xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision e1e38ea1)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38 
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47 
48 struct vmbus_dynid {
49 	struct list_head node;
50 	struct hv_vmbus_device_id id;
51 };
52 
53 static struct acpi_device  *hv_acpi_dev;
54 
55 static struct completion probe_event;
56 
57 static int hyperv_cpuhp_online;
58 
59 static void *hv_panic_page;
60 
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 			      void *args)
63 {
64 	struct pt_regs *regs;
65 
66 	regs = current_pt_regs();
67 
68 	hyperv_report_panic(regs, val);
69 	return NOTIFY_DONE;
70 }
71 
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 			    void *args)
74 {
75 	struct die_args *die = (struct die_args *)args;
76 	struct pt_regs *regs = die->regs;
77 
78 	hyperv_report_panic(regs, val);
79 	return NOTIFY_DONE;
80 }
81 
82 static struct notifier_block hyperv_die_block = {
83 	.notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 	.notifier_call = hyperv_panic_event,
87 };
88 
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93 
94 static int vmbus_exists(void)
95 {
96 	if (hv_acpi_dev == NULL)
97 		return -ENODEV;
98 
99 	return 0;
100 }
101 
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 	int i;
106 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109 
110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 {
112 	return (u8)channel->offermsg.monitorid / 32;
113 }
114 
115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 {
117 	return (u8)channel->offermsg.monitorid % 32;
118 }
119 
120 static u32 channel_pending(const struct vmbus_channel *channel,
121 			   const struct hv_monitor_page *monitor_page)
122 {
123 	u8 monitor_group = channel_monitor_group(channel);
124 
125 	return monitor_page->trigger_group[monitor_group].pending;
126 }
127 
128 static u32 channel_latency(const struct vmbus_channel *channel,
129 			   const struct hv_monitor_page *monitor_page)
130 {
131 	u8 monitor_group = channel_monitor_group(channel);
132 	u8 monitor_offset = channel_monitor_offset(channel);
133 
134 	return monitor_page->latency[monitor_group][monitor_offset];
135 }
136 
137 static u32 channel_conn_id(struct vmbus_channel *channel,
138 			   struct hv_monitor_page *monitor_page)
139 {
140 	u8 monitor_group = channel_monitor_group(channel);
141 	u8 monitor_offset = channel_monitor_offset(channel);
142 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 }
144 
145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146 		       char *buf)
147 {
148 	struct hv_device *hv_dev = device_to_hv_device(dev);
149 
150 	if (!hv_dev->channel)
151 		return -ENODEV;
152 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 }
154 static DEVICE_ATTR_RO(id);
155 
156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157 			  char *buf)
158 {
159 	struct hv_device *hv_dev = device_to_hv_device(dev);
160 
161 	if (!hv_dev->channel)
162 		return -ENODEV;
163 	return sprintf(buf, "%d\n", hv_dev->channel->state);
164 }
165 static DEVICE_ATTR_RO(state);
166 
167 static ssize_t monitor_id_show(struct device *dev,
168 			       struct device_attribute *dev_attr, char *buf)
169 {
170 	struct hv_device *hv_dev = device_to_hv_device(dev);
171 
172 	if (!hv_dev->channel)
173 		return -ENODEV;
174 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 }
176 static DEVICE_ATTR_RO(monitor_id);
177 
178 static ssize_t class_id_show(struct device *dev,
179 			       struct device_attribute *dev_attr, char *buf)
180 {
181 	struct hv_device *hv_dev = device_to_hv_device(dev);
182 
183 	if (!hv_dev->channel)
184 		return -ENODEV;
185 	return sprintf(buf, "{%pUl}\n",
186 		       hv_dev->channel->offermsg.offer.if_type.b);
187 }
188 static DEVICE_ATTR_RO(class_id);
189 
190 static ssize_t device_id_show(struct device *dev,
191 			      struct device_attribute *dev_attr, char *buf)
192 {
193 	struct hv_device *hv_dev = device_to_hv_device(dev);
194 
195 	if (!hv_dev->channel)
196 		return -ENODEV;
197 	return sprintf(buf, "{%pUl}\n",
198 		       hv_dev->channel->offermsg.offer.if_instance.b);
199 }
200 static DEVICE_ATTR_RO(device_id);
201 
202 static ssize_t modalias_show(struct device *dev,
203 			     struct device_attribute *dev_attr, char *buf)
204 {
205 	struct hv_device *hv_dev = device_to_hv_device(dev);
206 	char alias_name[VMBUS_ALIAS_LEN + 1];
207 
208 	print_alias_name(hv_dev, alias_name);
209 	return sprintf(buf, "vmbus:%s\n", alias_name);
210 }
211 static DEVICE_ATTR_RO(modalias);
212 
213 #ifdef CONFIG_NUMA
214 static ssize_t numa_node_show(struct device *dev,
215 			      struct device_attribute *attr, char *buf)
216 {
217 	struct hv_device *hv_dev = device_to_hv_device(dev);
218 
219 	if (!hv_dev->channel)
220 		return -ENODEV;
221 
222 	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
223 }
224 static DEVICE_ATTR_RO(numa_node);
225 #endif
226 
227 static ssize_t server_monitor_pending_show(struct device *dev,
228 					   struct device_attribute *dev_attr,
229 					   char *buf)
230 {
231 	struct hv_device *hv_dev = device_to_hv_device(dev);
232 
233 	if (!hv_dev->channel)
234 		return -ENODEV;
235 	return sprintf(buf, "%d\n",
236 		       channel_pending(hv_dev->channel,
237 				       vmbus_connection.monitor_pages[1]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240 
241 static ssize_t client_monitor_pending_show(struct device *dev,
242 					   struct device_attribute *dev_attr,
243 					   char *buf)
244 {
245 	struct hv_device *hv_dev = device_to_hv_device(dev);
246 
247 	if (!hv_dev->channel)
248 		return -ENODEV;
249 	return sprintf(buf, "%d\n",
250 		       channel_pending(hv_dev->channel,
251 				       vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254 
255 static ssize_t server_monitor_latency_show(struct device *dev,
256 					   struct device_attribute *dev_attr,
257 					   char *buf)
258 {
259 	struct hv_device *hv_dev = device_to_hv_device(dev);
260 
261 	if (!hv_dev->channel)
262 		return -ENODEV;
263 	return sprintf(buf, "%d\n",
264 		       channel_latency(hv_dev->channel,
265 				       vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268 
269 static ssize_t client_monitor_latency_show(struct device *dev,
270 					   struct device_attribute *dev_attr,
271 					   char *buf)
272 {
273 	struct hv_device *hv_dev = device_to_hv_device(dev);
274 
275 	if (!hv_dev->channel)
276 		return -ENODEV;
277 	return sprintf(buf, "%d\n",
278 		       channel_latency(hv_dev->channel,
279 				       vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282 
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284 					   struct device_attribute *dev_attr,
285 					   char *buf)
286 {
287 	struct hv_device *hv_dev = device_to_hv_device(dev);
288 
289 	if (!hv_dev->channel)
290 		return -ENODEV;
291 	return sprintf(buf, "%d\n",
292 		       channel_conn_id(hv_dev->channel,
293 				       vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296 
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298 					   struct device_attribute *dev_attr,
299 					   char *buf)
300 {
301 	struct hv_device *hv_dev = device_to_hv_device(dev);
302 
303 	if (!hv_dev->channel)
304 		return -ENODEV;
305 	return sprintf(buf, "%d\n",
306 		       channel_conn_id(hv_dev->channel,
307 				       vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310 
311 static ssize_t out_intr_mask_show(struct device *dev,
312 				  struct device_attribute *dev_attr, char *buf)
313 {
314 	struct hv_device *hv_dev = device_to_hv_device(dev);
315 	struct hv_ring_buffer_debug_info outbound;
316 
317 	if (!hv_dev->channel)
318 		return -ENODEV;
