xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision d159037a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
25 
26 #include <linux/delay.h>
27 #include <linux/notifier.h>
28 #include <linux/panic_notifier.h>
29 #include <linux/ptrace.h>
30 #include <linux/screen_info.h>
31 #include <linux/kdebug.h>
32 #include <linux/efi.h>
33 #include <linux/random.h>
34 #include <linux/kernel.h>
35 #include <linux/syscore_ops.h>
36 #include <clocksource/hyperv_timer.h>
37 #include "hyperv_vmbus.h"
38 
39 struct vmbus_dynid {
40 	struct list_head node;
41 	struct hv_vmbus_device_id id;
42 };
43 
44 static struct acpi_device  *hv_acpi_dev;
45 
46 static struct completion probe_event;
47 
48 static int hyperv_cpuhp_online;
49 
50 static void *hv_panic_page;
51 
52 static long __percpu *vmbus_evt;
53 
54 /* Values parsed from ACPI DSDT */
55 int vmbus_irq;
56 int vmbus_interrupt;
57 
58 /*
59  * Boolean to control whether to report panic messages over Hyper-V.
60  *
61  * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
62  */
63 static int sysctl_record_panic_msg = 1;
64 
65 static int hyperv_report_reg(void)
66 {
67 	return !sysctl_record_panic_msg || !hv_panic_page;
68 }
69 
70 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
71 			      void *args)
72 {
73 	struct pt_regs *regs;
74 
75 	vmbus_initiate_unload(true);
76 
77 	/*
78 	 * Hyper-V should be notified only once about a panic.  If we will be
79 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
80 	 * the notification here.
81 	 */
82 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
83 	    && hyperv_report_reg()) {
84 		regs = current_pt_regs();
85 		hyperv_report_panic(regs, val, false);
86 	}
87 	return NOTIFY_DONE;
88 }
89 
90 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
91 			    void *args)
92 {
93 	struct die_args *die = args;
94 	struct pt_regs *regs = die->regs;
95 
96 	/* Don't notify Hyper-V if the die event is other than oops */
97 	if (val != DIE_OOPS)
98 		return NOTIFY_DONE;
99 
100 	/*
101 	 * Hyper-V should be notified only once about a panic.  If we will be
102 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
103 	 * the notification here.
104 	 */
105 	if (hyperv_report_reg())
106 		hyperv_report_panic(regs, val, true);
107 	return NOTIFY_DONE;
108 }
109 
110 static struct notifier_block hyperv_die_block = {
111 	.notifier_call = hyperv_die_event,
112 };
113 static struct notifier_block hyperv_panic_block = {
114 	.notifier_call = hyperv_panic_event,
115 };
116 
117 static const char *fb_mmio_name = "fb_range";
118 static struct resource *fb_mmio;
119 static struct resource *hyperv_mmio;
120 static DEFINE_MUTEX(hyperv_mmio_lock);
121 
122 static int vmbus_exists(void)
123 {
124 	if (hv_acpi_dev == NULL)
125 		return -ENODEV;
126 
127 	return 0;
128 }
129 
130 static u8 channel_monitor_group(const struct vmbus_channel *channel)
131 {
132 	return (u8)channel->offermsg.monitorid / 32;
133 }
134 
135 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
136 {
137 	return (u8)channel->offermsg.monitorid % 32;
138 }
139 
140 static u32 channel_pending(const struct vmbus_channel *channel,
141 			   const struct hv_monitor_page *monitor_page)
142 {
143 	u8 monitor_group = channel_monitor_group(channel);
144 
145 	return monitor_page->trigger_group[monitor_group].pending;
146 }
147 
148 static u32 channel_latency(const struct vmbus_channel *channel,
149 			   const struct hv_monitor_page *monitor_page)
150 {
151 	u8 monitor_group = channel_monitor_group(channel);
152 	u8 monitor_offset = channel_monitor_offset(channel);
153 
154 	return monitor_page->latency[monitor_group][monitor_offset];
155 }
156 
157 static u32 channel_conn_id(struct vmbus_channel *channel,
158 			   struct hv_monitor_page *monitor_page)
159 {
160 	u8 monitor_group = channel_monitor_group(channel);
161 	u8 monitor_offset = channel_monitor_offset(channel);
162 
163 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
164 }
165 
166 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
167 		       char *buf)
168 {
169 	struct hv_device *hv_dev = device_to_hv_device(dev);
170 
171 	if (!hv_dev->channel)
172 		return -ENODEV;
173 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
174 }
175 static DEVICE_ATTR_RO(id);
176 
177 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
178 			  char *buf)
179 {
180 	struct hv_device *hv_dev = device_to_hv_device(dev);
181 
182 	if (!hv_dev->channel)
183 		return -ENODEV;
184 	return sprintf(buf, "%d\n", hv_dev->channel->state);
185 }
186 static DEVICE_ATTR_RO(state);
187 
188 static ssize_t monitor_id_show(struct device *dev,
189 			       struct device_attribute *dev_attr, char *buf)
190 {
191 	struct hv_device *hv_dev = device_to_hv_device(dev);
192 
193 	if (!hv_dev->channel)
194 		return -ENODEV;
195 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
196 }
197 static DEVICE_ATTR_RO(monitor_id);
198 
199 static ssize_t class_id_show(struct device *dev,
200 			       struct device_attribute *dev_attr, char *buf)
201 {
202 	struct hv_device *hv_dev = device_to_hv_device(dev);
203 
204 	if (!hv_dev->channel)
205 		return -ENODEV;
206 	return sprintf(buf, "{%pUl}\n",
207 		       &hv_dev->channel->offermsg.offer.if_type);
208 }
209 static DEVICE_ATTR_RO(class_id);
210 
211 static ssize_t device_id_show(struct device *dev,
212 			      struct device_attribute *dev_attr, char *buf)
213 {
214 	struct hv_device *hv_dev = device_to_hv_device(dev);
215 
216 	if (!hv_dev->channel)
217 		return -ENODEV;
218 	return sprintf(buf, "{%pUl}\n",
219 		       &hv_dev->channel->offermsg.offer.if_instance);
220 }
221 static DEVICE_ATTR_RO(device_id);
222 
223 static ssize_t modalias_show(struct device *dev,
224 			     struct device_attribute *dev_attr, char *buf)
225 {
226 	struct hv_device *hv_dev = device_to_hv_device(dev);
227 
228 	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
229 }
230 static DEVICE_ATTR_RO(modalias);
231 
232 #ifdef CONFIG_NUMA
233 static ssize_t numa_node_show(struct device *dev,
234 			      struct device_attribute *attr, char *buf)
235 {
236 	struct hv_device *hv_dev = device_to_hv_device(dev);
237 
238 	if (!hv_dev->channel)
239 		return -ENODEV;
240 
241 	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
242 }
243 static DEVICE_ATTR_RO(numa_node);
244 #endif
245 
246 static ssize_t server_monitor_pending_show(struct device *dev,
247 					   struct device_attribute *dev_attr,
248 					   char *buf)
249 {
250 	struct hv_device *hv_dev = device_to_hv_device(dev);
251 
252 	if (!hv_dev->channel)
253 		return -ENODEV;
254 	return sprintf(buf, "%d\n",
255 		       channel_pending(hv_dev->channel,
256 				       vmbus_connection.monitor_pages[0]));
257 }
258 static DEVICE_ATTR_RO(server_monitor_pending);
259 
260 static ssize_t client_monitor_pending_show(struct device *dev,
261 					   struct device_attribute *dev_attr,
262 					   char *buf)
263 {
264 	struct hv_device *hv_dev = device_to_hv_device(dev);
265 
266 	if (!hv_dev->channel)
267 		return -ENODEV;
268 	return sprintf(buf, "%d\n",
269 		       channel_pending(hv_dev->channel,
270 				       vmbus_connection.monitor_pages[1]));
271 }
272 static DEVICE_ATTR_RO(client_monitor_pending);
273 
274 static ssize_t server_monitor_latency_show(struct device *dev,
275 					   struct device_attribute *dev_attr,
276 					   char *buf)
277 {
278 	struct hv_device *hv_dev = device_to_hv_device(dev);
279 
280 	if (!hv_dev->channel)
281 		return -ENODEV;
282 	return sprintf(buf, "%d\n",
283 		       channel_latency(hv_dev->channel,
284 				       vmbus_connection.monitor_pages[0]));
285 }
286 static DEVICE_ATTR_RO(server_monitor_latency);
287 
288 static ssize_t client_monitor_latency_show(struct device *dev,
289 					   struct device_attribute *dev_attr,
290 					   char *buf)
291 {
292 	struct hv_device *hv_dev = device_to_hv_device(dev);
293 
294 	if (!hv_dev->channel)
295 		return -ENODEV;
296 	return sprintf(buf, "%d\n",
297 		       channel_latency(hv_dev->channel,
298 				       vmbus_connection.monitor_pages[1]));
299 }
300 static DEVICE_ATTR_RO(client_monitor_latency);
301 
302 static ssize_t server_monitor_conn_id_show(struct device *dev,
303 					   struct device_attribute *dev_attr,
304 					   char *buf)
305 {
306 	struct hv_device *hv_dev = device_to_hv_device(dev);
307 
308 	if (!hv_dev->channel)
309 		return -ENODEV;
310 	return sprintf(buf, "%d\n",
311 		       channel_conn_id(hv_dev->channel,
312 				       vmbus_connection.monitor_pages[0]));
313 }
314 static DEVICE_ATTR_RO(server_monitor_conn_id);
315 
316 static ssize_t client_monitor_conn_id_show(struct device *dev,
317 					   struct device_attribute *dev_attr,
318 					   char *buf)
319 {
320 	struct hv_device *hv_dev = device_to_hv_device(dev);
321 
322 	if (!hv_dev->channel)
323 		return -ENODEV;
324 	return sprintf(buf, "%d\n",
325 		       channel_conn_id(hv_dev->channel,
326 				       vmbus_connection.monitor_pages[1]));
327 }
328 static DEVICE_ATTR_RO(client_monitor_conn_id);
329 
330 static ssize_t out_intr_mask_show(struct device *dev,
331 				  struct device_attribute *dev_attr, char *buf)
332 {
333 	struct hv_device *hv_dev = device_to_hv_device(dev);
334 	struct hv_ring_buffer_debug_info outbound;
335 	int ret;
336 
337 	if (!hv_dev->channel)
338 		return -ENODEV;
339 
340 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
341 					  &outbound);
342 	if (ret < 0)
343 		return ret;
344 
345 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
346 }
347 static DEVICE_ATTR_RO(out_intr_mask);
348 
349 static ssize_t out_read_index_show(struct device *dev,
350 				   struct device_attribute *dev_attr, char *buf)
351 {
352 	struct hv_device *hv_dev = device_to_hv_device(dev);
353 	struct hv_ring_buffer_debug_info outbound;
354 	int ret;
355 
356 	if (!hv_dev->channel)
357 		return -ENODEV;
358 
359 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
360 					  &outbound);
361 	if (ret < 0)
362 		return ret;
363 	return sprintf(buf, "%d\n", outbound.current_read_index);
364 }
365 static DEVICE_ATTR_RO(out_read_index);
366 
367 static ssize_t out_write_index_show(struct device *dev,
368 				    struct device_attribute *dev_attr,
369 				    char *buf)
370 {
371 	struct hv_device *hv_dev = device_to_hv_device(dev);
