xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision d6f3609d)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47 
48 struct vmbus_dynid {
49 	struct list_head node;
50 	struct hv_vmbus_device_id id;
51 };
52 
53 static struct acpi_device  *hv_acpi_dev;
54 
55 static struct completion probe_event;
56 
57 static int hyperv_cpuhp_online;
58 
59 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
60 			      void *args)
61 {
62 	struct pt_regs *regs;
63 
64 	regs = current_pt_regs();
65 
66 	hyperv_report_panic(regs);
67 	return NOTIFY_DONE;
68 }
69 
70 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
71 			    void *args)
72 {
73 	struct die_args *die = (struct die_args *)args;
74 	struct pt_regs *regs = die->regs;
75 
76 	hyperv_report_panic(regs);
77 	return NOTIFY_DONE;
78 }
79 
80 static struct notifier_block hyperv_die_block = {
81 	.notifier_call = hyperv_die_event,
82 };
83 static struct notifier_block hyperv_panic_block = {
84 	.notifier_call = hyperv_panic_event,
85 };
86 
87 static const char *fb_mmio_name = "fb_range";
88 static struct resource *fb_mmio;
89 static struct resource *hyperv_mmio;
90 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
91 
92 static int vmbus_exists(void)
93 {
94 	if (hv_acpi_dev == NULL)
95 		return -ENODEV;
96 
97 	return 0;
98 }
99 
100 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
101 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
102 {
103 	int i;
104 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
105 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
106 }
107 
108 static u8 channel_monitor_group(struct vmbus_channel *channel)
109 {
110 	return (u8)channel->offermsg.monitorid / 32;
111 }
112 
113 static u8 channel_monitor_offset(struct vmbus_channel *channel)
114 {
115 	return (u8)channel->offermsg.monitorid % 32;
116 }
117 
118 static u32 channel_pending(struct vmbus_channel *channel,
119 			   struct hv_monitor_page *monitor_page)
120 {
121 	u8 monitor_group = channel_monitor_group(channel);
122 	return monitor_page->trigger_group[monitor_group].pending;
123 }
124 
125 static u32 channel_latency(struct vmbus_channel *channel,
126 			   struct hv_monitor_page *monitor_page)
127 {
128 	u8 monitor_group = channel_monitor_group(channel);
129 	u8 monitor_offset = channel_monitor_offset(channel);
130 	return monitor_page->latency[monitor_group][monitor_offset];
131 }
132 
133 static u32 channel_conn_id(struct vmbus_channel *channel,
134 			   struct hv_monitor_page *monitor_page)
135 {
136 	u8 monitor_group = channel_monitor_group(channel);
137 	u8 monitor_offset = channel_monitor_offset(channel);
138 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
139 }
140 
141 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
142 		       char *buf)
143 {
144 	struct hv_device *hv_dev = device_to_hv_device(dev);
145 
146 	if (!hv_dev->channel)
147 		return -ENODEV;
148 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
149 }
150 static DEVICE_ATTR_RO(id);
151 
152 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
153 			  char *buf)
154 {
155 	struct hv_device *hv_dev = device_to_hv_device(dev);
156 
157 	if (!hv_dev->channel)
158 		return -ENODEV;
159 	return sprintf(buf, "%d\n", hv_dev->channel->state);
160 }
161 static DEVICE_ATTR_RO(state);
162 
163 static ssize_t monitor_id_show(struct device *dev,
164 			       struct device_attribute *dev_attr, char *buf)
165 {
166 	struct hv_device *hv_dev = device_to_hv_device(dev);
167 
168 	if (!hv_dev->channel)
169 		return -ENODEV;
170 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
171 }
172 static DEVICE_ATTR_RO(monitor_id);
173 
174 static ssize_t class_id_show(struct device *dev,
175 			       struct device_attribute *dev_attr, char *buf)
176 {
177 	struct hv_device *hv_dev = device_to_hv_device(dev);
178 
179 	if (!hv_dev->channel)
180 		return -ENODEV;
181 	return sprintf(buf, "{%pUl}\n",
182 		       hv_dev->channel->offermsg.offer.if_type.b);
183 }
184 static DEVICE_ATTR_RO(class_id);
185 
186 static ssize_t device_id_show(struct device *dev,
187 			      struct device_attribute *dev_attr, char *buf)
188 {
189 	struct hv_device *hv_dev = device_to_hv_device(dev);
190 
191 	if (!hv_dev->channel)
192 		return -ENODEV;
193 	return sprintf(buf, "{%pUl}\n",
194 		       hv_dev->channel->offermsg.offer.if_instance.b);
195 }
196 static DEVICE_ATTR_RO(device_id);
197 
198 static ssize_t modalias_show(struct device *dev,
199 			     struct device_attribute *dev_attr, char *buf)
200 {
201 	struct hv_device *hv_dev = device_to_hv_device(dev);
202 	char alias_name[VMBUS_ALIAS_LEN + 1];
203 
204 	print_alias_name(hv_dev, alias_name);
205 	return sprintf(buf, "vmbus:%s\n", alias_name);
206 }
207 static DEVICE_ATTR_RO(modalias);
208 
209 static ssize_t server_monitor_pending_show(struct device *dev,
210 					   struct device_attribute *dev_attr,
211 					   char *buf)
212 {
213 	struct hv_device *hv_dev = device_to_hv_device(dev);
214 
215 	if (!hv_dev->channel)
216 		return -ENODEV;
217 	return sprintf(buf, "%d\n",
218 		       channel_pending(hv_dev->channel,
219 				       vmbus_connection.monitor_pages[1]));
220 }
221 static DEVICE_ATTR_RO(server_monitor_pending);
222 
223 static ssize_t client_monitor_pending_show(struct device *dev,
224 					   struct device_attribute *dev_attr,
