1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/task_stack.h> 25 26 #include <linux/delay.h> 27 #include <linux/notifier.h> 28 #include <linux/panic_notifier.h> 29 #include <linux/ptrace.h> 30 #include <linux/screen_info.h> 31 #include <linux/kdebug.h> 32 #include <linux/efi.h> 33 #include <linux/random.h> 34 #include <linux/kernel.h> 35 #include <linux/syscore_ops.h> 36 #include <clocksource/hyperv_timer.h> 37 #include "hyperv_vmbus.h" 38 39 struct vmbus_dynid { 40 struct list_head node; 41 struct hv_vmbus_device_id id; 42 }; 43 44 static struct acpi_device *hv_acpi_dev; 45 46 static struct completion probe_event; 47 48 static int hyperv_cpuhp_online; 49 50 static void *hv_panic_page; 51 52 static long __percpu *vmbus_evt; 53 54 /* Values parsed from ACPI DSDT */ 55 int vmbus_irq; 56 int vmbus_interrupt; 57 58 /* 59 * Boolean to control whether to report panic messages over Hyper-V. 60 * 61 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg 62 */ 63 static int sysctl_record_panic_msg = 1; 64 65 static int hyperv_report_reg(void) 66 { 67 return !sysctl_record_panic_msg || !hv_panic_page; 68 } 69 70 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 71 void *args) 72 { 73 struct pt_regs *regs; 74 75 vmbus_initiate_unload(true); 76 77 /* 78 * Hyper-V should be notified only once about a panic. If we will be 79 * doing hyperv_report_panic_msg() later with kmsg data, don't do 80 * the notification here. 81 */ 82 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE 83 && hyperv_report_reg()) { 84 regs = current_pt_regs(); 85 hyperv_report_panic(regs, val, false); 86 } 87 return NOTIFY_DONE; 88 } 89 90 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 91 void *args) 92 { 93 struct die_args *die = args; 94 struct pt_regs *regs = die->regs; 95 96 /* Don't notify Hyper-V if the die event is other than oops */ 97 if (val != DIE_OOPS) 98 return NOTIFY_DONE; 99 100 /* 101 * Hyper-V should be notified only once about a panic. If we will be 102 * doing hyperv_report_panic_msg() later with kmsg data, don't do 103 * the notification here. 104 */ 105 if (hyperv_report_reg()) 106 hyperv_report_panic(regs, val, true); 107 return NOTIFY_DONE; 108 } 109 110 static struct notifier_block hyperv_die_block = { 111 .notifier_call = hyperv_die_event, 112 }; 113 static struct notifier_block hyperv_panic_block = { 114 .notifier_call = hyperv_panic_event, 115 }; 116 117 static const char *fb_mmio_name = "fb_range"; 118 static struct resource *fb_mmio; 119 static struct resource *hyperv_mmio; 120 static DEFINE_MUTEX(hyperv_mmio_lock); 121 122 static int vmbus_exists(void) 123 { 124 if (hv_acpi_dev == NULL) 125 return -ENODEV; 126 127 return 0; 128 } 129 130 static u8 channel_monitor_group(const struct vmbus_channel *channel) 131 { 132 return (u8)channel->offermsg.monitorid / 32; 133 } 134 135 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 136 { 137 return (u8)channel->offermsg.monitorid % 32; 138 } 139 140 static u32 channel_pending(const struct vmbus_channel *channel, 141 const struct hv_monitor_page *monitor_page) 142 { 143 u8 monitor_group = channel_monitor_group(channel); 144 145 return monitor_page->trigger_group[monitor_group].pending; 146 } 147 148 static u32 channel_latency(const struct vmbus_channel *channel, 149 const struct hv_monitor_page *monitor_page) 150 { 151 u8 monitor_group = channel_monitor_group(channel); 152 u8 monitor_offset = channel_monitor_offset(channel); 153 154 return monitor_page->latency[monitor_group][monitor_offset]; 155 } 156 157 static u32 channel_conn_id(struct vmbus_channel *channel, 158 struct hv_monitor_page *monitor_page) 159 { 160 u8 monitor_group = channel_monitor_group(channel); 161 u8 monitor_offset = channel_monitor_offset(channel); 162 163 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 164 } 165 166 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 167 char *buf) 168 { 169 struct hv_device *hv_dev = device_to_hv_device(dev); 170 171 if (!hv_dev->channel) 172 return -ENODEV; 173 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 174 } 175 static DEVICE_ATTR_RO(id); 176 177 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 178 char *buf) 179 { 180 struct hv_device *hv_dev = device_to_hv_device(dev); 181 182 if (!hv_dev->channel) 183 return -ENODEV; 184 return sprintf(buf, "%d\n", hv_dev->channel->state); 185 } 186 static DEVICE_ATTR_RO(state); 187 188 static ssize_t monitor_id_show(struct device *dev, 189 struct device_attribute *dev_attr, char *buf) 190 { 191 struct hv_device *hv_dev = device_to_hv_device(dev); 192 193 if (!hv_dev->channel) 194 return -ENODEV; 195 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 196 } 197 static DEVICE_ATTR_RO(monitor_id); 198 199 static ssize_t class_id_show(struct device *dev, 200 struct device_attribute *dev_attr, char *buf) 201 { 202 struct hv_device *hv_dev = device_to_hv_device(dev); 203 204 if (!hv_dev->channel) 205 return -ENODEV; 206 return sprintf(buf, "{%pUl}\n", 207 &hv_dev->channel->offermsg.offer.if_type); 208 } 209 static DEVICE_ATTR_RO(class_id); 210 211 static ssize_t device_id_show(struct device *dev, 212 struct device_attribute *dev_attr, char *buf) 213 { 214 struct hv_device *hv_dev = device_to_hv_device(dev); 215 216 if (!hv_dev->channel) 217 return -ENODEV; 218 return sprintf(buf, "{%pUl}\n", 219 &hv_dev->channel->offermsg.offer.if_instance); 220 } 221 static DEVICE_ATTR_RO(device_id); 222 223 static ssize_t modalias_show(struct device *dev, 224 struct device_attribute *dev_attr, char *buf) 225 { 226 struct hv_device *hv_dev = device_to_hv_device(dev); 227 228 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type); 229 } 230 static DEVICE_ATTR_RO(modalias); 231 232 #ifdef CONFIG_NUMA 233 static ssize_t numa_node_show(struct device *dev, 234 struct device_attribute *attr, char *buf) 235 { 236 struct hv_device *hv_dev = device_to_hv_device(dev); 237 238 if (!hv_dev->channel) 239 return -ENODEV; 240 241 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu)); 242 } 243 static DEVICE_ATTR_RO(numa_node); 244 #endif 245 246 static ssize_t server_monitor_pending_show(struct device *dev, 247 struct device_attribute *dev_attr, 248 char *buf) 249 { 250 struct hv_device *hv_dev = device_to_hv_device(dev); 251 252 if (!hv_dev->channel) 253 return -ENODEV; 254 return sprintf(buf, "%d\n", 255 channel_pending(hv_dev->channel, 256 vmbus_connection.monitor_pages[0])); 257 } 258 static DEVICE_ATTR_RO(server_monitor_pending); 259 260 static ssize_t client_monitor_pending_show(struct device *dev, 261 struct device_attribute *dev_attr, 262 char *buf) 263 { 264 struct hv_device *hv_dev = device_to_hv_device(dev); 265 266 if (!hv_dev->channel) 267 return -ENODEV; 268 return sprintf(buf, "%d\n", 269 channel_pending(hv_dev->channel, 270 vmbus_connection.monitor_pages[1])); 271 } 272 static DEVICE_ATTR_RO(client_monitor_pending); 273 274 static ssize_t server_monitor_latency_show(struct device *dev, 275 struct device_attribute *dev_attr, 276 char *buf) 277 { 278 struct hv_device *hv_dev = device_to_hv_device(dev); 279 280 if (!hv_dev->channel) 281 return -ENODEV; 282 return sprintf(buf, "%d\n", 283 channel_latency(hv_dev->channel, 284 vmbus_connection.monitor_pages[0])); 285 } 286 static DEVICE_ATTR_RO(server_monitor_latency); 287 288 static ssize_t client_monitor_latency_show(struct device *dev, 289 struct device_attribute *dev_attr, 290 char *buf) 291 { 292 struct hv_device *hv_dev = device_to_hv_device(dev); 293 294 if (!hv_dev->channel) 295 return -ENODEV; 296 return sprintf(buf, "%d\n", 297 channel_latency(hv_dev->channel, 298 vmbus_connection.monitor_pages[1])); 299 } 300 static DEVICE_ATTR_RO(client_monitor_latency); 301 302 static ssize_t server_monitor_conn_id_show(struct device *dev, 303 struct device_attribute *dev_attr, 304 char *buf) 305 { 306 struct hv_device *hv_dev = device_to_hv_device(dev); 307 308 if (!hv_dev->channel) 309 return -ENODEV; 310 return sprintf(buf, "%d\n", 311 channel_conn_id(hv_dev->channel, 312 vmbus_connection.monitor_pages[0])); 313 } 314 static DEVICE_ATTR_RO(server_monitor_conn_id); 315 316 static ssize_t client_monitor_conn_id_show(struct device *dev, 317 struct device_attribute *dev_attr, 318 char *buf) 319 { 320 struct hv_device *hv_dev = device_to_hv_device(dev); 321 322 if (!hv_dev->channel) 323 return -ENODEV; 324 return sprintf(buf, "%d\n", 325 channel_conn_id(hv_dev->channel, 326 vmbus_connection.monitor_pages[1])); 327 } 328 static DEVICE_ATTR_RO(client_monitor_conn_id); 329 330 static ssize_t out_intr_mask_show(struct device *dev, 331 struct device_attribute *dev_attr, char *buf) 332 { 333 struct hv_device *hv_dev = device_to_hv_device(dev); 334 struct hv_ring_buffer_debug_info outbound; 335 int ret; 336 337 if (!hv_dev->channel) 338 return -ENODEV; 339 340 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 341 &outbound); 342 if (ret < 0) 343 return ret; 344 345 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 346 } 347 static DEVICE_ATTR_RO(out_intr_mask); 348 349 static ssize_t out_read_index_show(struct device *dev, 350 struct device_attribute *dev_attr, char *buf) 351 { 352 struct hv_device *hv_dev = device_to_hv_device(dev); 353 struct hv_ring_buffer_debug_info outbound; 354 int ret; 355 356 if (!hv_dev->channel) 357 return -ENODEV; 358 359 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 360 &outbound); 361 if (ret < 0) 362 return ret; 363 return sprintf(buf, "%d\n", outbound.current_read_index); 364 } 365 static DEVICE_ATTR_RO(out_read_index); 366 367 static ssize_t out_write_index_show(struct device *dev, 368 struct device_attribute *dev_attr, 369 char *buf) 370 { 371 struct hv_device *hv_dev = device_to_hv_device(dev); 372 struct hv_ring_buffer_debug_info outbound; 373 int ret; 374 375 if (!hv_dev->channel) 376 return -ENODEV; 377 378 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 379 &outbound); 380 if (ret < 0) 381 return ret; 382 return sprintf(buf, "%d\n", outbound.current_write_index); 383 } 384 static DEVICE_ATTR_RO(out_write_index); 385 386 static ssize_t