372 	struct hv_ring_buffer_debug_info outbound;
373 	int ret;
374 
375 	if (!hv_dev->channel)
376 		return -ENODEV;
377 
378 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
379 					  &outbound);
380 	if (ret < 0)
381 		return ret;
382 	return sprintf(buf, "%d\n", outbound.current_write_index);
383 }
384 static DEVICE_ATTR_RO(out_write_index);
385 
386 static ssize_t out_read_bytes_avail_show(struct device *dev,
387 					 struct device_attribute *dev_attr,
388 					 char *buf)
389 {
390 	struct hv_device *hv_dev = device_to_hv_device(dev);
391 	struct hv_ring_buffer_debug_info outbound;
392 	int ret;
393 
394 	if (!hv_dev->channel)
395 		return -ENODEV;
396 
397 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
398 					  &outbound);
399 	if (ret < 0)
400 		return ret;
401 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
402 }
403 static DEVICE_ATTR_RO(out_read_bytes_avail);
404 
405 static ssize_t out_write_bytes_avail_show(struct device *dev,
406 					  struct device_attribute *dev_attr,
407 					  char *buf)
408 {
409 	struct hv_device *hv_dev = device_to_hv_device(dev);
410 	struct hv_ring_buffer_debug_info outbound;
411 	int ret;
412 
413 	if (!hv_dev->channel)
414 		return -ENODEV;
415 
416 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
417 					  &outbound);
418 	if (ret < 0)
419 		return ret;
420 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
421 }
422 static DEVICE_ATTR_RO(out_write_bytes_avail);
423 
424 static ssize_t in_intr_mask_show(struct device *dev,
425 				 struct device_attribute *dev_attr, char *buf)
426 {
427 	struct hv_device *hv_dev = device_to_hv_device(dev);
428 	struct hv_ring_buffer_debug_info inbound;
429 	int ret;
430 
431 	if (!hv_dev->channel)
432 		return -ENODEV;
433 
434 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
435 	if (ret < 0)
436 		return ret;
437 
438 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
439 }
440 static DEVICE_ATTR_RO(in_intr_mask);
441 
442 static ssize_t in_read_index_show(struct device *dev,
443 				  struct device_attribute *dev_attr, char *buf)
444 {
445 	struct hv_device *hv_dev = device_to_hv_device(dev);
446 	struct hv_ring_buffer_debug_info inbound;
447 	int ret;
448 
449 	if (!hv_dev->channel)
450 		return -ENODEV;
451 
452 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
453 	if (ret < 0)
454 		return ret;
455 
456 	return sprintf(buf, "%d\n", inbound.current_read_index);
457 }
458 static DEVICE_ATTR_RO(in_read_index);
459 
460 static ssize_t in_write_index_show(struct device *dev,
461 				   struct device_attribute *dev_attr, char *buf)
462 {
463 	struct hv_device *hv_dev = device_to_hv_device(dev);
464 	struct hv_ring_buffer_debug_info inbound;
465 	int ret;
466 
467 	if (!hv_dev->channel)
468 		return -ENODEV;
469 
470 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
471 	if (ret < 0)
472 		return ret;
473 
474 	return sprintf(buf, "%d\n", inbound.current_write_index);
475 }
476 static DEVICE_ATTR_RO(in_write_index);
477 
478 static ssize_t in_read_bytes_avail_show(struct device *dev,
479 					struct device_attribute *dev_attr,
480 					char *buf)
481 {
482 	struct hv_device *hv_dev = device_to_hv_device(dev);
483 	struct hv_ring_buffer_debug_info inbound;
484 	int ret;
485 
486 	if (!hv_dev->channel)
487 		return -ENODEV;
488 
489 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
490 	if (ret < 0)
491 		return ret;
492 
493 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
494 }
495 static DEVICE_ATTR_RO(in_read_bytes_avail);
496 
497 static ssize_t in_write_bytes_avail_show(struct device *dev,
498 					 struct device_attribute *dev_attr,
499 					 char *buf)
500 {
501 	struct hv_device *hv_dev = device_to_hv_device(dev);
502 	struct hv_ring_buffer_debug_info inbound;
503 	int ret;
504 
505 	if (!hv_dev->channel)
506 		return -ENODEV;
507 
508 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
509 	if (ret < 0)
510 		return ret;
511 
512 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
513 }
514 static DEVICE_ATTR_RO(in_write_bytes_avail);
515 
516 static ssize_t channel_vp_mapping_show(struct device *dev,
517 				       struct device_attribute *dev_attr,
518 				       char *buf)
519 {
520 	struct hv_device *hv_dev = device_to_hv_device(dev);
521 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
522 	int buf_size = PAGE_SIZE, n_written, tot_written;
523 	struct list_head *cur;
524 
525 	if (!channel)
526 		return -ENODEV;
527 
528 	mutex_lock(&vmbus_connection.channel_mutex);
529 
530 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
531 		channel->offermsg.child_relid, channel->target_cpu);
532 
533 	list_for_each(cur, &channel->sc_list) {
534 		if (tot_written >= buf_size - 1)
535 			break;
536 
537 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
538 		n_written = scnprintf(buf + tot_written,
539 				     buf_size - tot_written,
540 				     "%u:%u\n",
541 				     cur_sc->offermsg.child_relid,
542 				     cur_sc->target_cpu);
543 		tot_written += n_written;
544 	}
545 
546 	mutex_unlock(&vmbus_connection.channel_mutex);
547 
548 	return tot_written;
549 }
550 static DEVICE_ATTR_RO(channel_vp_mapping);
551 
552 static ssize_t vendor_show(struct device *dev,
553 			   struct device_attribute *dev_attr,
554 			   char *buf)
555 {
556 	struct hv_device *hv_dev = device_to_hv_device(dev);
557 
558 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
559 }
560 static DEVICE_ATTR_RO(vendor);
561 
562 static ssize_t device_show(struct device *dev,
563 			   struct device_attribute *dev_attr,
564 			   char *buf)
565 {
566 	struct hv_device *hv_dev = device_to_hv_device(dev);
567 
568 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
569 }
570 static DEVICE_ATTR_RO(device);
571 
572 static ssize_t driver_override_store(struct device *dev,
573 				     struct device_attribute *attr,
574 				     const char *buf, size_t count)
575 {
576 	struct hv_device *hv_dev = device_to_hv_device(dev);
577 	char *driver_override, *old, *cp;
578 
579 	/* We need to keep extra room for a newline */
580 	if (count >= (PAGE_SIZE - 1))
581 		return -EINVAL;
582 
583 	driver_override = kstrndup(buf, count, GFP_KERNEL);
584 	if (!driver_override)
585 		return -ENOMEM;
586 
587 	cp = strchr(driver_override, '\n');
588 	if (cp)
589 		*cp = '\0';
590 
591 	device_lock(dev);
592 	old = hv_dev->driver_override;
593 	if (strlen(driver_override)) {
594 		hv_dev->driver_override = driver_override;
595 	} else {
596 		kfree(driver_override);
597 		hv_dev->driver_override = NULL;
598 	}
599 	device_unlock(dev);
600 
601 	kfree(old);
602 
603 	return count;
604 }
605 
606 static ssize_t driver_override_show(struct device *dev,
607 				    struct device_attribute *attr, char *buf)
608 {
609 	struct hv_device *hv_dev = device_to_hv_device(dev);
610 	ssize_t len;
611 
612 	device_lock(dev);
613 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
614 	device_unlock(dev);
615 
616 	return len;
617 }
618 static DEVICE_ATTR_RW(driver_override);
619 
620 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
621 static struct attribute *vmbus_dev_attrs[] = {
622 	&dev_attr_id.attr,
623 	&dev_attr_state.attr,
624 	&dev_attr_monitor_id.attr,
625 	&dev_attr_class_id.attr,
626 	&dev_attr_device_id.attr,
627 	&dev_attr_modalias.attr,
628 #ifdef CONFIG_NUMA
629 	&dev_attr_numa_node.attr,
630 #endif
631 	&dev_attr_server_monitor_pending.attr,
632 	&dev_attr_client_monitor_pending.attr,
633 	&dev_attr_server_monitor_latency.attr,
634 	&dev_attr_client_monitor_latency.attr,
635 	&dev_attr_server_monitor_conn_id.attr,
636 	&dev_attr_client_monitor_conn_id.attr,
637 	&dev_attr_out_intr_mask.attr,
638 	&dev_attr_out_read_index.attr,
639 	&dev_attr_out_write_index.attr,
640 	&dev_attr_out_read_bytes_avail.attr,
641 	&dev_attr_out_write_bytes_avail.attr,
642 	&dev_attr_in_intr_mask.attr,
643 	&dev_attr_in_read_index.attr,
644 	&dev_attr_in_write_index.attr,
645 	&dev_attr_in_read_bytes_avail.attr,
646 	&dev_attr_in_write_bytes_avail.attr,
647 	&dev_attr_channel_vp_mapping.attr,
648 	&dev_attr_vendor.attr,
649 	&dev_attr_device.attr,
650 	&dev_attr_driver_override.attr,
651 	NULL,
652 };
653 
654 /*
655  * Device-level attribute_group callback function. Returns the permission for
656  * each attribute, and returns 0 if an attribute is not visible.
657  */
658 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
659 					 struct attribute *attr, int idx)
660 {
661 	struct device *dev = kobj_to_dev(kobj);
662 	const struct hv_device *hv_dev = device_to_hv_device(dev);
663 
664 	/* Hide the monitor attributes if the monitor mechanism is not used. */
665 	if (!hv_dev->channel->offermsg.monitor_allocated &&
666 	    (attr == &dev_attr_monitor_id.attr ||
667 	     attr == &dev_attr_server_monitor_pending.attr ||
668 	     attr == &dev_attr_client_monitor_pending.attr ||
669 	     attr == &dev_attr_server_monitor_latency.attr ||
670 	     attr == &dev_attr_client_monitor_latency.attr ||
671 	     attr == &dev_attr_server_monitor_conn_id.attr ||
672 	     attr == &dev_attr_client_monitor_conn_id.attr))
673 		return 0;
674 
675 	return attr->mode;
676 }
677 
678 static const struct attribute_group vmbus_dev_group = {
679 	.attrs = vmbus_dev_attrs,
680 	.is_visible = vmbus_dev_attr_is_visible
681 };
682 __ATTRIBUTE_GROUPS(vmbus_dev);
683 
684 /* Set up the attribute for /sys/bus/vmbus/hibernation */
685 static ssize_t hibernation_show(struct bus_type *bus, char *buf)
686 {
687 	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
688 }
689 
690 static BUS_ATTR_RO(hibernation);
691 
692 static struct attribute *vmbus_bus_attrs[] = {
693 	&bus_attr_hibernation.attr,
694 	NULL,
695 };
696 static const struct attribute_group vmbus_bus_group = {
697 	.attrs = vmbus_bus_attrs,
698 };
699 __ATTRIBUTE_GROUPS(vmbus_bus);
700 
701 /*
702  * vmbus_uevent - add uevent for our device
703  *
704  * This routine is invoked when a device is added or removed on the vmbus to
705  * generate a uevent to udev in the userspace. The udev will then look at its
706  * rule and the uevent generated here to load the appropriate driver
707  *
708  * The alias string will be of the form vmbus:guid where guid is the string
709  * representation of the device guid (each byte of the guid will be
710  * represented with two hex characters.