225 					   char *buf)
226 {
227 	struct hv_device *hv_dev = device_to_hv_device(dev);
228 
229 	if (!hv_dev->channel)
230 		return -ENODEV;
231 	return sprintf(buf, "%d\n",
232 		       channel_pending(hv_dev->channel,
233 				       vmbus_connection.monitor_pages[1]));
234 }
235 static DEVICE_ATTR_RO(client_monitor_pending);
236 
237 static ssize_t server_monitor_latency_show(struct device *dev,
238 					   struct device_attribute *dev_attr,
239 					   char *buf)
240 {
241 	struct hv_device *hv_dev = device_to_hv_device(dev);
242 
243 	if (!hv_dev->channel)
244 		return -ENODEV;
245 	return sprintf(buf, "%d\n",
246 		       channel_latency(hv_dev->channel,
247 				       vmbus_connection.monitor_pages[0]));
248 }
249 static DEVICE_ATTR_RO(server_monitor_latency);
250 
251 static ssize_t client_monitor_latency_show(struct device *dev,
252 					   struct device_attribute *dev_attr,
253 					   char *buf)
254 {
255 	struct hv_device *hv_dev = device_to_hv_device(dev);
256 
257 	if (!hv_dev->channel)
258 		return -ENODEV;
259 	return sprintf(buf, "%d\n",
260 		       channel_latency(hv_dev->channel,
261 				       vmbus_connection.monitor_pages[1]));
262 }
263 static DEVICE_ATTR_RO(client_monitor_latency);
264 
265 static ssize_t server_monitor_conn_id_show(struct device *dev,
266 					   struct device_attribute *dev_attr,
267 					   char *buf)
268 {
269 	struct hv_device *hv_dev = device_to_hv_device(dev);
270 
271 	if (!hv_dev->channel)
272 		return -ENODEV;
273 	return sprintf(buf, "%d\n",
274 		       channel_conn_id(hv_dev->channel,
275 				       vmbus_connection.monitor_pages[0]));
276 }
277 static DEVICE_ATTR_RO(server_monitor_conn_id);
278 
279 static ssize_t client_monitor_conn_id_show(struct device *dev,
280 					   struct device_attribute *dev_attr,
281 					   char *buf)
282 {
283 	struct hv_device *hv_dev = device_to_hv_device(dev);
284 
285 	if (!hv_dev->channel)
286 		return -ENODEV;
287 	return sprintf(buf, "%d\n",
288 		       channel_conn_id(hv_dev->channel,
289 				       vmbus_connection.monitor_pages[1]));
290 }
291 static DEVICE_ATTR_RO(client_monitor_conn_id);
292 
293 static ssize_t out_intr_mask_show(struct device *dev,
294 				  struct device_attribute *dev_attr, char *buf)
295 {
296 	struct hv_device *hv_dev = device_to_hv_device(dev);
297 	struct hv_ring_buffer_debug_info outbound;
298 
299 	if (!hv_dev->channel)
300 		return -ENODEV;
301 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
302 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
303 }
304 static DEVICE_ATTR_RO(out_intr_mask);
305 
306 static ssize_t out_read_index_show(struct device *dev,
307 				   struct device_attribute *dev_attr, char *buf)
308 {
309 	struct hv_device *hv_dev = device_to_hv_device(dev);
310 	struct hv_ring_buffer_debug_info outbound;
311 
312 	if (!hv_dev->channel)
313 		return -ENODEV;
314 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
315 	return sprintf(buf, "%d\n", outbound.current_read_index);
316 }
317 static DEVICE_ATTR_RO(out_read_index);
318 
319 static ssize_t out_write_index_show(struct device *dev,
320 				    struct device_attribute *dev_attr,
321 				    char *buf)
322 {
323 	struct hv_device *hv_dev = device_to_hv_device(dev);
324 	struct hv_ring_buffer_debug_info outbound;
325 
326 	if (!hv_dev->channel)
327 		return -ENODEV;
328 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
329 	return sprintf(buf, "%d\n", outbound.current_write_index);
330 }
331 static DEVICE_ATTR_RO(out_write_index);
332 
333 static ssize_t out_read_bytes_avail_show(struct device *dev,
334 					 struct device_attribute *dev_attr,
335 					 char *buf)
336 {
337 	struct hv_device *hv_dev = device_to_hv_device(dev);
338 	struct hv_ring_buffer_debug_info outbound;
339 
340 	if (!hv_dev->channel)
341 		return -ENODEV;
342 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
343 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
344 }
345 static DEVICE_ATTR_RO(out_read_bytes_avail);
346 
347 static ssize_t out_write_bytes_avail_show(struct device *dev,
348 					  struct device_attribute *dev_attr,
349 					  char *buf)
350 {
351 	struct hv_device *hv_dev = device_to_hv_device(dev);
352 	struct hv_ring_buffer_debug_info outbound;
353 
354 	if (!hv_dev->channel)
355 		return -ENODEV;
356 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
357 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
358 }
359 static DEVICE_ATTR_RO(out_write_bytes_avail);
360 
361 static ssize_t in_intr_mask_show(struct device *dev,
362 				 struct device_attribute *dev_attr, char *buf)
363 {
364 	struct hv_device *hv_dev = device_to_hv_device(dev);
365 	struct hv_ring_buffer_debug_info inbound;
366 
367 	if (!hv_dev->channel)
368 		return -ENODEV;
369 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
370 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
371 }
372 static DEVICE_ATTR_RO(in_intr_mask);
373 
374 static ssize_t in_read_index_show(struct device *dev,
375 				  struct device_attribute *dev_attr, char *buf)
376 {
377 	struct hv_device *hv_dev = device_to_hv_device(dev);
378 	struct hv_ring_buffer_debug_info inbound;
379 
380 	if (!hv_dev->channel)
381 		return -ENODEV;
382 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
383 	return sprintf(buf, "%d\n", inbound.current_read_index);
384 }