319 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
320 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
321 }
322 static DEVICE_ATTR_RO(out_intr_mask);
323 
324 static ssize_t out_read_index_show(struct device *dev,
325 				   struct device_attribute *dev_attr, char *buf)
326 {
327 	struct hv_device *hv_dev = device_to_hv_device(dev);
328 	struct hv_ring_buffer_debug_info outbound;
329 
330 	if (!hv_dev->channel)
331 		return -ENODEV;
332 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
333 	return sprintf(buf, "%d\n", outbound.current_read_index);
334 }
335 static DEVICE_ATTR_RO(out_read_index);
336 
337 static ssize_t out_write_index_show(struct device *dev,
338 				    struct device_attribute *dev_attr,
339 				    char *buf)
340 {
341 	struct hv_device *hv_dev = device_to_hv_device(dev);
342 	struct hv_ring_buffer_debug_info outbound;
343 
344 	if (!hv_dev->channel)
345 		return -ENODEV;
346 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
347 	return sprintf(buf, "%d\n", outbound.current_write_index);
348 }
349 static DEVICE_ATTR_RO(out_write_index);
350 
351 static ssize_t out_read_bytes_avail_show(struct device *dev,
352 					 struct device_attribute *dev_attr,
353 					 char *buf)
354 {
355 	struct hv_device *hv_dev = device_to_hv_device(dev);
356 	struct hv_ring_buffer_debug_info outbound;
357 
358 	if (!hv_dev->channel)
359 		return -ENODEV;
360 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
361 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
362 }
363 static DEVICE_ATTR_RO(out_read_bytes_avail);
364 
365 static ssize_t out_write_bytes_avail_show(struct device *dev,
366 					  struct device_attribute *dev_attr,
367 					  char *buf)
368 {
369 	struct hv_device *hv_dev = device_to_hv_device(dev);
370 	struct hv_ring_buffer_debug_info outbound;
371 
372 	if (!hv_dev->channel)
373 		return -ENODEV;
374 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
375 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
376 }
377 static DEVICE_ATTR_RO(out_write_bytes_avail);
378 
379 static ssize_t in_intr_mask_show(struct device *dev,
380 				 struct device_attribute *dev_attr, char *buf)
381 {
382 	struct hv_device *hv_dev = device_to_hv_device(dev);
383 	struct hv_ring_buffer_debug_info inbound;
384 
385 	if (!hv_dev->channel)
386 		return -ENODEV;
387 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
388 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
389 }
390 static DEVICE_ATTR_RO(in_intr_mask);
391 
392 static ssize_t in_read_index_show(struct device *dev,
393 				  struct device_attribute *dev_attr, char *buf)
394 {
395 	struct hv_device *hv_dev = device_to_hv_device(dev);
396 	struct hv_ring_buffer_debug_info inbound;
397 
398 	if (!hv_dev->channel)
399 		return -ENODEV;
400 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
401 	return sprintf(buf, "%d\n", inbound.current_read_index);
402 }
403 static DEVICE_ATTR_RO(in_read_index);
404 
405 static ssize_t in_write_index_show(struct device *dev,
406 				   struct device_attribute *dev_attr, char *buf)
407 {
408 	struct hv_device *hv_dev = device_to_hv_device(dev);
409 	struct hv_ring_buffer_debug_info inbound;
410 
411 	if (!hv_dev->channel)
412 		return -ENODEV;
413 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414 	return sprintf(buf, "%d\n", inbound.current_write_index);
415 }
416 static DEVICE_ATTR_RO(in_write_index);
417 
418 static ssize_t in_read_bytes_avail_show(struct device *dev,
419 					struct device_attribute *dev_attr,
420 					char *buf)
421 {
422 	struct hv_device *hv_dev = device_to_hv_device(dev);
423 	struct hv_ring_buffer_debug_info inbound;
424 
425 	if (!hv_dev->channel)
426 		return -ENODEV;
427 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
428 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
429 }
430 static DEVICE_ATTR_RO(in_read_bytes_avail);
431 
432 static ssize_t in_write_bytes_avail_show(struct device *dev,
433 					 struct device_attribute *dev_attr,
434 					 char *buf)
435 {
436 	struct hv_device *hv_dev = device_to_hv_device(dev);
437 	struct hv_ring_buffer_debug_info inbound;
438 
439 	if (!hv_dev->channel)
440 		return -ENODEV;
441 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
443 }
444 static DEVICE_ATTR_RO(in_write_bytes_avail);
445 
446 static ssize_t channel_vp_mapping_show(struct device *dev,
447 				       struct device_attribute *dev_attr,
448 				       char *buf)
449 {
450 	struct hv_device *hv_dev = device_to_hv_device(dev);
451 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
452 	unsigned long flags;
453 	int buf_size = PAGE_SIZE, n_written, tot_written;
454 	struct list_head *cur;
455 
456 	if (!channel)
457 		return -ENODEV;
458 
459 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
460 		channel->offermsg.child_relid, channel->target_cpu);
461 
462 	spin_lock_irqsave(&channel->lock, flags);
463 
464 	list_for_each(cur, &channel->sc_list) {
465 		if (tot_written >= buf_size - 1)
466 			break;
467 
468 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
469 		n_written = scnprintf(buf + tot_written,
470 				     buf_size - tot_written,
471 				     "%u:%u\n",
472 				     cur_sc->offermsg.child_relid,
473 				     cur_sc->target_cpu);
474 		tot_written += n_written;
475 	}
476 
477 	spin_unlock_irqrestore(&channel->lock, flags);
478 
479 	return tot_written;
480 }
481 static DEVICE_ATTR_RO(channel_vp_mapping);
482 
483 static ssize_t vendor_show(struct device *dev,
484 			   struct device_attribute *dev_attr,
485 			   char *buf)
486 {
487 	struct hv_device *hv_dev = device_to_hv_device(dev);
488 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
489 }
490 static DEVICE_ATTR_RO(vendor);
491 
492 static ssize_t device_show(struct device *dev,
493 			   struct device_attribute *dev_attr,
494 			   char *buf)
495 {
496 	struct hv_device *hv_dev = device_to_hv_device(dev);
497 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
498 }
499 static DEVICE_ATTR_RO(device);
500 
501 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
502 static struct attribute *vmbus_dev_attrs[] = {
503 	&dev_attr_id.attr,
504 	&dev_attr_state.attr,
505 	&dev_attr_monitor_id.attr,
506 	&dev_attr_class_id.attr,
507 	&dev_attr_device_id.attr,
508 	&dev_attr_modalias.attr,
509 #ifdef CONFIG_NUMA
510 	&dev_attr_numa_node.attr,
511 #endif
512 	&dev_attr_server_monitor_pending.attr,
513 	&dev_attr_client_monitor_pending.attr,
514 	&dev_attr_server_monitor_latency.attr,
515 	&dev_attr_client_monitor_latency.attr,
516 	&dev_attr_server_monitor_conn_id.attr,
517 	&dev_attr_client_monitor_conn_id.attr,
518 	&dev_attr_out_intr_mask.attr,
519 	&dev_attr_out_read_index.attr,
520 	&dev_attr_out_write_index.attr,
521 	&dev_attr_out_read_bytes_avail.attr,
522 	&dev_attr_out_write_bytes_avail.attr,
523 	&dev_attr_in_intr_mask.attr,
524 	&dev_attr_in_read_index.attr,
525 	&dev_attr_in_write_index.attr,
526 	&dev_attr_in_read_bytes_avail.attr,
527 	&dev_attr_in_write_bytes_avail.attr,
528 	&dev_attr_channel_vp_mapping.attr,
529 	&dev_attr_vendor.attr,
530 	&dev_attr_device.attr,
531 	NULL,
532 };
533 ATTRIBUTE_GROUPS(vmbus_dev);
534 
535 /*
536  * vmbus_uevent - add uevent for our device
537  *
538  * This routine is invoked when a device is added or removed on the vmbus to
539  * generate a uevent to udev in the userspace. The udev will then look at its
540  * rule and the uevent generated here to load the appropriate driver
541  *
542  * The alias string will be of the form vmbus:guid where guid is the string
543  * representation of the device guid (each byte of the guid will be
544  * represented with two hex characters.