out_read_bytes_avail_show(struct device *dev, 387 struct device_attribute *dev_attr, 388 char *buf) 389 { 390 struct hv_device *hv_dev = device_to_hv_device(dev); 391 struct hv_ring_buffer_debug_info outbound; 392 int ret; 393 394 if (!hv_dev->channel) 395 return -ENODEV; 396 397 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 398 &outbound); 399 if (ret < 0) 400 return ret; 401 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 402 } 403 static DEVICE_ATTR_RO(out_read_bytes_avail); 404 405 static ssize_t out_write_bytes_avail_show(struct device *dev, 406 struct device_attribute *dev_attr, 407 char *buf) 408 { 409 struct hv_device *hv_dev = device_to_hv_device(dev); 410 struct hv_ring_buffer_debug_info outbound; 411 int ret; 412 413 if (!hv_dev->channel) 414 return -ENODEV; 415 416 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 417 &outbound); 418 if (ret < 0) 419 return ret; 420 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 421 } 422 static DEVICE_ATTR_RO(out_write_bytes_avail); 423 424 static ssize_t in_intr_mask_show(struct device *dev, 425 struct device_attribute *dev_attr, char *buf) 426 { 427 struct hv_device *hv_dev = device_to_hv_device(dev); 428 struct hv_ring_buffer_debug_info inbound; 429 int ret; 430 431 if (!hv_dev->channel) 432 return -ENODEV; 433 434 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 435 if (ret < 0) 436 return ret; 437 438 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 439 } 440 static DEVICE_ATTR_RO(in_intr_mask); 441 442 static ssize_t in_read_index_show(struct device *dev, 443 struct device_attribute *dev_attr, char *buf) 444 { 445 struct hv_device *hv_dev = device_to_hv_device(dev); 446 struct hv_ring_buffer_debug_info inbound; 447 int ret; 448 449 if (!hv_dev->channel) 450 return -ENODEV; 451 452 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 453 if (ret < 0) 454 return ret; 455 456 return sprintf(buf, "%d\n", inbound.current_read_index); 457 } 458 static DEVICE_ATTR_RO(in_read_index); 459 460 static ssize_t in_write_index_show(struct device *dev, 461 struct device_attribute *dev_attr, char *buf) 462 { 463 struct hv_device *hv_dev = device_to_hv_device(dev); 464 struct hv_ring_buffer_debug_info inbound; 465 int ret; 466 467 if (!hv_dev->channel) 468 return -ENODEV; 469 470 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 471 if (ret < 0) 472 return ret; 473 474 return sprintf(buf, "%d\n", inbound.current_write_index); 475 } 476 static DEVICE_ATTR_RO(in_write_index); 477 478 static ssize_t in_read_bytes_avail_show(struct device *dev, 479 struct device_attribute *dev_attr, 480 char *buf) 481 { 482 struct hv_device *hv_dev = device_to_hv_device(dev); 483 struct hv_ring_buffer_debug_info inbound; 484 int ret; 485 486 if (!hv_dev->channel) 487 return -ENODEV; 488 489 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 490 if (ret < 0) 491 return ret; 492 493 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 494 } 495 static DEVICE_ATTR_RO(in_read_bytes_avail); 496 497 static ssize_t in_write_bytes_avail_show(struct device *dev, 498 struct device_attribute *dev_attr, 499 char *buf) 500 { 501 struct hv_device *hv_dev = device_to_hv_device(dev); 502 struct hv_ring_buffer_debug_info inbound; 503 int ret; 504 505 if (!hv_dev->channel) 506 return -ENODEV; 507 508 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 509 if (ret < 0) 510 return ret; 511 512 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 513 } 514 static DEVICE_ATTR_RO(in_write_bytes_avail); 515 516 static ssize_t channel_vp_mapping_show(struct device *dev, 517 struct device_attribute *dev_attr, 518 char *buf) 519 { 520 struct hv_device *hv_dev = device_to_hv_device(dev); 521 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 522 int buf_size = PAGE_SIZE, n_written, tot_written; 523 struct list_head *cur; 524 525 if (!channel) 526 return -ENODEV; 527 528 mutex_lock(&vmbus_connection.channel_mutex); 529 530 tot_written = snprintf(buf, buf_size, "%u:%u\n", 531 channel->offermsg.child_relid, channel->target_cpu); 532 533 list_for_each(cur, &channel->sc_list) { 534 if (tot_written >= buf_size - 1) 535 break; 536 537 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 538 n_written = scnprintf(buf + tot_written, 539 buf_size - tot_written, 540 "%u:%u\n", 541 cur_sc->offermsg.child_relid, 542 cur_sc->target_cpu); 543 tot_written += n_written; 544 } 545 546 mutex_unlock(&vmbus_connection.channel_mutex); 547 548 return tot_written; 549 } 550 static DEVICE_ATTR_RO(channel_vp_mapping); 551 552 static ssize_t vendor_show(struct device *dev, 553 struct device_attribute *dev_attr, 554 char *buf) 555 { 556 struct hv_device *hv_dev = device_to_hv_device(dev); 557 558 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 559 } 560 static DEVICE_ATTR_RO(vendor); 561 562 static ssize_t device_show(struct device *dev, 563 struct device_attribute *dev_attr, 564 char *buf) 565 { 566 struct hv_device *hv_dev = device_to_hv_device(dev); 567 568 return sprintf(buf, "0x%x\n", hv_dev->device_id); 569 } 570 static DEVICE_ATTR_RO(device); 571 572 static ssize_t driver_override_store(struct device *dev, 573 struct device_attribute *attr, 574 const char *buf, size_t count) 575 { 576 struct hv_device *hv_dev = device_to_hv_device(dev); 577 char *driver_override, *old, *cp; 578 579 /* We need to keep extra room for a newline */ 580 if (count >= (PAGE_SIZE - 1)) 581 return -EINVAL; 582 583 driver_override = kstrndup(buf, count, GFP_KERNEL); 584 if (!driver_override) 585 return -ENOMEM; 586 587 cp = strchr(driver_override, '\n'); 588 if (cp) 589 *cp = '\0'; 590 591 device_lock(dev); 592 old = hv_dev->driver_override; 593 if (strlen(driver_override)) { 594 hv_dev->driver_override = driver_override; 595 } else { 596 kfree(driver_override); 597 hv_dev->driver_override = NULL; 598 } 599 device_unlock(dev); 600 601 kfree(old); 602 603 return count; 604 } 605 606 static ssize_t driver_override_show(struct device *dev, 607 struct device_attribute *attr, char *buf) 608 { 609 struct hv_device *hv_dev = device_to_hv_device(dev); 610 ssize_t len; 611 612 device_lock(dev); 613 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 614 device_unlock(dev); 615 616 return len; 617 } 618 static DEVICE_ATTR_RW(driver_override); 619 620 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 621 static struct attribute *vmbus_dev_attrs[] = { 622 &dev_attr_id.attr, 623 &dev_attr_state.attr, 624 &dev_attr_monitor_id.attr, 625 &dev_attr_class_id.attr, 626 &dev_attr_device_id.attr, 627 &dev_attr_modalias.attr, 628 #ifdef CONFIG_NUMA 629 &dev_attr_numa_node.attr, 630 #endif 631 &dev_attr_server_monitor_pending.attr, 632 &dev_attr_client_monitor_pending.attr, 633 &dev_attr_server_monitor_latency.attr, 634 &dev_attr_client_monitor_latency.attr, 635 &dev_attr_server_monitor_conn_id.attr, 636 &dev_attr_client_monitor_conn_id.attr, 637 &dev_attr_out_intr_mask.attr, 638 &dev_attr_out_read_index.attr, 639 &dev_attr_out_write_index.attr, 640 &dev_attr_out_read_bytes_avail.attr, 641 &dev_attr_out_write_bytes_avail.attr, 642 &dev_attr_in_intr_mask.attr, 643 &dev_attr_in_read_index.attr, 644 &dev_attr_in_write_index.attr, 645 &dev_attr_in_read_bytes_avail.attr, 646 &dev_attr_in_write_bytes_avail.attr, 647 &dev_attr_channel_vp_mapping.attr, 648 &dev_attr_vendor.attr, 649 &dev_attr_device.attr, 650 &dev_attr_driver_override.attr, 651 NULL, 652 }; 653 654 /* 655 * Device-level attribute_group callback function. Returns the permission for 656 * each attribute, and returns 0 if an attribute is not visible. 657 */ 658 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 659 struct attribute *attr, int idx) 660 { 661 struct device *dev = kobj_to_dev(kobj); 662 const struct hv_device *hv_dev = device_to_hv_device(dev); 663 664 /* Hide the monitor attributes if the monitor mechanism is not used. */ 665 if (!hv_dev->channel->offermsg.monitor_allocated && 666 (attr == &dev_attr_monitor_id.attr || 667 attr == &dev_attr_server_monitor_pending.attr || 668 attr == &dev_attr_client_monitor_pending.attr || 669 attr == &dev_attr_server_monitor_latency.attr || 670 attr == &dev_attr_client_monitor_latency.attr || 671 attr == &dev_attr_server_monitor_conn_id.attr || 672 attr == &dev_attr_client_monitor_conn_id.attr)) 673 return 0; 674 675 return attr->mode; 676 } 677 678 static const struct attribute_group vmbus_dev_group = { 679 .attrs = vmbus_dev_attrs, 680 .is_visible = vmbus_dev_attr_is_visible 681 }; 682 __ATTRIBUTE_GROUPS(vmbus_dev); 683 684 /* Set up the attribute for /sys/bus/vmbus/hibernation */ 685 static ssize_t hibernation_show(struct bus_type *bus, char *buf) 686 { 687 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported()); 688 } 689 690 static BUS_ATTR_RO(hibernation); 691 692 static struct attribute *vmbus_bus_attrs[] = { 693 &bus_attr_hibernation.attr, 694 NULL, 695 }; 696 static const struct attribute_group vmbus_bus_group = { 697 .attrs = vmbus_bus_attrs, 698 }; 699 __ATTRIBUTE_GROUPS(vmbus_bus); 700 701 /* 702 * vmbus_uevent - add uevent for our device 703 * 704 * This routine is invoked when a device is added or removed on the vmbus to 705 * generate a uevent to udev in the userspace. The udev will then look at its 706 * rule and the uevent generated here to load the appropriate driver 707 * 708 * The alias string will be of the form vmbus:guid where guid is the string 709 * representation of the device guid (each byte of the guid will be 710 * represented with two hex characters. 711 */ 712 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 713 { 714 struct hv_device *dev = device_to_hv_device(device); 715 const char *format = "MODALIAS=vmbus:%*phN"; 716 717 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type); 718 } 719 720 static const struct hv_vmbus_device_id * 721 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 722 { 723 if (id == NULL) 724 return NULL; /* empty device table */ 725 726 for (; !guid_is_null(&id->guid); id++) 727 if (guid_equal(&id->guid, guid)) 728 return id; 729 730 return NULL; 731 } 732 733 static const struct hv_vmbus_device_id * 734 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 735 { 736 const struct hv_vmbus_device_id *id = NULL; 737 struct vmbus_dynid *dynid; 738 739 spin_lock(&drv->dynids.lock); 740 list_for_each_entry(dynid, &drv->dynids.list, node) { 741 if (guid_equal(&dynid->id.guid, guid)) { 742 id = &dynid->id; 743 break; 744 } 745 } 746 spin_unlock(&drv->dynids.lock); 747 748 return id; 749 } 750 751 static const struct hv_vmbus_device_id vmbus_device_null; 752 753 /* 754 * Return a matching hv_vmbus_device_id pointer. 