1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/interrupt.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/completion.h> 33 #include <linux/hyperv.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/clockchips.h> 36 #include <linux/cpu.h> 37 #include <linux/sched/task_stack.h> 38 39 #include <asm/mshyperv.h> 40 #include <linux/notifier.h> 41 #include <linux/ptrace.h> 42 #include <linux/screen_info.h> 43 #include <linux/kdebug.h> 44 #include <linux/efi.h> 45 #include <linux/random.h> 46 #include "hyperv_vmbus.h" 47 48 struct vmbus_dynid { 49 struct list_head node; 50 struct hv_vmbus_device_id id; 51 }; 52 53 static struct acpi_device *hv_acpi_dev; 54 55 static struct completion probe_event; 56 57 static int hyperv_cpuhp_online; 58 59 static void *hv_panic_page; 60 61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 62 void *args) 63 { 64 struct pt_regs *regs; 65 66 regs = current_pt_regs(); 67 68 hyperv_report_panic(regs, val); 69 return NOTIFY_DONE; 70 } 71 72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 73 void *args) 74 { 75 struct die_args *die = (struct die_args *)args; 76 struct pt_regs *regs = die->regs; 77 78 hyperv_report_panic(regs, val); 79 return NOTIFY_DONE; 80 } 81 82 static struct notifier_block hyperv_die_block = { 83 .notifier_call = hyperv_die_event, 84 }; 85 static struct notifier_block hyperv_panic_block = { 86 .notifier_call = hyperv_panic_event, 87 }; 88 89 static const char *fb_mmio_name = "fb_range"; 90 static struct resource *fb_mmio; 91 static struct resource *hyperv_mmio; 92 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 93 94 static int vmbus_exists(void) 95 { 96 if (hv_acpi_dev == NULL) 97 return -ENODEV; 98 99 return 0; 100 } 101 102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 104 { 105 int i; 106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 108 } 109 110 static u8 channel_monitor_group(const struct vmbus_channel *channel) 111 { 112 return (u8)channel->offermsg.monitorid / 32; 113 } 114 115 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 116 { 117 return (u8)channel->offermsg.monitorid % 32; 118 } 119 120 static u32 channel_pending(const struct vmbus_channel *channel, 121 const struct hv_monitor_page *monitor_page) 122 { 123 u8 monitor_group = channel_monitor_group(channel); 124 125 return monitor_page->trigger_group[monitor_group].pending; 126 } 127 128 static u32 channel_latency(const struct vmbus_channel *channel, 129 const struct hv_monitor_page *monitor_page) 130 { 131 u8 monitor_group = channel_monitor_group(channel); 132 u8 monitor_offset = channel_monitor_offset(channel); 133 134 return monitor_page->latency[monitor_group][monitor_offset]; 135 } 136 137 static u32 channel_conn_id(struct vmbus_channel *channel, 138 struct hv_monitor_page *monitor_page) 139 { 140 u8 monitor_group = channel_monitor_group(channel); 141 u8 monitor_offset = channel_monitor_offset(channel); 142 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 143 } 144 145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 146 char *buf) 147 { 148 struct hv_device *hv_dev = device_to_hv_device(dev); 149 150 if (!hv_dev->channel) 151 return -ENODEV; 152 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 153 } 154 static DEVICE_ATTR_RO(id); 155 156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 157 char *buf) 158 { 159 struct hv_device *hv_dev = device_to_hv_device(dev); 160 161 if (!hv_dev->channel) 162 return -ENODEV; 163 return sprintf(buf, "%d\n", hv_dev->channel->state); 164 } 165 static DEVICE_ATTR_RO(state); 166 167 static ssize_t monitor_id_show(struct device *dev, 168 struct device_attribute *dev_attr, char *buf) 169 { 170 struct hv_device *hv_dev = device_to_hv_device(dev); 171 172 if (!hv_dev->channel) 173 return -ENODEV; 174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 175 } 176 static DEVICE_ATTR_RO(monitor_id); 177 178 static ssize_t class_id_show(struct device *dev, 179 struct device_attribute *dev_attr, char *buf) 180 { 181 struct hv_device *hv_dev = device_to_hv_device(dev); 182 183 if (!hv_dev->channel) 184 return -ENODEV; 185 return sprintf(buf, "{%pUl}\n", 186 hv_dev->channel->offermsg.offer.if_type.b); 187 } 188 static DEVICE_ATTR_RO(class_id); 189 190 static ssize_t device_id_show(struct device *dev, 191 struct device_attribute *dev_attr, char *buf) 192 { 193 struct hv_device *hv_dev = device_to_hv_device(dev); 194 195 if (!hv_dev->channel) 196 return -ENODEV; 197 return sprintf(buf, "{%pUl}\n", 198 hv_dev->channel->offermsg.offer.if_instance.b); 199 } 200 static DEVICE_ATTR_RO(device_id); 201 202 static ssize_t modalias_show(struct device *dev, 203 struct device_attribute *dev_attr, char *buf) 204 { 205 struct hv_device *hv_dev = device_to_hv_device(dev); 206 char alias_name[VMBUS_ALIAS_LEN + 1]; 207 208 print_alias_name(hv_dev, alias_name); 209 return sprintf(buf, "vmbus:%s\n", alias_name); 210 } 211 static DEVICE_ATTR_RO(modalias); 212 213 #ifdef CONFIG_NUMA 214 static ssize_t numa_node_show(struct device *dev, 215 struct device_attribute *attr, char *buf) 216 { 217 struct hv_device *hv_dev = device_to_hv_device(dev); 218 219 if (!hv_dev->channel) 220 return -ENODEV; 221 222 return sprintf(buf, "%d\n", hv_dev->channel->numa_node); 223 } 224 static DEVICE_ATTR_RO(numa_node); 225 #endif 226 227 static ssize_t server_monitor_pending_show(struct device *dev, 228 struct device_attribute *dev_attr, 229 char *buf) 230 { 231 struct hv_device *hv_dev = device_to_hv_device(dev); 232 233 if (!hv_dev->channel) 234 return -ENODEV; 235 return sprintf(buf, "%d\n", 236 channel_pending(hv_dev->channel, 237 vmbus_connection.monitor_pages[1])); 238 } 239 static DEVICE_ATTR_RO(server_monitor_pending); 240 241 static ssize_t client_monitor_pending_show(struct device *dev, 242 struct device_attribute *dev_attr, 243 char *buf) 244 { 245 struct hv_device *hv_dev = device_to_hv_device(dev); 246 247 if (!hv_dev->channel) 248 return -ENODEV; 249 return sprintf(buf, "%d\n", 250 channel_pending(hv_dev->channel, 251 vmbus_connection.monitor_pages[1])); 252 } 253 static DEVICE_ATTR_RO(client_monitor_pending); 254 255 static ssize_t server_monitor_latency_show(struct device *dev, 256 struct device_attribute *dev_attr, 257 char *buf) 258 { 259 struct hv_device *hv_dev = device_to_hv_device(dev); 260 261 if (!hv_dev->channel) 262 return -ENODEV; 263 return sprintf(buf, "%d\n", 264 channel_latency(hv_dev->channel, 265 vmbus_connection.monitor_pages[0])); 266 } 267 static DEVICE_ATTR_RO(server_monitor_latency); 268 269 static ssize_t client_monitor_latency_show(struct device *dev, 270 struct device_attribute *dev_attr, 271 char *buf) 272 { 273 struct hv_device *hv_dev = device_to_hv_device(dev); 274 275 if (!hv_dev->channel) 276 return -ENODEV; 277 return sprintf(buf, "%d\n", 278 channel_latency(hv_dev->channel, 279 vmbus_connection.monitor_pages[1])); 280 } 281 static