, KOBJ_ADD);
1962 
1963 	return 0;
1964 }
1965 
1966 /*
1967  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1968  */
1969 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1970 {
1971 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1972 }
1973 
1974 /*
1975  * vmbus_device_create - Creates and registers a new child device
1976  * on the vmbus.
1977  */
1978 struct hv_device *vmbus_device_create(const guid_t *type,
1979 				      const guid_t *instance,
1980 				      struct vmbus_channel *channel)
1981 {
1982 	struct hv_device *child_device_obj;
1983 
1984 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1985 	if (!child_device_obj) {
1986 		pr_err("Unable to allocate device object for child device\n");
1987 		return NULL;
1988 	}
1989 
1990 	child_device_obj->channel = channel;
1991 	guid_copy(&child_device_obj->dev_type, type);
1992 	guid_copy(&child_device_obj->dev_instance, instance);
1993 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1994 
1995 	return child_device_obj;
1996 }
1997 
1998 /*
1999  * vmbus_device_register - Register the child device
2000  */
2001 int vmbus_device_register(struct hv_device *child_device_obj)
2002 {
2003 	struct kobject *kobj = &child_device_obj->device.kobj;
2004 	int ret;
2005 
2006 	dev_set_name(&child_device_obj->device, "%pUl",
2007 		     &child_device_obj->channel->offermsg.offer.if_instance);
2008 
2009 	child_device_obj->device.bus = &hv_bus;
2010 	child_device_obj->device.parent = &hv_acpi_dev->dev;
2011 	child_device_obj->device.release = vmbus_device_release;
2012 
2013 	/*
2014 	 * Register with the LDM. This will kick off the driver/device
2015 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
2016 	 */
2017 	ret = device_register(&child_device_obj->device);
2018 	if (ret) {
2019 		pr_err("Unable to register child device\n");
2020 		return ret;
2021 	}
2022 
2023 	child_device_obj->channels_kset = kset_create_and_add("channels",
2024 							      NULL, kobj);
2025 	if (!child_device_obj->channels_kset) {
2026 		ret = -ENOMEM;
2027 		goto err_dev_unregister;
2028 	}
2029 
2030 	ret = vmbus_add_channel_kobj(child_device_obj,
2031 				     child_device_obj->channel);
2032 	if (ret) {
2033 		pr_err("Unable to register primary channeln");
2034 		goto err_kset_unregister;
2035 	}
2036 	hv_debug_add_dev_dir(child_device_obj);
2037 
2038 	return 0;
2039 
2040 err_kset_unregister:
2041 	kset_unregister(child_device_obj->channels_kset);
2042 
2043 err_dev_unregister:
2044 	device_unregister(&child_device_obj->device);
2045 	return ret;
2046 }
2047 
2048 /*
2049  * vmbus_device_unregister - Remove the specified child device
2050  * from the vmbus.
2051  */
2052 void vmbus_device_unregister(struct hv_device *device_obj)
2053 {
2054 	pr_debug("child device %s unregistered\n",
2055 		dev_name(&device_obj->device));
2056 
2057 	kset_unregister(device_obj->channels_kset);
2058 
2059 	/*
2060 	 * Kick off the process of unregistering the device.
2061 	 * This will call vmbus_remove() and eventually vmbus_device_release()
2062 	 */
2063 	device_unregister(&device_obj->device);
2064 }
2065 
2066 
2067 /*
2068  * VMBUS is an acpi enumerated device. Get the information we
2069  * need from DSDT.
2070  */
2071 #define VTPM_BASE_ADDRESS 0xfed40000
2072 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2073 {
2074 	resource_size_t start = 0;
2075 	resource_size_t end = 0;
2076 	struct resource *new_res;
2077 	struct resource **old_res = &hyperv_mmio;
2078 	struct resource **prev_res = NULL;
2079 	struct resource r;
2080 
2081 	switch (res->type) {
2082 
2083 	/*
2084 	 * "Address" descriptors are for bus windows. Ignore
2085 	 * "memory" descriptors, which are for registers on
2086 	 * devices.
2087 	 */
2088 	case ACPI_RESOURCE_TYPE_ADDRESS32:
2089 		start = res->data.address32.address.minimum;
2090 		end = res->data.address32.address.maximum;
2091 		break;
2092 
2093 	case ACPI_RESOURCE_TYPE_ADDRESS64:
2094 		start = res->data.address64.address.minimum;
2095 		end = res->data.address64.address.maximum;
2096 		break;
2097 
2098 	/*
2099 	 * The IRQ information is needed only on ARM64, which Hyper-V
2100 	 * sets up in the extended format. IRQ information is present
2101 	 * on x86/x64 in the non-extended format but it is not used by
2102 	 * Linux. So don't bother checking for the non-extended format.