755 * If there is no match, return NULL. 756 */ 757 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 758 struct hv_device *dev) 759 { 760 const guid_t *guid = &dev->dev_type; 761 const struct hv_vmbus_device_id *id; 762 763 /* When driver_override is set, only bind to the matching driver */ 764 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 765 return NULL; 766 767 /* Look at the dynamic ids first, before the static ones */ 768 id = hv_vmbus_dynid_match(drv, guid); 769 if (!id) 770 id = hv_vmbus_dev_match(drv->id_table, guid); 771 772 /* driver_override will always match, send a dummy id */ 773 if (!id && dev->driver_override) 774 id = &vmbus_device_null; 775 776 return id; 777 } 778 779 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 780 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 781 { 782 struct vmbus_dynid *dynid; 783 784 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 785 if (!dynid) 786 return -ENOMEM; 787 788 dynid->id.guid = *guid; 789 790 spin_lock(&drv->dynids.lock); 791 list_add_tail(&dynid->node, &drv->dynids.list); 792 spin_unlock(&drv->dynids.lock); 793 794 return driver_attach(&drv->driver); 795 } 796 797 static void vmbus_free_dynids(struct hv_driver *drv) 798 { 799 struct vmbus_dynid *dynid, *n; 800 801 spin_lock(&drv->dynids.lock); 802 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 803 list_del(&dynid->node); 804 kfree(dynid); 805 } 806 spin_unlock(&drv->dynids.lock); 807 } 808 809 /* 810 * store_new_id - sysfs frontend to vmbus_add_dynid() 811 * 812 * Allow GUIDs to be added to an existing driver via sysfs. 813 */ 814 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 815 size_t count) 816 { 817 struct hv_driver *drv = drv_to_hv_drv(driver); 818 guid_t guid; 819 ssize_t retval; 820 821 retval = guid_parse(buf, &guid); 822 if (retval) 823 return retval; 824 825 if (hv_vmbus_dynid_match(drv, &guid)) 826 return -EEXIST; 827 828 retval = vmbus_add_dynid(drv, &guid); 829 if (retval) 830 return retval; 831 return count; 832 } 833 static DRIVER_ATTR_WO(new_id); 834 835 /* 836 * store_remove_id - remove a PCI device ID from this driver 837 * 838 * Removes a dynamic pci device ID to this driver. 839 */ 840 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 841 size_t count) 842 { 843 struct hv_driver *drv = drv_to_hv_drv(driver); 844 struct vmbus_dynid *dynid, *n; 845 guid_t guid; 846 ssize_t retval; 847 848 retval = guid_parse(buf, &guid); 849 if (retval) 850 return retval; 851 852 retval = -ENODEV; 853 spin_lock(&drv->dynids.lock); 854 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 855 struct hv_vmbus_device_id *id = &dynid->id; 856 857 if (guid_equal(&id->guid, &guid)) { 858 list_del(&dynid->node); 859 kfree(dynid); 860 retval = count; 861 break; 862 } 863 } 864 spin_unlock(&drv->dynids.lock); 865 866 return retval; 867 } 868 static DRIVER_ATTR_WO(remove_id); 869 870 static struct attribute *vmbus_drv_attrs[] = { 871 &driver_attr_new_id.attr, 872 &driver_attr_remove_id.attr, 873 NULL, 874 }; 875 ATTRIBUTE_GROUPS(vmbus_drv); 876 877 878 /* 879 * vmbus_match - Attempt to match the specified device to the specified driver 880 */ 881 static int vmbus_match(struct device *device, struct device_driver *driver) 882 { 883 struct hv_driver *drv = drv_to_hv_drv(driver); 884 struct hv_device *hv_dev = device_to_hv_device(device); 885 886 /* The hv_sock driver handles all hv_sock offers. */ 887 if (is_hvsock_channel(hv_dev->channel)) 888 return drv->hvsock; 889 890 if (hv_vmbus_get_id(drv, hv_dev)) 891 return 1; 892 893 return 0; 894 } 895 896 /* 897 * vmbus_probe - Add the new vmbus's child device 898 */ 899 static int vmbus_probe(struct device *child_device) 900 { 901 int ret = 0; 902 struct hv_driver *drv = 903 drv_to_hv_drv(child_device->driver); 904 struct hv_device *dev = device_to_hv_device(child_device); 905 const struct hv_vmbus_device_id *dev_id; 906 907 dev_id = hv_vmbus_get_id(drv, dev); 908 if (drv->probe) { 909 ret = drv->probe(dev, dev_id); 910 if (ret != 0) 911 pr_err("probe failed for device %s (%d)\n", 912 dev_name(child_device), ret); 913 914 } else { 915 pr_err("probe not set for driver %s\n", 916 dev_name(child_device)); 917 ret = -ENODEV; 918 } 919 return ret; 920 } 921 922 /* 923 * vmbus_remove - Remove a vmbus device 924 */ 925 static int vmbus_remove(struct device *child_device) 926 { 927 struct hv_driver *drv; 928 struct hv_device *dev = device_to_hv_device(child_device); 929 930 if (child_device->driver) { 931 drv = drv_to_hv_drv(child_device->driver); 932 if (drv->remove) 933 drv->remove(dev); 934 } 935 936 return 0; 937 } 938 939 940 /* 941 * vmbus_shutdown - Shutdown a vmbus device 942 */ 943 static void vmbus_shutdown(struct device *child_device) 944 { 945 struct hv_driver *drv; 946 struct hv_device *dev = device_to_hv_device(child_device); 947 948 949 /* The device may not be attached yet */ 950 if (!child_device->driver) 951 return; 952 953 drv = drv_to_hv_drv(child_device->driver); 954 955 if (drv->shutdown) 956 drv->shutdown(dev); 957 } 958 959 #ifdef CONFIG_PM_SLEEP 960 /* 961 * vmbus_suspend - Suspend a vmbus device 962 */ 963 static int vmbus_suspend(struct device *child_device) 964 { 965 struct hv_driver *drv; 966 struct hv_device *dev = device_to_hv_device(child_device); 967 968 /* The device may not be attached yet */ 969 if (!child_device->driver) 970 return 0; 971 972 drv = drv_to_hv_drv(child_device->driver); 973 if (!drv->suspend) 974 return -EOPNOTSUPP; 975 976 return drv->suspend(dev); 977 } 978 979 /* 980 * vmbus_resume - Resume a vmbus device 981 */ 982 static int vmbus_resume(struct device *child_device) 983 { 984 struct hv_driver *drv; 985 struct hv_device *dev = device_to_hv_device(child_device); 986 987 /* The device may not be attached yet */ 988 if (!child_device->driver) 989 return 0; 990 991 drv = drv_to_hv_drv(child_device->driver); 992 if (!drv->resume) 993 return -EOPNOTSUPP; 994 995 return drv->resume(dev); 996 } 997 #else 998 #define vmbus_suspend NULL 999 #define vmbus_resume NULL 1000 #endif /* CONFIG_PM_SLEEP */ 1001 1002 /* 1003 * vmbus_device_release - Final callback release of the vmbus child device 1004 */ 1005 static void vmbus_device_release(struct device *device) 1006 { 1007 struct hv_device *hv_dev = device_to_hv_device(device); 1008 struct vmbus_channel *channel = hv_dev->channel; 1009 1010 hv_debug_rm_dev_dir(hv_dev); 1011 1012 mutex_lock(&vmbus_connection.channel_mutex); 1013 hv_process_channel_removal(channel); 1014 mutex_unlock(&vmbus_connection.channel_mutex); 1015 kfree(hv_dev); 1016 } 1017 1018 /* 1019 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm. 1020 * 1021 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we 1022 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there 1023 * is no way to wake up a Generation-2 VM. 1024 * 1025 * The other 4 ops are for hibernation. 1026 */ 1027 1028 static const struct dev_pm_ops vmbus_pm = { 1029 .suspend_noirq = NULL, 1030 .resume_noirq = NULL, 1031 .freeze_noirq = vmbus_suspend, 1032 .thaw_noirq = vmbus_resume, 1033 .poweroff_noirq = vmbus_suspend, 1034 .restore_noirq = vmbus_resume, 1035 }; 1036 1037 /* The one and only one */ 1038 static struct bus_type hv_bus = { 1039 .name = "vmbus", 1040 .match = vmbus_match, 1041 .shutdown = vmbus_shutdown, 1042 .remove = vmbus_remove, 1043 .probe = vmbus_probe, 1044 .uevent = vmbus_uevent, 1045 .dev_groups = vmbus_dev_groups, 1046 .drv_groups = vmbus_drv_groups, 1047 .bus_groups = vmbus_bus_groups, 1048 .pm = &vmbus_pm, 1049 }; 1050 1051 struct onmessage_work_context { 1052 struct work_struct work; 1053 struct { 1054 struct hv_message_header header; 1055 u8 payload[]; 1056 } msg; 1057 }; 1058 1059 static void vmbus_onmessage_work(struct work_struct *work) 1060 { 1061 struct onmessage_work_context *ctx; 1062 1063 /* Do not process messages if we're in DISCONNECTED state */ 1064 if (vmbus_connection.conn_state == DISCONNECTED) 1065 return; 1066 1067 ctx = container_of(work, struct onmessage_work_context, 1068 work); 1069 vmbus_onmessage((struct vmbus_channel_message_header *) 1070 &ctx->msg.payload); 1071 kfree(ctx); 1072 } 1073 1074 void vmbus_on_msg_dpc(unsigned long data) 1075 { 1076 struct hv_per_cpu_context *hv_cpu = (void *)data; 1077 void *page_addr = hv_cpu->synic_message_page; 1078 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr + 1079 VMBUS_MESSAGE_SINT; 1080 struct vmbus_channel_message_header *hdr; 1081 enum vmbus_channel_message_type msgtype; 1082 const struct vmbus_channel_message_table_entry *entry; 1083 struct onmessage_work_context *ctx; 1084 __u8 payload_size; 1085 u32 message_type; 1086 1087 /* 1088 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as 1089 * it is being used in 'struct vmbus_channel_message_header' definition 1090 * which is supposed to match hypervisor ABI. 1091 */ 1092 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32)); 1093 1094 /* 1095 * Since the message is in memory shared with the host, an erroneous or 1096 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc() 1097 * or individual message handlers are executing; to prevent this, copy 1098 * the message into private memory. 