DEVICE_ATTR_RO(client_monitor_latency); 282 283 static ssize_t server_monitor_conn_id_show(struct device *dev, 284 struct device_attribute *dev_attr, 285 char *buf) 286 { 287 struct hv_device *hv_dev = device_to_hv_device(dev); 288 289 if (!hv_dev->channel) 290 return -ENODEV; 291 return sprintf(buf, "%d\n", 292 channel_conn_id(hv_dev->channel, 293 vmbus_connection.monitor_pages[0])); 294 } 295 static DEVICE_ATTR_RO(server_monitor_conn_id); 296 297 static ssize_t client_monitor_conn_id_show(struct device *dev, 298 struct device_attribute *dev_attr, 299 char *buf) 300 { 301 struct hv_device *hv_dev = device_to_hv_device(dev); 302 303 if (!hv_dev->channel) 304 return -ENODEV; 305 return sprintf(buf, "%d\n", 306 channel_conn_id(hv_dev->channel, 307 vmbus_connection.monitor_pages[1])); 308 } 309 static DEVICE_ATTR_RO(client_monitor_conn_id); 310 311 static ssize_t out_intr_mask_show(struct device *dev, 312 struct device_attribute *dev_attr, char *buf) 313 { 314 struct hv_device *hv_dev = device_to_hv_device(dev); 315 struct hv_ring_buffer_debug_info outbound; 316 317 if (!hv_dev->channel) 318 return -ENODEV; 319 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 320 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 321 } 322 static DEVICE_ATTR_RO(out_intr_mask); 323 324 static ssize_t out_read_index_show(struct device *dev, 325 struct device_attribute *dev_attr, char *buf) 326 { 327 struct hv_device *hv_dev = device_to_hv_device(dev); 328 struct hv_ring_buffer_debug_info outbound; 329 330 if (!hv_dev->channel) 331 return -ENODEV; 332 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 333 return sprintf(buf, "%d\n", outbound.current_read_index); 334 } 335 static DEVICE_ATTR_RO(out_read_index); 336 337 static ssize_t out_write_index_show(struct device *dev, 338 struct device_attribute *dev_attr, 339 char *buf) 340 { 341 struct hv_device *hv_dev = device_to_hv_device(dev); 342 struct hv_ring_buffer_debug_info outbound; 343 344 if (!hv_dev->channel) 345 return -ENODEV; 346 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 347 return sprintf(buf, "%d\n", outbound.current_write_index); 348 } 349 static DEVICE_ATTR_RO(out_write_index); 350 351 static ssize_t out_read_bytes_avail_show(struct device *dev, 352 struct device_attribute *dev_attr, 353 char *buf) 354 { 355 struct hv_device *hv_dev = device_to_hv_device(dev); 356 struct hv_ring_buffer_debug_info outbound; 357 358 if (!hv_dev->channel) 359 return -ENODEV; 360 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 361 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 362 } 363 static DEVICE_ATTR_RO(out_read_bytes_avail); 364 365 static ssize_t out_write_bytes_avail_show(struct device *dev, 366 struct device_attribute *dev_attr, 367 char *buf) 368 { 369 struct hv_device *hv_dev = device_to_hv_device(dev); 370 struct hv_ring_buffer_debug_info outbound; 371 372 if (!hv_dev->channel) 373 return -ENODEV; 374 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 375 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 376 } 377 static DEVICE_ATTR_RO(out_write_bytes_avail); 378 379 static ssize_t in_intr_mask_show(struct device *dev, 380 struct device_attribute *dev_attr, char *buf) 381 { 382 struct hv_device *hv_dev = device_to_hv_device(dev); 383 struct hv_ring_buffer_debug_info inbound; 384 385 if (!hv_dev->channel) 386 return -ENODEV; 387 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 388 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 389 } 390 static DEVICE_ATTR_RO(in_intr_mask); 391 392 static ssize_t in_read_index_show(struct device *dev, 393 struct device_attribute *dev_attr, char *buf) 394 { 395 struct hv_device *hv_dev = device_to_hv_device(dev); 396 struct hv_ring_buffer_debug_info inbound; 397 398 if (!hv_dev->channel) 399 return -ENODEV; 400 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 401 return sprintf(buf, "%d\n", inbound.current_read_index); 402 } 403 static DEVICE_ATTR_RO(in_read_index); 404 405 static ssize_t in_write_index_show(struct device *dev, 406 struct device_attribute *dev_attr, char *buf) 407 { 408 struct hv_device *hv_dev = device_to_hv_device(dev); 409 struct hv_ring_buffer_debug_info inbound; 410 411 if (!hv_dev->channel) 412 return -ENODEV; 413 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 414 return sprintf(buf, "%d\n", inbound.current_write_index); 415 } 416 static DEVICE_ATTR_RO(in_write_index); 417 418 static ssize_t in_read_bytes_avail_show(struct device *dev, 419 struct device_attribute *dev_attr, 420 char *buf) 421 { 422 struct hv_device *hv_dev = device_to_hv_device(dev); 423 struct hv_ring_buffer_debug_info inbound; 424 425 if (!hv_dev->channel) 426 return -ENODEV; 427 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 428 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 429 } 430 static DEVICE_ATTR_RO(in_read_bytes_avail); 431 432 static ssize_t in_write_bytes_avail_show(struct device *dev, 433 struct device_attribute *dev_attr, 434 char *buf) 435 { 436 struct hv_device *hv_dev = device_to_hv_device(dev); 437 struct hv_ring_buffer_debug_info inbound; 438 439 if (!hv_dev->channel) 440 return -ENODEV; 441 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 442 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 443 } 444 static DEVICE_ATTR_RO(in_write_bytes_avail); 445 446 static ssize_t channel_vp_mapping_show(struct device *dev, 447 struct device_attribute *dev_attr, 448 char *buf) 449 { 450 struct hv_device *hv_dev = device_to_hv_device(dev); 451 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 452 unsigned long flags; 453 int buf_size = PAGE_SIZE, n_written, tot_written; 454 struct list_head *cur; 455 456 if (!channel) 457 return -ENODEV; 458 459 tot_written = snprintf(buf, buf_size, "%u:%u\n", 460 channel->offermsg.child_relid, channel->target_cpu); 461 462 spin_lock_irqsave(&channel->lock, flags); 463 464 list_for_each(cur, &channel->sc_list) { 465 if (tot_written >= buf_size - 1) 466 break; 467 468 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 469 n_written = scnprintf(buf + tot_written, 470 buf_size - tot_written, 471 "%u:%u\n", 472 cur_sc->offermsg.child_relid, 473 cur_sc->target_cpu); 474 tot_written += n_written; 475 } 476 477 spin_unlock_irqrestore(&channel->lock, flags); 478 479 return tot_written; 480 } 481 static DEVICE_ATTR_RO(channel_vp_mapping); 482 483 static ssize_t vendor_show(struct device *dev, 484 struct device_attribute *dev_attr, 485 char *buf) 486 { 487 struct hv_device *hv_dev = device_to_hv_device(dev); 488 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 489 } 490 static DEVICE_ATTR_RO(vendor); 491 492 static ssize_t device_show(struct device *dev, 493 struct device_attribute *dev_attr, 494 char *buf) 495 { 496 struct hv_device *hv_dev = device_to_hv_device(dev); 497 return sprintf(buf, "0x%x\n", hv_dev->device_id); 498 } 499 static DEVICE_ATTR_RO(device); 