385 static DEVICE_ATTR_RO(in_read_index);
386 
387 static ssize_t in_write_index_show(struct device *dev,
388 				   struct device_attribute *dev_attr, char *buf)
389 {
390 	struct hv_device *hv_dev = device_to_hv_device(dev);
391 	struct hv_ring_buffer_debug_info inbound;
392 
393 	if (!hv_dev->channel)
394 		return -ENODEV;
395 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
396 	return sprintf(buf, "%d\n", inbound.current_write_index);
397 }
398 static DEVICE_ATTR_RO(in_write_index);
399 
400 static ssize_t in_read_bytes_avail_show(struct device *dev,
401 					struct device_attribute *dev_attr,
402 					char *buf)
403 {
404 	struct hv_device *hv_dev = device_to_hv_device(dev);
405 	struct hv_ring_buffer_debug_info inbound;
406 
407 	if (!hv_dev->channel)
408 		return -ENODEV;
409 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
410 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
411 }
412 static DEVICE_ATTR_RO(in_read_bytes_avail);
413 
414 static ssize_t in_write_bytes_avail_show(struct device *dev,
415 					 struct device_attribute *dev_attr,
416 					 char *buf)
417 {
418 	struct hv_device *hv_dev = device_to_hv_device(dev);
419 	struct hv_ring_buffer_debug_info inbound;
420 
421 	if (!hv_dev->channel)
422 		return -ENODEV;
423 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
424 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
425 }
426 static DEVICE_ATTR_RO(in_write_bytes_avail);
427 
428 static ssize_t channel_vp_mapping_show(struct device *dev,
429 				       struct device_attribute *dev_attr,
430 				       char *buf)
431 {
432 	struct hv_device *hv_dev = device_to_hv_device(dev);
433 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
434 	unsigned long flags;
435 	int buf_size = PAGE_SIZE, n_written, tot_written;
436 	struct list_head *cur;
437 
438 	if (!channel)
439 		return -ENODEV;
440 
441 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
442 		channel->offermsg.child_relid, channel->target_cpu);
443 
444 	spin_lock_irqsave(&channel->lock, flags);
445 
446 	list_for_each(cur, &channel->sc_list) {
447 		if (tot_written >= buf_size - 1)
448 			break;
449 
450 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
451 		n_written = scnprintf(buf + tot_written,
452 				     buf_size - tot_written,
453 				     "%u:%u\n",
454 				     cur_sc->offermsg.child_relid,
455 				     cur_sc->target_cpu);
456 		tot_written += n_written;
457 	}
458 
459 	spin_unlock_irqrestore(&channel->lock, flags);
460 
461 	return tot_written;
462 }
463 static DEVICE_ATTR_RO(channel_vp_mapping);
464 
465 static ssize_t vendor_show(struct device *dev,
466 			   struct device_attribute *dev_attr,
467 			   char *buf)
468 {
469 	struct hv_device *hv_dev = device_to_hv_device(dev);
470 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
471 }
472 static DEVICE_ATTR_RO(vendor);
473 
474 static ssize_t device_show(struct device *dev,
475 			   struct device_attribute *dev_attr,
476 			   char *buf)
477 {
478 	struct hv_device *hv_dev = device_to_hv_device(dev);
479 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
480 }
481 static DEVICE_ATTR_RO(device);
482 
483 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
484 static struct attribute *vmbus_dev_attrs[] = {
485 	&dev_attr_id.attr,
486 	&dev_attr_state.attr,
487 	&dev_attr_monitor_id.attr,
488 	&dev_attr_class_id.attr,
489 	&dev_attr_device_id.attr,
490 	&dev_attr_modalias.attr,
491 	&dev_attr_server_monitor_pending.attr,
492 	&dev_attr_client_monitor_pending.attr,
493 	&dev_attr_server_monitor_latency.attr,
494 	&dev_attr_client_monitor_latency.attr,
495 	&dev_attr_server_monitor_conn_id.attr,
496 	&dev_attr_client_monitor_conn_id.attr,
497 	&dev_attr_out_intr_mask.attr,
498 	&dev_attr_out_read_index.attr,
499 	&dev_attr_out_write_index.attr,
500 	&dev_attr_out_read_bytes_avail.attr,
501 	&dev_attr_out_write_bytes_avail.attr,
502 	&dev_attr_in_intr_mask.attr,
503 	&dev_attr_in_read_index.attr,
504 	&dev_attr_in_write_index.attr,
505 	&dev_attr_in_read_bytes_avail.attr,
506 	&dev_attr_in_write_bytes_avail.attr,
507 	&dev_attr_channel_vp_mapping.attr,
508 	&dev_attr_vendor.attr,
509 	&dev_attr_device.attr,
510 	NULL,
511 };
512 ATTRIBUTE_GROUPS(vmbus_dev);
513 
514 /*
515  * vmbus_uevent - add uevent for our device
516  *
517  * This routine is invoked when a device is added or removed on the vmbus to
518  * generate a uevent to udev in the userspace. The udev will then look at its
519  * rule and the uevent generated here to load the appropriate driver
520  *
521  * The alias string will be of the form vmbus:guid where guid is the string
522  * representation of the device guid (each byte of the guid will be
523  * represented with two hex characters.
524  */
525 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
526 {
527 	struct hv_device *dev = device_to_hv_device(device);
528 	int ret;
529 	char alias_name[VMBUS_ALIAS_LEN + 1];
530 
531 	print_alias_name(dev, alias_name);
532 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
533 	return ret;
534 }
535 
536 static const uuid_le null_guid;
537 
538 static inline bool is_null_guid(const uuid_le *guid)
539 {
540 	if (uuid_le_cmp(*guid, null_guid))
541 		return false;
542 	return true;
543 }
544 
545 /*
546  * Return a matching hv_vmbus_device_id pointer.
547  * If there is no match, return NULL.