545  */
546 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
547 {
548 	struct hv_device *dev = device_to_hv_device(device);
549 	int ret;
550 	char alias_name[VMBUS_ALIAS_LEN + 1];
551 
552 	print_alias_name(dev, alias_name);
553 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
554 	return ret;
555 }
556 
557 static const uuid_le null_guid;
558 
559 static inline bool is_null_guid(const uuid_le *guid)
560 {
561 	if (uuid_le_cmp(*guid, null_guid))
562 		return false;
563 	return true;
564 }
565 
566 /*
567  * Return a matching hv_vmbus_device_id pointer.
568  * If there is no match, return NULL.
569  */
570 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
571 					const uuid_le *guid)
572 {
573 	const struct hv_vmbus_device_id *id = NULL;
574 	struct vmbus_dynid *dynid;
575 
576 	/* Look at the dynamic ids first, before the static ones */
577 	spin_lock(&drv->dynids.lock);
578 	list_for_each_entry(dynid, &drv->dynids.list, node) {
579 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
580 			id = &dynid->id;
581 			break;
582 		}
583 	}
584 	spin_unlock(&drv->dynids.lock);
585 
586 	if (id)
587 		return id;
588 
589 	id = drv->id_table;
590 	if (id == NULL)
591 		return NULL; /* empty device table */
592 
593 	for (; !is_null_guid(&id->guid); id++)
594 		if (!uuid_le_cmp(id->guid, *guid))
595 			return id;
596 
597 	return NULL;
598 }
599 
600 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
601 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
602 {
603 	struct vmbus_dynid *dynid;
604 
605 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
606 	if (!dynid)
607 		return -ENOMEM;
608 
609 	dynid->id.guid = *guid;
610 
611 	spin_lock(&drv->dynids.lock);
612 	list_add_tail(&dynid->node, &drv->dynids.list);
613 	spin_unlock(&drv->dynids.lock);
614 
615 	return driver_attach(&drv->driver);
616 }
617 
618 static void vmbus_free_dynids(struct hv_driver *drv)
619 {
620 	struct vmbus_dynid *dynid, *n;
621 
622 	spin_lock(&drv->dynids.lock);
623 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
624 		list_del(&dynid->node);
625 		kfree(dynid);
626 	}
627 	spin_unlock(&drv->dynids.lock);
628 }
629 
630 /*
631  * store_new_id - sysfs frontend to vmbus_add_dynid()
632  *
633  * Allow GUIDs to be added to an existing driver via sysfs.
634  */
635 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
636 			    size_t count)
637 {
638 	struct hv_driver *drv = drv_to_hv_drv(driver);
639 	uuid_le guid;
640 	ssize_t retval;
641 
642 	retval = uuid_le_to_bin(buf, &guid);
643 	if (retval)
644 		return retval;
645 
646 	if (hv_vmbus_get_id(drv, &guid))
647 		return -EEXIST;
648 
649 	retval = vmbus_add_dynid(drv, &guid);
650 	if (retval)
651 		return retval;
652 	return count;
653 }
654 static DRIVER_ATTR_WO(new_id);
655 
656 /*
657  * store_remove_id - remove a PCI device ID from this driver
658  *
659  * Removes a dynamic pci device ID to this driver.
660  */
661 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
662 			       size_t count)
663 {
664 	struct hv_driver *drv = drv_to_hv_drv(driver);
665 	struct vmbus_dynid *dynid, *n;
666 	uuid_le guid;
667 	ssize_t retval;
668 
669 	retval = uuid_le_to_bin(buf, &guid);
670 	if (retval)
671 		return retval;
672 
673 	retval = -ENODEV;
674 	spin_lock(&drv->dynids.lock);
675 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
676 		struct hv_vmbus_device_id *id = &dynid->id;
677 
678 		if (!uuid_le_cmp(id->guid, guid)) {
679 			list_del(&dynid->node);
680 			kfree(dynid);
681 			retval = count;
682 			break;
683 		}
684 	}
685 	spin_unlock(&drv->dynids.lock);
686 
687 	return retval;
688 }
689 static DRIVER_ATTR_WO(remove_id);
690 
691 static struct attribute *vmbus_drv_attrs[] = {
692 	&driver_attr_new_id.attr,
693 	&driver_attr_remove_id.attr,
694 	NULL,
695 };
696 ATTRIBUTE_GROUPS(vmbus_drv);
697 
698 
699 /*
700  * vmbus_match - Attempt to match the specified device to the specified driver
701  */
702 static int vmbus_match(struct device *device, struct device_driver *driver)
703 {
704 	struct hv_driver *drv = drv_to_hv_drv(driver);
705 	struct hv_device *hv_dev = device_to_hv_device(device);
706 
707 	/* The hv_sock driver handles all hv_sock offers. */
708 	if (is_hvsock_channel(hv_dev->channel))
709 		return drv->hvsock;
710 
711 	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
712 		return 1;
713 
714 	return 0;
715 }
716 
717 /*
718  * vmbus_probe - Add the new vmbus's child device
719  */
720 static int vmbus_probe(struct device *child_device)
721 {
722 	int ret = 0;
723 	struct hv_driver *drv =
724 			drv_to_hv_drv(child_device->driver);
725 	struct hv_device *dev = device_to_hv_device(child_device);
726 	const struct hv_vmbus_device_id *dev_id;
727 
728 	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
729 	if (drv->probe) {
730 		ret = drv->probe(dev, dev_id);
731 		if (ret != 0)
732 			pr_err("probe failed for device %s (%d)\n",
733 			       dev_name(child_device), ret);
734 
735 	} else {
736 		pr_err("probe not set for driver %s\n",
737 		       dev_name(child_device));
738 		ret = -ENODEV;
739 	}
740 	return ret;
741 }
742 
743 /*
744  * vmbus_remove - Remove a vmbus device
745  */
746 static int vmbus_remove(struct device *child_device)
747 {
748 	struct hv_driver *drv;
749 	struct hv_device *dev = device_to_hv_device(child_device);
750 
751 	if (child_device->driver) {
752 		drv = drv_to_hv_drv(child_device->driver);
753 		if (drv->remove)
754 			drv->remove(dev);
755 	}
756 
757 	return 0;
758 }
759 
760 
761 /*
762  * vmbus_shutdown - Shutdown a vmbus device
763  */
764 static void vmbus_shutdown(struct device *child_device)
765 {
766 	struct hv_driver *drv;
767 	struct hv_device *dev = device_to_hv_device(child_device);
768 
769 
770 	/* The device may not be attached yet */
771 	if (!child_device->driver)
772 		return;
773 
774 	drv = drv_to_hv_drv(child_device->driver);
775 
776 	if (drv->shutdown)
777 		drv->shutdown(dev);
778 }
779 
780 
781 /*
782  * vmbus_device_release - Final callback release of the vmbus child device
783  */
784 static void vmbus_device_release(struct device *device)
785 {
786 	struct hv_device *hv_dev = device_to_hv_device(device);
787 	struct vmbus_channel *channel = hv_dev->channel;