711  */
712 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
713 {
714 	struct hv_device *dev = device_to_hv_device(device);
715 	const char *format = "MODALIAS=vmbus:%*phN";
716 
717 	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
718 }
719 
720 static const struct hv_vmbus_device_id *
721 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
722 {
723 	if (id == NULL)
724 		return NULL; /* empty device table */
725 
726 	for (; !guid_is_null(&id->guid); id++)
727 		if (guid_equal(&id->guid, guid))
728 			return id;
729 
730 	return NULL;
731 }
732 
733 static const struct hv_vmbus_device_id *
734 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
735 {
736 	const struct hv_vmbus_device_id *id = NULL;
737 	struct vmbus_dynid *dynid;
738 
739 	spin_lock(&drv->dynids.lock);
740 	list_for_each_entry(dynid, &drv->dynids.list, node) {
741 		if (guid_equal(&dynid->id.guid, guid)) {
742 			id = &dynid->id;
743 			break;
744 		}
745 	}
746 	spin_unlock(&drv->dynids.lock);
747 
748 	return id;
749 }
750 
751 static const struct hv_vmbus_device_id vmbus_device_null;
752 
753 /*
754  * Return a matching hv_vmbus_device_id pointer.
755  * If there is no match, return NULL.
756  */
757 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
758 							struct hv_device *dev)
759 {
760 	const guid_t *guid = &dev->dev_type;
761 	const struct hv_vmbus_device_id *id;
762 
763 	/* When driver_override is set, only bind to the matching driver */
764 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
765 		return NULL;
766 
767 	/* Look at the dynamic ids first, before the static ones */
768 	id = hv_vmbus_dynid_match(drv, guid);
769 	if (!id)
770 		id = hv_vmbus_dev_match(drv->id_table, guid);
771 
772 	/* driver_override will always match, send a dummy id */
773 	if (!id && dev->driver_override)
774 		id = &vmbus_device_null;
775 
776 	return id;
777 }
778 
779 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
780 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
781 {
782 	struct vmbus_dynid *dynid;
783 
784 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
785 	if (!dynid)
786 		return -ENOMEM;
787 
788 	dynid->id.guid = *guid;
789 
790 	spin_lock(&drv->dynids.lock);
791 	list_add_tail(&dynid->node, &drv->dynids.list);
792 	spin_unlock(&drv->dynids.lock);
793 
794 	return driver_attach(&drv->driver);
795 }
796 
797 static void vmbus_free_dynids(struct hv_driver *drv)
798 {
799 	struct vmbus_dynid *dynid, *n;
800 
801 	spin_lock(&drv->dynids.lock);
802 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
803 		list_del(&dynid->node);
804 		kfree(dynid);
805 	}
806 	spin_unlock(&drv->dynids.lock);
807 }
808 
809 /*
810  * store_new_id - sysfs frontend to vmbus_add_dynid()
811  *
812  * Allow GUIDs to be added to an existing driver via sysfs.
813  */
814 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
815 			    size_t count)
816 {
817 	struct hv_driver *drv = drv_to_hv_drv(driver);
818 	guid_t guid;
819 	ssize_t retval;
820 
821 	retval = guid_parse(buf, &guid);
822 	if (retval)
823 		return retval;
824 
825 	if (hv_vmbus_dynid_match(drv, &guid))
826 		return -EEXIST;
827 
828 	retval = vmbus_add_dynid(drv, &guid);
829 	if (retval)
830 		return retval;
831 	return count;
832 }
833 static DRIVER_ATTR_WO(new_id);
834 
835 /*
836  * store_remove_id - remove a PCI device ID from this driver
837  *
838  * Removes a dynamic pci device ID to this driver.
839  */
840 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
841 			       size_t count)
842 {
843 	struct hv_driver *drv = drv_to_hv_drv(driver);
844 	struct vmbus_dynid *dynid, *n;
845 	guid_t guid;
846 	ssize_t retval;
847 
848 	retval = guid_parse(buf, &guid);
849 	if (retval)
850 		return retval;
851 
852 	retval = -ENODEV;
853 	spin_lock(&drv->dynids.lock);
854 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
855 		struct hv_vmbus_device_id *id = &dynid->id;
856 
857 		if (guid_equal(&id->guid, &guid)) {
858 			list_del(&dynid->node);
859 			kfree(dynid);
860 			retval = count;
861 			break;
862 		}
863 	}
864 	spin_unlock(&drv->dynids.lock);
865 
866 	return retval;
867 }
868 static DRIVER_ATTR_WO(remove_id);
869 
870 static struct attribute *vmbus_drv_attrs[] = {
871 	&driver_attr_new_id.attr,
872 	&driver_attr_remove_id.attr,
873 	NULL,
874 };
875 ATTRIBUTE_GROUPS(vmbus_drv);
876 
877 
878 /*
879  * vmbus_match - Attempt to match the specified device to the specified driver
880  */
881 static int vmbus_match(struct device *device, struct device_driver *driver)
882 {
883 	struct hv_driver *drv = drv_to_hv_drv(driver);
884 	struct hv_device *hv_dev = device_to_hv_device(device);
885 
886 	/* The hv_sock driver handles all hv_sock offers. */
887 	if (is_hvsock_channel(hv_dev->channel))
888 		return drv->hvsock;
889 
890 	if (hv_vmbus_get_id(drv, hv_dev))
891 		return 1;
892 
893 	return 0;
894 }
895 
896 /*
897  * vmbus_probe - Add the new vmbus's child device
898  */
899 static int vmbus_probe(struct device *child_device)
900 {
901 	int ret = 0;
902 	struct hv_driver *drv =
903 			drv_to_hv_drv(child_device->driver);
904 	struct hv_device *dev = device_to_hv_device(child_device);
905 	const struct hv_vmbus_device_id *dev_id;
906 
907 	dev_id = hv_vmbus_get_id(drv, dev);
908 	if (drv->probe) {
909 		ret = drv->probe(dev, dev_id);
910 		if (ret != 0)
911 			pr_err("probe failed for device %s (%d)\n",
912 			       dev_name(child_device), ret);
913 
914 	} else {
915 		pr_err("probe not set for driver %s\n",
916 		       dev_name(child_device));
917 		ret = -ENODEV;
918 	}
919 	return ret;
920 }
921 
922 /*
923  * vmbus_remove - Remove a vmbus device
924  */
925 static void vmbus_remove(struct device *child_device)
926 {
927 	struct hv_driver *drv;
928 	struct hv_device *dev = device_to_hv_device(child_device);
929 
930 	if (child_device->driver) {
931 		drv = drv_to_hv_drv(child_device->driver);
932 		if (drv->remove)
933 			drv->remove(dev);
934 	}
935 }
936 
937 /*
938  * vmbus_shutdown - Shutdown a vmbus device
939  */
940 static void vmbus_shutdown(struct device *child_device)
941 {
942 	struct hv_driver *drv;
943 	struct hv_device *dev = device_to_hv_device(child_device);
944 
945 
946 	/* The device may not be attached yet */
947 	if (!child_device->driver)
948 		return;
949 
950 	drv = drv_to_hv_drv(child_device->driver);
951 
952 	if (drv->shutdown)
953 		drv->shutdown(dev);
954 }
955 
956 #ifdef CONFIG_PM_SLEEP
957 /*
958  * vmbus_suspend - Suspend a vmbus device
959  */
960 static int vmbus_suspend(struct device *child_device)
961 {
962 	struct hv_driver *drv;
963 	struct hv_device *dev = device_to_hv_device(child_device);
964 
965 	/* The device may not be attached yet */
966 	if (!child_device->driver)
967 		return 0;
968 
969 	drv = drv_to_hv_drv(child_device->driver);
970 	if (!drv->suspend)
971 		return -EOPNOTSUPP;
972 
973 	return drv->suspend(dev);
974 }
975 
976 /*
977  * vmbus_resume - Resume a vmbus device
978  */
979 static int vmbus_resume(struct device *child_device)
980 {
981 	struct hv_driver *drv;
982 	struct hv_device *dev = device_to_hv_device(child_device);
983 
984 	/* The device may not be attached yet */
985 	if (!child_device->driver)
986 		return 0;
987 
988 	drv = drv_to_hv_drv(child_device->driver);
989 	if (!drv->resume)
990 		return -EOPNOTSUPP;
991 
992 	return drv->resume(dev);
993 }
994 #else
995 #define vmbus_suspend NULL
996 #define vmbus_resume NULL
997 #endif /* CONFIG_PM_SLEEP */
998 
999 /*
1000  * vmbus_device_release - Final callback release of the vmbus child device
1001  */
1002 static void vmbus_device_release(struct device *device)
1003 {
1004 	struct hv_device *hv_dev = device_to_hv_device(device);
1005 	struct vmbus_channel *channel = hv_dev->channel;
1006 
1007 	hv_debug_rm_dev_dir(hv_dev);
1008 
1009 	mutex_lock(&vmbus_connection.channel_mutex);
1010 	hv_process_channel_removal(channel);
1011 	mutex_unlock(&vmbus_connection.channel_mutex);
1012 	kfree(hv_dev);
1013 }
1014 
1015 /*
1016  * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1017  *
1018  * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1019  * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1020  * is no way to wake up a Generation-2 VM.
1021  *
1022  * The other 4 ops are for hibernation.