1099 */ 1100 memcpy(&msg_copy, msg, sizeof(struct hv_message)); 1101 1102 message_type = msg_copy.header.message_type; 1103 if (message_type == HVMSG_NONE) 1104 /* no msg */ 1105 return; 1106 1107 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload; 1108 msgtype = hdr->msgtype; 1109 1110 trace_vmbus_on_msg_dpc(hdr); 1111 1112 if (msgtype >= CHANNELMSG_COUNT) { 1113 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype); 1114 goto msg_handled; 1115 } 1116 1117 payload_size = msg_copy.header.payload_size; 1118 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) { 1119 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size); 1120 goto msg_handled; 1121 } 1122 1123 entry = &channel_message_table[msgtype]; 1124 1125 if (!entry->message_handler) 1126 goto msg_handled; 1127 1128 if (payload_size < entry->min_payload_len) { 1129 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size); 1130 goto msg_handled; 1131 } 1132 1133 if (entry->handler_type == VMHT_BLOCKING) { 1134 ctx = kmalloc(sizeof(*ctx) + payload_size, GFP_ATOMIC); 1135 if (ctx == NULL) 1136 return; 1137 1138 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1139 memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size); 1140 1141 /* 1142 * The host can generate a rescind message while we 1143 * may still be handling the original offer. We deal with 1144 * this condition by relying on the synchronization provided 1145 * by offer_in_progress and by channel_mutex. See also the 1146 * inline comments in vmbus_onoffer_rescind(). 1147 */ 1148 switch (msgtype) { 1149 case CHANNELMSG_RESCIND_CHANNELOFFER: 1150 /* 1151 * If we are handling the rescind message; 1152 * schedule the work on the global work queue. 1153 * 1154 * The OFFER message and the RESCIND message should 1155 * not be handled by the same serialized work queue, 1156 * because the OFFER handler may call vmbus_open(), 1157 * which tries to open the channel by sending an 1158 * OPEN_CHANNEL message to the host and waits for 1159 * the host's response; however, if the host has 1160 * rescinded the channel before it receives the 1161 * OPEN_CHANNEL message, the host just silently 1162 * ignores the OPEN_CHANNEL message; as a result, 1163 * the guest's OFFER handler hangs for ever, if we 1164 * handle the RESCIND message in the same serialized 1165 * work queue: the RESCIND handler can not start to 1166 * run before the OFFER handler finishes. 1167 */ 1168 schedule_work(&ctx->work); 1169 break; 1170 1171 case CHANNELMSG_OFFERCHANNEL: 1172 /* 1173 * The host sends the offer message of a given channel 1174 * before sending the rescind message of the same 1175 * channel. These messages are sent to the guest's 1176 * connect CPU; the guest then starts processing them 1177 * in the tasklet handler on this CPU: 1178 * 1179 * VMBUS_CONNECT_CPU 1180 * 1181 * [vmbus_on_msg_dpc()] 1182 * atomic_inc() // CHANNELMSG_OFFERCHANNEL 1183 * queue_work() 1184 * ... 1185 * [vmbus_on_msg_dpc()] 1186 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER 1187 * 1188 * We rely on the memory-ordering properties of the 1189 * queue_work() and schedule_work() primitives, which 1190 * guarantee that the atomic increment will be visible 1191 * to the CPUs which will execute the offer & rescind 1192 * works by the time these works will start execution. 1193 */ 1194 atomic_inc(&vmbus_connection.offer_in_progress); 1195 fallthrough; 1196 1197 default: 1198 queue_work(vmbus_connection.work_queue, &ctx->work); 1199 } 1200 } else 1201 entry->message_handler(hdr); 1202 1203 msg_handled: 1204 vmbus_signal_eom(msg, message_type); 1205 } 1206 1207 #ifdef CONFIG_PM_SLEEP 1208 /* 1209 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for 1210 * hibernation, because hv_sock connections can not persist across hibernation. 1211 */ 1212 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) 1213 { 1214 struct onmessage_work_context *ctx; 1215 struct vmbus_channel_rescind_offer *rescind; 1216 1217 WARN_ON(!is_hvsock_channel(channel)); 1218 1219 /* 1220 * Allocation size is small and the allocation should really not fail, 1221 * otherwise the state of the hv_sock connections ends up in limbo. 1222 */ 1223 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind), 1224 GFP_KERNEL | __GFP_NOFAIL); 1225 1226 /* 1227 * So far, these are not really used by Linux. Just set them to the 1228 * reasonable values conforming to the definitions of the fields. 1229 */ 1230 ctx->msg.header.message_type = 1; 1231 ctx->msg.header.payload_size = sizeof(*rescind); 1232 1233 /* These values are actually used by Linux. */ 1234 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload; 1235 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; 1236 rescind->child_relid = channel->offermsg.child_relid; 1237 1238 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1239 1240 queue_work(vmbus_connection.work_queue, &ctx->work); 1241 } 1242 #endif /* CONFIG_PM_SLEEP */ 1243 1244 /* 1245 * Schedule all channels with events pending 1246 */ 1247 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1248 { 1249 unsigned long *recv_int_page; 1250 u32 maxbits, relid; 1251 1252 if (vmbus_proto_version < VERSION_WIN8) { 1253 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1254 recv_int_page = vmbus_connection.recv_int_page; 1255 } else { 1256 /* 1257 * When the host is win8 and beyond, the event page 1258 * can be directly checked to get the id of the channel 1259 * that has the interrupt pending. 1260 */ 1261 void *page_addr = hv_cpu->synic_event_page; 1262 union hv_synic_event_flags *event 1263 = (union hv_synic_event_flags *)page_addr + 1264 VMBUS_MESSAGE_SINT; 1265 1266 maxbits = HV_EVENT_FLAGS_COUNT; 1267 recv_int_page = event->flags; 1268 } 1269 1270 if (unlikely(!recv_int_page)) 1271 return; 1272 1273 for_each_set_bit(relid, recv_int_page, maxbits) { 1274 void (*callback_fn)(void *context); 1275 struct vmbus_channel *channel; 1276 1277 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1278 continue; 1279 1280 /* Special case - vmbus channel protocol msg */ 1281 if (relid == 0) 1282 continue; 1283 1284 /* 1285 * Pairs with the kfree_rcu() in vmbus_chan_release(). 1286 * Guarantees that the channel data structure doesn't 1287 * get freed while the channel pointer below is being 1288 * dereferenced. 1289 */ 1290 rcu_read_lock(); 1291 1292 /* Find channel based on relid */ 1293 channel = relid2channel(relid); 1294 if (channel == NULL) 1295 goto sched_unlock_rcu; 1296 1297 if (channel->rescind) 1298 goto sched_unlock_rcu; 1299 1300 /* 1301 * Make sure that the ring buffer data structure doesn't get 1302 * freed while we dereference the ring buffer pointer. Test 1303 * for the channel's onchannel_callback being NULL within a 1304 * sched_lock critical section. See also the inline comments 1305 * in vmbus_reset_channel_cb(). 1306 */ 1307 spin_lock(&channel->sched_lock); 1308 1309 callback_fn = channel->onchannel_callback; 1310 if (unlikely(callback_fn == NULL)) 1311 goto sched_unlock; 1312 1313 trace_vmbus_chan_sched(channel); 1314 1315 ++channel->interrupts; 1316 1317 switch (channel->callback_mode) { 1318 case HV_CALL_ISR: 1319 (*callback_fn)(channel->channel_callback_context); 1320 break; 1321 1322 case HV_CALL_BATCHED: 1323 hv_begin_read(&channel->inbound); 1324 fallthrough; 1325 case HV_CALL_DIRECT: 1326 tasklet_schedule(&channel->callback_event); 1327 } 1328 1329 sched_unlock: 1330 spin_unlock(&channel->sched_lock); 1331 sched_unlock_rcu: 1332 rcu_read_unlock(); 1333 } 1334 } 1335 1336 static void vmbus_isr(void) 1337 { 1338 struct hv_per_cpu_context *hv_cpu 1339 = this_cpu_ptr(hv_context.cpu_context); 1340 void *page_addr = hv_cpu->synic_event_page; 1341 struct hv_message *msg; 1342 union hv_synic_event_flags *event; 1343 bool handled = false; 1344 1345 if (unlikely(page_addr == NULL)) 1346 return; 1347 1348 event = (union hv_synic_event_flags *)page_addr + 1349 VMBUS_MESSAGE_SINT; 1350 /* 1351 * Check for events before checking for messages. This is the order 1352 * in which events and messages are checked in Windows guests on 1353 * Hyper-V, and the Windows team suggested we do the same. 1354 */ 1355 1356 if ((vmbus_proto_version == VERSION_WS2008) || 1357 (vmbus_proto_version == VERSION_WIN7)) { 1358 1359 /* Since we are a child, we only need to check bit 0 */ 1360 if (sync_test_and_clear_bit(0, event->flags)) 1361 handled = true; 1362 } else { 1363 /* 1364 * Our host is win8 or above. The signaling mechanism 1365 * has changed and we can directly look at the event page. 1366 * If bit n is set then we have an interrup on the channel 1367 * whose id is n. 1368 */ 1369 handled = true; 1370 } 1371 1372 if (handled) 1373 vmbus_chan_sched(hv_cpu); 1374 1375 page_addr = hv_cpu->synic_message_page; 1376 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1377 1378 /* Check if there are actual msgs to be processed */ 1379 if (msg->header.message_type != HVMSG_NONE) { 1380 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1381 hv_stimer0_isr(); 1382 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1383 } else 1384 tasklet_schedule(&hv_cpu->msg_dpc); 1385 } 1386 1387 add_interrupt_randomness(vmbus_interrupt, 0); 1388 } 1389 1390 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id) 1391 { 1392 vmbus_isr(); 1393 return IRQ_HANDLED; 1394 } 1395 1396 /* 1397 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1398 * buffer and call into Hyper-V to transfer the data. 1399 */ 1400 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1401 enum kmsg_dump_reason reason) 1402 { 1403 struct kmsg_dump_iter iter; 1404 size_t bytes_written; 1405 1406 /* We are only interested in panics. */ 1407 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1408 return; 1409 1410 /* 1411 * Write dump contents to the page. No need to synchronize; panic should 1412 * be single-threaded. 1413 */ 1414 kmsg_dump_rewind(&iter); 1415 kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE, 1416 &bytes_written); 1417 if (!bytes_written) 1418 return; 1419 /* 1420 * P3 to contain the physical address of the panic page & P4 to 1421 * contain the size of the panic data in that page. Rest of the 1422 * registers are no-op when the NOTIFY_MSG flag is set. 1423 */ 1424 hv_set_register(HV_REGISTER_CRASH_P0, 0); 1425 hv_set_register(HV_REGISTER_CRASH_P1, 0); 1426 hv_set_register(HV_REGISTER_CRASH_P2, 0); 1427 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page)); 1428 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written); 1429 1430 /* 1431 * Let Hyper-V know there is crash data available along with 1432 * the panic message. 