548  */
549 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
550 					const uuid_le *guid)
551 {
552 	const struct hv_vmbus_device_id *id = NULL;
553 	struct vmbus_dynid *dynid;
554 
555 	/* Look at the dynamic ids first, before the static ones */
556 	spin_lock(&drv->dynids.lock);
557 	list_for_each_entry(dynid, &drv->dynids.list, node) {
558 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
559 			id = &dynid->id;
560 			break;
561 		}
562 	}
563 	spin_unlock(&drv->dynids.lock);
564 
565 	if (id)
566 		return id;
567 
568 	id = drv->id_table;
569 	if (id == NULL)
570 		return NULL; /* empty device table */
571 
572 	for (; !is_null_guid(&id->guid); id++)
573 		if (!uuid_le_cmp(id->guid, *guid))
574 			return id;
575 
576 	return NULL;
577 }
578 
579 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
580 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
581 {
582 	struct vmbus_dynid *dynid;
583 
584 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
585 	if (!dynid)
586 		return -ENOMEM;
587 
588 	dynid->id.guid = *guid;
589 
590 	spin_lock(&drv->dynids.lock);
591 	list_add_tail(&dynid->node, &drv->dynids.list);
592 	spin_unlock(&drv->dynids.lock);
593 
594 	return driver_attach(&drv->driver);
595 }
596 
597 static void vmbus_free_dynids(struct hv_driver *drv)
598 {
599 	struct vmbus_dynid *dynid, *n;
600 
601 	spin_lock(&drv->dynids.lock);
602 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
603 		list_del(&dynid->node);
604 		kfree(dynid);
605 	}
606 	spin_unlock(&drv->dynids.lock);
607 }
608 
609 /* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */
610 static int get_uuid_le(const char *str, uuid_le *uu)
611 {
612 	unsigned int b[16];
613 	int i;
614 
615 	if (strlen(str) < 37)
616 		return -1;
617 
618 	for (i = 0; i < 36; i++) {
619 		switch (i) {
620 		case 8: case 13: case 18: case 23:
621 			if (str[i] != '-')
622 				return -1;
623 			break;
624 		default:
625 			if (!isxdigit(str[i]))
626 				return -1;
627 		}
628 	}
629 
630 	/* unparse little endian output byte order */
631 	if (sscanf(str,
632 		   "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x",
633 		   &b[3], &b[2], &b[1], &b[0],
634 		   &b[5], &b[4], &b[7], &b[6], &b[8], &b[9],
635 		   &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16)
636 		return -1;
637 
638 	for (i = 0; i < 16; i++)
639 		uu->b[i] = b[i];
640 	return 0;
641 }
642 
643 /*
644  * store_new_id - sysfs frontend to vmbus_add_dynid()
645  *
646  * Allow GUIDs to be added to an existing driver via sysfs.
647  */
648 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
649 			    size_t count)
650 {
651 	struct hv_driver *drv = drv_to_hv_drv(driver);
652 	uuid_le guid = NULL_UUID_LE;
653 	ssize_t retval;
654 
655 	if (get_uuid_le(buf, &guid) != 0)
656 		return -EINVAL;
657 
658 	if (hv_vmbus_get_id(drv, &guid))
659 		return -EEXIST;
660 
661 	retval = vmbus_add_dynid(drv, &guid);
662 	if (retval)
663 		return retval;
664 	return count;
665 }
666 static DRIVER_ATTR_WO(new_id);
667 
668 /*
669  * store_remove_id - remove a PCI device ID from this driver
670  *
671  * Removes a dynamic pci device ID to this driver.
672  */
673 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
674 			       size_t count)
675 {
676 	struct hv_driver *drv = drv_to_hv_drv(driver);
677 	struct vmbus_dynid *dynid, *n;
678 	uuid_le guid = NULL_UUID_LE;
679 	size_t retval = -ENODEV;
680 
681 	if (get_uuid_le(buf, &guid))
682 		return -EINVAL;
683 
684 	spin_lock(&drv->dynids.lock);
685 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
686 		struct hv_vmbus_device_id *id = &dynid->id;
687 
688 		if (!uuid_le_cmp(id->guid, guid)) {
689 			list_del(&dynid->node);
690 			kfree(dynid);
691 			retval = count;
692 			break;
693 		}
694 	}
695 	spin_unlock(&drv->dynids.lock);
696 
697 	return retval;
698 }
699 static DRIVER_ATTR_WO(remove_id);
700 
701 static struct attribute *vmbus_drv_attrs[] = {
702 	&driver_attr_new_id.attr,
703 	&driver_attr_remove_id.attr,
704 	NULL,
705 };
706 ATTRIBUTE_GROUPS(vmbus_drv);
707 
708 
709 /*
710  * vmbus_match - Attempt to match the specified device to the specified driver
711  */
712 static int vmbus_match(struct device *device, struct device_driver *driver)
713 {
714 	struct hv_driver *drv = drv_to_hv_drv(driver);
715 	struct hv_device *hv_dev = device_to_hv_device(device);
716 
717 	/* The hv_sock driver handles all hv_sock offers. */
718 	if (is_hvsock_channel(hv_dev->channel))
719 		return drv->hvsock;
720 
721 	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
722 		return 1;
723 
724 	return 0;
725 }
726 
727 /*
728  * vmbus_probe - Add the new vmbus's child device
729  */
730 static int vmbus_probe(struct device *child_device)
731 {
732 	int ret = 0;
733 	struct hv_driver *drv =
734 			drv_to_hv_drv(child_device->driver);
735 	struct hv_device *dev = device_to_hv_device(child_device);
736 	const struct hv_vmbus_device_id *dev_id;
737 
738 	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
739 	if (drv->probe) {
740 		ret = drv->probe(dev, dev_id);
741 		if (ret != 0)
742 			pr_err("probe failed for device %s (%d)\n",
743 			       dev_name(child_device), ret);
744 
745 	} else {
746 		pr_err("probe not set for driver %s\n",
747 		       dev_name(child_device));
748 		ret = -ENODEV;
749 	}
750 	return ret;
751 }
752 
753 /*
754  * vmbus_remove - Remove a vmbus device
755  */
756 static int vmbus_remove(struct device *child_device)
757 {
758 	struct hv_driver *drv;
759 	struct hv_device *dev = device_to_hv_device(child_device);
760 
761 	if (child_device->driver) {
762 		drv = drv_to_hv_drv(child_device->driver);
763 		if (drv->remove)
764 			drv->remove(dev);
765 	}
766 