2103 	 */
2104 	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2105 		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2106 			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2107 			return AE_ERROR;
2108 		}
2109 		/* ARM64 INTID for VMbus */
2110 		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2111 		/* Linux IRQ number */
2112 		vmbus_irq = r.start;
2113 		return AE_OK;
2114 
2115 	default:
2116 		/* Unused resource type */
2117 		return AE_OK;
2118 
2119 	}
2120 	/*
2121 	 * Ignore ranges that are below 1MB, as they're not
2122 	 * necessary or useful here.
2123 	 */
2124 	if (end < 0x100000)
2125 		return AE_OK;
2126 
2127 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2128 	if (!new_res)
2129 		return AE_NO_MEMORY;
2130 
2131 	/* If this range overlaps the virtual TPM, truncate it. */
2132 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2133 		end = VTPM_BASE_ADDRESS;
2134 
2135 	new_res->name = "hyperv mmio";
2136 	new_res->flags = IORESOURCE_MEM;
2137 	new_res->start = start;
2138 	new_res->end = end;
2139 
2140 	/*
2141 	 * If two ranges are adjacent, merge them.
2142 	 */
2143 	do {
2144 		if (!*old_res) {
2145 			*old_res = new_res;
2146 			break;
2147 		}
2148 
2149 		if (((*old_res)->end + 1) == new_res->start) {
2150 			(*old_res)->end = new_res->end;
2151 			kfree(new_res);
2152 			break;
2153 		}
2154 
2155 		if ((*old_res)->start == new_res->end + 1) {
2156 			(*old_res)->start = new_res->start;
2157 			kfree(new_res);
2158 			break;
2159 		}
2160 
2161 		if ((*old_res)->start > new_res->end) {
2162 			new_res->sibling = *old_res;
2163 			if (prev_res)
2164 				(*prev_res)->sibling = new_res;
2165 			*old_res = new_res;
2166 			break;
2167 		}
2168 
2169 		prev_res = old_res;
2170 		old_res = &(*old_res)->sibling;
2171 
2172 	} while (1);
2173 
2174 	return AE_OK;
2175 }
2176 
2177 static int vmbus_acpi_remove(struct acpi_device *device)
2178 {
2179 	struct resource *cur_res;
2180 	struct resource *next_res;
2181 
2182 	if (hyperv_mmio) {
2183 		if (fb_mmio) {
2184 			__release_region(hyperv_mmio, fb_mmio->start,
2185 					 resource_size(fb_mmio));
2186 			fb_mmio = NULL;
2187 		}
2188 
2189 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2190 			next_res = cur_res->sibling;
2191 			kfree(cur_res);
2192 		}
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 static void vmbus_reserve_fb(void)
2199 {
2200 	int size;
2201 	/*
2202 	 * Make a claim for the frame buffer in the resource tree under the
2203 	 * first node, which will be the one below 4GB.  The length seems to
2204 	 * be underreported, particularly in a Generation 1 VM.  So start out
2205 	 * reserving a larger area and make it smaller until it succeeds.
2206 	 */
2207 
2208 	if (screen_info.lfb_base) {
2209 		if (efi_enabled(EFI_BOOT))
2210 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2211 		else
2212 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2213 
2214 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2215 			fb_mmio = __request_region(hyperv_mmio,
2216 						   screen_info.lfb_base, size,
2217 						   fb_mmio_name, 0);
2218 		}
2219 	}
2220 }
2221 
2222 /**
2223  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2224  * @new:		If successful, supplied a pointer to the
2225  *			allocated MMIO space.
2226  * @device_obj:		Identifies the caller
2227  * @min:		Minimum guest physical address of the
2228  *			allocation
2229  * @max:		Maximum guest physical address
2230  * @size:		Size of the range to be allocated
2231  * @align:		Alignment of the range to be allocated
2232  * @fb_overlap_ok:	Whether this allocation can be allowed
2233  *			to overlap the video frame buffer.
2234  *
2235  * This function walks the resources granted to VMBus by the
2236  * _CRS object in the ACPI namespace underneath the parent
2237  * "bridge" whether that's a root PCI bus in the Generation 1
2238  * case or a Module Device in the Generation 2 case.  It then
2239  * attempts to allocate from the global MMIO pool in a way that
2240  * matches the constraints supplied in these parameters and by
2241  * that _CRS.