1433 */ 1434 hv_set_register(HV_REGISTER_CRASH_CTL, 1435 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG)); 1436 } 1437 1438 static struct kmsg_dumper hv_kmsg_dumper = { 1439 .dump = hv_kmsg_dump, 1440 }; 1441 1442 static void hv_kmsg_dump_register(void) 1443 { 1444 int ret; 1445 1446 hv_panic_page = hv_alloc_hyperv_zeroed_page(); 1447 if (!hv_panic_page) { 1448 pr_err("Hyper-V: panic message page memory allocation failed\n"); 1449 return; 1450 } 1451 1452 ret = kmsg_dump_register(&hv_kmsg_dumper); 1453 if (ret) { 1454 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret); 1455 hv_free_hyperv_page((unsigned long)hv_panic_page); 1456 hv_panic_page = NULL; 1457 } 1458 } 1459 1460 static struct ctl_table_header *hv_ctl_table_hdr; 1461 1462 /* 1463 * sysctl option to allow the user to control whether kmsg data should be 1464 * reported to Hyper-V on panic. 1465 */ 1466 static struct ctl_table hv_ctl_table[] = { 1467 { 1468 .procname = "hyperv_record_panic_msg", 1469 .data = &sysctl_record_panic_msg, 1470 .maxlen = sizeof(int), 1471 .mode = 0644, 1472 .proc_handler = proc_dointvec_minmax, 1473 .extra1 = SYSCTL_ZERO, 1474 .extra2 = SYSCTL_ONE 1475 }, 1476 {} 1477 }; 1478 1479 static struct ctl_table hv_root_table[] = { 1480 { 1481 .procname = "kernel", 1482 .mode = 0555, 1483 .child = hv_ctl_table 1484 }, 1485 {} 1486 }; 1487 1488 /* 1489 * vmbus_bus_init -Main vmbus driver initialization routine. 1490 * 1491 * Here, we 1492 * - initialize the vmbus driver context 1493 * - invoke the vmbus hv main init routine 1494 * - retrieve the channel offers 1495 */ 1496 static int vmbus_bus_init(void) 1497 { 1498 int ret; 1499 1500 ret = hv_init(); 1501 if (ret != 0) { 1502 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1503 return ret; 1504 } 1505 1506 ret = bus_register(&hv_bus); 1507 if (ret) 1508 return ret; 1509 1510 /* 1511 * VMbus interrupts are best modeled as per-cpu interrupts. If 1512 * on an architecture with support for per-cpu IRQs (e.g. ARM64), 1513 * allocate a per-cpu IRQ using standard Linux kernel functionality. 1514 * If not on such an architecture (e.g., x86/x64), then rely on 1515 * code in the arch-specific portion of the code tree to connect 1516 * the VMbus interrupt handler. 1517 */ 1518 1519 if (vmbus_irq == -1) { 1520 hv_setup_vmbus_handler(vmbus_isr); 1521 } else { 1522 vmbus_evt = alloc_percpu(long); 1523 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr, 1524 "Hyper-V VMbus", vmbus_evt); 1525 if (ret) { 1526 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d", 1527 vmbus_irq, ret); 1528 free_percpu(vmbus_evt); 1529 goto err_setup; 1530 } 1531 } 1532 1533 ret = hv_synic_alloc(); 1534 if (ret) 1535 goto err_alloc; 1536 1537 /* 1538 * Initialize the per-cpu interrupt state and stimer state. 1539 * Then connect to the host. 1540 */ 1541 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1542 hv_synic_init, hv_synic_cleanup); 1543 if (ret < 0) 1544 goto err_cpuhp; 1545 hyperv_cpuhp_online = ret; 1546 1547 ret = vmbus_connect(); 1548 if (ret) 1549 goto err_connect; 1550 1551 /* 1552 * Only register if the crash MSRs are available 1553 */ 1554 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1555 u64 hyperv_crash_ctl; 1556 /* 1557 * Sysctl registration is not fatal, since by default 1558 * reporting is enabled. 1559 */ 1560 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1561 if (!hv_ctl_table_hdr) 1562 pr_err("Hyper-V: sysctl table register error"); 1563 1564 /* 1565 * Register for panic kmsg callback only if the right 1566 * capability is supported by the hypervisor. 1567 */ 1568 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL); 1569 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) 1570 hv_kmsg_dump_register(); 1571 1572 register_die_notifier(&hyperv_die_block); 1573 } 1574 1575 /* 1576 * Always register the panic notifier because we need to unload 1577 * the VMbus channel connection to prevent any VMbus 1578 * activity after the VM panics. 1579 */ 1580 atomic_notifier_chain_register(&panic_notifier_list, 1581 &hyperv_panic_block); 1582 1583 vmbus_request_offers(); 1584 1585 return 0; 1586 1587 err_connect: 1588 cpuhp_remove_state(hyperv_cpuhp_online); 1589 err_cpuhp: 1590 hv_synic_free(); 1591 err_alloc: 1592 if (vmbus_irq == -1) { 1593 hv_remove_vmbus_handler(); 1594 } else { 1595 free_percpu_irq(vmbus_irq, vmbus_evt); 1596 free_percpu(vmbus_evt); 1597 } 1598 err_setup: 1599 bus_unregister(&hv_bus); 1600 unregister_sysctl_table(hv_ctl_table_hdr); 1601 hv_ctl_table_hdr = NULL; 1602 return ret; 1603 } 1604 1605 /** 1606 * __vmbus_child_driver_register() - Register a vmbus's driver 1607 * @hv_driver: Pointer to driver structure you want to register 1608 * @owner: owner module of the drv 1609 * @mod_name: module name string 1610 * 1611 * Registers the given driver with Linux through the 'driver_register()' call 1612 * and sets up the hyper-v vmbus handling for this driver. 1613 * It will return the state of the 'driver_register()' call. 1614 * 1615 */ 1616 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1617 { 1618 int ret; 1619 1620 pr_info("registering driver %s\n", hv_driver->name); 1621 1622 ret = vmbus_exists(); 1623 if (ret < 0) 1624 return ret; 1625 1626 hv_driver->driver.name = hv_driver->name; 1627 hv_driver->driver.owner = owner; 1628 hv_driver->driver.mod_name = mod_name; 1629 hv_driver->driver.bus = &hv_bus; 1630 1631 spin_lock_init(&hv_driver->dynids.lock); 1632 INIT_LIST_HEAD(&hv_driver->dynids.list); 1633 1634 ret = driver_register(&hv_driver->driver); 1635 1636 return ret; 1637 } 1638 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1639 1640 /** 1641 * vmbus_driver_unregister() - Unregister a vmbus's driver 1642 * @hv_driver: Pointer to driver structure you want to 1643 * un-register 1644 * 1645 * Un-register the given driver that was previous registered with a call to 1646 * vmbus_driver_register() 1647 */ 1648 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1649 { 1650 pr_info("unregistering driver %s\n", hv_driver->name); 1651 1652 if (!vmbus_exists()) { 1653 driver_unregister(&hv_driver->driver); 1654 vmbus_free_dynids(hv_driver); 1655 } 1656 } 1657 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1658 1659 1660 /* 1661 * Called when last reference to channel is gone. 1662 */ 1663 static void vmbus_chan_release(struct kobject *kobj) 1664 { 1665 struct vmbus_channel *channel 1666 = container_of(kobj, struct vmbus_channel, kobj); 1667 1668 kfree_rcu(channel, rcu); 1669 } 1670 1671 struct vmbus_chan_attribute { 1672 struct attribute attr; 1673 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1674 ssize_t (*store)(struct vmbus_channel *chan, 1675 const char *buf, size_t count); 1676 }; 1677 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1678 struct vmbus_chan_attribute chan_attr_##_name \ 1679 = __ATTR(_name, _mode, _show, _store) 1680 #define VMBUS_CHAN_ATTR_RW(_name) \ 1681 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1682 #define VMBUS_CHAN_ATTR_RO(_name) \ 1683 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1684 #define VMBUS_CHAN_ATTR_WO(_name) \ 1685 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1686 1687 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1688 struct attribute *attr, char *buf) 1689 { 1690 const struct vmbus_chan_attribute *attribute 1691 = container_of(attr, struct vmbus_chan_attribute, attr); 1692 struct vmbus_channel *chan 1693 = container_of(kobj, struct vmbus_channel, kobj); 1694 1695 if (!attribute->show) 1696 return -EIO; 1697 1698 return attribute->show(chan, buf); 1699 } 1700 1701 static ssize_t vmbus_chan_attr_store(struct kobject *kobj, 1702 struct attribute *attr, const char *buf, 1703 size_t count) 1704 { 1705 const struct vmbus_chan_attribute *attribute 1706 = container_of(attr, struct vmbus_chan_attribute, attr); 1707 struct vmbus_channel *chan 1708 = container_of(kobj, struct vmbus_channel, kobj); 1709 1710 if (!attribute->store) 1711 return -EIO; 1712 1713 return attribute->store(chan, buf, count); 1714 } 1715 1716 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1717 .show = vmbus_chan_attr_show, 1718 .store = vmbus_chan_attr_store, 1719 }; 1720 1721 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1722 { 1723 struct hv_ring_buffer_info *rbi = &channel->outbound; 1724 ssize_t ret; 1725 1726 mutex_lock(&rbi->ring_buffer_mutex); 1727 if (!rbi->ring_buffer) { 1728 mutex_unlock(&rbi->ring_buffer_mutex); 1729 return -EINVAL; 1730 } 1731 1732 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1733 mutex_unlock(&rbi->ring_buffer_mutex); 1734 return ret; 1735 } 1736 static VMBUS_CHAN_ATTR_RO(out_mask); 1737 1738 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1739 { 1740 struct hv_ring_buffer_info *rbi = &channel->inbound; 1741 ssize_t ret; 1742 1743 mutex_lock(&rbi->ring_buffer_mutex); 1744 if (!rbi->ring_buffer) { 1745 mutex_unlock(&rbi->ring_buffer_mutex); 1746 return -EINVAL; 1747 } 1748 1749 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1750 mutex_unlock(&rbi->ring_buffer_mutex); 1751 return ret; 1752 } 1753 static VMBUS_CHAN_ATTR_RO(in_mask); 1754 1755 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1756 { 1757 struct hv_ring_buffer_info *rbi = &channel->inbound; 1758 ssize_t ret; 1759 1760 mutex_lock(&rbi->ring_buffer_mutex); 1761 if (!rbi->ring_buffer) { 1762 mutex_unlock(&rbi->ring_buffer_mutex); 1763 return -EINVAL; 1764 } 1765 1766 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1767 mutex_unlock(&rbi->ring_buffer_mutex); 1768 return ret; 1769 } 1770 static VMBUS_CHAN_ATTR_RO(read_avail); 1771 1772 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1773 { 1774 struct hv_ring_buffer_info *rbi = &channel->outbound; 1775 ssize_t ret; 1776 1777 mutex_lock(&rbi->ring_buffer_mutex); 1778 if (!rbi->ring_buffer) { 1779 mutex_unlock(&rbi->ring_buffer_mutex); 