767 	return 0;
768 }
769 
770 
771 /*
772  * vmbus_shutdown - Shutdown a vmbus device
773  */
774 static void vmbus_shutdown(struct device *child_device)
775 {
776 	struct hv_driver *drv;
777 	struct hv_device *dev = device_to_hv_device(child_device);
778 
779 
780 	/* The device may not be attached yet */
781 	if (!child_device->driver)
782 		return;
783 
784 	drv = drv_to_hv_drv(child_device->driver);
785 
786 	if (drv->shutdown)
787 		drv->shutdown(dev);
788 
789 	return;
790 }
791 
792 
793 /*
794  * vmbus_device_release - Final callback release of the vmbus child device
795  */
796 static void vmbus_device_release(struct device *device)
797 {
798 	struct hv_device *hv_dev = device_to_hv_device(device);
799 	struct vmbus_channel *channel = hv_dev->channel;
800 
801 	hv_process_channel_removal(channel,
802 				   channel->offermsg.child_relid);
803 	kfree(hv_dev);
804 
805 }
806 
807 /* The one and only one */
808 static struct bus_type  hv_bus = {
809 	.name =		"vmbus",
810 	.match =		vmbus_match,
811 	.shutdown =		vmbus_shutdown,
812 	.remove =		vmbus_remove,
813 	.probe =		vmbus_probe,
814 	.uevent =		vmbus_uevent,
815 	.dev_groups =		vmbus_dev_groups,
816 	.drv_groups =		vmbus_drv_groups,
817 };
818 
819 struct onmessage_work_context {
820 	struct work_struct work;
821 	struct hv_message msg;
822 };
823 
824 static void vmbus_onmessage_work(struct work_struct *work)
825 {
826 	struct onmessage_work_context *ctx;
827 
828 	/* Do not process messages if we're in DISCONNECTED state */
829 	if (vmbus_connection.conn_state == DISCONNECTED)
830 		return;
831 
832 	ctx = container_of(work, struct onmessage_work_context,
833 			   work);
834 	vmbus_onmessage(&ctx->msg);
835 	kfree(ctx);
836 }
837 
838 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
839 {
840 	struct clock_event_device *dev = hv_context.clk_evt[cpu];
841 
842 	if (dev->event_handler)
843 		dev->event_handler(dev);
844 
845 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
846 }
847 
848 void vmbus_on_msg_dpc(unsigned long data)
849 {
850 	int cpu = smp_processor_id();
851 	void *page_addr = hv_context.synic_message_page[cpu];
852 	struct hv_message *msg = (struct hv_message *)page_addr +
853 				  VMBUS_MESSAGE_SINT;
854 	struct vmbus_channel_message_header *hdr;
855 	struct vmbus_channel_message_table_entry *entry;
856 	struct onmessage_work_context *ctx;
857 	u32 message_type = msg->header.message_type;
858 
859 	if (message_type == HVMSG_NONE)
860 		/* no msg */
861 		return;
862 
863 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
864 
865 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
866 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
867 		goto msg_handled;
868 	}
869 
870 	entry = &channel_message_table[hdr->msgtype];
871 	if (entry->handler_type	== VMHT_BLOCKING) {
872 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
873 		if (ctx == NULL)
874 			return;
875 
876 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
877 		memcpy(&ctx->msg, msg, sizeof(*msg));
878 
879 		queue_work(vmbus_connection.work_queue, &ctx->work);
880 	} else
881 		entry->message_handler(hdr);
882 
883 msg_handled:
884 	vmbus_signal_eom(msg, message_type);
885 }
886 
887 static void vmbus_isr(void)
888 {
889 	int cpu = smp_processor_id();
890 	void *page_addr;
891 	struct hv_message *msg;
892 	union hv_synic_event_flags *event;
893 	bool handled = false;
894 
895 	page_addr = hv_context.synic_event_page[cpu];
896 	if (page_addr == NULL)
897 		return;
898 
899 	event = (union hv_synic_event_flags *)page_addr +
900 					 VMBUS_MESSAGE_SINT;
901 	/*
902 	 * Check for events before checking for messages. This is the order
903 	 * in which events and messages are checked in Windows guests on
904 	 * Hyper-V, and the Windows team suggested we do the same.
905 	 */
906 
907 	if ((vmbus_proto_version == VERSION_WS2008) ||
908 		(vmbus_proto_version == VERSION_WIN7)) {
909 
910 		/* Since we are a child, we only need to check bit 0 */
911 		if (sync_test_and_clear_bit(0,
912 			(unsigned long *) &event->flags32[0])) {
913 			handled = true;
914 		}
915 	} else {
916 		/*
917 		 * Our host is win8 or above. The signaling mechanism
918 		 * has changed and we can directly look at the event page.
919 		 * If bit n is set then we have an interrup on the channel
920 		 * whose id is n.
921 		 */
922 		handled = true;
923 	}
924 
925 	if (handled)
926 		tasklet_schedule(hv_context.event_dpc[cpu]);
927 
928 
929 	page_addr = hv_context.synic_message_page[cpu];
930 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
931 
932 	/* Check if there are actual msgs to be processed */
933 	if (msg->header.message_type != HVMSG_NONE) {
934 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
935 			hv_process_timer_expiration(msg, cpu);
936 		else
937 			tasklet_schedule(hv_context.msg_dpc[cpu]);
938 	}
939 
940 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
941 }
942 
943 
944 /*
945  * vmbus_bus_init -Main vmbus driver initialization routine.
946  *
947  * Here, we
948  *	- initialize the vmbus driver context
949  *	- invoke the vmbus hv main init routine
950  *	- retrieve the channel offers
951  */
952 static int vmbus_bus_init(void)
953 {
954 	int ret;
955 
956 	/* Hypervisor initialization...setup hypercall page..etc */
957 	ret = hv_init();
958 	if (ret != 0) {
959 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
960 		return ret;
961 	}
962 
963 	ret = bus_register(&hv_bus);
964 	if (ret)
965 		return ret;
966 
967 	hv_setup_vmbus_irq(vmbus_isr);
968 
969 	ret = hv_synic_alloc();
970 	if (ret)
971 		goto err_alloc;
972 	/*
973 	 * Initialize the per-cpu interrupt state and
974 	 * connect to the host.