1023  */
1024 
1025 static const struct dev_pm_ops vmbus_pm = {
1026 	.suspend_noirq	= NULL,
1027 	.resume_noirq	= NULL,
1028 	.freeze_noirq	= vmbus_suspend,
1029 	.thaw_noirq	= vmbus_resume,
1030 	.poweroff_noirq	= vmbus_suspend,
1031 	.restore_noirq	= vmbus_resume,
1032 };
1033 
1034 /* The one and only one */
1035 static struct bus_type  hv_bus = {
1036 	.name =		"vmbus",
1037 	.match =		vmbus_match,
1038 	.shutdown =		vmbus_shutdown,
1039 	.remove =		vmbus_remove,
1040 	.probe =		vmbus_probe,
1041 	.uevent =		vmbus_uevent,
1042 	.dev_groups =		vmbus_dev_groups,
1043 	.drv_groups =		vmbus_drv_groups,
1044 	.bus_groups =		vmbus_bus_groups,
1045 	.pm =			&vmbus_pm,
1046 };
1047 
1048 struct onmessage_work_context {
1049 	struct work_struct work;
1050 	struct {
1051 		struct hv_message_header header;
1052 		u8 payload[];
1053 	} msg;
1054 };
1055 
1056 static void vmbus_onmessage_work(struct work_struct *work)
1057 {
1058 	struct onmessage_work_context *ctx;
1059 
1060 	/* Do not process messages if we're in DISCONNECTED state */
1061 	if (vmbus_connection.conn_state == DISCONNECTED)
1062 		return;
1063 
1064 	ctx = container_of(work, struct onmessage_work_context,
1065 			   work);
1066 	vmbus_onmessage((struct vmbus_channel_message_header *)
1067 			&ctx->msg.payload);
1068 	kfree(ctx);
1069 }
1070 
1071 void vmbus_on_msg_dpc(unsigned long data)
1072 {
1073 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1074 	void *page_addr = hv_cpu->synic_message_page;
1075 	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1076 				  VMBUS_MESSAGE_SINT;
1077 	struct vmbus_channel_message_header *hdr;
1078 	enum vmbus_channel_message_type msgtype;
1079 	const struct vmbus_channel_message_table_entry *entry;
1080 	struct onmessage_work_context *ctx;
1081 	__u8 payload_size;
1082 	u32 message_type;
1083 
1084 	/*
1085 	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1086 	 * it is being used in 'struct vmbus_channel_message_header' definition
1087 	 * which is supposed to match hypervisor ABI.
1088 	 */
1089 	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1090 
1091 	/*
1092 	 * Since the message is in memory shared with the host, an erroneous or
1093 	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1094 	 * or individual message handlers are executing; to prevent this, copy
1095 	 * the message into private memory.
1096 	 */
1097 	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1098 
1099 	message_type = msg_copy.header.message_type;
1100 	if (message_type == HVMSG_NONE)
1101 		/* no msg */
1102 		return;
1103 
1104 	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1105 	msgtype = hdr->msgtype;
1106 
1107 	trace_vmbus_on_msg_dpc(hdr);
1108 
1109 	if (msgtype >= CHANNELMSG_COUNT) {
1110 		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1111 		goto msg_handled;
1112 	}
1113 
1114 	payload_size = msg_copy.header.payload_size;
1115 	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1116 		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1117 		goto msg_handled;
1118 	}
1119 
1120 	entry = &channel_message_table[msgtype];
1121 
1122 	if (!entry->message_handler)
1123 		goto msg_handled;
1124 
1125 	if (payload_size < entry->min_payload_len) {
1126 		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1127 		goto msg_handled;
1128 	}
1129 
1130 	if (entry->handler_type	== VMHT_BLOCKING) {
1131 		ctx = kmalloc(sizeof(*ctx) + payload_size, GFP_ATOMIC);
1132 		if (ctx == NULL)
1133 			return;
1134 
1135 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1136 		memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size);
1137 
1138 		/*
1139 		 * The host can generate a rescind message while we
1140 		 * may still be handling the original offer. We deal with
1141 		 * this condition by relying on the synchronization provided
1142 		 * by offer_in_progress and by channel_mutex.  See also the
1143 		 * inline comments in vmbus_onoffer_rescind().
1144 		 */
1145 		switch (msgtype) {
1146 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1147 			/*
1148 			 * If we are handling the rescind message;
1149 			 * schedule the work on the global work queue.
1150 			 *
1151 			 * The OFFER message and the RESCIND message should
1152 			 * not be handled by the same serialized work queue,
1153 			 * because the OFFER handler may call vmbus_open(),
1154 			 * which tries to open the channel by sending an
1155 			 * OPEN_CHANNEL message to the host and waits for
1156 			 * the host's response; however, if the host has
1157 			 * rescinded the channel before it receives the
1158 			 * OPEN_CHANNEL message, the host just silently
1159 			 * ignores the OPEN_CHANNEL message; as a result,
1160 			 * the guest's OFFER handler hangs for ever, if we
1161 			 * handle the RESCIND message in the same serialized
1162 			 * work queue: the RESCIND handler can not start to
1163 			 * run before the OFFER handler finishes.
1164 			 */
1165 			schedule_work(&ctx->work);
1166 			break;
1167 
1168 		case CHANNELMSG_OFFERCHANNEL:
1169 			/*
1170 			 * The host sends the offer message of a given channel
1171 			 * before sending the rescind message of the same
1172 			 * channel.  These messages are sent to the guest's
1173 			 * connect CPU; the guest then starts processing them
1174 			 * in the tasklet handler on this CPU:
1175 			 *
1176 			 * VMBUS_CONNECT_CPU
1177 			 *
1178 			 * [vmbus_on_msg_dpc()]
1179 			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1180 			 * queue_work()
1181 			 * ...
1182 			 * [vmbus_on_msg_dpc()]
1183 			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1184 			 *
1185 			 * We rely on the memory-ordering properties of the
1186 			 * queue_work() and schedule_work() primitives, which
1187 			 * guarantee that the atomic increment will be visible
1188 			 * to the CPUs which will execute the offer & rescind
1189 			 * works by the time these works will start execution.
1190 			 */
1191 			atomic_inc(&vmbus_connection.offer_in_progress);
1192 			fallthrough;
1193 
1194 		default:
1195 			queue_work(vmbus_connection.work_queue, &ctx->work);
1196 		}
1197 	} else
1198 		entry->message_handler(hdr);
1199 
1200 msg_handled:
1201 	vmbus_signal_eom(msg, message_type);
1202 }
1203 
1204 #ifdef CONFIG_PM_SLEEP
1205 /*
1206  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1207  * hibernation, because hv_sock connections can not persist across hibernation.
1208  */
1209 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1210 {
1211 	struct onmessage_work_context *ctx;
1212 	struct vmbus_channel_rescind_offer *rescind;
1213 
1214 	WARN_ON(!is_hvsock_channel(channel));
1215 
1216 	/*
1217 	 * Allocation size is small and the allocation should really not fail,
1218 	 * otherwise the state of the hv_sock connections ends up in limbo.
1219 	 */
1220 	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1221 		      GFP_KERNEL | __GFP_NOFAIL);
1222 
1223 	/*
1224 	 * So far, these are not really used by Linux. Just set them to the
1225 	 * reasonable values conforming to the definitions of the fields.
1226 	 */
1227 	ctx->msg.header.message_type = 1;
1228 	ctx->msg.header.payload_size = sizeof(*rescind);
1229 
1230 	/* These values are actually used by Linux. */
1231 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1232 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1233 	rescind->child_relid = channel->offermsg.child_relid;
1234 
1235 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1236 
1237 	queue_work(vmbus_connection.work_queue, &ctx->work);
1238 }
1239 #endif /* CONFIG_PM_SLEEP */
1240 
1241 /*
1242  * Schedule all channels with events pending
1243  */
1244 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1245 {
1246 	unsigned long *recv_int_page;
1247 	u32 maxbits, relid;
1248 
1249 	if (vmbus_proto_version < VERSION_WIN8) {
1250 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1251 		recv_int_page = vmbus_connection.recv_int_page;
1252 	} else {
1253 		/*
1254 		 * When the host is win8 and beyond, the event page
1255 		 * can be directly checked to get the id of the channel
1256 		 * that has the interrupt pending.
1257 		 */
1258 		void *page_addr = hv_cpu->synic_event_page;
1259 		union hv_synic_event_flags *event
1260 			= (union hv_synic_event_flags *)page_addr +
1261 						 VMBUS_MESSAGE_SINT;
1262 
1263 		maxbits = HV_EVENT_FLAGS_COUNT;
1264 		recv_int_page = event->flags;
1265 	}
1266 
1267 	if (unlikely(!recv_int_page))
1268 		return;
1269 
1270 	for_each_set_bit(relid, recv_int_page, maxbits) {
1271 		void (*callback_fn)(void *context);
1272 		struct vmbus_channel *channel;
1273 
1274 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1275 			continue;
1276 
1277 		/* Special case - vmbus channel protocol msg */
1278 		if (relid == 0)
1279 			continue;
1280 
1281 		/*
1282 		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1283 		 * Guarantees that the channel data structure doesn't
1284 		 * get freed while the channel pointer below is being
1285 		 * dereferenced.
1286 		 */
1287 		rcu_read_lock();
1288 
1289 		/* Find channel based on relid */
1290 		channel = relid2channel(relid);
1291 		if (channel == NULL)
1292 			goto sched_unlock_rcu;
1293 
1294 		if (channel->rescind)
1295 			goto sched_unlock_rcu;
1296 
1297 		/*
1298 		 * Make sure that the ring buffer data structure doesn't get
1299 		 * freed while we dereference the ring buffer pointer.  Test
1300 		 * for the channel's onchannel_callback being NULL within a
1301 		 * sched_lock critical section.  See also the inline comments
1302 		 * in vmbus_reset_channel_cb().
1303 		 */
1304 		spin_lock(&channel->sched_lock);
1305 
1306 		callback_fn = channel->onchannel_callback;
1307 		if (unlikely(callback_fn == NULL))
1308 			goto sched_unlock;
1309 
1310 		trace_vmbus_chan_sched(channel);
1311 
1312 		++channel->interrupts;
1313 
1314 		switch (channel->callback_mode) {
1315 		case HV_CALL_ISR:
1316 			(*callback_fn)(channel->channel_callback_context);
1317 			break;
1318 
1319 		case HV_CALL_BATCHED:
1320 			hv_begin_read(&channel->inbound);
1321 			fallthrough;
1322 		case HV_CALL_DIRECT:
1323 			tasklet_schedule(&channel->callback_event);
1324 		}
1325 
1326 sched_unlock:
1327 		spin_unlock(&channel->sched_lock);
1328 sched_unlock_rcu:
1329 		rcu_read_unlock();
1330 	}
1331 }
1332 
1333 static void vmbus_isr(void)
1334 {
1335 	struct hv_per_cpu_context *hv_cpu
1336 		= this_cpu_ptr(hv_context.cpu_context);
1337 	void *page_addr = hv_cpu->synic_event_page;
1338 	struct hv_message *msg;
1339 	union hv_synic_event_flags *event;
1340 	bool handled = false;
1341 
1342 	if (unlikely(page_addr == NULL))
1343 		return;
1344 
1345 	event = (union hv_synic_event_flags *)page_addr +
1346 					 VMBUS_MESSAGE_SINT;
1347 	/*
1348 	 * Check for events before checking for messages. This is the order
1349 	 * in which events and messages are checked in Windows guests on
1350 	 * Hyper-V, and the Windows team suggested we do the same.