1780 return -EINVAL; 1781 } 1782 1783 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1784 mutex_unlock(&rbi->ring_buffer_mutex); 1785 return ret; 1786 } 1787 static VMBUS_CHAN_ATTR_RO(write_avail); 1788 1789 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf) 1790 { 1791 return sprintf(buf, "%u\n", channel->target_cpu); 1792 } 1793 static ssize_t target_cpu_store(struct vmbus_channel *channel, 1794 const char *buf, size_t count) 1795 { 1796 u32 target_cpu, origin_cpu; 1797 ssize_t ret = count; 1798 1799 if (vmbus_proto_version < VERSION_WIN10_V4_1) 1800 return -EIO; 1801 1802 if (sscanf(buf, "%uu", &target_cpu) != 1) 1803 return -EIO; 1804 1805 /* Validate target_cpu for the cpumask_test_cpu() operation below. */ 1806 if (target_cpu >= nr_cpumask_bits) 1807 return -EINVAL; 1808 1809 /* No CPUs should come up or down during this. */ 1810 cpus_read_lock(); 1811 1812 if (!cpu_online(target_cpu)) { 1813 cpus_read_unlock(); 1814 return -EINVAL; 1815 } 1816 1817 /* 1818 * Synchronizes target_cpu_store() and channel closure: 1819 * 1820 * { Initially: state = CHANNEL_OPENED } 1821 * 1822 * CPU1 CPU2 1823 * 1824 * [target_cpu_store()] [vmbus_disconnect_ring()] 1825 * 1826 * LOCK channel_mutex LOCK channel_mutex 1827 * LOAD r1 = state LOAD r2 = state 1828 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED) 1829 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN 1830 * [...] SEND CLOSECHANNEL 1831 * UNLOCK channel_mutex UNLOCK channel_mutex 1832 * 1833 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes 1834 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND 1835 * 1836 * Note. The host processes the channel messages "sequentially", in 1837 * the order in which they are received on a per-partition basis. 1838 */ 1839 mutex_lock(&vmbus_connection.channel_mutex); 1840 1841 /* 1842 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels; 1843 * avoid sending the message and fail here for such channels. 1844 */ 1845 if (channel->state != CHANNEL_OPENED_STATE) { 1846 ret = -EIO; 1847 goto cpu_store_unlock; 1848 } 1849 1850 origin_cpu = channel->target_cpu; 1851 if (target_cpu == origin_cpu) 1852 goto cpu_store_unlock; 1853 1854 if (vmbus_send_modifychannel(channel, 1855 hv_cpu_number_to_vp_number(target_cpu))) { 1856 ret = -EIO; 1857 goto cpu_store_unlock; 1858 } 1859 1860 /* 1861 * For version before VERSION_WIN10_V5_3, the following warning holds: 1862 * 1863 * Warning. At this point, there is *no* guarantee that the host will 1864 * have successfully processed the vmbus_send_modifychannel() request. 1865 * See the header comment of vmbus_send_modifychannel() for more info. 1866 * 1867 * Lags in the processing of the above vmbus_send_modifychannel() can 1868 * result in missed interrupts if the "old" target CPU is taken offline 1869 * before Hyper-V starts sending interrupts to the "new" target CPU. 1870 * But apart from this offlining scenario, the code tolerates such 1871 * lags. It will function correctly even if a channel interrupt comes 1872 * in on a CPU that is different from the channel target_cpu value. 1873 */ 1874 1875 channel->target_cpu = target_cpu; 1876 1877 /* See init_vp_index(). */ 1878 if (hv_is_perf_channel(channel)) 1879 hv_update_alloced_cpus(origin_cpu, target_cpu); 1880 1881 /* Currently set only for storvsc channels. */ 1882 if (channel->change_target_cpu_callback) { 1883 (*channel->change_target_cpu_callback)(channel, 1884 origin_cpu, target_cpu); 1885 } 1886 1887 cpu_store_unlock: 1888 mutex_unlock(&vmbus_connection.channel_mutex); 1889 cpus_read_unlock(); 1890 return ret; 1891 } 1892 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store); 1893 1894 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1895 char *buf) 1896 { 1897 return sprintf(buf, "%d\n", 1898 channel_pending(channel, 1899 vmbus_connection.monitor_pages[1])); 1900 } 1901 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL); 1902 1903 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1904 char *buf) 1905 { 1906 return sprintf(buf, "%d\n", 1907 channel_latency(channel, 1908 vmbus_connection.monitor_pages[1])); 1909 } 1910 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL); 1911 1912 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1913 { 1914 return sprintf(buf, "%llu\n", channel->interrupts); 1915 } 1916 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL); 1917 1918 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1919 { 1920 return sprintf(buf, "%llu\n", channel->sig_events); 1921 } 1922 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL); 1923 1924 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1925 char *buf) 1926 { 1927 return sprintf(buf, "%llu\n", 1928 (unsigned long long)channel->intr_in_full); 1929 } 1930 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1931 1932 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1933 char *buf) 1934 { 1935 return sprintf(buf, "%llu\n", 1936 (unsigned long long)channel->intr_out_empty); 1937 } 1938 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1939 1940 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1941 char *buf) 1942 { 1943 return sprintf(buf, "%llu\n", 1944 (unsigned long long)channel->out_full_first); 1945 } 1946 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1947 1948 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1949 char *buf) 1950 { 1951 return sprintf(buf, "%llu\n", 1952 (unsigned long long)channel->out_full_total); 1953 } 1954 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1955 1956 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1957 char *buf) 1958 { 1959 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1960 } 1961 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL); 1962 1963 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1964 char *buf) 1965 { 1966 return sprintf(buf, "%u\n", 1967 channel->offermsg.offer.sub_channel_index); 1968 } 1969 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1970 1971 static struct attribute *vmbus_chan_attrs[] = { 1972 &chan_attr_out_mask.attr, 1973 &chan_attr_in_mask.attr, 1974 &chan_attr_read_avail.attr, 1975 &chan_attr_write_avail.attr, 1976 &chan_attr_cpu.attr, 1977 &chan_attr_pending.attr, 1978 &chan_attr_latency.attr, 1979 &chan_attr_interrupts.attr, 1980 &chan_attr_events.attr, 1981 &chan_attr_intr_in_full.attr, 1982 &chan_attr_intr_out_empty.attr, 1983 &chan_attr_out_full_first.attr, 1984 &chan_attr_out_full_total.attr, 1985 &chan_attr_monitor_id.attr, 1986 &chan_attr_subchannel_id.attr, 1987 NULL 1988 }; 1989 1990 /* 1991 * Channel-level attribute_group callback function. Returns the permission for 1992 * each attribute, and returns 0 if an attribute is not visible. 1993 */ 1994 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1995 struct attribute *attr, int idx) 1996 { 1997 const struct vmbus_channel *channel = 1998 container_of(kobj, struct vmbus_channel, kobj); 1999 2000 /* Hide the monitor attributes if the monitor mechanism is not used. */ 2001 if (!channel->offermsg.monitor_allocated && 2002 (attr == &chan_attr_pending.attr || 2003 attr == &chan_attr_latency.attr || 2004 attr == &chan_attr_monitor_id.attr)) 2005 return 0; 2006 2007 return attr->mode; 2008 } 2009 2010 static struct attribute_group vmbus_chan_group = { 2011 .attrs = vmbus_chan_attrs, 2012 .is_visible = vmbus_chan_attr_is_visible 2013 }; 2014 2015 static struct kobj_type vmbus_chan_ktype = { 2016 .sysfs_ops = &vmbus_chan_sysfs_ops, 2017 .release = vmbus_chan_release, 2018 }; 2019 2020 /* 2021 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 2022 */ 2023 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 2024 { 2025 const struct device *device = &dev->device; 2026 struct kobject *kobj = &channel->kobj; 2027 u32 relid = channel->offermsg.child_relid; 2028 int ret; 2029 2030 kobj->kset = dev->channels_kset; 2031 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 2032 "%u", relid); 2033 if (ret) 2034 return ret; 2035 2036 ret = sysfs_create_group(kobj, &vmbus_chan_group); 2037 2038 if (ret) { 2039 /* 2040 * The calling functions' error handling paths will cleanup the 2041 * empty channel directory. 2042 */ 2043 dev_err(device, "Unable to set up channel sysfs files\n"); 2044 return ret; 2045 } 2046 2047 kobject_uevent(kobj, KOBJ_ADD); 2048 2049 return 0; 2050 } 2051 2052 /* 2053 * vmbus_remove_channel_attr_group - remove the channel's attribute group 2054 */ 2055 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 2056 { 2057 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 2058 } 2059 2060 /* 2061 * vmbus_device_create - Creates and registers a new child device 2062 * on the vmbus. 2063 */ 2064 struct hv_device *vmbus_device_create(const guid_t *type, 2065 const guid_t *instance, 2066 struct vmbus_channel *channel) 2067 { 2068 struct hv_device *child_device_obj; 2069 2070 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 2071 if (!child_device_obj) { 2072 pr_err("Unable to allocate device object for child device\n"); 2073 return NULL; 2074 } 2075 2076 child_device_obj->channel = channel; 2077 guid_copy(&child_device_obj->dev_type, type); 2078 guid_copy(&child_device_obj->dev_instance, instance); 2079 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 2080 2081 return child_device_obj; 2082 } 2083 2084 /* 2085 * vmbus_device_register - Register the child device 2086 */ 2087 int vmbus_device_register(struct hv_device *child_device_obj) 2088 { 2089 struct kobject *kobj = &child_device_obj->device.kobj; 2090 int ret; 2091 2092 dev_set_name(&child_device_obj->device, "%pUl", 2093 &child_device_obj->channel->offermsg.offer.if_instance); 2094 2095 child_device_obj->device.bus = &hv_bus; 2096 child_device_obj->device.parent = &hv_acpi_dev->dev; 2097 child_device_obj->device.release = vmbus_device_release; 2098 2099 /* 2100 * Register with the LDM. This will kick off the driver/device 2101 * binding...which will eventually call vmbus_match() and vmbus_probe() 2102 */ 2103 ret = device_register(&child_device_obj->device); 2104 if (ret) { 2105 pr_err("Unable to register child device\n"); 2106 return ret; 2107 } 2108 2109 child_device_obj->channels_kset = kset_create_and_add("channels", 2110 NULL, kobj); 2111 if (!child_device_obj->channels_kset) { 2112 ret = -ENOMEM; 2113 goto err_dev_unregister; 2114 } 2115 2116 ret = vmbus_add_channel_kobj(child_device_obj, 2117 child_device_obj->channel); 2118 if (ret) { 2119 pr_err("Unable to register primary channeln"); 2120 goto err_kset_unregister; 2121 } 2122 hv_debug_add_dev_dir(child_device_obj); 2123 2124 return 0; 2125 2126 err_kset_unregister: 2127 kset_unregister(child_device_obj->channels_kset); 2128 2129 err_dev_unregister: 2130 device_unregister(&child_device_obj->device); 2131 return ret; 2132 } 2133 2134 /* 2135 * vmbus_device_unregister - Remove the specified child device 2136 * from the vmbus. 