975 	 */
976 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
977 				hv_synic_init, hv_synic_cleanup);
978 	if (ret < 0)
979 		goto err_alloc;
980 	hyperv_cpuhp_online = ret;
981 
982 	ret = vmbus_connect();
983 	if (ret)
984 		goto err_connect;
985 
986 	/*
987 	 * Only register if the crash MSRs are available
988 	 */
989 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
990 		register_die_notifier(&hyperv_die_block);
991 		atomic_notifier_chain_register(&panic_notifier_list,
992 					       &hyperv_panic_block);
993 	}
994 
995 	vmbus_request_offers();
996 
997 	return 0;
998 
999 err_connect:
1000 	cpuhp_remove_state(hyperv_cpuhp_online);
1001 err_alloc:
1002 	hv_synic_free();
1003 	hv_remove_vmbus_irq();
1004 
1005 	bus_unregister(&hv_bus);
1006 
1007 	return ret;
1008 }
1009 
1010 /**
1011  * __vmbus_child_driver_register() - Register a vmbus's driver
1012  * @hv_driver: Pointer to driver structure you want to register
1013  * @owner: owner module of the drv
1014  * @mod_name: module name string
1015  *
1016  * Registers the given driver with Linux through the 'driver_register()' call
1017  * and sets up the hyper-v vmbus handling for this driver.
1018  * It will return the state of the 'driver_register()' call.
1019  *
1020  */
1021 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1022 {
1023 	int ret;
1024 
1025 	pr_info("registering driver %s\n", hv_driver->name);
1026 
1027 	ret = vmbus_exists();
1028 	if (ret < 0)
1029 		return ret;
1030 
1031 	hv_driver->driver.name = hv_driver->name;
1032 	hv_driver->driver.owner = owner;
1033 	hv_driver->driver.mod_name = mod_name;
1034 	hv_driver->driver.bus = &hv_bus;
1035 
1036 	spin_lock_init(&hv_driver->dynids.lock);
1037 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1038 
1039 	ret = driver_register(&hv_driver->driver);
1040 
1041 	return ret;
1042 }
1043 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1044 
1045 /**
1046  * vmbus_driver_unregister() - Unregister a vmbus's driver
1047  * @hv_driver: Pointer to driver structure you want to
1048  *             un-register
1049  *
1050  * Un-register the given driver that was previous registered with a call to
1051  * vmbus_driver_register()
1052  */
1053 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1054 {
1055 	pr_info("unregistering driver %s\n", hv_driver->name);
1056 
1057 	if (!vmbus_exists()) {
1058 		driver_unregister(&hv_driver->driver);
1059 		vmbus_free_dynids(hv_driver);
1060 	}
1061 }
1062 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1063 
1064 /*
1065  * vmbus_device_create - Creates and registers a new child device
1066  * on the vmbus.
1067  */
1068 struct hv_device *vmbus_device_create(const uuid_le *type,
1069 				      const uuid_le *instance,
1070 				      struct vmbus_channel *channel)
1071 {
1072 	struct hv_device *child_device_obj;
1073 
1074 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1075 	if (!child_device_obj) {
1076 		pr_err("Unable to allocate device object for child device\n");
1077 		return NULL;
1078 	}
1079 
1080 	child_device_obj->channel = channel;
1081 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1082 	memcpy(&child_device_obj->dev_instance, instance,
1083 	       sizeof(uuid_le));
1084 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1085 
1086 
1087 	return child_device_obj;
1088 }
1089 
1090 /*
1091  * vmbus_device_register - Register the child device
1092  */
1093 int vmbus_device_register(struct hv_device *child_device_obj)
1094 {
1095 	int ret = 0;
1096 
1097 	dev_set_name(&child_device_obj->device, "%pUl",
1098 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1099 
1100 	child_device_obj->device.bus = &hv_bus;
1101 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1102 	child_device_obj->device.release = vmbus_device_release;
1103 
1104 	/*
1105 	 * Register with the LDM. This will kick off the driver/device
1106 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1107 	 */
1108 	ret = device_register(&child_device_obj->device);
1109 
1110 	if (ret)
1111 		pr_err("Unable to register child device\n");
1112 	else
1113 		pr_debug("child device %s registered\n",
1114 			dev_name(&child_device_obj->device));
1115 
1116 	return ret;
1117 }
1118 
1119 /*
1120  * vmbus_device_unregister - Remove the specified child device
1121  * from the vmbus.
1122  */
1123 void vmbus_device_unregister(struct hv_device *device_obj)
1124 {
1125 	pr_debug("child device %s unregistered\n",
1126 		dev_name(&device_obj->device));
1127 
1128 	/*
1129 	 * Kick off the process of unregistering the device.
1130 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1131 	 */
1132 	device_unregister(&device_obj->device);
1133 }
1134 
1135 
1136 /*
1137  * VMBUS is an acpi enumerated device. Get the information we
1138  * need from DSDT.
1139  */
1140 #define VTPM_BASE_ADDRESS 0xfed40000
1141 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1142 {
1143 	resource_size_t start = 0;
1144 	resource_size_t end = 0;
1145 	struct resource *new_res;
1146 	struct resource **old_res = &hyperv_mmio;
1147 	struct resource **prev_res = NULL;
1148 
1149 	switch (res->type) {
1150 
1151 	/*
1152 	 * "Address" descriptors are for bus windows. Ignore
1153 	 * "memory" descriptors, which are for registers on
1154 	 * devices.