2242  *
2243  * Return: 0 on success, -errno on failure
2244  */
2245 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2246 			resource_size_t min, resource_size_t max,
2247 			resource_size_t size, resource_size_t align,
2248 			bool fb_overlap_ok)
2249 {
2250 	struct resource *iter, *shadow;
2251 	resource_size_t range_min, range_max, start;
2252 	const char *dev_n = dev_name(&device_obj->device);
2253 	int retval;
2254 
2255 	retval = -ENXIO;
2256 	mutex_lock(&hyperv_mmio_lock);
2257 
2258 	/*
2259 	 * If overlaps with frame buffers are allowed, then first attempt to
2260 	 * make the allocation from within the reserved region.  Because it
2261 	 * is already reserved, no shadow allocation is necessary.
2262 	 */
2263 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2264 	    !(max < fb_mmio->start)) {
2265 
2266 		range_min = fb_mmio->start;
2267 		range_max = fb_mmio->end;
2268 		start = (range_min + align - 1) & ~(align - 1);
2269 		for (; start + size - 1 <= range_max; start += align) {
2270 			*new = request_mem_region_exclusive(start, size, dev_n);
2271 			if (*new) {
2272 				retval = 0;
2273 				goto exit;
2274 			}
2275 		}
2276 	}
2277 
2278 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2279 		if ((iter->start >= max) || (iter->end <= min))
2280 			continue;
2281 
2282 		range_min = iter->start;
2283 		range_max = iter->end;
2284 		start = (range_min + align - 1) & ~(align - 1);
2285 		for (; start + size - 1 <= range_max; start += align) {
2286 			shadow = __request_region(iter, start, size, NULL,
2287 						  IORESOURCE_BUSY);
2288 			if (!shadow)
2289 				continue;
2290 
2291 			*new = request_mem_region_exclusive(start, size, dev_n);
2292 			if (*new) {
2293 				shadow->name = (char *)*new;
2294 				retval = 0;
2295 				goto exit;
2296 			}
2297 
2298 			__release_region(iter, start, size);
2299 		}
2300 	}
2301 
2302 exit:
2303 	mutex_unlock(&hyperv_mmio_lock);
2304 	return retval;
2305 }
2306 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2307 
2308 /**
2309  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2310  * @start:		Base address of region to release.
2311  * @size:		Size of the range to be allocated
2312  *
2313  * This function releases anything requested by
2314  * vmbus_mmio_allocate().
2315  */
2316 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2317 {
2318 	struct resource *iter;
2319 
2320 	mutex_lock(&hyperv_mmio_lock);
2321 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2322 		if ((iter->start >= start + size) || (iter->end <= start))
2323 			continue;
2324 
2325 		__release_region(iter, start, size);
2326 	}
2327 	release_mem_region(start, size);
2328 	mutex_unlock(&hyperv_mmio_lock);
2329 
2330 }
2331 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2332 
2333 static int vmbus_acpi_add(struct acpi_device *device)
2334 {
2335 	acpi_status result;
2336 	int ret_val = -ENODEV;
2337 	struct acpi_device *ancestor;
2338 
2339 	hv_acpi_dev = device;
2340 
2341 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2342 					vmbus_walk_resources, NULL);
2343 
2344 	if (ACPI_FAILURE(result))
2345 		goto acpi_walk_err;
2346 	/*
2347 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2348 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2349 	 */
2350 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2351 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2352 					     vmbus_walk_resources, NULL);
2353 
2354 		if (ACPI_FAILURE(result))
2355 			continue;
2356 		if (hyperv_mmio) {
2357 			vmbus_reserve_fb();
2358 			break;
2359 		}
2360 	}
2361 	ret_val = 0;
2362 
2363 acpi_walk_err:
2364 	complete(&probe_event);
2365 	if (ret_val)
2366 		vmbus_acpi_remove(device);
2367 	return ret_val;
2368 }
2369 
2370 #ifdef CONFIG_PM_SLEEP
2371 static int vmbus_bus_suspend(struct device *dev)
2372 {
2373 	struct vmbus_channel *channel, *sc;
2374 
2375 	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2376 		/*
2377 		 * We wait here until the completion of any channel
2378 		 * offers that are currently in progress.
2379 		 */
2380 		msleep(1);
2381 	}
2382 
2383 	mutex_lock(&vmbus_connection.channel_mutex);
2384 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2385 		if (!is_hvsock_channel(channel))
2386 			continue;
2387 
2388 		vmbus_force_channel_rescinded(channel);
2389 	}
2390 	mutex_unlock(&vmbus_connection.channel_mutex);
2391 
2392 	/*
2393 	 * Wait until all the sub-channels and hv_sock channels have been
2394 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2395 	 * they would conflict with the new sub-channels that will be created
2396 	 * in the resume path. hv_sock channels should also be destroyed, but
2397 	 * a hv_sock channel of an established hv_sock connection can not be
2398 	 * really destroyed since it may still be referenced by the userspace
2399 	 * application, so we just force the hv_sock channel to be rescinded
2400 	 * by vmbus_force_channel_rescinded(), and the userspace application
2401 	 * will thoroughly destroy the channel after hibernation.