2137 */ 2138 void vmbus_device_unregister(struct hv_device *device_obj) 2139 { 2140 pr_debug("child device %s unregistered\n", 2141 dev_name(&device_obj->device)); 2142 2143 kset_unregister(device_obj->channels_kset); 2144 2145 /* 2146 * Kick off the process of unregistering the device. 2147 * This will call vmbus_remove() and eventually vmbus_device_release() 2148 */ 2149 device_unregister(&device_obj->device); 2150 } 2151 2152 2153 /* 2154 * VMBUS is an acpi enumerated device. Get the information we 2155 * need from DSDT. 2156 */ 2157 #define VTPM_BASE_ADDRESS 0xfed40000 2158 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 2159 { 2160 resource_size_t start = 0; 2161 resource_size_t end = 0; 2162 struct resource *new_res; 2163 struct resource **old_res = &hyperv_mmio; 2164 struct resource **prev_res = NULL; 2165 struct resource r; 2166 2167 switch (res->type) { 2168 2169 /* 2170 * "Address" descriptors are for bus windows. Ignore 2171 * "memory" descriptors, which are for registers on 2172 * devices. 2173 */ 2174 case ACPI_RESOURCE_TYPE_ADDRESS32: 2175 start = res->data.address32.address.minimum; 2176 end = res->data.address32.address.maximum; 2177 break; 2178 2179 case ACPI_RESOURCE_TYPE_ADDRESS64: 2180 start = res->data.address64.address.minimum; 2181 end = res->data.address64.address.maximum; 2182 break; 2183 2184 /* 2185 * The IRQ information is needed only on ARM64, which Hyper-V 2186 * sets up in the extended format. IRQ information is present 2187 * on x86/x64 in the non-extended format but it is not used by 2188 * Linux. So don't bother checking for the non-extended format. 2189 */ 2190 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 2191 if (!acpi_dev_resource_interrupt(res, 0, &r)) { 2192 pr_err("Unable to parse Hyper-V ACPI interrupt\n"); 2193 return AE_ERROR; 2194 } 2195 /* ARM64 INTID for VMbus */ 2196 vmbus_interrupt = res->data.extended_irq.interrupts[0]; 2197 /* Linux IRQ number */ 2198 vmbus_irq = r.start; 2199 return AE_OK; 2200 2201 default: 2202 /* Unused resource type */ 2203 return AE_OK; 2204 2205 } 2206 /* 2207 * Ignore ranges that are below 1MB, as they're not 2208 * necessary or useful here. 2209 */ 2210 if (end < 0x100000) 2211 return AE_OK; 2212 2213 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 2214 if (!new_res) 2215 return AE_NO_MEMORY; 2216 2217 /* If this range overlaps the virtual TPM, truncate it. */ 2218 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 2219 end = VTPM_BASE_ADDRESS; 2220 2221 new_res->name = "hyperv mmio"; 2222 new_res->flags = IORESOURCE_MEM; 2223 new_res->start = start; 2224 new_res->end = end; 2225 2226 /* 2227 * If two ranges are adjacent, merge them. 2228 */ 2229 do { 2230 if (!*old_res) { 2231 *old_res = new_res; 2232 break; 2233 } 2234 2235 if (((*old_res)->end + 1) == new_res->start) { 2236 (*old_res)->end = new_res->end; 2237 kfree(new_res); 2238 break; 2239 } 2240 2241 if ((*old_res)->start == new_res->end + 1) { 2242 (*old_res)->start = new_res->start; 2243 kfree(new_res); 2244 break; 2245 } 2246 2247 if ((*old_res)->start > new_res->end) { 2248 new_res->sibling = *old_res; 2249 if (prev_res) 2250 (*prev_res)->sibling = new_res; 2251 *old_res = new_res; 2252 break; 2253 } 2254 2255 prev_res = old_res; 2256 old_res = &(*old_res)->sibling; 2257 2258 } while (1); 2259 2260 return AE_OK; 2261 } 2262 2263 static int vmbus_acpi_remove(struct acpi_device *device) 2264 { 2265 struct resource *cur_res; 2266 struct resource *next_res; 2267 2268 if (hyperv_mmio) { 2269 if (fb_mmio) { 2270 __release_region(hyperv_mmio, fb_mmio->start, 2271 resource_size(fb_mmio)); 2272 fb_mmio = NULL; 2273 } 2274 2275 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 2276 next_res = cur_res->sibling; 2277 kfree(cur_res); 2278 } 2279 } 2280 2281 return 0; 2282 } 2283 2284 static void vmbus_reserve_fb(void) 2285 { 2286 int size; 2287 /* 2288 * Make a claim for the frame buffer in the resource tree under the 2289 * first node, which will be the one below 4GB. The length seems to 2290 * be underreported, particularly in a Generation 1 VM. So start out 2291 * reserving a larger area and make it smaller until it succeeds. 2292 */ 2293 2294 if (screen_info.lfb_base) { 2295 if (efi_enabled(EFI_BOOT)) 2296 size = max_t(__u32, screen_info.lfb_size, 0x800000); 2297 else 2298 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 2299 2300 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 2301 fb_mmio = __request_region(hyperv_mmio, 2302 screen_info.lfb_base, size, 2303 fb_mmio_name, 0); 2304 } 2305 } 2306 } 2307 2308 /** 2309 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 2310 * @new: If successful, supplied a pointer to the 2311 * allocated MMIO space. 2312 * @device_obj: Identifies the caller 2313 * @min: Minimum guest physical address of the 2314 * allocation 2315 * @max: Maximum guest physical address 2316 * @size: Size of the range to be allocated 2317 * @align: Alignment of the range to be allocated 2318 * @fb_overlap_ok: Whether this allocation can be allowed 2319 * to overlap the video frame buffer. 2320 * 2321 * This function walks the resources granted to VMBus by the 2322 * _CRS object in the ACPI namespace underneath the parent 2323 * "bridge" whether that's a root PCI bus in the Generation 1 2324 * case or a Module Device in the Generation 2 case. It then 2325 * attempts to allocate from the global MMIO pool in a way that 2326 * matches the constraints supplied in these parameters and by 2327 * that _CRS. 2328 * 2329 * Return: 0 on success, -errno on failure 2330 */ 2331 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 2332 resource_size_t min, resource_size_t max, 2333 resource_size_t size, resource_size_t align, 2334 bool fb_overlap_ok) 2335 { 2336 struct resource *iter, *shadow; 2337 resource_size_t range_min, range_max, start; 2338 const char *dev_n = dev_name(&device_obj->device); 2339 int retval; 2340 2341 retval = -ENXIO; 2342 mutex_lock(&hyperv_mmio_lock); 2343 2344 /* 2345 * If overlaps with frame buffers are allowed, then first attempt to 2346 * make the allocation from within the reserved region. Because it 2347 * is already reserved, no shadow allocation is necessary. 2348 */ 2349 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 2350 !(max < fb_mmio->start)) { 2351 2352 range_min = fb_mmio->start; 2353 range_max = fb_mmio->end; 2354 start = (range_min + align - 1) & ~(align - 1); 2355 for (; start + size - 1 <= range_max; start += align) { 2356 *new = request_mem_region_exclusive(start, size, dev_n); 2357 if (*new) { 2358 retval = 0; 2359 goto exit; 2360 } 2361 } 2362 } 2363 2364 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2365 if ((iter->start >= max) || (iter->end <= min)) 2366 continue; 2367 2368 range_min = iter->start; 2369 range_max = iter->end; 2370 start = (range_min + align - 1) & ~(align - 1); 2371 for (; start + size - 1 <= range_max; start += align) { 2372 shadow = __request_region(iter, start, size, NULL, 2373 IORESOURCE_BUSY); 2374 if (!shadow) 2375 continue; 2376 2377 *new = request_mem_region_exclusive(start, size, dev_n); 2378 if (*new) { 2379 shadow->name = (char *)*new; 2380 retval = 0; 2381 goto exit; 2382 } 2383 2384 __release_region(iter, start, size); 2385 } 2386 } 2387 2388 exit: 2389 mutex_unlock(&hyperv_mmio_lock); 2390 return retval; 2391 } 2392 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 2393 2394 /** 2395 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2396 * @start: Base address of region to release. 2397 * @size: Size of the range to be allocated 2398 * 2399 * This function releases anything requested by 2400 * vmbus_mmio_allocate(). 2401 */ 2402 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2403 { 2404 struct resource *iter; 2405 2406 mutex_lock(&hyperv_mmio_lock); 2407 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2408 if ((iter->start >= start + size) || (iter->end <= start)) 2409 continue; 2410 2411 __release_region(iter, start, size); 2412 } 2413 release_mem_region(start, size); 2414 mutex_unlock(&hyperv_mmio_lock); 2415 2416 } 2417 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2418 2419 static int vmbus_acpi_add(struct acpi_device *device) 2420 { 2421 acpi_status result; 2422 int ret_val = -ENODEV; 2423 struct acpi_device *ancestor; 2424 2425 hv_acpi_dev = device; 2426 2427 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2428 vmbus_walk_resources, NULL); 2429 2430 if (ACPI_FAILURE(result)) 2431 goto acpi_walk_err; 2432 /* 2433 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2434 * firmware) is the VMOD that has the mmio ranges. Get that. 2435 */ 2436 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2437 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2438 vmbus_walk_resources, NULL); 2439 2440 if (ACPI_FAILURE(result)) 2441 continue; 2442 if (hyperv_mmio) { 2443 vmbus_reserve_fb(); 2444 break; 2445 } 2446 } 2447 ret_val = 0; 2448 2449 acpi_walk_err: 2450 complete(&probe_event); 2451 if (ret_val) 2452 vmbus_acpi_remove(device); 2453 return ret_val; 2454 } 2455 2456 #ifdef CONFIG_PM_SLEEP 2457 static int vmbus_bus_suspend(struct device *dev) 2458 { 2459 struct vmbus_channel *channel, *sc; 2460 2461 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 2462 /* 2463 * We wait here until the completion of any channel 2464 * offers that are currently in progress. 