500 501 static ssize_t driver_override_store(struct device *dev, 502 struct device_attribute *attr, 503 const char *buf, size_t count) 504 { 505 struct hv_device *hv_dev = device_to_hv_device(dev); 506 char *driver_override, *old, *cp; 507 508 /* We need to keep extra room for a newline */ 509 if (count >= (PAGE_SIZE - 1)) 510 return -EINVAL; 511 512 driver_override = kstrndup(buf, count, GFP_KERNEL); 513 if (!driver_override) 514 return -ENOMEM; 515 516 cp = strchr(driver_override, '\n'); 517 if (cp) 518 *cp = '\0'; 519 520 device_lock(dev); 521 old = hv_dev->driver_override; 522 if (strlen(driver_override)) { 523 hv_dev->driver_override = driver_override; 524 } else { 525 kfree(driver_override); 526 hv_dev->driver_override = NULL; 527 } 528 device_unlock(dev); 529 530 kfree(old); 531 532 return count; 533 } 534 535 static ssize_t driver_override_show(struct device *dev, 536 struct device_attribute *attr, char *buf) 537 { 538 struct hv_device *hv_dev = device_to_hv_device(dev); 539 ssize_t len; 540 541 device_lock(dev); 542 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 543 device_unlock(dev); 544 545 return len; 546 } 547 static DEVICE_ATTR_RW(driver_override); 548 549 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 550 static struct attribute *vmbus_dev_attrs[] = { 551 &dev_attr_id.attr, 552 &dev_attr_state.attr, 553 &dev_attr_monitor_id.attr, 554 &dev_attr_class_id.attr, 555 &dev_attr_device_id.attr, 556 &dev_attr_modalias.attr, 557 #ifdef CONFIG_NUMA 558 &dev_attr_numa_node.attr, 559 #endif 560 &dev_attr_server_monitor_pending.attr, 561 &dev_attr_client_monitor_pending.attr, 562 &dev_attr_server_monitor_latency.attr, 563 &dev_attr_client_monitor_latency.attr, 564 &dev_attr_server_monitor_conn_id.attr, 565 &dev_attr_client_monitor_conn_id.attr, 566 &dev_attr_out_intr_mask.attr, 567 &dev_attr_out_read_index.attr, 568 &dev_attr_out_write_index.attr, 569 &dev_attr_out_read_bytes_avail.attr, 570 &dev_attr_out_write_bytes_avail.attr, 571 &dev_attr_in_intr_mask.attr, 572 &dev_attr_in_read_index.attr, 573 &dev_attr_in_write_index.attr, 574 &dev_attr_in_read_bytes_avail.attr, 575 &dev_attr_in_write_bytes_avail.attr, 576 &dev_attr_channel_vp_mapping.attr, 577 &dev_attr_vendor.attr, 578 &dev_attr_device.attr, 579 &dev_attr_driver_override.attr, 580 NULL, 581 }; 582 ATTRIBUTE_GROUPS(vmbus_dev); 583 584 /* 585 * vmbus_uevent - add uevent for our device 586 * 587 * This routine is invoked when a device is added or removed on the vmbus to 588 * generate a uevent to udev in the userspace. The udev will then look at its 589 * rule and the uevent generated here to load the appropriate driver 590 * 591 * The alias string will be of the form vmbus:guid where guid is the string 592 * representation of the device guid (each byte of the guid will be 593 * represented with two hex characters. 594 */ 595 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 596 { 597 struct hv_device *dev = device_to_hv_device(device); 598 int ret; 599 char alias_name[VMBUS_ALIAS_LEN + 1]; 600 601 print_alias_name(dev, alias_name); 602 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 603 return ret; 604 } 605 606 static const uuid_le null_guid; 607 608 static inline bool is_null_guid(const uuid_le *guid) 609 { 610 if (uuid_le_cmp(*guid, null_guid)) 611 return false; 612 return true; 613 } 614 615 static const struct hv_vmbus_device_id * 616 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const uuid_le *guid) 617 618 { 619 if (id == NULL) 620 return NULL; /* empty device table */ 621 622 for (; !is_null_guid(&id->guid); id++) 623 if (!uuid_le_cmp(id->guid, *guid)) 624 return id; 625 626 return NULL; 627 } 628 629 static const struct hv_vmbus_device_id * 630 hv_vmbus_dynid_match(struct hv_driver *drv, const uuid_le *guid) 631 { 632 const struct hv_vmbus_device_id *id = NULL; 633 struct vmbus_dynid *dynid; 634 635 spin_lock(&drv->dynids.lock); 636 list_for_each_entry(dynid, &drv->dynids.list, node) { 637 if (!uuid_le_cmp(dynid->id.guid, *guid)) { 638 id = &dynid->id; 639 break; 640 } 641 } 642 spin_unlock(&drv->dynids.lock); 643 644 return id; 645 } 646 647 static const struct hv_vmbus_device_id vmbus_device_null = { 648 .guid = NULL_UUID_LE, 649 }; 650 651 /* 652 * Return a matching hv_vmbus_device_id pointer. 653 * If there is no match, return NULL. 654 */ 655 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 656 struct hv_device *dev) 657 { 658 const uuid_le *guid = &dev->dev_type; 659 const struct hv_vmbus_device_id *id; 660 661 /* When driver_override is set, only bind to the matching driver */ 662 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 663 return NULL; 664 665 /* Look at the dynamic ids first, before the static ones */ 666 id = hv_vmbus_dynid_match(drv, guid); 667 if (!id) 668 id = hv_vmbus_dev_match(drv->id_table, guid); 669 670 /* driver_override will always match, send a dummy id */ 671 if (!id && dev->driver_override) 672 id = &vmbus_device_null; 673 674 return id; 675 } 676 677 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 678 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid) 679 { 680 struct vmbus_dynid *dynid; 681 682 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 683 if (!dynid) 684 return -ENOMEM; 685 686 dynid->id.guid = *guid; 687 688 spin_lock(&drv->dynids.lock); 689 list_add_tail(&dynid->node, &drv->dynids.list); 690 spin_unlock(&drv->dynids.lock); 691 692 return driver_attach(&drv->driver); 693 } 694 695 static void vmbus_free_dynids(struct hv_driver *drv) 696 { 697 struct vmbus_dynid *dynid, *n; 698 699 spin_lock(&drv->dynids.lock); 700 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 701 list_del(&dynid->node); 702 kfree(dynid); 703 } 704 spin_unlock(&drv->dynids.lock); 705 } 706 707 /* 708 * store_new_id - sysfs frontend to vmbus_add_dynid() 709 * 710 * Allow GUIDs to be added to an existing driver via sysfs. 711 */ 712 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 713 size_t count) 714 { 715 struct hv_driver *drv = drv_to_hv_drv(driver); 716 uuid_le guid; 717 ssize_t retval; 718 719 retval = uuid_le_to_bin(buf, &guid); 720 if (retval) 721 return retval; 722 723 if (hv_vmbus_dynid_match(drv, &guid)) 724 return -EEXIST; 725 726 retval = vmbus_add_dynid(drv, &guid); 727 if (retval) 728 return retval; 729 return count; 730 } 731 static DRIVER_ATTR_WO(new_id); 732 733 /* 734 * store_remove_id - remove a PCI device ID from this driver 735 * 736 * Removes a dynamic pci device ID to this driver. 