788 
789 	mutex_lock(&vmbus_connection.channel_mutex);
790 	hv_process_channel_removal(channel->offermsg.child_relid);
791 	mutex_unlock(&vmbus_connection.channel_mutex);
792 	kfree(hv_dev);
793 
794 }
795 
796 /* The one and only one */
797 static struct bus_type  hv_bus = {
798 	.name =		"vmbus",
799 	.match =		vmbus_match,
800 	.shutdown =		vmbus_shutdown,
801 	.remove =		vmbus_remove,
802 	.probe =		vmbus_probe,
803 	.uevent =		vmbus_uevent,
804 	.dev_groups =		vmbus_dev_groups,
805 	.drv_groups =		vmbus_drv_groups,
806 };
807 
808 struct onmessage_work_context {
809 	struct work_struct work;
810 	struct hv_message msg;
811 };
812 
813 static void vmbus_onmessage_work(struct work_struct *work)
814 {
815 	struct onmessage_work_context *ctx;
816 
817 	/* Do not process messages if we're in DISCONNECTED state */
818 	if (vmbus_connection.conn_state == DISCONNECTED)
819 		return;
820 
821 	ctx = container_of(work, struct onmessage_work_context,
822 			   work);
823 	vmbus_onmessage(&ctx->msg);
824 	kfree(ctx);
825 }
826 
827 static void hv_process_timer_expiration(struct hv_message *msg,
828 					struct hv_per_cpu_context *hv_cpu)
829 {
830 	struct clock_event_device *dev = hv_cpu->clk_evt;
831 
832 	if (dev->event_handler)
833 		dev->event_handler(dev);
834 
835 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
836 }
837 
838 void vmbus_on_msg_dpc(unsigned long data)
839 {
840 	struct hv_per_cpu_context *hv_cpu = (void *)data;
841 	void *page_addr = hv_cpu->synic_message_page;
842 	struct hv_message *msg = (struct hv_message *)page_addr +
843 				  VMBUS_MESSAGE_SINT;
844 	struct vmbus_channel_message_header *hdr;
845 	const struct vmbus_channel_message_table_entry *entry;
846 	struct onmessage_work_context *ctx;
847 	u32 message_type = msg->header.message_type;
848 
849 	if (message_type == HVMSG_NONE)
850 		/* no msg */
851 		return;
852 
853 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
854 
855 	trace_vmbus_on_msg_dpc(hdr);
856 
857 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
858 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
859 		goto msg_handled;
860 	}
861 
862 	entry = &channel_message_table[hdr->msgtype];
863 	if (entry->handler_type	== VMHT_BLOCKING) {
864 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
865 		if (ctx == NULL)
866 			return;
867 
868 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
869 		memcpy(&ctx->msg, msg, sizeof(*msg));
870 
871 		/*
872 		 * The host can generate a rescind message while we
873 		 * may still be handling the original offer. We deal with
874 		 * this condition by ensuring the processing is done on the
875 		 * same CPU.
876 		 */
877 		switch (hdr->msgtype) {
878 		case CHANNELMSG_RESCIND_CHANNELOFFER:
879 			/*
880 			 * If we are handling the rescind message;
881 			 * schedule the work on the global work queue.
882 			 */
883 			schedule_work_on(vmbus_connection.connect_cpu,
884 					 &ctx->work);
885 			break;
886 
887 		case CHANNELMSG_OFFERCHANNEL:
888 			atomic_inc(&vmbus_connection.offer_in_progress);
889 			queue_work_on(vmbus_connection.connect_cpu,
890 				      vmbus_connection.work_queue,
891 				      &ctx->work);
892 			break;
893 
894 		default:
895 			queue_work(vmbus_connection.work_queue, &ctx->work);
896 		}
897 	} else
898 		entry->message_handler(hdr);
899 
900 msg_handled:
901 	vmbus_signal_eom(msg, message_type);
902 }
903 
904 
905 /*
906  * Direct callback for channels using other deferred processing
907  */
908 static void vmbus_channel_isr(struct vmbus_channel *channel)
909 {
910 	void (*callback_fn)(void *);
911 
912 	callback_fn = READ_ONCE(channel->onchannel_callback);
913 	if (likely(callback_fn != NULL))
914 		(*callback_fn)(channel->channel_callback_context);
915 }
916 
917 /*
918  * Schedule all channels with events pending
919  */
920 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
921 {
922 	unsigned long *recv_int_page;
923 	u32 maxbits, relid;
924 
925 	if (vmbus_proto_version < VERSION_WIN8) {
926 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
927 		recv_int_page = vmbus_connection.recv_int_page;
928 	} else {
929 		/*
930 		 * When the host is win8 and beyond, the event page
931 		 * can be directly checked to get the id of the channel
932 		 * that has the interrupt pending.
933 		 */
934 		void *page_addr = hv_cpu->synic_event_page;
935 		union hv_synic_event_flags *event
936 			= (union hv_synic_event_flags *)page_addr +
937 						 VMBUS_MESSAGE_SINT;
938 
939 		maxbits = HV_EVENT_FLAGS_COUNT;
940 		recv_int_page = event->flags;
941 	}
942 
943 	if (unlikely(!recv_int_page))
944 		return;
945 
946 	for_each_set_bit(relid, recv_int_page, maxbits) {
947 		struct vmbus_channel *channel;
948 
949 		if (!sync_test_and_clear_bit(relid, recv_int_page))
950 			continue;
951 
952 		/* Special case - vmbus channel protocol msg */
953 		if (relid == 0)
954 			continue;
955 
956 		rcu_read_lock();
957 
958 		/* Find channel based on relid */
959 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
960 			if (channel->offermsg.child_relid != relid)
961 				continue;
962 
963 			if (channel->rescind)
964 				continue;
965 
966 			trace_vmbus_chan_sched(channel);
967 
968 			++channel->interrupts;
969 
970 			switch (channel->callback_mode) {
971 			case HV_CALL_ISR:
972 				vmbus_channel_isr(channel);
973 				break;
974 
975 			case HV_CALL_BATCHED:
976 				hv_begin_read(&channel->inbound);
977 				/* fallthrough */
978 			case HV_CALL_DIRECT:
979 				tasklet_schedule(&channel->callback_event);
980 			}
981 		}
982 
983 		rcu_read_unlock();
984 	}
985 }
986 
987 static void vmbus_isr(void)
988 {
989 	struct hv_per_cpu_context *hv_cpu
990 		= this_cpu_ptr(hv_context.cpu_context);
991 	void *page_addr = hv_cpu->synic_event_page;
992 	struct hv_message *msg;
993 	union hv_synic_event_flags *event;
994 	bool handled = false;
995 
996 	if (unlikely(page_addr == NULL))
997 		return;
998 
999 	event = (union hv_synic_event_flags *)page_addr +
1000 					 VMBUS_MESSAGE_SINT;
1001 	/*
1002 	 * Check for events before checking for messages. This is the order
1003 	 * in which events and messages are checked in Windows guests on
1004 	 * Hyper-V, and the Windows team suggested we do the same.