1155 	 */
1156 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1157 		start = res->data.address32.address.minimum;
1158 		end = res->data.address32.address.maximum;
1159 		break;
1160 
1161 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1162 		start = res->data.address64.address.minimum;
1163 		end = res->data.address64.address.maximum;
1164 		break;
1165 
1166 	default:
1167 		/* Unused resource type */
1168 		return AE_OK;
1169 
1170 	}
1171 	/*
1172 	 * Ignore ranges that are below 1MB, as they're not
1173 	 * necessary or useful here.
1174 	 */
1175 	if (end < 0x100000)
1176 		return AE_OK;
1177 
1178 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1179 	if (!new_res)
1180 		return AE_NO_MEMORY;
1181 
1182 	/* If this range overlaps the virtual TPM, truncate it. */
1183 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1184 		end = VTPM_BASE_ADDRESS;
1185 
1186 	new_res->name = "hyperv mmio";
1187 	new_res->flags = IORESOURCE_MEM;
1188 	new_res->start = start;
1189 	new_res->end = end;
1190 
1191 	/*
1192 	 * If two ranges are adjacent, merge them.
1193 	 */
1194 	do {
1195 		if (!*old_res) {
1196 			*old_res = new_res;
1197 			break;
1198 		}
1199 
1200 		if (((*old_res)->end + 1) == new_res->start) {
1201 			(*old_res)->end = new_res->end;
1202 			kfree(new_res);
1203 			break;
1204 		}
1205 
1206 		if ((*old_res)->start == new_res->end + 1) {
1207 			(*old_res)->start = new_res->start;
1208 			kfree(new_res);
1209 			break;
1210 		}
1211 
1212 		if ((*old_res)->start > new_res->end) {
1213 			new_res->sibling = *old_res;
1214 			if (prev_res)
1215 				(*prev_res)->sibling = new_res;
1216 			*old_res = new_res;
1217 			break;
1218 		}
1219 
1220 		prev_res = old_res;
1221 		old_res = &(*old_res)->sibling;
1222 
1223 	} while (1);
1224 
1225 	return AE_OK;
1226 }
1227 
1228 static int vmbus_acpi_remove(struct acpi_device *device)
1229 {
1230 	struct resource *cur_res;
1231 	struct resource *next_res;
1232 
1233 	if (hyperv_mmio) {
1234 		if (fb_mmio) {
1235 			__release_region(hyperv_mmio, fb_mmio->start,
1236 					 resource_size(fb_mmio));
1237 			fb_mmio = NULL;
1238 		}
1239 
1240 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1241 			next_res = cur_res->sibling;
1242 			kfree(cur_res);
1243 		}
1244 	}
1245 
1246 	return 0;
1247 }
1248 
1249 static void vmbus_reserve_fb(void)
1250 {
1251 	int size;
1252 	/*
1253 	 * Make a claim for the frame buffer in the resource tree under the
1254 	 * first node, which will be the one below 4GB.  The length seems to
1255 	 * be underreported, particularly in a Generation 1 VM.  So start out
1256 	 * reserving a larger area and make it smaller until it succeeds.
1257 	 */
1258 
1259 	if (screen_info.lfb_base) {
1260 		if (efi_enabled(EFI_BOOT))
1261 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1262 		else
1263 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1264 
1265 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1266 			fb_mmio = __request_region(hyperv_mmio,
1267 						   screen_info.lfb_base, size,
1268 						   fb_mmio_name, 0);
1269 		}
1270 	}
1271 }
1272 
1273 /**
1274  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1275  * @new:		If successful, supplied a pointer to the
1276  *			allocated MMIO space.
1277  * @device_obj:		Identifies the caller
1278  * @min:		Minimum guest physical address of the
1279  *			allocation
1280  * @max:		Maximum guest physical address
1281  * @size:		Size of the range to be allocated
1282  * @align:		Alignment of the range to be allocated
1283  * @fb_overlap_ok:	Whether this allocation can be allowed
1284  *			to overlap the video frame buffer.
1285  *
1286  * This function walks the resources granted to VMBus by the
1287  * _CRS object in the ACPI namespace underneath the parent
1288  * "bridge" whether that's a root PCI bus in the Generation 1
1289  * case or a Module Device in the Generation 2 case.  It then
1290  * attempts to allocate from the global MMIO pool in a way that
1291  * matches the constraints supplied in these parameters and by
1292  * that _CRS.
1293  *
1294  * Return: 0 on success, -errno on failure
1295  */
1296 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1297 			resource_size_t min, resource_size_t max,
1298 			resource_size_t size, resource_size_t align,
1299 			bool fb_overlap_ok)
1300 {
1301 	struct resource *iter, *shadow;
1302 	resource_size_t range_min, range_max, start;
1303 	const char *dev_n = dev_name(&device_obj->device);
1304 	int retval;
1305 
1306 	retval = -ENXIO;
1307 	down(&hyperv_mmio_lock);
1308 
1309 	/*
1310 	 * If overlaps with frame buffers are allowed, then first attempt to
1311 	 * make the allocation from within the reserved region.  Because it
1312 	 * is already reserved, no shadow allocation is necessary.
1313 	 */
1314 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1315 	    !(max < fb_mmio->start)) {
1316 
1317 		range_min = fb_mmio->start;
1318 		range_max = fb_mmio->end;
1319 		start = (range_min + align - 1) & ~(align - 1);
1320 		for (; start + size - 1 <= range_max; start += align) {
1321 			*new = request_mem_region_exclusive(start, size, dev_n);
1322 			if (*new) {
1323 				retval = 0;
1324 				goto exit;
1325 			}
1326 		}
1327 	}
1328 
1329 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1330 		if ((iter->start >= max) || (iter->end <= min))
1331 			continue;
1332 
1333 		range_min = iter->start;
1334 		range_max = iter->end;
1335 		start = (range_min + align - 1) & ~(align - 1);
1336 		for (; start + size - 1 <= range_max; start += align) {
1337 			shadow = __request_region(iter, start, size, NULL,
1338 						  IORESOURCE_BUSY);
1339 			if (!shadow)
1340 				continue;
1341 
1342 			*new = request_mem_region_exclusive(start, size, dev_n);
1343 			if (*new) {
1344 				shadow->name = (char *)*new;
1345 				retval = 0;
1346 				goto exit;
1347 			}
1348 
1349 			__release_region(iter, start, size);
1350 		}
1351 	}
1352 
1353 exit:
1354 	up(&hyperv_mmio_lock);
1355 	return retval;
1356 }
1357 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1358 
1359 /**
1360  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1361  * @start:		Base address of region to release.