737 */ 738 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 739 size_t count) 740 { 741 struct hv_driver *drv = drv_to_hv_drv(driver); 742 struct vmbus_dynid *dynid, *n; 743 uuid_le guid; 744 ssize_t retval; 745 746 retval = uuid_le_to_bin(buf, &guid); 747 if (retval) 748 return retval; 749 750 retval = -ENODEV; 751 spin_lock(&drv->dynids.lock); 752 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 753 struct hv_vmbus_device_id *id = &dynid->id; 754 755 if (!uuid_le_cmp(id->guid, guid)) { 756 list_del(&dynid->node); 757 kfree(dynid); 758 retval = count; 759 break; 760 } 761 } 762 spin_unlock(&drv->dynids.lock); 763 764 return retval; 765 } 766 static DRIVER_ATTR_WO(remove_id); 767 768 static struct attribute *vmbus_drv_attrs[] = { 769 &driver_attr_new_id.attr, 770 &driver_attr_remove_id.attr, 771 NULL, 772 }; 773 ATTRIBUTE_GROUPS(vmbus_drv); 774 775 776 /* 777 * vmbus_match - Attempt to match the specified device to the specified driver 778 */ 779 static int vmbus_match(struct device *device, struct device_driver *driver) 780 { 781 struct hv_driver *drv = drv_to_hv_drv(driver); 782 struct hv_device *hv_dev = device_to_hv_device(device); 783 784 /* The hv_sock driver handles all hv_sock offers. */ 785 if (is_hvsock_channel(hv_dev->channel)) 786 return drv->hvsock; 787 788 if (hv_vmbus_get_id(drv, hv_dev)) 789 return 1; 790 791 return 0; 792 } 793 794 /* 795 * vmbus_probe - Add the new vmbus's child device 796 */ 797 static int vmbus_probe(struct device *child_device) 798 { 799 int ret = 0; 800 struct hv_driver *drv = 801 drv_to_hv_drv(child_device->driver); 802 struct hv_device *dev = device_to_hv_device(child_device); 803 const struct hv_vmbus_device_id *dev_id; 804 805 dev_id = hv_vmbus_get_id(drv, dev); 806 if (drv->probe) { 807 ret = drv->probe(dev, dev_id); 808 if (ret != 0) 809 pr_err("probe failed for device %s (%d)\n", 810 dev_name(child_device), ret); 811 812 } else { 813 pr_err("probe not set for driver %s\n", 814 dev_name(child_device)); 815 ret = -ENODEV; 816 } 817 return ret; 818 } 819 820 /* 821 * vmbus_remove - Remove a vmbus device 822 */ 823 static int vmbus_remove(struct device *child_device) 824 { 825 struct hv_driver *drv; 826 struct hv_device *dev = device_to_hv_device(child_device); 827 828 if (child_device->driver) { 829 drv = drv_to_hv_drv(child_device->driver); 830 if (drv->remove) 831 drv->remove(dev); 832 } 833 834 return 0; 835 } 836 837 838 /* 839 * vmbus_shutdown - Shutdown a vmbus device 840 */ 841 static void vmbus_shutdown(struct device *child_device) 842 { 843 struct hv_driver *drv; 844 struct hv_device *dev = device_to_hv_device(child_device); 845 846 847 /* The device may not be attached yet */ 848 if (!child_device->driver) 849 return; 850 851 drv = drv_to_hv_drv(child_device->driver); 852 853 if (drv->shutdown) 854 drv->shutdown(dev); 855 } 856 857 858 /* 859 * vmbus_device_release - Final callback release of the vmbus child device 860 */ 861 static void vmbus_device_release(struct device *device) 862 { 863 struct hv_device *hv_dev = device_to_hv_device(device); 864 struct vmbus_channel *channel = hv_dev->channel; 865 866 mutex_lock(&vmbus_connection.channel_mutex); 867 hv_process_channel_removal(channel); 868 mutex_unlock(&vmbus_connection.channel_mutex); 869 kfree(hv_dev); 870 } 871 872 /* The one and only one */ 873 static struct bus_type hv_bus = { 874 .name = "vmbus", 875 .match = vmbus_match, 876 .shutdown = vmbus_shutdown, 877 .remove = vmbus_remove, 878 .probe = vmbus_probe, 879 .uevent = vmbus_uevent, 880 .dev_groups = vmbus_dev_groups, 881 .drv_groups = vmbus_drv_groups, 882 }; 883 884 struct onmessage_work_context { 885 struct work_struct work; 886 struct hv_message msg; 887 }; 888 889 static void vmbus_onmessage_work(struct work_struct *work) 890 { 891 struct onmessage_work_context *ctx; 892 893 /* Do not process messages if we're in DISCONNECTED state */ 894 if (vmbus_connection.conn_state == DISCONNECTED) 895 return; 896 897 ctx = container_of(work, struct onmessage_work_context, 898 work); 899 vmbus_onmessage(&ctx->msg); 900 kfree(ctx); 901 } 902 903 static void hv_process_timer_expiration(struct hv_message *msg, 904 struct hv_per_cpu_context *hv_cpu) 905 { 906 struct clock_event_device *dev = hv_cpu->clk_evt; 907 908 if (dev->event_handler) 909 dev->event_handler(dev); 910 911 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 912 } 913 914 void vmbus_on_msg_dpc(unsigned long data) 915 { 916 struct hv_per_cpu_context *hv_cpu = (void *)data; 917 void *page_addr = hv_cpu->synic_message_page; 918 struct hv_message *msg = (struct hv_message *)page_addr + 919 VMBUS_MESSAGE_SINT; 920 struct vmbus_channel_message_header *hdr; 921 const struct vmbus_channel_message_table_entry *entry; 922 struct onmessage_work_context *ctx; 923 u32 message_type = msg->header.message_type; 924 925 if (message_type == HVMSG_NONE) 926 /* no msg */ 927 return; 928 929 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 930 931 trace_vmbus_on_msg_dpc(hdr); 932 933 if (hdr->msgtype >= CHANNELMSG_COUNT) { 934 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 935 goto msg_handled; 936 } 937 938 entry = &channel_message_table[hdr->msgtype]; 939 if (entry->handler_type == VMHT_BLOCKING) { 940 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 941 if (ctx == NULL) 942 return; 943 944 INIT_WORK(&ctx->work, vmbus_onmessage_work); 945 memcpy(&ctx->msg, msg, sizeof(*msg)); 946 947 /* 948 * The host can generate a rescind message while we 949 * may still be handling the original offer. We deal with 950 * this condition by ensuring the processing is done on the 951 * same CPU. 952 */ 953 switch (hdr->msgtype) { 954 case CHANNELMSG_RESCIND_CHANNELOFFER: 955 /* 956 * If we are handling the rescind message; 957 * schedule the work on the global work queue. 958 */ 959 schedule_work_on(vmbus_connection.connect_cpu, 960 &ctx->work); 961 break; 962 963 case CHANNELMSG_OFFERCHANNEL: 964 atomic_inc(&vmbus_connection.offer_in_progress); 965 queue_work_on(vmbus_connection.connect_cpu, 966 vmbus_connection.work_queue, 967 &ctx->work); 968 break; 969 970 default: 971 queue_work(vmbus_connection.work_queue, &ctx->work); 972 } 973 } else 974 entry->message_handler(hdr); 975 976 msg_handled: 977 vmbus_signal_eom(msg, message_type); 978 } 979 980 981 /* 982 * Direct callback for channels using other deferred processing 983 */ 984 static void vmbus_channel_isr(struct vmbus_channel *channel) 985 { 986 void (*callback_fn)(void *); 987 988 callback_fn = READ_ONCE(channel->onchannel_callback); 989 if (likely(callback_fn != NULL)) 990 (*callback_fn)(channel->channel_callback_context); 991 } 992 993 /* 994 * Schedule all channels with events pending 995 */ 996 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 997 { 998 unsigned long *recv_int_page; 999 u32 maxbits, relid; 1000 1001 if (vmbus_proto_version < VERSION_WIN8) { 1002 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1003 recv_int_page = vmbus_connection.recv_int_page; 1004 } else { 1005 /* 1006 * When the host is win8 and beyond, the event page 1007 * can be directly checked to get the id of the channel 1008 * that has the interrupt pending. 