1351 	 */
1352 
1353 	if ((vmbus_proto_version == VERSION_WS2008) ||
1354 		(vmbus_proto_version == VERSION_WIN7)) {
1355 
1356 		/* Since we are a child, we only need to check bit 0 */
1357 		if (sync_test_and_clear_bit(0, event->flags))
1358 			handled = true;
1359 	} else {
1360 		/*
1361 		 * Our host is win8 or above. The signaling mechanism
1362 		 * has changed and we can directly look at the event page.
1363 		 * If bit n is set then we have an interrup on the channel
1364 		 * whose id is n.
1365 		 */
1366 		handled = true;
1367 	}
1368 
1369 	if (handled)
1370 		vmbus_chan_sched(hv_cpu);
1371 
1372 	page_addr = hv_cpu->synic_message_page;
1373 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1374 
1375 	/* Check if there are actual msgs to be processed */
1376 	if (msg->header.message_type != HVMSG_NONE) {
1377 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1378 			hv_stimer0_isr();
1379 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1380 		} else
1381 			tasklet_schedule(&hv_cpu->msg_dpc);
1382 	}
1383 
1384 	add_interrupt_randomness(vmbus_interrupt, 0);
1385 }
1386 
1387 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1388 {
1389 	vmbus_isr();
1390 	return IRQ_HANDLED;
1391 }
1392 
1393 /*
1394  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1395  * buffer and call into Hyper-V to transfer the data.
1396  */
1397 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1398 			 enum kmsg_dump_reason reason)
1399 {
1400 	struct kmsg_dump_iter iter;
1401 	size_t bytes_written;
1402 
1403 	/* We are only interested in panics. */
1404 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1405 		return;
1406 
1407 	/*
1408 	 * Write dump contents to the page. No need to synchronize; panic should
1409 	 * be single-threaded.
1410 	 */
1411 	kmsg_dump_rewind(&iter);
1412 	kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1413 			     &bytes_written);
1414 	if (!bytes_written)
1415 		return;
1416 	/*
1417 	 * P3 to contain the physical address of the panic page & P4 to
1418 	 * contain the size of the panic data in that page. Rest of the
1419 	 * registers are no-op when the NOTIFY_MSG flag is set.
1420 	 */
1421 	hv_set_register(HV_REGISTER_CRASH_P0, 0);
1422 	hv_set_register(HV_REGISTER_CRASH_P1, 0);
1423 	hv_set_register(HV_REGISTER_CRASH_P2, 0);
1424 	hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
1425 	hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
1426 
1427 	/*
1428 	 * Let Hyper-V know there is crash data available along with
1429 	 * the panic message.
1430 	 */
1431 	hv_set_register(HV_REGISTER_CRASH_CTL,
1432 	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
1433 }
1434 
1435 static struct kmsg_dumper hv_kmsg_dumper = {
1436 	.dump = hv_kmsg_dump,
1437 };
1438 
1439 static void hv_kmsg_dump_register(void)
1440 {
1441 	int ret;
1442 
1443 	hv_panic_page = hv_alloc_hyperv_zeroed_page();
1444 	if (!hv_panic_page) {
1445 		pr_err("Hyper-V: panic message page memory allocation failed\n");
1446 		return;
1447 	}
1448 
1449 	ret = kmsg_dump_register(&hv_kmsg_dumper);
1450 	if (ret) {
1451 		pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1452 		hv_free_hyperv_page((unsigned long)hv_panic_page);
1453 		hv_panic_page = NULL;
1454 	}
1455 }
1456 
1457 static struct ctl_table_header *hv_ctl_table_hdr;
1458 
1459 /*
1460  * sysctl option to allow the user to control whether kmsg data should be
1461  * reported to Hyper-V on panic.
1462  */
1463 static struct ctl_table hv_ctl_table[] = {
1464 	{
1465 		.procname       = "hyperv_record_panic_msg",
1466 		.data           = &sysctl_record_panic_msg,
1467 		.maxlen         = sizeof(int),
1468 		.mode           = 0644,
1469 		.proc_handler   = proc_dointvec_minmax,
1470 		.extra1		= SYSCTL_ZERO,
1471 		.extra2		= SYSCTL_ONE
1472 	},
1473 	{}
1474 };
1475 
1476 static struct ctl_table hv_root_table[] = {
1477 	{
1478 		.procname	= "kernel",
1479 		.mode		= 0555,
1480 		.child		= hv_ctl_table
1481 	},
1482 	{}
1483 };
1484 
1485 /*
1486  * vmbus_bus_init -Main vmbus driver initialization routine.
1487  *
1488  * Here, we
1489  *	- initialize the vmbus driver context
1490  *	- invoke the vmbus hv main init routine
1491  *	- retrieve the channel offers
1492  */
1493 static int vmbus_bus_init(void)
1494 {
1495 	int ret;
1496 
1497 	ret = hv_init();
1498 	if (ret != 0) {
1499 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1500 		return ret;
1501 	}
1502 
1503 	ret = bus_register(&hv_bus);
1504 	if (ret)
1505 		return ret;
1506 
1507 	/*
1508 	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1509 	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1510 	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1511 	 * If not on such an architecture (e.g., x86/x64), then rely on
1512 	 * code in the arch-specific portion of the code tree to connect
1513 	 * the VMbus interrupt handler.
1514 	 */
1515 
1516 	if (vmbus_irq == -1) {
1517 		hv_setup_vmbus_handler(vmbus_isr);
1518 	} else {
1519 		vmbus_evt = alloc_percpu(long);
1520 		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1521 				"Hyper-V VMbus", vmbus_evt);
1522 		if (ret) {
1523 			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1524 					vmbus_irq, ret);
1525 			free_percpu(vmbus_evt);
1526 			goto err_setup;
1527 		}
1528 	}
1529 
1530 	ret = hv_synic_alloc();
1531 	if (ret)
1532 		goto err_alloc;
1533 
1534 	/*
1535 	 * Initialize the per-cpu interrupt state and stimer state.
1536 	 * Then connect to the host.
1537 	 */
1538 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1539 				hv_synic_init, hv_synic_cleanup);
1540 	if (ret < 0)
1541 		goto err_cpuhp;
1542 	hyperv_cpuhp_online = ret;
1543 
1544 	ret = vmbus_connect();
1545 	if (ret)
1546 		goto err_connect;
1547 
1548 	/*
1549 	 * Only register if the crash MSRs are available
1550 	 */
1551 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1552 		u64 hyperv_crash_ctl;
1553 		/*
1554 		 * Sysctl registration is not fatal, since by default
1555 		 * reporting is enabled.
1556 		 */
1557 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1558 		if (!hv_ctl_table_hdr)
1559 			pr_err("Hyper-V: sysctl table register error");
1560 
1561 		/*
1562 		 * Register for panic kmsg callback only if the right
1563 		 * capability is supported by the hypervisor.
1564 		 */
1565 		hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
1566 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1567 			hv_kmsg_dump_register();
1568 
1569 		register_die_notifier(&hyperv_die_block);
1570 	}
1571 
1572 	/*
1573 	 * Always register the panic notifier because we need to unload
1574 	 * the VMbus channel connection to prevent any VMbus
1575 	 * activity after the VM panics.
1576 	 */
1577 	atomic_notifier_chain_register(&panic_notifier_list,
1578 			       &hyperv_panic_block);
1579 
1580 	vmbus_request_offers();
1581 
1582 	return 0;
1583 
1584 err_connect:
1585 	cpuhp_remove_state(hyperv_cpuhp_online);
1586 err_cpuhp:
1587 	hv_synic_free();
1588 err_alloc:
1589 	if (vmbus_irq == -1) {
1590 		hv_remove_vmbus_handler();
1591 	} else {
1592 		free_percpu_irq(vmbus_irq, vmbus_evt);
1593 		free_percpu(vmbus_evt);
1594 	}
1595 err_setup:
1596 	bus_unregister(&hv_bus);
1597 	unregister_sysctl_table(hv_ctl_table_hdr);
1598 	hv_ctl_table_hdr = NULL;
1599 	return ret;
1600 }
1601 
1602 /**
1603  * __vmbus_child_driver_register() - Register a vmbus's driver
1604  * @hv_driver: Pointer to driver structure you want to register
1605  * @owner: owner module of the drv
1606  * @mod_name: module name string
1607  *
1608  * Registers the given driver with Linux through the 'driver_register()' call
1609  * and sets up the hyper-v vmbus handling for this driver.
1610  * It will return the state of the 'driver_register()' call.
1611  *
1612  */
1613 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1614 {
1615 	int ret;
1616 
1617 	pr_info("registering driver %s\n", hv_driver->name);
1618 
1619 	ret = vmbus_exists();
1620 	if (ret < 0)
1621 		return ret;
1622 
1623 	hv_driver->driver.name = hv_driver->name;
1624 	hv_driver->driver.owner = owner;
1625 	hv_driver->driver.mod_name = mod_name;
1626 	hv_driver->driver.bus = &hv_bus;
1627 
1628 	spin_lock_init(&hv_driver->dynids.lock);
1629 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1630 
1631 	ret = driver_register(&hv_driver->driver);
1632 
1633 	return ret;
1634 }
1635 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1636 
1637 /**
1638  * vmbus_driver_unregister() - Unregister a vmbus's driver
1639  * @hv_driver: Pointer to driver structure you want to
1640  *             un-register
1641  *
1642  * Un-register the given driver that was previous registered with a call to
1643  * vmbus_driver_register()
1644  */
1645 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1646 {
1647 	pr_info("unregistering driver %s\n", hv_driver->name);
1648 
1649 	if (!vmbus_exists()) {
1650 		driver_unregister(&hv_driver->driver);
1651 		vmbus_free_dynids(hv_driver);
1652 	}
1653 }
1654 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1655 
1656 
1657 /*
1658  * Called when last reference to channel is gone.