2465 */ 2466 usleep_range(1000, 2000); 2467 } 2468 2469 mutex_lock(&vmbus_connection.channel_mutex); 2470 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2471 if (!is_hvsock_channel(channel)) 2472 continue; 2473 2474 vmbus_force_channel_rescinded(channel); 2475 } 2476 mutex_unlock(&vmbus_connection.channel_mutex); 2477 2478 /* 2479 * Wait until all the sub-channels and hv_sock channels have been 2480 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise 2481 * they would conflict with the new sub-channels that will be created 2482 * in the resume path. hv_sock channels should also be destroyed, but 2483 * a hv_sock channel of an established hv_sock connection can not be 2484 * really destroyed since it may still be referenced by the userspace 2485 * application, so we just force the hv_sock channel to be rescinded 2486 * by vmbus_force_channel_rescinded(), and the userspace application 2487 * will thoroughly destroy the channel after hibernation. 2488 * 2489 * Note: the counter nr_chan_close_on_suspend may never go above 0 if 2490 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. 2491 */ 2492 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) 2493 wait_for_completion(&vmbus_connection.ready_for_suspend_event); 2494 2495 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) { 2496 pr_err("Can not suspend due to a previous failed resuming\n"); 2497 return -EBUSY; 2498 } 2499 2500 mutex_lock(&vmbus_connection.channel_mutex); 2501 2502 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2503 /* 2504 * Remove the channel from the array of channels and invalidate 2505 * the channel's relid. Upon resume, vmbus_onoffer() will fix 2506 * up the relid (and other fields, if necessary) and add the 2507 * channel back to the array. 2508 */ 2509 vmbus_channel_unmap_relid(channel); 2510 channel->offermsg.child_relid = INVALID_RELID; 2511 2512 if (is_hvsock_channel(channel)) { 2513 if (!channel->rescind) { 2514 pr_err("hv_sock channel not rescinded!\n"); 2515 WARN_ON_ONCE(1); 2516 } 2517 continue; 2518 } 2519 2520 list_for_each_entry(sc, &channel->sc_list, sc_list) { 2521 pr_err("Sub-channel not deleted!\n"); 2522 WARN_ON_ONCE(1); 2523 } 2524 2525 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); 2526 } 2527 2528 mutex_unlock(&vmbus_connection.channel_mutex); 2529 2530 vmbus_initiate_unload(false); 2531 2532 /* Reset the event for the next resume. */ 2533 reinit_completion(&vmbus_connection.ready_for_resume_event); 2534 2535 return 0; 2536 } 2537 2538 static int vmbus_bus_resume(struct device *dev) 2539 { 2540 struct vmbus_channel_msginfo *msginfo; 2541 size_t msgsize; 2542 int ret; 2543 2544 /* 2545 * We only use the 'vmbus_proto_version', which was in use before 2546 * hibernation, to re-negotiate with the host. 2547 */ 2548 if (!vmbus_proto_version) { 2549 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); 2550 return -EINVAL; 2551 } 2552 2553 msgsize = sizeof(*msginfo) + 2554 sizeof(struct vmbus_channel_initiate_contact); 2555 2556 msginfo = kzalloc(msgsize, GFP_KERNEL); 2557 2558 if (msginfo == NULL) 2559 return -ENOMEM; 2560 2561 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); 2562 2563 kfree(msginfo); 2564 2565 if (ret != 0) 2566 return ret; 2567 2568 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); 2569 2570 vmbus_request_offers(); 2571 2572 if (wait_for_completion_timeout( 2573 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0) 2574 pr_err("Some vmbus device is missing after suspending?\n"); 2575 2576 /* Reset the event for the next suspend. */ 2577 reinit_completion(&vmbus_connection.ready_for_suspend_event); 2578 2579 return 0; 2580 } 2581 #else 2582 #define vmbus_bus_suspend NULL 2583 #define vmbus_bus_resume NULL 2584 #endif /* CONFIG_PM_SLEEP */ 2585 2586 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2587 {"VMBUS", 0}, 2588 {"VMBus", 0}, 2589 {"", 0}, 2590 }; 2591 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2592 2593 /* 2594 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with 2595 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in 2596 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see 2597 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> 2598 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's 2599 * resume callback must also run via the "noirq" ops. 2600 * 2601 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment 2602 * earlier in this file before vmbus_pm. 2603 */ 2604 2605 static const struct dev_pm_ops vmbus_bus_pm = { 2606 .suspend_noirq = NULL, 2607 .resume_noirq = NULL, 2608 .freeze_noirq = vmbus_bus_suspend, 2609 .thaw_noirq = vmbus_bus_resume, 2610 .poweroff_noirq = vmbus_bus_suspend, 2611 .restore_noirq = vmbus_bus_resume 2612 }; 2613 2614 static struct acpi_driver vmbus_acpi_driver = { 2615 .name = "vmbus", 2616 .ids = vmbus_acpi_device_ids, 2617 .ops = { 2618 .add = vmbus_acpi_add, 2619 .remove = vmbus_acpi_remove, 2620 }, 2621 .drv.pm = &vmbus_bus_pm, 2622 }; 2623 2624 static void hv_kexec_handler(void) 2625 { 2626 hv_stimer_global_cleanup(); 2627 vmbus_initiate_unload(false); 2628 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2629 mb(); 2630 cpuhp_remove_state(hyperv_cpuhp_online); 2631 }; 2632 2633 static void hv_crash_handler(struct pt_regs *regs) 2634 { 2635 int cpu; 2636 2637 vmbus_initiate_unload(true); 2638 /* 2639 * In crash handler we can't schedule synic cleanup for all CPUs, 2640 * doing the cleanup for current CPU only. This should be sufficient 2641 * for kdump. 2642 */ 2643 cpu = smp_processor_id(); 2644 hv_stimer_cleanup(cpu); 2645 hv_synic_disable_regs(cpu); 2646 }; 2647 2648 static int hv_synic_suspend(void) 2649 { 2650 /* 2651 * When we reach here, all the non-boot CPUs have been offlined. 2652 * If we're in a legacy configuration where stimer Direct Mode is 2653 * not enabled, the stimers on the non-boot CPUs have been unbound 2654 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> 2655 * hv_stimer_cleanup() -> clockevents_unbind_device(). 2656 * 2657 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. 2658 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: 2659 * 1) it's unnecessary as interrupts remain disabled between 2660 * syscore_suspend() and syscore_resume(): see create_image() and 2661 * resume_target_kernel() 2662 * 2) the stimer on CPU0 is automatically disabled later by 2663 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... 2664 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() 2665 * 3) a warning would be triggered if we call 2666 * clockevents_unbind_device(), which may sleep, in an 2667 * interrupts-disabled context. 2668 */ 2669 2670 hv_synic_disable_regs(0); 2671 2672 return 0; 2673 } 2674 2675 static void hv_synic_resume(void) 2676 { 2677 hv_synic_enable_regs(0); 2678 2679 /* 2680 * Note: we don't need to call hv_stimer_init(0), because the timer 2681 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is 2682 * automatically re-enabled in timekeeping_resume(). 2683 */ 2684 } 2685 2686 /* The callbacks run only on CPU0, with irqs_disabled. */ 2687 static struct syscore_ops hv_synic_syscore_ops = { 2688 .suspend = hv_synic_suspend, 2689 .resume = hv_synic_resume, 2690 }; 2691 2692 static int __init hv_acpi_init(void) 2693 { 2694 int ret, t; 2695 2696 if (!hv_is_hyperv_initialized()) 2697 return -ENODEV; 2698 2699 if (hv_root_partition) 2700 return 0; 2701 2702 init_completion(&probe_event); 2703 2704 /* 2705 * Get ACPI resources first. 2706 */ 2707 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2708 2709 if (ret) 2710 return ret; 2711 2712 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2713 if (t == 0) { 2714 ret = -ETIMEDOUT; 2715 goto cleanup; 2716 } 2717 2718 /* 2719 * If we're on an architecture with a hardcoded hypervisor 2720 * vector (i.e. x86/x64), override the VMbus interrupt found 2721 * in the ACPI tables. Ensure vmbus_irq is not set since the 2722 * normal Linux IRQ mechanism is not used in this case. 2723 */ 2724 #ifdef HYPERVISOR_CALLBACK_VECTOR 2725 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR; 2726 vmbus_irq = -1; 2727 #endif 2728 2729 hv_debug_init(); 2730 2731 ret = vmbus_bus_init(); 2732 if (ret) 2733 goto cleanup; 2734 2735 hv_setup_kexec_handler(hv_kexec_handler); 2736 hv_setup_crash_handler(hv_crash_handler); 2737 2738 register_syscore_ops(&hv_synic_syscore_ops); 2739 2740 return 0; 2741 2742 cleanup: 2743 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2744 hv_acpi_dev = NULL; 2745 return ret; 2746 } 2747 2748 static void __exit vmbus_exit(void) 2749 { 2750 int cpu; 2751 2752 unregister_syscore_ops(&hv_synic_syscore_ops); 2753 2754 hv_remove_kexec_handler(); 2755 hv_remove_crash_handler(); 2756 vmbus_connection.conn_state = DISCONNECTED; 2757 hv_stimer_global_cleanup(); 2758 vmbus_disconnect(); 2759 if (vmbus_irq == -1) { 2760 hv_remove_vmbus_handler(); 2761 } else { 2762 free_percpu_irq(vmbus_irq, vmbus_evt); 2763 free_percpu(vmbus_evt); 2764 } 2765 for_each_online_cpu(cpu) { 2766 struct hv_per_cpu_context *hv_cpu 2767 = per_cpu_ptr(hv_context.cpu_context, cpu); 2768 2769 tasklet_kill(&hv_cpu->msg_dpc); 2770 } 2771 hv_debug_rm_all_dir(); 2772 2773 vmbus_free_channels(); 2774 kfree(vmbus_connection.channels); 2775 2776 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2777 kmsg_dump_unregister(&hv_kmsg_dumper); 2778 unregister_die_notifier(&hyperv_die_block); 2779 atomic_notifier_chain_unregister(&panic_notifier_list, 2780 &hyperv_panic_block); 2781 } 2782 2783 free_page((unsigned long)hv_panic_page); 2784 unregister_sysctl_table(hv_ctl_table_hdr); 2785 hv_ctl_table_hdr = NULL; 2786 bus_unregister(&hv_bus); 2787 2788 cpuhp_remove_state(hyperv_cpuhp_online); 2789 hv_synic_free(); 2790 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2791 } 2792 2793 2794 MODULE_LICENSE("GPL"); 2795 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2796 2797 subsys_initcall(hv_acpi_init); 2798 module_exit(vmbus_exit); 2799