1009 */ 1010 void *page_addr = hv_cpu->synic_event_page; 1011 union hv_synic_event_flags *event 1012 = (union hv_synic_event_flags *)page_addr + 1013 VMBUS_MESSAGE_SINT; 1014 1015 maxbits = HV_EVENT_FLAGS_COUNT; 1016 recv_int_page = event->flags; 1017 } 1018 1019 if (unlikely(!recv_int_page)) 1020 return; 1021 1022 for_each_set_bit(relid, recv_int_page, maxbits) { 1023 struct vmbus_channel *channel; 1024 1025 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1026 continue; 1027 1028 /* Special case - vmbus channel protocol msg */ 1029 if (relid == 0) 1030 continue; 1031 1032 rcu_read_lock(); 1033 1034 /* Find channel based on relid */ 1035 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 1036 if (channel->offermsg.child_relid != relid) 1037 continue; 1038 1039 if (channel->rescind) 1040 continue; 1041 1042 trace_vmbus_chan_sched(channel); 1043 1044 ++channel->interrupts; 1045 1046 switch (channel->callback_mode) { 1047 case HV_CALL_ISR: 1048 vmbus_channel_isr(channel); 1049 break; 1050 1051 case HV_CALL_BATCHED: 1052 hv_begin_read(&channel->inbound); 1053 /* fallthrough */ 1054 case HV_CALL_DIRECT: 1055 tasklet_schedule(&channel->callback_event); 1056 } 1057 } 1058 1059 rcu_read_unlock(); 1060 } 1061 } 1062 1063 static void vmbus_isr(void) 1064 { 1065 struct hv_per_cpu_context *hv_cpu 1066 = this_cpu_ptr(hv_context.cpu_context); 1067 void *page_addr = hv_cpu->synic_event_page; 1068 struct hv_message *msg; 1069 union hv_synic_event_flags *event; 1070 bool handled = false; 1071 1072 if (unlikely(page_addr == NULL)) 1073 return; 1074 1075 event = (union hv_synic_event_flags *)page_addr + 1076 VMBUS_MESSAGE_SINT; 1077 /* 1078 * Check for events before checking for messages. This is the order 1079 * in which events and messages are checked in Windows guests on 1080 * Hyper-V, and the Windows team suggested we do the same. 1081 */ 1082 1083 if ((vmbus_proto_version == VERSION_WS2008) || 1084 (vmbus_proto_version == VERSION_WIN7)) { 1085 1086 /* Since we are a child, we only need to check bit 0 */ 1087 if (sync_test_and_clear_bit(0, event->flags)) 1088 handled = true; 1089 } else { 1090 /* 1091 * Our host is win8 or above. The signaling mechanism 1092 * has changed and we can directly look at the event page. 1093 * If bit n is set then we have an interrup on the channel 1094 * whose id is n. 1095 */ 1096 handled = true; 1097 } 1098 1099 if (handled) 1100 vmbus_chan_sched(hv_cpu); 1101 1102 page_addr = hv_cpu->synic_message_page; 1103 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1104 1105 /* Check if there are actual msgs to be processed */ 1106 if (msg->header.message_type != HVMSG_NONE) { 1107 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 1108 hv_process_timer_expiration(msg, hv_cpu); 1109 else 1110 tasklet_schedule(&hv_cpu->msg_dpc); 1111 } 1112 1113 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1114 } 1115 1116 /* 1117 * Boolean to control whether to report panic messages over Hyper-V. 1118 * 1119 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg 1120 */ 1121 static int sysctl_record_panic_msg = 1; 1122 1123 /* 1124 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1125 * buffer and call into Hyper-V to transfer the data. 1126 */ 1127 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1128 enum kmsg_dump_reason reason) 1129 { 1130 size_t bytes_written; 1131 phys_addr_t panic_pa; 1132 1133 /* We are only interested in panics. */ 1134 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1135 return; 1136 1137 panic_pa = virt_to_phys(hv_panic_page); 1138 1139 /* 1140 * Write dump contents to the page. No need to synchronize; panic should 1141 * be single-threaded. 1142 */ 1143 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE, 1144 &bytes_written); 1145 if (bytes_written) 1146 hyperv_report_panic_msg(panic_pa, bytes_written); 1147 } 1148 1149 static struct kmsg_dumper hv_kmsg_dumper = { 1150 .dump = hv_kmsg_dump, 1151 }; 1152 1153 static struct ctl_table_header *hv_ctl_table_hdr; 1154 static int zero; 1155 static int one = 1; 1156 1157 /* 1158 * sysctl option to allow the user to control whether kmsg data should be 1159 * reported to Hyper-V on panic. 1160 */ 1161 static struct ctl_table hv_ctl_table[] = { 1162 { 1163 .procname = "hyperv_record_panic_msg", 1164 .data = &sysctl_record_panic_msg, 1165 .maxlen = sizeof(int), 1166 .mode = 0644, 1167 .proc_handler = proc_dointvec_minmax, 1168 .extra1 = &zero, 1169 .extra2 = &one 1170 }, 1171 {} 1172 }; 1173 1174 static struct ctl_table hv_root_table[] = { 1175 { 1176 .procname = "kernel", 1177 .mode = 0555, 1178 .child = hv_ctl_table 1179 }, 1180 {} 1181 }; 1182 1183 /* 1184 * vmbus_bus_init -Main vmbus driver initialization routine. 1185 * 1186 * Here, we 1187 * - initialize the vmbus driver context 1188 * - invoke the vmbus hv main init routine 1189 * - retrieve the channel offers 1190 */ 1191 static int vmbus_bus_init(void) 1192 { 1193 int ret; 1194 1195 /* Hypervisor initialization...setup hypercall page..etc */ 1196 ret = hv_init(); 1197 if (ret != 0) { 1198 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1199 return ret; 1200 } 1201 1202 ret = bus_register(&hv_bus); 1203 if (ret) 1204 return ret; 1205 1206 hv_setup_vmbus_irq(vmbus_isr); 1207 1208 ret = hv_synic_alloc(); 1209 if (ret) 1210 goto err_alloc; 1211 /* 1212 * Initialize the per-cpu interrupt state and 1213 * connect to the host. 1214 */ 1215 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1216 hv_synic_init, hv_synic_cleanup); 1217 if (ret < 0) 1218 goto err_alloc; 1219 hyperv_cpuhp_online = ret; 1220 1221 ret = vmbus_connect(); 1222 if (ret) 1223 goto err_connect; 1224 1225 /* 1226 * Only register if the crash MSRs are available 1227 */ 1228 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1229 u64 hyperv_crash_ctl; 1230 /* 1231 * Sysctl registration is not fatal, since by default 1232 * reporting is enabled. 1233 */ 1234 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1235 if (!hv_ctl_table_hdr) 1236 pr_err("Hyper-V: sysctl table register error"); 1237 1238 /* 1239 * Register for panic kmsg callback only if the right 1240 * capability is supported by the hypervisor. 1241 */ 1242 hv_get_crash_ctl(hyperv_crash_ctl); 1243 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) { 1244 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL); 1245 if (hv_panic_page) { 1246 ret = kmsg_dump_register(&hv_kmsg_dumper); 1247 if (ret) 1248 pr_err("Hyper-V: kmsg dump register " 1249 "error 0x%x\n", ret); 1250 } else 1251 pr_err("Hyper-V: panic message page memory " 1252 "allocation failed"); 1253 } 1254 1255 register_die_notifier(&hyperv_die_block); 1256 atomic_notifier_chain_register(&panic_notifier_list, 1257 &hyperv_panic_block); 1258 } 1259 1260 vmbus_request_offers(); 1261 1262 return 0; 1263 1264 err_connect: 1265 cpuhp_remove_state(hyperv_cpuhp_online); 1266 err_alloc: 1267 hv_synic_free(); 1268 hv_remove_vmbus_irq(); 1269 1270 bus_unregister(&hv_bus); 1271 free_page((unsigned long)hv_panic_page); 1272 unregister_sysctl_table(hv_ctl_table_hdr); 1273 hv_ctl_table_hdr = NULL; 1274 return ret; 1275 } 1276 1277 /** 1278 * __vmbus_child_driver_register() - Register a vmbus's driver 1279 * @hv_driver: Pointer to driver structure you want to register 1280 * @owner: owner module of the drv 1281 * @mod_name: module name string 1282 * 1283 * Registers the given driver with Linux through the 'driver_register()' call 1284 * and sets up the hyper-v vmbus handling for this driver. 