1659  */
1660 static void vmbus_chan_release(struct kobject *kobj)
1661 {
1662 	struct vmbus_channel *channel
1663 		= container_of(kobj, struct vmbus_channel, kobj);
1664 
1665 	kfree_rcu(channel, rcu);
1666 }
1667 
1668 struct vmbus_chan_attribute {
1669 	struct attribute attr;
1670 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1671 	ssize_t (*store)(struct vmbus_channel *chan,
1672 			 const char *buf, size_t count);
1673 };
1674 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1675 	struct vmbus_chan_attribute chan_attr_##_name \
1676 		= __ATTR(_name, _mode, _show, _store)
1677 #define VMBUS_CHAN_ATTR_RW(_name) \
1678 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1679 #define VMBUS_CHAN_ATTR_RO(_name) \
1680 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1681 #define VMBUS_CHAN_ATTR_WO(_name) \
1682 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1683 
1684 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1685 				    struct attribute *attr, char *buf)
1686 {
1687 	const struct vmbus_chan_attribute *attribute
1688 		= container_of(attr, struct vmbus_chan_attribute, attr);
1689 	struct vmbus_channel *chan
1690 		= container_of(kobj, struct vmbus_channel, kobj);
1691 
1692 	if (!attribute->show)
1693 		return -EIO;
1694 
1695 	return attribute->show(chan, buf);
1696 }
1697 
1698 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1699 				     struct attribute *attr, const char *buf,
1700 				     size_t count)
1701 {
1702 	const struct vmbus_chan_attribute *attribute
1703 		= container_of(attr, struct vmbus_chan_attribute, attr);
1704 	struct vmbus_channel *chan
1705 		= container_of(kobj, struct vmbus_channel, kobj);
1706 
1707 	if (!attribute->store)
1708 		return -EIO;
1709 
1710 	return attribute->store(chan, buf, count);
1711 }
1712 
1713 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1714 	.show = vmbus_chan_attr_show,
1715 	.store = vmbus_chan_attr_store,
1716 };
1717 
1718 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1719 {
1720 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1721 	ssize_t ret;
1722 
1723 	mutex_lock(&rbi->ring_buffer_mutex);
1724 	if (!rbi->ring_buffer) {
1725 		mutex_unlock(&rbi->ring_buffer_mutex);
1726 		return -EINVAL;
1727 	}
1728 
1729 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1730 	mutex_unlock(&rbi->ring_buffer_mutex);
1731 	return ret;
1732 }
1733 static VMBUS_CHAN_ATTR_RO(out_mask);
1734 
1735 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1736 {
1737 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1738 	ssize_t ret;
1739 
1740 	mutex_lock(&rbi->ring_buffer_mutex);
1741 	if (!rbi->ring_buffer) {
1742 		mutex_unlock(&rbi->ring_buffer_mutex);
1743 		return -EINVAL;
1744 	}
1745 
1746 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1747 	mutex_unlock(&rbi->ring_buffer_mutex);
1748 	return ret;
1749 }
1750 static VMBUS_CHAN_ATTR_RO(in_mask);
1751 
1752 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1753 {
1754 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1755 	ssize_t ret;
1756 
1757 	mutex_lock(&rbi->ring_buffer_mutex);
1758 	if (!rbi->ring_buffer) {
1759 		mutex_unlock(&rbi->ring_buffer_mutex);
1760 		return -EINVAL;
1761 	}
1762 
1763 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1764 	mutex_unlock(&rbi->ring_buffer_mutex);
1765 	return ret;
1766 }
1767 static VMBUS_CHAN_ATTR_RO(read_avail);
1768 
1769 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1770 {
1771 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1772 	ssize_t ret;
1773 
1774 	mutex_lock(&rbi->ring_buffer_mutex);
1775 	if (!rbi->ring_buffer) {
1776 		mutex_unlock(&rbi->ring_buffer_mutex);
1777 		return -EINVAL;
1778 	}
1779 
1780 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1781 	mutex_unlock(&rbi->ring_buffer_mutex);
1782 	return ret;
1783 }
1784 static VMBUS_CHAN_ATTR_RO(write_avail);
1785 
1786 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1787 {
1788 	return sprintf(buf, "%u\n", channel->target_cpu);
1789 }
1790 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1791 				const char *buf, size_t count)
1792 {
1793 	u32 target_cpu, origin_cpu;
1794 	ssize_t ret = count;
1795 
1796 	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1797 		return -EIO;
1798 
1799 	if (sscanf(buf, "%uu", &target_cpu) != 1)
1800 		return -EIO;
1801 
1802 	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1803 	if (target_cpu >= nr_cpumask_bits)
1804 		return -EINVAL;
1805 
1806 	/* No CPUs should come up or down during this. */
1807 	cpus_read_lock();
1808 
1809 	if (!cpu_online(target_cpu)) {
1810 		cpus_read_unlock();
1811 		return -EINVAL;
1812 	}
1813 
1814 	/*
1815 	 * Synchronizes target_cpu_store() and channel closure:
1816 	 *
1817 	 * { Initially: state = CHANNEL_OPENED }
1818 	 *
1819 	 * CPU1				CPU2
1820 	 *
1821 	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1822 	 *
1823 	 * LOCK channel_mutex		LOCK channel_mutex
1824 	 * LOAD r1 = state		LOAD r2 = state
1825 	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1826 	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1827 	 *   [...]			  SEND CLOSECHANNEL
1828 	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1829 	 *
1830 	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1831 	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1832 	 *
1833 	 * Note.  The host processes the channel messages "sequentially", in
1834 	 * the order in which they are received on a per-partition basis.
1835 	 */
1836 	mutex_lock(&vmbus_connection.channel_mutex);
1837 
1838 	/*
1839 	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1840 	 * avoid sending the message and fail here for such channels.
1841 	 */
1842 	if (channel->state != CHANNEL_OPENED_STATE) {
1843 		ret = -EIO;
1844 		goto cpu_store_unlock;
1845 	}
1846 
1847 	origin_cpu = channel->target_cpu;
1848 	if (target_cpu == origin_cpu)
1849 		goto cpu_store_unlock;
1850 
1851 	if (vmbus_send_modifychannel(channel,
1852 				     hv_cpu_number_to_vp_number(target_cpu))) {
1853 		ret = -EIO;
1854 		goto cpu_store_unlock;
1855 	}
1856 
1857 	/*
1858 	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1859 	 *
1860 	 * Warning.  At this point, there is *no* guarantee that the host will
1861 	 * have successfully processed the vmbus_send_modifychannel() request.
1862 	 * See the header comment of vmbus_send_modifychannel() for more info.
1863 	 *
1864 	 * Lags in the processing of the above vmbus_send_modifychannel() can
1865 	 * result in missed interrupts if the "old" target CPU is taken offline
1866 	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1867 	 * But apart from this offlining scenario, the code tolerates such
1868 	 * lags.  It will function correctly even if a channel interrupt comes
1869 	 * in on a CPU that is different from the channel target_cpu value.
1870 	 */
1871 
1872 	channel->target_cpu = target_cpu;
1873 
1874 	/* See init_vp_index(). */
1875 	if (hv_is_perf_channel(channel))
1876 		hv_update_alloced_cpus(origin_cpu, target_cpu);
1877 
1878 	/* Currently set only for storvsc channels. */
1879 	if (channel->change_target_cpu_callback) {
1880 		(*channel->change_target_cpu_callback)(channel,
1881 				origin_cpu, target_cpu);
1882 	}
1883 
1884 cpu_store_unlock:
1885 	mutex_unlock(&vmbus_connection.channel_mutex);
1886 	cpus_read_unlock();
1887 	return ret;
1888 }
1889 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1890 
1891 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1892 				    char *buf)
1893 {
1894 	return sprintf(buf, "%d\n",
1895 		       channel_pending(channel,
1896 				       vmbus_connection.monitor_pages[1]));
1897 }
1898 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1899 
1900 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1901 				    char *buf)
1902 {
1903 	return sprintf(buf, "%d\n",
1904 		       channel_latency(channel,
1905 				       vmbus_connection.monitor_pages[1]));
1906 }
1907 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1908 
1909 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1910 {
1911 	return sprintf(buf, "%llu\n", channel->interrupts);
1912 }
1913 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1914 
1915 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1916 {
1917 	return sprintf(buf, "%llu\n", channel->sig_events);
1918 }
1919 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1920 
1921 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1922 					 char *buf)
1923 {
1924 	return sprintf(buf, "%llu\n",
1925 		       (unsigned long long)channel->intr_in_full);
1926 }
1927 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1928 
1929 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1930 					   char *buf)
1931 {
1932 	return sprintf(buf, "%llu\n",
1933 		       (unsigned long long)channel->intr_out_empty);
1934 }
1935 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1936 
1937 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1938 					   char *buf)
1939 {
1940 	return sprintf(buf, "%llu\n",
1941 		       (unsigned long long)channel->out_full_first);
1942 }
1943 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1944 
1945 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1946 					   char *buf)
1947 {
1948 	return sprintf(buf, "%llu\n",
1949 		       (unsigned long long)channel->out_full_total);
1950 }
1951 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1952 
1953 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1954 					  char *buf)
1955 {
1956 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1957 }
1958 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1959 
1960 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1961 				  char *buf)
1962 {
1963 	return sprintf(buf, "%u\n",
1964 		       channel->offermsg.offer.sub_channel_index);
1965 }
1966 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1967 
1968 static struct attribute *vmbus_chan_attrs[] = {
1969 	&chan_attr_out_mask.attr,
1970 	&chan_attr_in_mask.attr,
1971 	&chan_attr_read_avail.attr,
1972 	&chan_attr_write_avail.attr,
1973 	&chan_attr_cpu.attr,
1974 	&chan_attr_pending.attr,
1975 	&chan_attr_latency.attr,
1976 	&chan_attr_interrupts.attr,
1977 	&chan_attr_events.attr,
1978 	&chan_attr_intr_in_full.attr,
1979 	&chan_attr_intr_out_empty.attr,
1980 	&chan_attr_out_full_first.attr,
1981 	&chan_attr_out_full_total.attr,
1982 	&chan_attr_monitor_id.attr,
1983 	&chan_attr_subchannel_id.attr,
1984 	NULL
1985 };
1986 
1987 /*
1988  * Channel-level attribute_group callback function. Returns the permission for
1989  * each attribute, and returns 0 if an attribute is not visible.
1990  */
1991 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1992 					  struct attribute *attr, int idx)
1993 {
1994 	const struct vmbus_channel *channel =
1995 		container_of(kobj, struct vmbus_channel, kobj);
1996 
1997 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1998 	if (!channel->offermsg.monitor_allocated &&
1999 	    (attr == &chan_attr_pending.attr ||
2000 	     attr == &chan_attr_latency.attr ||
2001 	     attr == &chan_attr_monitor_id.attr))
2002 		return 0;
2003 
2004 	return attr->mode;
2005 }
2006 
2007 static struct attribute_group vmbus_chan_group = {
2008 	.attrs = vmbus_chan_attrs,
2009 	.is_visible = vmbus_chan_attr_is_visible
2010 };
2011 
2012 static struct kobj_type vmbus_chan_ktype = {
2013 	.sysfs_ops = &vmbus_chan_sysfs_ops,
2014 	.release = vmbus_chan_release,
2015 };
2016 
2017 /*
2018  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
2019  */
2020 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
2021 {
2022 	const struct device *device = &dev->device;
2023 	struct kobject *kobj = &channel->kobj;
2024 	u32 relid = channel->offermsg.child_relid;
2025 	int ret;
2026 
2027 	kobj->kset = dev->channels_kset;
2028 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2029 				   "%u", relid);
2030 	if (ret)
2031 		return ret;
2032 
2033 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
2034 
2035 	if (ret) {
2036 		/*
2037 		 * The calling functions' error handling paths will cleanup the
2038 		 * empty channel directory.