2402 	 *
2403 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2404 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2405 	 */
2406 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2407 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2408 
2409 	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2410 		pr_err("Can not suspend due to a previous failed resuming\n");
2411 		return -EBUSY;
2412 	}
2413 
2414 	mutex_lock(&vmbus_connection.channel_mutex);
2415 
2416 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2417 		/*
2418 		 * Remove the channel from the array of channels and invalidate
2419 		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2420 		 * up the relid (and other fields, if necessary) and add the
2421 		 * channel back to the array.
2422 		 */
2423 		vmbus_channel_unmap_relid(channel);
2424 		channel->offermsg.child_relid = INVALID_RELID;
2425 
2426 		if (is_hvsock_channel(channel)) {
2427 			if (!channel->rescind) {
2428 				pr_err("hv_sock channel not rescinded!\n");
2429 				WARN_ON_ONCE(1);
2430 			}
2431 			continue;
2432 		}
2433 
2434 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2435 			pr_err("Sub-channel not deleted!\n");
2436 			WARN_ON_ONCE(1);
2437 		}
2438 
2439 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2440 	}
2441 
2442 	mutex_unlock(&vmbus_connection.channel_mutex);
2443 
2444 	vmbus_initiate_unload(false);
2445 
2446 	/* Reset the event for the next resume. */
2447 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2448 
2449 	return 0;
2450 }
2451 
2452 static int vmbus_bus_resume(struct device *dev)
2453 {
2454 	struct vmbus_channel_msginfo *msginfo;
2455 	size_t msgsize;
2456 	int ret;
2457 
2458 	/*
2459 	 * We only use the 'vmbus_proto_version', which was in use before
2460 	 * hibernation, to re-negotiate with the host.
2461 	 */
2462 	if (!vmbus_proto_version) {
2463 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2464 		return -EINVAL;
2465 	}
2466 
2467 	msgsize = sizeof(*msginfo) +
2468 		  sizeof(struct vmbus_channel_initiate_contact);
2469 
2470 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2471 
2472 	if (msginfo == NULL)
2473 		return -ENOMEM;
2474 
2475 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2476 
2477 	kfree(msginfo);
2478 
2479 	if (ret != 0)
2480 		return ret;
2481 
2482 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2483 
2484 	vmbus_request_offers();
2485 
2486 	if (wait_for_completion_timeout(
2487 		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2488 		pr_err("Some vmbus device is missing after suspending?\n");
2489 
2490 	/* Reset the event for the next suspend. */
2491 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2492 
2493 	return 0;
2494 }
2495 #else
2496 #define vmbus_bus_suspend NULL
2497 #define vmbus_bus_resume NULL
2498 #endif /* CONFIG_PM_SLEEP */
2499 
2500 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2501 	{"VMBUS", 0},
2502 	{"VMBus", 0},
2503 	{"", 0},
2504 };
2505 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2506 
2507 /*
2508  * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2509  * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2510  * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2511  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2512  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2513  * resume callback must also run via the "noirq" ops.
2514  *
2515  * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2516  * earlier in this file before vmbus_pm.
2517  */
2518 
2519 static const struct dev_pm_ops vmbus_bus_pm = {
2520 	.suspend_noirq	= NULL,
2521 	.resume_noirq	= NULL,
2522 	.freeze_noirq	= vmbus_bus_suspend,
2523 	.thaw_noirq	= vmbus_bus_resume,
2524 	.poweroff_noirq	= vmbus_bus_suspend,
2525 	.restore_noirq	= vmbus_bus_resume
2526 };
2527 
2528 static struct acpi_driver vmbus_acpi_driver = {
2529 	.name = "vmbus",
2530 	.ids = vmbus_acpi_device_ids,
2531 	.ops = {
2532 		.add = vmbus_acpi_add,
2533 		.remove = vmbus_acpi_remove,
2534 	},
2535 	.drv.pm = &vmbus_bus_pm,
2536 };
2537 
2538 static void hv_kexec_handler(void)
2539 {
2540 	hv_stimer_global_cleanup();
2541 	vmbus_initiate_unload(false);
2542 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2543 	mb();
2544 	cpuhp_remove_state(hyperv_cpuhp_online);
2545 	hyperv_cleanup();
2546 };
2547 
2548 static void hv_crash_handler(struct pt_regs *regs)
2549 {
2550 	int cpu;
2551 
2552 	vmbus_initiate_unload(true);
2553 	/*
2554 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2555 	 * doing the cleanup for current CPU only. This should be sufficient
2556 	 * for kdump.