1285 * It will return the state of the 'driver_register()' call. 1286 * 1287 */ 1288 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1289 { 1290 int ret; 1291 1292 pr_info("registering driver %s\n", hv_driver->name); 1293 1294 ret = vmbus_exists(); 1295 if (ret < 0) 1296 return ret; 1297 1298 hv_driver->driver.name = hv_driver->name; 1299 hv_driver->driver.owner = owner; 1300 hv_driver->driver.mod_name = mod_name; 1301 hv_driver->driver.bus = &hv_bus; 1302 1303 spin_lock_init(&hv_driver->dynids.lock); 1304 INIT_LIST_HEAD(&hv_driver->dynids.list); 1305 1306 ret = driver_register(&hv_driver->driver); 1307 1308 return ret; 1309 } 1310 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1311 1312 /** 1313 * vmbus_driver_unregister() - Unregister a vmbus's driver 1314 * @hv_driver: Pointer to driver structure you want to 1315 * un-register 1316 * 1317 * Un-register the given driver that was previous registered with a call to 1318 * vmbus_driver_register() 1319 */ 1320 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1321 { 1322 pr_info("unregistering driver %s\n", hv_driver->name); 1323 1324 if (!vmbus_exists()) { 1325 driver_unregister(&hv_driver->driver); 1326 vmbus_free_dynids(hv_driver); 1327 } 1328 } 1329 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1330 1331 1332 /* 1333 * Called when last reference to channel is gone. 1334 */ 1335 static void vmbus_chan_release(struct kobject *kobj) 1336 { 1337 struct vmbus_channel *channel 1338 = container_of(kobj, struct vmbus_channel, kobj); 1339 1340 kfree_rcu(channel, rcu); 1341 } 1342 1343 struct vmbus_chan_attribute { 1344 struct attribute attr; 1345 ssize_t (*show)(const struct vmbus_channel *chan, char *buf); 1346 ssize_t (*store)(struct vmbus_channel *chan, 1347 const char *buf, size_t count); 1348 }; 1349 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1350 struct vmbus_chan_attribute chan_attr_##_name \ 1351 = __ATTR(_name, _mode, _show, _store) 1352 #define VMBUS_CHAN_ATTR_RW(_name) \ 1353 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1354 #define VMBUS_CHAN_ATTR_RO(_name) \ 1355 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1356 #define VMBUS_CHAN_ATTR_WO(_name) \ 1357 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1358 1359 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1360 struct attribute *attr, char *buf) 1361 { 1362 const struct vmbus_chan_attribute *attribute 1363 = container_of(attr, struct vmbus_chan_attribute, attr); 1364 const struct vmbus_channel *chan 1365 = container_of(kobj, struct vmbus_channel, kobj); 1366 1367 if (!attribute->show) 1368 return -EIO; 1369 1370 if (chan->state != CHANNEL_OPENED_STATE) 1371 return -EINVAL; 1372 1373 return attribute->show(chan, buf); 1374 } 1375 1376 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1377 .show = vmbus_chan_attr_show, 1378 }; 1379 1380 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf) 1381 { 1382 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1383 1384 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1385 } 1386 static VMBUS_CHAN_ATTR_RO(out_mask); 1387 1388 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf) 1389 { 1390 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1391 1392 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1393 } 1394 static VMBUS_CHAN_ATTR_RO(in_mask); 1395 1396 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf) 1397 { 1398 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1399 1400 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1401 } 1402 static VMBUS_CHAN_ATTR_RO(read_avail); 1403 1404 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf) 1405 { 1406 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1407 1408 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1409 } 1410 static VMBUS_CHAN_ATTR_RO(write_avail); 1411 1412 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf) 1413 { 1414 return sprintf(buf, "%u\n", channel->target_cpu); 1415 } 1416 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1417 1418 static ssize_t channel_pending_show(const struct vmbus_channel *channel, 1419 char *buf) 1420 { 1421 return sprintf(buf, "%d\n", 1422 channel_pending(channel, 1423 vmbus_connection.monitor_pages[1])); 1424 } 1425 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1426 1427 static ssize_t channel_latency_show(const struct vmbus_channel *channel, 1428 char *buf) 1429 { 1430 return sprintf(buf, "%d\n", 1431 channel_latency(channel, 1432 vmbus_connection.monitor_pages[1])); 1433 } 1434 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1435 1436 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf) 1437 { 1438 return sprintf(buf, "%llu\n", channel->interrupts); 1439 } 1440 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1441 1442 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf) 1443 { 1444 return sprintf(buf, "%llu\n", channel->sig_events); 1445 } 1446 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1447 1448 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel, 1449 char *buf) 1450 { 1451 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1452 } 1453 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1454 1455 static ssize_t subchannel_id_show(const struct vmbus_channel *channel, 1456 char *buf) 1457 { 1458 return sprintf(buf, "%u\n", 1459 channel->offermsg.offer.sub_channel_index); 1460 } 1461 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1462 1463 static struct attribute *vmbus_chan_attrs[] = { 1464 &chan_attr_out_mask.attr, 1465 &chan_attr_in_mask.attr, 1466 &chan_attr_read_avail.attr, 1467 &chan_attr_write_avail.attr, 1468 &chan_attr_cpu.attr, 1469 &chan_attr_pending.attr, 1470 &chan_attr_latency.attr, 1471 &chan_attr_interrupts.attr, 1472 &chan_attr_events.attr, 1473 &chan_attr_monitor_id.attr, 1474 &chan_attr_subchannel_id.attr, 1475 NULL 1476 }; 1477 1478 static struct kobj_type vmbus_chan_ktype = { 1479 .sysfs_ops = &vmbus_chan_sysfs_ops, 1480 .release = vmbus_chan_release, 1481 .default_attrs = vmbus_chan_attrs, 1482 }; 1483 1484 /* 1485 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1486 */ 1487 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1488 { 1489 struct kobject *kobj = &channel->kobj; 1490 u32 relid = channel->offermsg.child_relid; 1491 int ret; 1492 1493 kobj->kset = dev->channels_kset; 1494 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1495 "%u", relid); 1496 if (ret) 1497 return ret; 1498 1499 kobject_uevent(kobj, KOBJ_ADD); 1500 1501 return 0; 1502 } 1503 1504 /* 1505 * vmbus_device_create - Creates and registers a new child device 1506 * on the vmbus. 