1362  * @size:		Size of the range to be allocated
1363  *
1364  * This function releases anything requested by
1365  * vmbus_mmio_allocate().
1366  */
1367 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1368 {
1369 	struct resource *iter;
1370 
1371 	down(&hyperv_mmio_lock);
1372 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1373 		if ((iter->start >= start + size) || (iter->end <= start))
1374 			continue;
1375 
1376 		__release_region(iter, start, size);
1377 	}
1378 	release_mem_region(start, size);
1379 	up(&hyperv_mmio_lock);
1380 
1381 }
1382 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1383 
1384 /**
1385  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1386  * @cpu_number: CPU number in Linux terms
1387  *
1388  * This function returns the mapping between the Linux processor
1389  * number and the hypervisor's virtual processor number, useful
1390  * in making hypercalls and such that talk about specific
1391  * processors.
1392  *
1393  * Return: Virtual processor number in Hyper-V terms
1394  */
1395 int vmbus_cpu_number_to_vp_number(int cpu_number)
1396 {
1397 	return hv_context.vp_index[cpu_number];
1398 }
1399 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1400 
1401 static int vmbus_acpi_add(struct acpi_device *device)
1402 {
1403 	acpi_status result;
1404 	int ret_val = -ENODEV;
1405 	struct acpi_device *ancestor;
1406 
1407 	hv_acpi_dev = device;
1408 
1409 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1410 					vmbus_walk_resources, NULL);
1411 
1412 	if (ACPI_FAILURE(result))
1413 		goto acpi_walk_err;
1414 	/*
1415 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1416 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1417 	 */
1418 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1419 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1420 					     vmbus_walk_resources, NULL);
1421 
1422 		if (ACPI_FAILURE(result))
1423 			continue;
1424 		if (hyperv_mmio) {
1425 			vmbus_reserve_fb();
1426 			break;
1427 		}
1428 	}
1429 	ret_val = 0;
1430 
1431 acpi_walk_err:
1432 	complete(&probe_event);
1433 	if (ret_val)
1434 		vmbus_acpi_remove(device);
1435 	return ret_val;
1436 }
1437 
1438 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1439 	{"VMBUS", 0},
1440 	{"VMBus", 0},
1441 	{"", 0},
1442 };
1443 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1444 
1445 static struct acpi_driver vmbus_acpi_driver = {
1446 	.name = "vmbus",
1447 	.ids = vmbus_acpi_device_ids,
1448 	.ops = {
1449 		.add = vmbus_acpi_add,
1450 		.remove = vmbus_acpi_remove,
1451 	},
1452 };
1453 
1454 static void hv_kexec_handler(void)
1455 {
1456 	hv_synic_clockevents_cleanup();
1457 	vmbus_initiate_unload(false);
1458 	vmbus_connection.conn_state = DISCONNECTED;
1459 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1460 	mb();
1461 	cpuhp_remove_state(hyperv_cpuhp_online);
1462 	hyperv_cleanup();
1463 };
1464 
1465 static void hv_crash_handler(struct pt_regs *regs)
1466 {
1467 	vmbus_initiate_unload(true);
1468 	/*
1469 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1470 	 * doing the cleanup for current CPU only. This should be sufficient
1471 	 * for kdump.
1472 	 */
1473 	vmbus_connection.conn_state = DISCONNECTED;
1474 	hv_synic_cleanup(smp_processor_id());
1475 	hyperv_cleanup();
1476 };
1477 
1478 static int __init hv_acpi_init(void)
1479 {
1480 	int ret, t;
1481 
1482 	if (x86_hyper != &x86_hyper_ms_hyperv)
1483 		return -ENODEV;
1484 
1485 	init_completion(&probe_event);
1486 
1487 	/*
1488 	 * Get ACPI resources first.
1489 	 */
1490 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1491 
1492 	if (ret)
1493 		return ret;
1494 
1495 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1496 	if (t == 0) {
1497 		ret = -ETIMEDOUT;
1498 		goto cleanup;
1499 	}
1500 
1501 	ret = vmbus_bus_init();
1502 	if (ret)
1503 		goto cleanup;
1504 
1505 	hv_setup_kexec_handler(hv_kexec_handler);
1506 	hv_setup_crash_handler(hv_crash_handler);
1507 
1508 	return 0;
1509 
1510 cleanup:
1511 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1512 	hv_acpi_dev = NULL;
1513 	return ret;
1514 }
1515 
1516 static void __exit vmbus_exit(void)
1517 {
1518 	int cpu;
1519 
1520 	hv_remove_kexec_handler();
1521 	hv_remove_crash_handler();
1522 	vmbus_connection.conn_state = DISCONNECTED;
1523 	hv_synic_clockevents_cleanup();
1524 	vmbus_disconnect();
1525 	hv_remove_vmbus_irq();
1526 	for_each_online_cpu(cpu)
1527 		tasklet_kill(hv_context.msg_dpc[cpu]);
1528 	vmbus_free_channels();
1529 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1530 		unregister_die_notifier(&hyperv_die_block);
1531 		atomic_notifier_chain_unregister(&panic_notifier_list,
1532 						 &hyperv_panic_block);
1533 	}
1534 	bus_unregister(&hv_bus);
1535 	for_each_online_cpu(cpu) {
1536 		tasklet_kill(hv_context.event_dpc[cpu]);
1537 	}
1538 	cpuhp_remove_state(hyperv_cpuhp_online);
1539 	hv_synic_free();
1540 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1541 }
1542 
1543 
1544 MODULE_LICENSE("GPL");
1545 
1546 subsys_initcall(hv_acpi_init);
1547 module_exit(vmbus_exit);
1548