2557 	 */
2558 	cpu = smp_processor_id();
2559 	hv_stimer_cleanup(cpu);
2560 	hv_synic_disable_regs(cpu);
2561 	hyperv_cleanup();
2562 };
2563 
2564 static int hv_synic_suspend(void)
2565 {
2566 	/*
2567 	 * When we reach here, all the non-boot CPUs have been offlined.
2568 	 * If we're in a legacy configuration where stimer Direct Mode is
2569 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2570 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2571 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2572 	 *
2573 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2574 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2575 	 * 1) it's unnecessary as interrupts remain disabled between
2576 	 * syscore_suspend() and syscore_resume(): see create_image() and
2577 	 * resume_target_kernel()
2578 	 * 2) the stimer on CPU0 is automatically disabled later by
2579 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2580 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2581 	 * 3) a warning would be triggered if we call
2582 	 * clockevents_unbind_device(), which may sleep, in an
2583 	 * interrupts-disabled context.
2584 	 */
2585 
2586 	hv_synic_disable_regs(0);
2587 
2588 	return 0;
2589 }
2590 
2591 static void hv_synic_resume(void)
2592 {
2593 	hv_synic_enable_regs(0);
2594 
2595 	/*
2596 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2597 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2598 	 * automatically re-enabled in timekeeping_resume().
2599 	 */
2600 }
2601 
2602 /* The callbacks run only on CPU0, with irqs_disabled. */
2603 static struct syscore_ops hv_synic_syscore_ops = {
2604 	.suspend = hv_synic_suspend,
2605 	.resume = hv_synic_resume,
2606 };
2607 
2608 static int __init hv_acpi_init(void)
2609 {
2610 	int ret, t;
2611 
2612 	if (!hv_is_hyperv_initialized())
2613 		return -ENODEV;
2614 
2615 	init_completion(&probe_event);
2616 
2617 	/*
2618 	 * Get ACPI resources first.
2619 	 */
2620 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2621 
2622 	if (ret)
2623 		return ret;
2624 
2625 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2626 	if (t == 0) {
2627 		ret = -ETIMEDOUT;
2628 		goto cleanup;
2629 	}
2630 	hv_debug_init();
2631 
2632 	ret = vmbus_bus_init();
2633 	if (ret)
2634 		goto cleanup;
2635 
2636 	hv_setup_kexec_handler(hv_kexec_handler);
2637 	hv_setup_crash_handler(hv_crash_handler);
2638 
2639 	register_syscore_ops(&hv_synic_syscore_ops);
2640 
2641 	return 0;
2642 
2643 cleanup:
2644 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2645 	hv_acpi_dev = NULL;
2646 	return ret;
2647 }
2648 
2649 static void __exit vmbus_exit(void)
2650 {
2651 	int cpu;
2652 
2653 	unregister_syscore_ops(&hv_synic_syscore_ops);
2654 
2655 	hv_remove_kexec_handler();
2656 	hv_remove_crash_handler();
2657 	vmbus_connection.conn_state = DISCONNECTED;
2658 	hv_stimer_global_cleanup();
2659 	vmbus_disconnect();
2660 	hv_remove_vmbus_irq();
2661 	for_each_online_cpu(cpu) {
2662 		struct hv_per_cpu_context *hv_cpu
2663 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2664 
2665 		tasklet_kill(&hv_cpu->msg_dpc);
2666 	}
2667 	hv_debug_rm_all_dir();
2668 
2669 	vmbus_free_channels();
2670 	kfree(vmbus_connection.channels);
2671 
2672 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2673 		kmsg_dump_unregister(&hv_kmsg_dumper);
2674 		unregister_die_notifier(&hyperv_die_block);
2675 		atomic_notifier_chain_unregister(&panic_notifier_list,
2676 						 &hyperv_panic_block);
2677 	}
2678 
2679 	free_page((unsigned long)hv_panic_page);
2680 	unregister_sysctl_table(hv_ctl_table_hdr);
2681 	hv_ctl_table_hdr = NULL;
2682 	bus_unregister(&hv_bus);
2683 
2684 	cpuhp_remove_state(hyperv_cpuhp_online);
2685 	hv_synic_free();
2686 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2687 }
2688 
2689 
2690 MODULE_LICENSE("GPL");
2691 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2692 
2693 subsys_initcall(hv_acpi_init);
2694 module_exit(vmbus_exit);
2695