1507 */ 1508 struct hv_device *vmbus_device_create(const uuid_le *type, 1509 const uuid_le *instance, 1510 struct vmbus_channel *channel) 1511 { 1512 struct hv_device *child_device_obj; 1513 1514 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1515 if (!child_device_obj) { 1516 pr_err("Unable to allocate device object for child device\n"); 1517 return NULL; 1518 } 1519 1520 child_device_obj->channel = channel; 1521 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le)); 1522 memcpy(&child_device_obj->dev_instance, instance, 1523 sizeof(uuid_le)); 1524 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1525 1526 1527 return child_device_obj; 1528 } 1529 1530 /* 1531 * vmbus_device_register - Register the child device 1532 */ 1533 int vmbus_device_register(struct hv_device *child_device_obj) 1534 { 1535 struct kobject *kobj = &child_device_obj->device.kobj; 1536 int ret; 1537 1538 dev_set_name(&child_device_obj->device, "%pUl", 1539 child_device_obj->channel->offermsg.offer.if_instance.b); 1540 1541 child_device_obj->device.bus = &hv_bus; 1542 child_device_obj->device.parent = &hv_acpi_dev->dev; 1543 child_device_obj->device.release = vmbus_device_release; 1544 1545 /* 1546 * Register with the LDM. This will kick off the driver/device 1547 * binding...which will eventually call vmbus_match() and vmbus_probe() 1548 */ 1549 ret = device_register(&child_device_obj->device); 1550 if (ret) { 1551 pr_err("Unable to register child device\n"); 1552 return ret; 1553 } 1554 1555 child_device_obj->channels_kset = kset_create_and_add("channels", 1556 NULL, kobj); 1557 if (!child_device_obj->channels_kset) { 1558 ret = -ENOMEM; 1559 goto err_dev_unregister; 1560 } 1561 1562 ret = vmbus_add_channel_kobj(child_device_obj, 1563 child_device_obj->channel); 1564 if (ret) { 1565 pr_err("Unable to register primary channeln"); 1566 goto err_kset_unregister; 1567 } 1568 1569 return 0; 1570 1571 err_kset_unregister: 1572 kset_unregister(child_device_obj->channels_kset); 1573 1574 err_dev_unregister: 1575 device_unregister(&child_device_obj->device); 1576 return ret; 1577 } 1578 1579 /* 1580 * vmbus_device_unregister - Remove the specified child device 1581 * from the vmbus. 1582 */ 1583 void vmbus_device_unregister(struct hv_device *device_obj) 1584 { 1585 pr_debug("child device %s unregistered\n", 1586 dev_name(&device_obj->device)); 1587 1588 kset_unregister(device_obj->channels_kset); 1589 1590 /* 1591 * Kick off the process of unregistering the device. 1592 * This will call vmbus_remove() and eventually vmbus_device_release() 1593 */ 1594 device_unregister(&device_obj->device); 1595 } 1596 1597 1598 /* 1599 * VMBUS is an acpi enumerated device. Get the information we 1600 * need from DSDT. 1601 */ 1602 #define VTPM_BASE_ADDRESS 0xfed40000 1603 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1604 { 1605 resource_size_t start = 0; 1606 resource_size_t end = 0; 1607 struct resource *new_res; 1608 struct resource **old_res = &hyperv_mmio; 1609 struct resource **prev_res = NULL; 1610 1611 switch (res->type) { 1612 1613 /* 1614 * "Address" descriptors are for bus windows. Ignore 1615 * "memory" descriptors, which are for registers on 1616 * devices. 1617 */ 1618 case ACPI_RESOURCE_TYPE_ADDRESS32: 1619 start = res->data.address32.address.minimum; 1620 end = res->data.address32.address.maximum; 1621 break; 1622 1623 case ACPI_RESOURCE_TYPE_ADDRESS64: 1624 start = res->data.address64.address.minimum; 1625 end = res->data.address64.address.maximum; 1626 break; 1627 1628 default: 1629 /* Unused resource type */ 1630 return AE_OK; 1631 1632 } 1633 /* 1634 * Ignore ranges that are below 1MB, as they're not 1635 * necessary or useful here. 1636 */ 1637 if (end < 0x100000) 1638 return AE_OK; 1639 1640 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1641 if (!new_res) 1642 return AE_NO_MEMORY; 1643 1644 /* If this range overlaps the virtual TPM, truncate it. */ 1645 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1646 end = VTPM_BASE_ADDRESS; 1647 1648 new_res->name = "hyperv mmio"; 1649 new_res->flags = IORESOURCE_MEM; 1650 new_res->start = start; 1651 new_res->end = end; 1652 1653 /* 1654 * If two ranges are adjacent, merge them. 1655 */ 1656 do { 1657 if (!*old_res) { 1658 *old_res = new_res; 1659 break; 1660 } 1661 1662 if (((*old_res)->end + 1) == new_res->start) { 1663 (*old_res)->end = new_res->end; 1664 kfree(new_res); 1665 break; 1666 } 1667 1668 if ((*old_res)->start == new_res->end + 1) { 1669 (*old_res)->start = new_res->start; 1670 kfree(new_res); 1671 break; 1672 } 1673 1674 if ((*old_res)->start > new_res->end) { 1675 new_res->sibling = *old_res; 1676 if (prev_res) 1677 (*prev_res)->sibling = new_res; 1678 *old_res = new_res; 1679 break; 1680 } 1681 1682 prev_res = old_res; 1683 old_res = &(*old_res)->sibling; 1684 1685 } while (1); 1686 1687 return AE_OK; 1688 } 1689 1690 static int vmbus_acpi_remove(struct acpi_device *device) 1691 { 1692 struct resource *cur_res; 1693 struct resource *next_res; 1694 1695 if (hyperv_mmio) { 1696 if (fb_mmio) { 1697 __release_region(hyperv_mmio, fb_mmio->start, 1698 resource_size(fb_mmio)); 1699 fb_mmio = NULL; 1700 } 1701 1702 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1703 next_res = cur_res->sibling; 1704 kfree(cur_res); 1705 } 1706 } 1707 1708 return 0; 1709 } 1710 1711 static void vmbus_reserve_fb(void) 1712 { 1713 int size; 1714 /* 1715 * Make a claim for the frame buffer in the resource tree under the 1716 * first node, which will be the one below 4GB. The length seems to 1717 * be underreported, particularly in a Generation 1 VM. So start out 1718 * reserving a larger area and make it smaller until it succeeds. 1719 */ 1720 1721 if (screen_info.lfb_base) { 1722 if (efi_enabled(EFI_BOOT)) 1723 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1724 else 1725 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1726 1727 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1728 fb_mmio = __request_region(hyperv_mmio, 1729 screen_info.lfb_base, size, 1730 fb_mmio_name, 0); 1731 } 1732 } 1733 } 1734 1735 /** 1736 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1737 * @new: If successful, supplied a pointer to the 1738 * allocated MMIO space. 1739 * @device_obj: Identifies the caller 1740 * @min: Minimum guest physical address of the 1741 * allocation 1742 * @max: Maximum guest physical address 1743 * @size: Size of the range to be allocated 1744 * @align: Alignment of the range to be allocated 1745 * @fb_overlap_ok: Whether this allocation can be allowed 1746 * to overlap the video frame buffer. 