1005 	 */
1006 
1007 	if ((vmbus_proto_version == VERSION_WS2008) ||
1008 		(vmbus_proto_version == VERSION_WIN7)) {
1009 
1010 		/* Since we are a child, we only need to check bit 0 */
1011 		if (sync_test_and_clear_bit(0, event->flags))
1012 			handled = true;
1013 	} else {
1014 		/*
1015 		 * Our host is win8 or above. The signaling mechanism
1016 		 * has changed and we can directly look at the event page.
1017 		 * If bit n is set then we have an interrup on the channel
1018 		 * whose id is n.
1019 		 */
1020 		handled = true;
1021 	}
1022 
1023 	if (handled)
1024 		vmbus_chan_sched(hv_cpu);
1025 
1026 	page_addr = hv_cpu->synic_message_page;
1027 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1028 
1029 	/* Check if there are actual msgs to be processed */
1030 	if (msg->header.message_type != HVMSG_NONE) {
1031 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1032 			hv_process_timer_expiration(msg, hv_cpu);
1033 		else
1034 			tasklet_schedule(&hv_cpu->msg_dpc);
1035 	}
1036 
1037 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1038 }
1039 
1040 /*
1041  * Boolean to control whether to report panic messages over Hyper-V.
1042  *
1043  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1044  */
1045 static int sysctl_record_panic_msg = 1;
1046 
1047 /*
1048  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1049  * buffer and call into Hyper-V to transfer the data.
1050  */
1051 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1052 			 enum kmsg_dump_reason reason)
1053 {
1054 	size_t bytes_written;
1055 	phys_addr_t panic_pa;
1056 
1057 	/* We are only interested in panics. */
1058 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1059 		return;
1060 
1061 	panic_pa = virt_to_phys(hv_panic_page);
1062 
1063 	/*
1064 	 * Write dump contents to the page. No need to synchronize; panic should
1065 	 * be single-threaded.
1066 	 */
1067 	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1068 			     &bytes_written);
1069 	if (bytes_written)
1070 		hyperv_report_panic_msg(panic_pa, bytes_written);
1071 }
1072 
1073 static struct kmsg_dumper hv_kmsg_dumper = {
1074 	.dump = hv_kmsg_dump,
1075 };
1076 
1077 static struct ctl_table_header *hv_ctl_table_hdr;
1078 static int zero;
1079 static int one = 1;
1080 
1081 /*
1082  * sysctl option to allow the user to control whether kmsg data should be
1083  * reported to Hyper-V on panic.
1084  */
1085 static struct ctl_table hv_ctl_table[] = {
1086 	{
1087 		.procname       = "hyperv_record_panic_msg",
1088 		.data           = &sysctl_record_panic_msg,
1089 		.maxlen         = sizeof(int),
1090 		.mode           = 0644,
1091 		.proc_handler   = proc_dointvec_minmax,
1092 		.extra1		= &zero,
1093 		.extra2		= &one
1094 	},
1095 	{}
1096 };
1097 
1098 static struct ctl_table hv_root_table[] = {
1099 	{
1100 		.procname	= "kernel",
1101 		.mode		= 0555,
1102 		.child		= hv_ctl_table
1103 	},
1104 	{}
1105 };
1106 
1107 /*
1108  * vmbus_bus_init -Main vmbus driver initialization routine.
1109  *
1110  * Here, we
1111  *	- initialize the vmbus driver context
1112  *	- invoke the vmbus hv main init routine
1113  *	- retrieve the channel offers
1114  */
1115 static int vmbus_bus_init(void)
1116 {
1117 	int ret;
1118 
1119 	/* Hypervisor initialization...setup hypercall page..etc */
1120 	ret = hv_init();
1121 	if (ret != 0) {
1122 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1123 		return ret;
1124 	}
1125 
1126 	ret = bus_register(&hv_bus);
1127 	if (ret)
1128 		return ret;
1129 
1130 	hv_setup_vmbus_irq(vmbus_isr);
1131 
1132 	ret = hv_synic_alloc();
1133 	if (ret)
1134 		goto err_alloc;
1135 	/*
1136 	 * Initialize the per-cpu interrupt state and
1137 	 * connect to the host.
1138 	 */
1139 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1140 				hv_synic_init, hv_synic_cleanup);
1141 	if (ret < 0)
1142 		goto err_alloc;
1143 	hyperv_cpuhp_online = ret;
1144 
1145 	ret = vmbus_connect();
1146 	if (ret)
1147 		goto err_connect;
1148 
1149 	/*
1150 	 * Only register if the crash MSRs are available
1151 	 */
1152 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1153 		u64 hyperv_crash_ctl;
1154 		/*
1155 		 * Sysctl registration is not fatal, since by default
1156 		 * reporting is enabled.
1157 		 */
1158 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1159 		if (!hv_ctl_table_hdr)
1160 			pr_err("Hyper-V: sysctl table register error");
1161 
1162 		/*
1163 		 * Register for panic kmsg callback only if the right
1164 		 * capability is supported by the hypervisor.
1165 		 */
1166 		hv_get_crash_ctl(hyperv_crash_ctl);
1167 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1168 			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1169 			if (hv_panic_page) {
1170 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1171 				if (ret)
1172 					pr_err("Hyper-V: kmsg dump register "
1173 						"error 0x%x\n", ret);
1174 			} else
1175 				pr_err("Hyper-V: panic message page memory "
1176 					"allocation failed");
1177 		}
1178 
1179 		register_die_notifier(&hyperv_die_block);
1180 		atomic_notifier_chain_register(&panic_notifier_list,
1181 					       &hyperv_panic_block);
1182 	}
1183 
1184 	vmbus_request_offers();
1185 
1186 	return 0;
1187 
1188 err_connect:
1189 	cpuhp_remove_state(hyperv_cpuhp_online);
1190 err_alloc:
1191 	hv_synic_free();
1192 	hv_remove_vmbus_irq();
1193 
1194 	bus_unregister(&hv_bus);
1195 	free_page((unsigned long)hv_panic_page);
1196 	unregister_sysctl_table(hv_ctl_table_hdr);
1197 	hv_ctl_table_hdr = NULL;
1198 	return ret;
1199 }
1200 
1201 /**
1202  * __vmbus_child_driver_register() - Register a vmbus's driver
1203  * @hv_driver: Pointer to driver structure you want to register
1204  * @owner: owner module of the drv
1205  * @mod_name: module name string
1206  *
1207  * Registers the given driver with Linux through the 'driver_register()' call
1208  * and sets up the hyper-v vmbus handling for this driver.