2039 		 */
2040 		dev_err(device, "Unable to set up channel sysfs files\n");
2041 		return ret;
2042 	}
2043 
2044 	kobject_uevent(kobj, KOBJ_ADD);
2045 
2046 	return 0;
2047 }
2048 
2049 /*
2050  * vmbus_remove_channel_attr_group - remove the channel's attribute group
2051  */
2052 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2053 {
2054 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2055 }
2056 
2057 /*
2058  * vmbus_device_create - Creates and registers a new child device
2059  * on the vmbus.
2060  */
2061 struct hv_device *vmbus_device_create(const guid_t *type,
2062 				      const guid_t *instance,
2063 				      struct vmbus_channel *channel)
2064 {
2065 	struct hv_device *child_device_obj;
2066 
2067 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2068 	if (!child_device_obj) {
2069 		pr_err("Unable to allocate device object for child device\n");
2070 		return NULL;
2071 	}
2072 
2073 	child_device_obj->channel = channel;
2074 	guid_copy(&child_device_obj->dev_type, type);
2075 	guid_copy(&child_device_obj->dev_instance, instance);
2076 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
2077 
2078 	return child_device_obj;
2079 }
2080 
2081 /*
2082  * vmbus_device_register - Register the child device
2083  */
2084 int vmbus_device_register(struct hv_device *child_device_obj)
2085 {
2086 	struct kobject *kobj = &child_device_obj->device.kobj;
2087 	int ret;
2088 
2089 	dev_set_name(&child_device_obj->device, "%pUl",
2090 		     &child_device_obj->channel->offermsg.offer.if_instance);
2091 
2092 	child_device_obj->device.bus = &hv_bus;
2093 	child_device_obj->device.parent = &hv_acpi_dev->dev;
2094 	child_device_obj->device.release = vmbus_device_release;
2095 
2096 	/*
2097 	 * Register with the LDM. This will kick off the driver/device
2098 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
2099 	 */
2100 	ret = device_register(&child_device_obj->device);
2101 	if (ret) {
2102 		pr_err("Unable to register child device\n");
2103 		return ret;
2104 	}
2105 
2106 	child_device_obj->channels_kset = kset_create_and_add("channels",
2107 							      NULL, kobj);
2108 	if (!child_device_obj->channels_kset) {
2109 		ret = -ENOMEM;
2110 		goto err_dev_unregister;
2111 	}
2112 
2113 	ret = vmbus_add_channel_kobj(child_device_obj,
2114 				     child_device_obj->channel);
2115 	if (ret) {
2116 		pr_err("Unable to register primary channeln");
2117 		goto err_kset_unregister;
2118 	}
2119 	hv_debug_add_dev_dir(child_device_obj);
2120 
2121 	return 0;
2122 
2123 err_kset_unregister:
2124 	kset_unregister(child_device_obj->channels_kset);
2125 
2126 err_dev_unregister:
2127 	device_unregister(&child_device_obj->device);
2128 	return ret;
2129 }
2130 
2131 /*
2132  * vmbus_device_unregister - Remove the specified child device
2133  * from the vmbus.
2134  */
2135 void vmbus_device_unregister(struct hv_device *device_obj)
2136 {
2137 	pr_debug("child device %s unregistered\n",
2138 		dev_name(&device_obj->device));
2139 
2140 	kset_unregister(device_obj->channels_kset);
2141 
2142 	/*
2143 	 * Kick off the process of unregistering the device.
2144 	 * This will call vmbus_remove() and eventually vmbus_device_release()
2145 	 */
2146 	device_unregister(&device_obj->device);
2147 }
2148 
2149 
2150 /*
2151  * VMBUS is an acpi enumerated device. Get the information we
2152  * need from DSDT.
2153  */
2154 #define VTPM_BASE_ADDRESS 0xfed40000
2155 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2156 {
2157 	resource_size_t start = 0;
2158 	resource_size_t end = 0;
2159 	struct resource *new_res;
2160 	struct resource **old_res = &hyperv_mmio;
2161 	struct resource **prev_res = NULL;
2162 	struct resource r;
2163 
2164 	switch (res->type) {
2165 
2166 	/*
2167 	 * "Address" descriptors are for bus windows. Ignore
2168 	 * "memory" descriptors, which are for registers on
2169 	 * devices.
2170 	 */
2171 	case ACPI_RESOURCE_TYPE_ADDRESS32:
2172 		start = res->data.address32.address.minimum;
2173 		end = res->data.address32.address.maximum;
2174 		break;
2175 
2176 	case ACPI_RESOURCE_TYPE_ADDRESS64:
2177 		start = res->data.address64.address.minimum;
2178 		end = res->data.address64.address.maximum;
2179 		break;
2180 
2181 	/*
2182 	 * The IRQ information is needed only on ARM64, which Hyper-V
2183 	 * sets up in the extended format. IRQ information is present
2184 	 * on x86/x64 in the non-extended format but it is not used by
2185 	 * Linux. So don't bother checking for the non-extended format.
2186 	 */
2187 	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2188 		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2189 			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2190 			return AE_ERROR;
2191 		}
2192 		/* ARM64 INTID for VMbus */
2193 		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2194 		/* Linux IRQ number */
2195 		vmbus_irq = r.start;
2196 		return AE_OK;
2197 
2198 	default:
2199 		/* Unused resource type */
2200 		return AE_OK;
2201 
2202 	}
2203 	/*
2204 	 * Ignore ranges that are below 1MB, as they're not
2205 	 * necessary or useful here.
2206 	 */
2207 	if (end < 0x100000)
2208 		return AE_OK;
2209 
2210 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2211 	if (!new_res)
2212 		return AE_NO_MEMORY;
2213 
2214 	/* If this range overlaps the virtual TPM, truncate it. */
2215 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2216 		end = VTPM_BASE_ADDRESS;
2217 
2218 	new_res->name = "hyperv mmio";
2219 	new_res->flags = IORESOURCE_MEM;
2220 	new_res->start = start;
2221 	new_res->end = end;
2222 
2223 	/*
2224 	 * If two ranges are adjacent, merge them.
2225 	 */
2226 	do {
2227 		if (!*old_res) {
2228 			*old_res = new_res;
2229 			break;
2230 		}
2231 
2232 		if (((*old_res)->end + 1) == new_res->start) {
2233 			(*old_res)->end = new_res->end;
2234 			kfree(new_res);
2235 			break;
2236 		}
2237 
2238 		if ((*old_res)->start == new_res->end + 1) {
2239 			(*old_res)->start = new_res->start;
2240 			kfree(new_res);
2241 			break;
2242 		}
2243 
2244 		if ((*old_res)->start > new_res->end) {
2245 			new_res->sibling = *old_res;
2246 			if (prev_res)
2247 				(*prev_res)->sibling = new_res;
2248 			*old_res = new_res;
2249 			break;
2250 		}
2251 
2252 		prev_res = old_res;
2253 		old_res = &(*old_res)->sibling;
2254 
2255 	} while (1);
2256 
2257 	return AE_OK;
2258 }
2259 
2260 static int vmbus_acpi_remove(struct acpi_device *device)
2261 {
2262 	struct resource *cur_res;
2263 	struct resource *next_res;
2264 
2265 	if (hyperv_mmio) {
2266 		if (fb_mmio) {
2267 			__release_region(hyperv_mmio, fb_mmio->start,
2268 					 resource_size(fb_mmio));
2269 			fb_mmio = NULL;
2270 		}
2271 
2272 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2273 			next_res = cur_res->sibling;
2274 			kfree(cur_res);
2275 		}
2276 	}
2277 
2278 	return 0;
2279 }
2280 
2281 static void vmbus_reserve_fb(void)
2282 {
2283 	int size;
2284 	/*
2285 	 * Make a claim for the frame buffer in the resource tree under the
2286 	 * first node, which will be the one below 4GB.  The length seems to
2287 	 * be underreported, particularly in a Generation 1 VM.  So start out
2288 	 * reserving a larger area and make it smaller until it succeeds.
2289 	 */
2290 
2291 	if (screen_info.lfb_base) {
2292 		if (efi_enabled(EFI_BOOT))
2293 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2294 		else
2295 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2296 
2297 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2298 			fb_mmio = __request_region(hyperv_mmio,
2299 						   screen_info.lfb_base, size,
2300 						   fb_mmio_name, 0);
2301 		}
2302 	}
2303 }
2304 
2305 /**
2306  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2307  * @new:		If successful, supplied a pointer to the
2308  *			allocated MMIO space.
2309  * @device_obj:		Identifies the caller
2310  * @min:		Minimum guest physical address of the
2311  *			allocation
2312  * @max:		Maximum guest physical address
2313  * @size:		Size of the range to be allocated
2314  * @align:		Alignment of the range to be allocated
2315  * @fb_overlap_ok:	Whether this allocation can be allowed
2316  *			to overlap the video frame buffer.
2317  *
2318  * This function walks the resources granted to VMBus by the
2319  * _CRS object in the ACPI namespace underneath the parent
2320  * "bridge" whether that's a root PCI bus in the Generation 1
2321  * case or a Module Device in the Generation 2 case.  It then
2322  * attempts to allocate from the global MMIO pool in a way that
2323  * matches the constraints supplied in these parameters and by
2324  * that _CRS.
2325  *
2326  * Return: 0 on success, -errno on failure
2327  */
2328 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2329 			resource_size_t min, resource_size_t max,
2330 			resource_size_t size, resource_size_t align,
2331 			bool fb_overlap_ok)
2332 {
2333 	struct resource *iter, *shadow;
2334 	resource_size_t range_min, range_max, start;
2335 	const char *dev_n = dev_name(&device_obj->device);
2336 	int retval;
2337 
2338 	retval = -ENXIO;
2339 	mutex_lock(&hyperv_mmio_lock);
2340 
2341 	/*
2342 	 * If overlaps with frame buffers are allowed, then first attempt to
2343 	 * make the allocation from within the reserved region.  Because it
2344 	 * is already reserved, no shadow allocation is necessary.