1747 * 1748 * This function walks the resources granted to VMBus by the 1749 * _CRS object in the ACPI namespace underneath the parent 1750 * "bridge" whether that's a root PCI bus in the Generation 1 1751 * case or a Module Device in the Generation 2 case. It then 1752 * attempts to allocate from the global MMIO pool in a way that 1753 * matches the constraints supplied in these parameters and by 1754 * that _CRS. 1755 * 1756 * Return: 0 on success, -errno on failure 1757 */ 1758 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1759 resource_size_t min, resource_size_t max, 1760 resource_size_t size, resource_size_t align, 1761 bool fb_overlap_ok) 1762 { 1763 struct resource *iter, *shadow; 1764 resource_size_t range_min, range_max, start; 1765 const char *dev_n = dev_name(&device_obj->device); 1766 int retval; 1767 1768 retval = -ENXIO; 1769 down(&hyperv_mmio_lock); 1770 1771 /* 1772 * If overlaps with frame buffers are allowed, then first attempt to 1773 * make the allocation from within the reserved region. Because it 1774 * is already reserved, no shadow allocation is necessary. 1775 */ 1776 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1777 !(max < fb_mmio->start)) { 1778 1779 range_min = fb_mmio->start; 1780 range_max = fb_mmio->end; 1781 start = (range_min + align - 1) & ~(align - 1); 1782 for (; start + size - 1 <= range_max; start += align) { 1783 *new = request_mem_region_exclusive(start, size, dev_n); 1784 if (*new) { 1785 retval = 0; 1786 goto exit; 1787 } 1788 } 1789 } 1790 1791 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1792 if ((iter->start >= max) || (iter->end <= min)) 1793 continue; 1794 1795 range_min = iter->start; 1796 range_max = iter->end; 1797 start = (range_min + align - 1) & ~(align - 1); 1798 for (; start + size - 1 <= range_max; start += align) { 1799 shadow = __request_region(iter, start, size, NULL, 1800 IORESOURCE_BUSY); 1801 if (!shadow) 1802 continue; 1803 1804 *new = request_mem_region_exclusive(start, size, dev_n); 1805 if (*new) { 1806 shadow->name = (char *)*new; 1807 retval = 0; 1808 goto exit; 1809 } 1810 1811 __release_region(iter, start, size); 1812 } 1813 } 1814 1815 exit: 1816 up(&hyperv_mmio_lock); 1817 return retval; 1818 } 1819 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1820 1821 /** 1822 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1823 * @start: Base address of region to release. 1824 * @size: Size of the range to be allocated 1825 * 1826 * This function releases anything requested by 1827 * vmbus_mmio_allocate(). 1828 */ 1829 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1830 { 1831 struct resource *iter; 1832 1833 down(&hyperv_mmio_lock); 1834 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1835 if ((iter->start >= start + size) || (iter->end <= start)) 1836 continue; 1837 1838 __release_region(iter, start, size); 1839 } 1840 release_mem_region(start, size); 1841 up(&hyperv_mmio_lock); 1842 1843 } 1844 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 1845 1846 static int vmbus_acpi_add(struct acpi_device *device) 1847 { 1848 acpi_status result; 1849 int ret_val = -ENODEV; 1850 struct acpi_device *ancestor; 1851 1852 hv_acpi_dev = device; 1853 1854 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 1855 vmbus_walk_resources, NULL); 1856 1857 if (ACPI_FAILURE(result)) 1858 goto acpi_walk_err; 1859 /* 1860 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 1861 * firmware) is the VMOD that has the mmio ranges. Get that. 1862 */ 1863 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 1864 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 1865 vmbus_walk_resources, NULL); 1866 1867 if (ACPI_FAILURE(result)) 1868 continue; 1869 if (hyperv_mmio) { 1870 vmbus_reserve_fb(); 1871 break; 1872 } 1873 } 1874 ret_val = 0; 1875 1876 acpi_walk_err: 1877 complete(&probe_event); 1878 if (ret_val) 1879 vmbus_acpi_remove(device); 1880 return ret_val; 1881 } 1882 1883 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 1884 {"VMBUS", 0}, 1885 {"VMBus", 0}, 1886 {"", 0}, 1887 }; 1888 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 1889 1890 static struct acpi_driver vmbus_acpi_driver = { 1891 .name = "vmbus", 1892 .ids = vmbus_acpi_device_ids, 1893 .ops = { 1894 .add = vmbus_acpi_add, 1895 .remove = vmbus_acpi_remove, 1896 }, 1897 }; 1898 1899 static void hv_kexec_handler(void) 1900 { 1901 hv_synic_clockevents_cleanup(); 1902 vmbus_initiate_unload(false); 1903 vmbus_connection.conn_state = DISCONNECTED; 1904 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 1905 mb(); 1906 cpuhp_remove_state(hyperv_cpuhp_online); 1907 hyperv_cleanup(); 1908 }; 1909 1910 static void hv_crash_handler(struct pt_regs *regs) 1911 { 1912 vmbus_initiate_unload(true); 1913 /* 1914 * In crash handler we can't schedule synic cleanup for all CPUs, 1915 * doing the cleanup for current CPU only. This should be sufficient 1916 * for kdump. 1917 */ 1918 vmbus_connection.conn_state = DISCONNECTED; 1919 hv_synic_cleanup(smp_processor_id()); 1920 hyperv_cleanup(); 1921 }; 1922 1923 static int __init hv_acpi_init(void) 1924 { 1925 int ret, t; 1926 1927 if (!hv_is_hyperv_initialized()) 1928 return -ENODEV; 1929 1930 init_completion(&probe_event); 1931 1932 /* 1933 * Get ACPI resources first. 1934 */ 1935 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 1936 1937 if (ret) 1938 return ret; 1939 1940 t = wait_for_completion_timeout(&probe_event, 5*HZ); 1941 if (t == 0) { 1942 ret = -ETIMEDOUT; 1943 goto cleanup; 1944 } 1945 1946 ret = vmbus_bus_init(); 1947 if (ret) 1948 goto cleanup; 1949 1950 hv_setup_kexec_handler(hv_kexec_handler); 1951 hv_setup_crash_handler(hv_crash_handler); 1952 1953 return 0; 1954 1955 cleanup: 1956 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1957 hv_acpi_dev = NULL; 1958 return ret; 1959 } 1960 1961 static void __exit vmbus_exit(void) 1962 { 1963 int cpu; 1964 1965 hv_remove_kexec_handler(); 1966 hv_remove_crash_handler(); 1967 vmbus_connection.conn_state = DISCONNECTED; 1968 hv_synic_clockevents_cleanup(); 1969 vmbus_disconnect(); 1970 hv_remove_vmbus_irq(); 1971 for_each_online_cpu(cpu) { 1972 struct hv_per_cpu_context *hv_cpu 1973 = per_cpu_ptr(hv_context.cpu_context, cpu); 1974 1975 tasklet_kill(&hv_cpu->msg_dpc); 1976 } 1977 vmbus_free_channels(); 1978 1979 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1980 kmsg_dump_unregister(&hv_kmsg_dumper); 1981 unregister_die_notifier(&hyperv_die_block); 1982 atomic_notifier_chain_unregister(&panic_notifier_list, 1983 &hyperv_panic_block); 1984 } 1985 1986 free_page((unsigned long)hv_panic_page); 1987 unregister_sysctl_table(hv_ctl_table_hdr); 1988 hv_ctl_table_hdr = NULL; 1989 bus_unregister(&hv_bus); 1990 1991 cpuhp_remove_state(hyperv_cpuhp_online); 1992 hv_synic_free(); 1993 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1994 } 1995 1996 1997 MODULE_LICENSE("GPL"); 1998 1999 subsys_initcall(hv_acpi_init); 2000 module_exit(vmbus_exit); 2001