1209  * It will return the state of the 'driver_register()' call.
1210  *
1211  */
1212 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1213 {
1214 	int ret;
1215 
1216 	pr_info("registering driver %s\n", hv_driver->name);
1217 
1218 	ret = vmbus_exists();
1219 	if (ret < 0)
1220 		return ret;
1221 
1222 	hv_driver->driver.name = hv_driver->name;
1223 	hv_driver->driver.owner = owner;
1224 	hv_driver->driver.mod_name = mod_name;
1225 	hv_driver->driver.bus = &hv_bus;
1226 
1227 	spin_lock_init(&hv_driver->dynids.lock);
1228 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1229 
1230 	ret = driver_register(&hv_driver->driver);
1231 
1232 	return ret;
1233 }
1234 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1235 
1236 /**
1237  * vmbus_driver_unregister() - Unregister a vmbus's driver
1238  * @hv_driver: Pointer to driver structure you want to
1239  *             un-register
1240  *
1241  * Un-register the given driver that was previous registered with a call to
1242  * vmbus_driver_register()
1243  */
1244 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1245 {
1246 	pr_info("unregistering driver %s\n", hv_driver->name);
1247 
1248 	if (!vmbus_exists()) {
1249 		driver_unregister(&hv_driver->driver);
1250 		vmbus_free_dynids(hv_driver);
1251 	}
1252 }
1253 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1254 
1255 
1256 /*
1257  * Called when last reference to channel is gone.
1258  */
1259 static void vmbus_chan_release(struct kobject *kobj)
1260 {
1261 	struct vmbus_channel *channel
1262 		= container_of(kobj, struct vmbus_channel, kobj);
1263 
1264 	kfree_rcu(channel, rcu);
1265 }
1266 
1267 struct vmbus_chan_attribute {
1268 	struct attribute attr;
1269 	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1270 	ssize_t (*store)(struct vmbus_channel *chan,
1271 			 const char *buf, size_t count);
1272 };
1273 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1274 	struct vmbus_chan_attribute chan_attr_##_name \
1275 		= __ATTR(_name, _mode, _show, _store)
1276 #define VMBUS_CHAN_ATTR_RW(_name) \
1277 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1278 #define VMBUS_CHAN_ATTR_RO(_name) \
1279 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1280 #define VMBUS_CHAN_ATTR_WO(_name) \
1281 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1282 
1283 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1284 				    struct attribute *attr, char *buf)
1285 {
1286 	const struct vmbus_chan_attribute *attribute
1287 		= container_of(attr, struct vmbus_chan_attribute, attr);
1288 	const struct vmbus_channel *chan
1289 		= container_of(kobj, struct vmbus_channel, kobj);
1290 
1291 	if (!attribute->show)
1292 		return -EIO;
1293 
1294 	return attribute->show(chan, buf);
1295 }
1296 
1297 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1298 	.show = vmbus_chan_attr_show,
1299 };
1300 
1301 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1302 {
1303 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1304 
1305 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1306 }
1307 static VMBUS_CHAN_ATTR_RO(out_mask);
1308 
1309 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1310 {
1311 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1312 
1313 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1314 }
1315 static VMBUS_CHAN_ATTR_RO(in_mask);
1316 
1317 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1318 {
1319 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1320 
1321 	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1322 }
1323 static VMBUS_CHAN_ATTR_RO(read_avail);
1324 
1325 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1326 {
1327 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1328 
1329 	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1330 }
1331 static VMBUS_CHAN_ATTR_RO(write_avail);
1332 
1333 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1334 {
1335 	return sprintf(buf, "%u\n", channel->target_cpu);
1336 }
1337 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1338 
1339 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1340 				    char *buf)
1341 {
1342 	return sprintf(buf, "%d\n",
1343 		       channel_pending(channel,
1344 				       vmbus_connection.monitor_pages[1]));
1345 }
1346 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1347 
1348 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1349 				    char *buf)
1350 {
1351 	return sprintf(buf, "%d\n",
1352 		       channel_latency(channel,
1353 				       vmbus_connection.monitor_pages[1]));
1354 }
1355 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1356 
1357 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1358 {
1359 	return sprintf(buf, "%llu\n", channel->interrupts);
1360 }
1361 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1362 
1363 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1364 {
1365 	return sprintf(buf, "%llu\n", channel->sig_events);
1366 }
1367 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1368 
1369 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1370 					  char *buf)
1371 {
1372 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1373 }
1374 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1375 
1376 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1377 				  char *buf)
1378 {
1379 	return sprintf(buf, "%u\n",
1380 		       channel->offermsg.offer.sub_channel_index);
1381 }
1382 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1383 
1384 static struct attribute *vmbus_chan_attrs[] = {
1385 	&chan_attr_out_mask.attr,
1386 	&chan_attr_in_mask.attr,
1387 	&chan_attr_read_avail.attr,
1388 	&chan_attr_write_avail.attr,
1389 	&chan_attr_cpu.attr,
1390 	&chan_attr_pending.attr,
1391 	&chan_attr_latency.attr,
1392 	&chan_attr_interrupts.attr,
1393 	&chan_attr_events.attr,
1394 	&chan_attr_monitor_id.attr,
1395 	&chan_attr_subchannel_id.attr,
1396 	NULL
1397 };
1398 
1399 static struct kobj_type vmbus_chan_ktype = {
1400 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1401 	.release = vmbus_chan_release,
1402 	.default_attrs = vmbus_chan_attrs,
1403 };
1404 
1405 /*
1406  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1407  */
1408 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1409 {
1410 	struct kobject *kobj = &channel->kobj;
1411 	u32 relid = channel->offermsg.child_relid;
1412 	int ret;
1413 
1414 	kobj->kset = dev->channels_kset;
1415 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1416 				   "%u", relid);
1417 	if (ret)
1418 		return ret;
1419 
1420 	kobject_uevent(kobj, KOBJ_ADD);
1421 
1422 	return 0;
1423 }
1424 
1425 /*
1426  * vmbus_device_create - Creates and registers a new child device
1427  * on the vmbus.
1428  */
1429 struct hv_device *vmbus_device_create(const uuid_le *type,
1430 				      const uuid_le *instance,
1431 				      struct vmbus_channel *channel)
1432 {
1433 	struct hv_device *child_device_obj;
1434 
1435 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1436 	if (!child_device_obj) {
1437 		pr_err("Unable to allocate device object for child device\n");
1438 		return NULL;
1439 	}
1440 
1441 	child_device_obj->channel = channel;
1442 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1443 	memcpy(&child_device_obj->dev_instance, instance,
1444 	       sizeof(uuid_le));
1445 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1446 
1447 
1448 	return child_device_obj;
1449 }
1450 
1451 /*
1452  * vmbus_device_register - Register the child device
1453  */
1454 int vmbus_device_register(struct hv_device *child_device_obj)
1455 {
1456 	struct kobject *kobj = &child_device_obj->device.kobj;
1457 	int ret;
1458 
1459 	dev_set_name(&child_device_obj->device, "%pUl",
1460 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1461 
1462 	child_device_obj->device.bus = &hv_bus;
1463 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1464 	child_device_obj->device.release = vmbus_device_release;
1465 
1466 	/*
1467 	 * Register with the LDM. This will kick off the driver/device
1468 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1469 	 */
1470 	ret = device_register(&child_device_obj->device);
1471 	if (ret) {
1472 		pr_err("Unable to register child device\n");
1473 		return ret;
1474 	}
1475 
1476 	child_device_obj->channels_kset = kset_create_and_add("channels",
1477 							      NULL, kobj);
1478 	if (!child_device_obj->channels_kset) {
1479 		ret = -ENOMEM;
1480 		goto err_dev_unregister;
1481 	}
1482 
1483 	ret = vmbus_add_channel_kobj(child_device_obj,
1484 				     child_device_obj->channel);
1485 	if (ret) {
1486 		pr_err("Unable to register primary channeln");
1487 		goto err_kset_unregister;
1488 	}
1489 
1490 	return 0;
1491 
1492 err_kset_unregister:
1493 	kset_unregister(child_device_obj->channels_kset);
1494 
1495 err_dev_unregister:
1496 	device_unregister(&child_device_obj->device);
1497 	return ret;
1498 }
1499 
1500 /*
1501  * vmbus_device_unregister - Remove the specified child device
1502  * from the vmbus.
1503  */
1504 void vmbus_device_unregister(struct hv_device *device_obj)
1505 {
1506 	pr_debug("child device %s unregistered\n",
1507 		dev_name(&device_obj->device));
1508 
1509 	kset_unregister(device_obj->channels_kset);
1510 
1511 	/*
1512 	 * Kick off the process of unregistering the device.
1513 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1514 	 */
1515 	device_unregister(&device_obj->device);
1516 }
1517 
1518 
1519 /*
1520  * VMBUS is an acpi enumerated device. Get the information we
1521  * need from DSDT.
1522  */
1523 #define VTPM_BASE_ADDRESS 0xfed40000
1524 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1525 {
1526 	resource_size_t start = 0;
1527 	resource_size_t end = 0;
1528 	struct resource *new_res;
1529 	struct resource **old_res = &hyperv_mmio;
1530 	struct resource **prev_res = NULL;
1531 
1532 	switch (res->type) {
1533 
1534 	/*
1535 	 * "Address" descriptors are for bus windows. Ignore
1536 	 * "memory" descriptors, which are for registers on
1537 	 * devices.
1538 	 */
1539 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1540 		start = res->data.address32.address.minimum;
1541 		end = res->data.address32.address.maximum;
1542 		break;
1543 
1544 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1545 		start = res->data.address64.address.minimum;
1546 		end = res->data.address64.address.maximum;
1547 		break;
1548 
1549 	default:
1550 		/* Unused resource type */
1551 		return AE_OK;
1552 
1553 	}
1554 	/*
1555 	 * Ignore ranges that are below 1MB, as they're not
1556 	 * necessary or useful here.
1557 	 */
1558 	if (end < 0x100000)
1559 		return AE_OK;
1560 
1561 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1562 	if (!new_res)
1563 		return AE_NO_MEMORY;
1564 
1565 	/* If this range overlaps the virtual TPM, truncate it. */
1566 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1567 		end = VTPM_BASE_ADDRESS;
1568 
1569 	new_res->name = "hyperv mmio";
1570 	new_res->flags = IORESOURCE_MEM;
1571 	new_res->start = start;
1572 	new_res->end = end;
1573 
1574 	/*
1575 	 * If two ranges are adjacent, merge them.
1576 	 */
1577 	do {
1578 		if (!*old_res) {
1579 			*old_res = new_res;
1580 			break;
1581 		}
1582 
1583 		if (((*old_res)->end + 1) == new_res->start) {
1584 			(*old_res)->end = new_res->end;
1585 			kfree(new_res);
1586 			break;
1587 		}
1588 
1589 		if ((*old_res)->start == new_res->end + 1) {
1590 			(*old_res)->start = new_res->start;
1591 			kfree(new_res);
1592 			break;
1593 		}
1594 
1595 		if ((*old_res)->start > new_res->end) {
1596 			new_res->sibling = *old_res;
1597 			if (prev_res)
1598 				(*prev_res)->sibling = new_res;
1599 			*old_res = new_res;
1600 			break;
1601 		}
1602 
1603 		prev_res = old_res;
1604 		old_res = &(*old_res)->sibling;
1605 
1606 	} while (1);
1607 
1608 	return AE_OK;
1609 }
1610 
1611 static int vmbus_acpi_remove(struct acpi_device *device)
1612 {
1613 	struct resource *cur_res;
1614 	struct resource *next_res;
1615 
1616 	if (hyperv_mmio) {
1617 		if (fb_mmio) {
1618 			__release_region(hyperv_mmio, fb_mmio->start,
1619 					 resource_size(fb_mmio));
1620 			fb_mmio = NULL;
1621 		}
1622 
1623 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1624 			next_res = cur_res->sibling;
1625 			kfree(cur_res);
1626 		}
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 static void vmbus_reserve_fb(void)
1633 {
1634 	int size;
1635 	/*
1636 	 * Make a claim for the frame buffer in the resource tree under the
1637 	 * first node, which will be the one below 4GB.  The length seems to
1638 	 * be underreported, particularly in a Generation 1 VM.  So start out
1639 	 * reserving a larger area and make it smaller until it succeeds.
1640 	 */
1641 
1642 	if (screen_info.lfb_base) {
1643 		if (efi_enabled(EFI_BOOT))
1644 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1645 		else
1646 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1647 
1648 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1649 			fb_mmio = __request_region(hyperv_mmio,
1650 						   screen_info.lfb_base, size,
1651 						   fb_mmio_name, 0);
1652 		}
1653 	}
1654 }
1655 
1656 /**
1657  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1658  * @new:		If successful, supplied a pointer to the
1659  *			allocated MMIO space.
1660  * @device_obj:		Identifies the caller
1661  * @min:		Minimum guest physical address of the
1662  *			allocation
1663  * @max:		Maximum guest physical address
1664  * @size:		Size of the range to be allocated
1665  * @align:		Alignment of the range to be allocated
1666  * @fb_overlap_ok:	Whether this allocation can be allowed
1667  *			to overlap the video frame buffer.
1668  *
1669  * This function walks the resources granted to VMBus by the
1670  * _CRS object in the ACPI namespace underneath the parent
1671  * "bridge" whether that's a root PCI bus in the Generation 1
1672  * case or a Module Device in the Generation 2 case.  It then
1673  * attempts to allocate from the global MMIO pool in a way that
1674  * matches the constraints supplied in these parameters and by
1675  * that _CRS.
1676  *
1677  * Return: 0 on success, -errno on failure
1678  */
1679 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1680 			resource_size_t min, resource_size_t max,
1681 			resource_size_t size, resource_size_t align,
1682 			bool fb_overlap_ok)
1683 {
1684 	struct resource *iter, *shadow;
1685 	resource_size_t range_min, range_max, start;
1686 	const char *dev_n = dev_name(&device_obj->device);
1687 	int retval;
1688 
1689 	retval = -ENXIO;
1690 	down(&hyperv_mmio_lock);
1691 
1692 	/*
1693 	 * If overlaps with frame buffers are allowed, then first attempt to
1694 	 * make the allocation from within the reserved region.  Because it
1695 	 * is already reserved, no shadow allocation is necessary.
1696 	 */
1697 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1698 	    !(max < fb_mmio->start)) {
1699 
1700 		range_min = fb_mmio->start;
1701 		range_max = fb_mmio->end;
1702 		start = (range_min + align - 1) & ~(align - 1);
1703 		for (; start + size - 1 <= range_max; start += align) {
1704 			*new = request_mem_region_exclusive(start, size, dev_n);
1705 			if (*new) {
1706 				retval = 0;
1707 				goto exit;
1708 			}
1709 		}
1710 	}
1711 
1712 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1713 		if ((iter->start >= max) || (iter->end <= min))
1714 			continue;
1715 
1716 		range_min = iter->start;
1717 		range_max = iter->end;
1718 		start = (range_min + align - 1) & ~(align - 1);
1719 		for (; start + size - 1 <= range_max; start += align) {
1720 			shadow = __request_region(iter, start, size, NULL,
1721 						  IORESOURCE_BUSY);
1722 			if (!shadow)
1723 				continue;
1724 
1725 			*new = request_mem_region_exclusive(start, size, dev_n);
1726 			if (*new) {
1727 				shadow->name = (char *)*new;
1728 				retval = 0;
1729 				goto exit;
1730 			}
1731 
1732 			__release_region(iter, start, size);
1733 		}
1734 	}
1735 
1736 exit:
1737 	up(&hyperv_mmio_lock);
1738 	return retval;
1739 }
1740 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1741 
1742 /**
1743  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1744  * @start:		Base address of region to release.
1745  * @size:		Size of the range to be allocated
1746  *
1747  * This function releases anything requested by
1748  * vmbus_mmio_allocate().
1749  */
1750 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1751 {
1752 	struct resource *iter;
1753 
1754 	down(&hyperv_mmio_lock);
1755 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1756 		if ((iter->start >= start + size) || (iter->end <= start))
1757 			continue;
1758 
1759 		__release_region(iter, start, size);
1760 	}
1761 	release_mem_region(start, size);
1762 	up(&hyperv_mmio_lock);
1763 
1764 }
1765 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1766 
1767 static int vmbus_acpi_add(struct acpi_device *device)
1768 {
1769 	acpi_status result;
1770 	int ret_val = -ENODEV;
1771 	struct acpi_device *ancestor;
1772 
1773 	hv_acpi_dev = device;
1774 
1775 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1776 					vmbus_walk_resources, NULL);
1777 
1778 	if (ACPI_FAILURE(result))
1779 		goto acpi_walk_err;
1780 	/*
1781 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1782 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1783 	 */
1784 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1785 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1786 					     vmbus_walk_resources, NULL);
1787 
1788 		if (ACPI_FAILURE(result))
1789 			continue;
1790 		if (hyperv_mmio) {
1791 			vmbus_reserve_fb();
1792 			break;
1793 		}
1794 	}
1795 	ret_val = 0;
1796 
1797 acpi_walk_err:
1798 	complete(&probe_event);
1799 	if (ret_val)
1800 		vmbus_acpi_remove(device);
1801 	return ret_val;
1802 }
1803 
1804 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1805 	{"VMBUS", 0},
1806 	{"VMBus", 0},
1807 	{"", 0},
1808 };
1809 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1810 
1811 static struct acpi_driver vmbus_acpi_driver = {
1812 	.name = "vmbus",
1813 	.ids = vmbus_acpi_device_ids,
1814 	.ops = {
1815 		.add = vmbus_acpi_add,
1816 		.remove = vmbus_acpi_remove,
1817 	},
1818 };
1819 
1820 static void hv_kexec_handler(void)
1821 {
1822 	hv_synic_clockevents_cleanup();
1823 	vmbus_initiate_unload(false);
1824 	vmbus_connection.conn_state = DISCONNECTED;
1825 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1826 	mb();
1827 	cpuhp_remove_state(hyperv_cpuhp_online);
1828 	hyperv_cleanup();
1829 };
1830 
1831 static void hv_crash_handler(struct pt_regs *regs)
1832 {
1833 	vmbus_initiate_unload(true);
1834 	/*
1835 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1836 	 * doing the cleanup for current CPU only. This should be sufficient
1837 	 * for kdump.
1838 	 */
1839 	vmbus_connection.conn_state = DISCONNECTED;
1840 	hv_synic_cleanup(smp_processor_id());
1841 	hyperv_cleanup();
1842 };
1843 
1844 static int __init hv_acpi_init(void)
1845 {
1846 	int ret, t;
1847 
1848 	if (!hv_is_hyperv_initialized())
1849 		return -ENODEV;
1850 
1851 	init_completion(&probe_event);
1852 
1853 	/*
1854 	 * Get ACPI resources first.
1855 	 */
1856 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1857 
1858 	if (ret)
1859 		return ret;
1860 
1861 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1862 	if (t == 0) {
1863 		ret = -ETIMEDOUT;
1864 		goto cleanup;
1865 	}
1866 
1867 	ret = vmbus_bus_init();
1868 	if (ret)
1869 		goto cleanup;
1870 
1871 	hv_setup_kexec_handler(hv_kexec_handler);
1872 	hv_setup_crash_handler(hv_crash_handler);
1873 
1874 	return 0;
1875 
1876 cleanup:
1877 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1878 	hv_acpi_dev = NULL;
1879 	return ret;
1880 }
1881 
1882 static void __exit vmbus_exit(void)
1883 {
1884 	int cpu;
1885 
1886 	hv_remove_kexec_handler();
1887 	hv_remove_crash_handler();
1888 	vmbus_connection.conn_state = DISCONNECTED;
1889 	hv_synic_clockevents_cleanup();
1890 	vmbus_disconnect();
1891 	hv_remove_vmbus_irq();
1892 	for_each_online_cpu(cpu) {
1893 		struct hv_per_cpu_context *hv_cpu
1894 			= per_cpu_ptr(hv_context.cpu_context, cpu);
1895 
1896 		tasklet_kill(&hv_cpu->msg_dpc);
1897 	}
1898 	vmbus_free_channels();
1899 
1900 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1901 		kmsg_dump_unregister(&hv_kmsg_dumper);
1902 		unregister_die_notifier(&hyperv_die_block);
1903 		atomic_notifier_chain_unregister(&panic_notifier_list,
1904 						 &hyperv_panic_block);
1905 	}
1906 
1907 	free_page((unsigned long)hv_panic_page);
1908 	unregister_sysctl_table(hv_ctl_table_hdr);
1909 	hv_ctl_table_hdr = NULL;
1910 	bus_unregister(&hv_bus);
1911 
1912 	cpuhp_remove_state(hyperv_cpuhp_online);
1913 	hv_synic_free();
1914 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1915 }
1916 
1917 
1918 MODULE_LICENSE("GPL");
1919 
1920 subsys_initcall(hv_acpi_init);
1921 module_exit(vmbus_exit);
1922