2345 	 */
2346 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2347 	    !(max < fb_mmio->start)) {
2348 
2349 		range_min = fb_mmio->start;
2350 		range_max = fb_mmio->end;
2351 		start = (range_min + align - 1) & ~(align - 1);
2352 		for (; start + size - 1 <= range_max; start += align) {
2353 			*new = request_mem_region_exclusive(start, size, dev_n);
2354 			if (*new) {
2355 				retval = 0;
2356 				goto exit;
2357 			}
2358 		}
2359 	}
2360 
2361 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2362 		if ((iter->start >= max) || (iter->end <= min))
2363 			continue;
2364 
2365 		range_min = iter->start;
2366 		range_max = iter->end;
2367 		start = (range_min + align - 1) & ~(align - 1);
2368 		for (; start + size - 1 <= range_max; start += align) {
2369 			shadow = __request_region(iter, start, size, NULL,
2370 						  IORESOURCE_BUSY);
2371 			if (!shadow)
2372 				continue;
2373 
2374 			*new = request_mem_region_exclusive(start, size, dev_n);
2375 			if (*new) {
2376 				shadow->name = (char *)*new;
2377 				retval = 0;
2378 				goto exit;
2379 			}
2380 
2381 			__release_region(iter, start, size);
2382 		}
2383 	}
2384 
2385 exit:
2386 	mutex_unlock(&hyperv_mmio_lock);
2387 	return retval;
2388 }
2389 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2390 
2391 /**
2392  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2393  * @start:		Base address of region to release.
2394  * @size:		Size of the range to be allocated
2395  *
2396  * This function releases anything requested by
2397  * vmbus_mmio_allocate().
2398  */
2399 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2400 {
2401 	struct resource *iter;
2402 
2403 	mutex_lock(&hyperv_mmio_lock);
2404 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2405 		if ((iter->start >= start + size) || (iter->end <= start))
2406 			continue;
2407 
2408 		__release_region(iter, start, size);
2409 	}
2410 	release_mem_region(start, size);
2411 	mutex_unlock(&hyperv_mmio_lock);
2412 
2413 }
2414 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2415 
2416 static int vmbus_acpi_add(struct acpi_device *device)
2417 {
2418 	acpi_status result;
2419 	int ret_val = -ENODEV;
2420 	struct acpi_device *ancestor;
2421 
2422 	hv_acpi_dev = device;
2423 
2424 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2425 					vmbus_walk_resources, NULL);
2426 
2427 	if (ACPI_FAILURE(result))
2428 		goto acpi_walk_err;
2429 	/*
2430 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2431 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2432 	 */
2433 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2434 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2435 					     vmbus_walk_resources, NULL);
2436 
2437 		if (ACPI_FAILURE(result))
2438 			continue;
2439 		if (hyperv_mmio) {
2440 			vmbus_reserve_fb();
2441 			break;
2442 		}
2443 	}
2444 	ret_val = 0;
2445 
2446 acpi_walk_err:
2447 	complete(&probe_event);
2448 	if (ret_val)
2449 		vmbus_acpi_remove(device);
2450 	return ret_val;
2451 }
2452 
2453 #ifdef CONFIG_PM_SLEEP
2454 static int vmbus_bus_suspend(struct device *dev)
2455 {
2456 	struct vmbus_channel *channel, *sc;
2457 
2458 	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2459 		/*
2460 		 * We wait here until the completion of any channel
2461 		 * offers that are currently in progress.
2462 		 */
2463 		usleep_range(1000, 2000);
2464 	}
2465 
2466 	mutex_lock(&vmbus_connection.channel_mutex);
2467 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2468 		if (!is_hvsock_channel(channel))
2469 			continue;
2470 
2471 		vmbus_force_channel_rescinded(channel);
2472 	}
2473 	mutex_unlock(&vmbus_connection.channel_mutex);
2474 
2475 	/*
2476 	 * Wait until all the sub-channels and hv_sock channels have been
2477 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2478 	 * they would conflict with the new sub-channels that will be created
2479 	 * in the resume path. hv_sock channels should also be destroyed, but
2480 	 * a hv_sock channel of an established hv_sock connection can not be
2481 	 * really destroyed since it may still be referenced by the userspace
2482 	 * application, so we just force the hv_sock channel to be rescinded
2483 	 * by vmbus_force_channel_rescinded(), and the userspace application
2484 	 * will thoroughly destroy the channel after hibernation.
2485 	 *
2486 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2487 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2488 	 */
2489 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2490 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2491 
2492 	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2493 		pr_err("Can not suspend due to a previous failed resuming\n");
2494 		return -EBUSY;
2495 	}
2496 
2497 	mutex_lock(&vmbus_connection.channel_mutex);
2498 
2499 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2500 		/*
2501 		 * Remove the channel from the array of channels and invalidate
2502 		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2503 		 * up the relid (and other fields, if necessary) and add the
2504 		 * channel back to the array.
2505 		 */
2506 		vmbus_channel_unmap_relid(channel);
2507 		channel->offermsg.child_relid = INVALID_RELID;
2508 
2509 		if (is_hvsock_channel(channel)) {
2510 			if (!channel->rescind) {
2511 				pr_err("hv_sock channel not rescinded!\n");
2512 				WARN_ON_ONCE(1);
2513 			}
2514 			continue;
2515 		}
2516 
2517 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2518 			pr_err("Sub-channel not deleted!\n");
2519 			WARN_ON_ONCE(1);
2520 		}
2521 
2522 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2523 	}
2524 
2525 	mutex_unlock(&vmbus_connection.channel_mutex);
2526 
2527 	vmbus_initiate_unload(false);
2528 
2529 	/* Reset the event for the next resume. */
2530 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2531 
2532 	return 0;
2533 }
2534 
2535 static int vmbus_bus_resume(struct device *dev)
2536 {
2537 	struct vmbus_channel_msginfo *msginfo;
2538 	size_t msgsize;
2539 	int ret;
2540 
2541 	/*
2542 	 * We only use the 'vmbus_proto_version', which was in use before
2543 	 * hibernation, to re-negotiate with the host.
2544 	 */
2545 	if (!vmbus_proto_version) {
2546 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2547 		return -EINVAL;
2548 	}
2549 
2550 	msgsize = sizeof(*msginfo) +
2551 		  sizeof(struct vmbus_channel_initiate_contact);
2552 
2553 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2554 
2555 	if (msginfo == NULL)
2556 		return -ENOMEM;
2557 
2558 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2559 
2560 	kfree(msginfo);
2561 
2562 	if (ret != 0)
2563 		return ret;
2564 
2565 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2566 
2567 	vmbus_request_offers();
2568 
2569 	if (wait_for_completion_timeout(
2570 		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2571 		pr_err("Some vmbus device is missing after suspending?\n");
2572 
2573 	/* Reset the event for the next suspend. */
2574 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2575 
2576 	return 0;
2577 }
2578 #else
2579 #define vmbus_bus_suspend NULL
2580 #define vmbus_bus_resume NULL
2581 #endif /* CONFIG_PM_SLEEP */
2582 
2583 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2584 	{"VMBUS", 0},
2585 	{"VMBus", 0},
2586 	{"", 0},
2587 };
2588 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2589 
2590 /*
2591  * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2592  * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2593  * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2594  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2595  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2596  * resume callback must also run via the "noirq" ops.
2597  *
2598  * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2599  * earlier in this file before vmbus_pm.
2600  */
2601 
2602 static const struct dev_pm_ops vmbus_bus_pm = {
2603 	.suspend_noirq	= NULL,
2604 	.resume_noirq	= NULL,
2605 	.freeze_noirq	= vmbus_bus_suspend,
2606 	.thaw_noirq	= vmbus_bus_resume,
2607 	.poweroff_noirq	= vmbus_bus_suspend,
2608 	.restore_noirq	= vmbus_bus_resume
2609 };
2610 
2611 static struct acpi_driver vmbus_acpi_driver = {
2612 	.name = "vmbus",
2613 	.ids = vmbus_acpi_device_ids,
2614 	.ops = {
2615 		.add = vmbus_acpi_add,
2616 		.remove = vmbus_acpi_remove,
2617 	},
2618 	.drv.pm = &vmbus_bus_pm,
2619 };
2620 
2621 static void hv_kexec_handler(void)
2622 {
2623 	hv_stimer_global_cleanup();
2624 	vmbus_initiate_unload(false);
2625 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2626 	mb();
2627 	cpuhp_remove_state(hyperv_cpuhp_online);
2628 };
2629 
2630 static void hv_crash_handler(struct pt_regs *regs)
2631 {
2632 	int cpu;
2633 
2634 	vmbus_initiate_unload(true);
2635 	/*
2636 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2637 	 * doing the cleanup for current CPU only. This should be sufficient
2638 	 * for kdump.
2639 	 */
2640 	cpu = smp_processor_id();
2641 	hv_stimer_cleanup(cpu);
2642 	hv_synic_disable_regs(cpu);
2643 };
2644 
2645 static int hv_synic_suspend(void)
2646 {
2647 	/*
2648 	 * When we reach here, all the non-boot CPUs have been offlined.
2649 	 * If we're in a legacy configuration where stimer Direct Mode is
2650 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2651 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2652 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2653 	 *
2654 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2655 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2656 	 * 1) it's unnecessary as interrupts remain disabled between
2657 	 * syscore_suspend() and syscore_resume(): see create_image() and
2658 	 * resume_target_kernel()
2659 	 * 2) the stimer on CPU0 is automatically disabled later by
2660 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2661 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2662 	 * 3) a warning would be triggered if we call
2663 	 * clockevents_unbind_device(), which may sleep, in an
2664 	 * interrupts-disabled context.
2665 	 */
2666 
2667 	hv_synic_disable_regs(0);
2668 
2669 	return 0;
2670 }
2671 
2672 static void hv_synic_resume(void)
2673 {
2674 	hv_synic_enable_regs(0);
2675 
2676 	/*
2677 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2678 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2679 	 * automatically re-enabled in timekeeping_resume().
2680 	 */
2681 }
2682 
2683 /* The callbacks run only on CPU0, with irqs_disabled. */
2684 static struct syscore_ops hv_synic_syscore_ops = {
2685 	.suspend = hv_synic_suspend,
2686 	.resume = hv_synic_resume,
2687 };
2688 
2689 static int __init hv_acpi_init(void)
2690 {
2691 	int ret, t;
2692 
2693 	if (!hv_is_hyperv_initialized())
2694 		return -ENODEV;
2695 
2696 	if (hv_root_partition)
2697 		return 0;
2698 
2699 	init_completion(&probe_event);
2700 
2701 	/*
2702 	 * Get ACPI resources first.
2703 	 */
2704 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2705 
2706 	if (ret)
2707 		return ret;
2708 
2709 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2710 	if (t == 0) {
2711 		ret = -ETIMEDOUT;
2712 		goto cleanup;
2713 	}
2714 
2715 	/*
2716 	 * If we're on an architecture with a hardcoded hypervisor
2717 	 * vector (i.e. x86/x64), override the VMbus interrupt found
2718 	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2719 	 * normal Linux IRQ mechanism is not used in this case.
2720 	 */
2721 #ifdef HYPERVISOR_CALLBACK_VECTOR
2722 	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2723 	vmbus_irq = -1;
2724 #endif
2725 
2726 	hv_debug_init();
2727 
2728 	ret = vmbus_bus_init();
2729 	if (ret)
2730 		goto cleanup;
2731 
2732 	hv_setup_kexec_handler(hv_kexec_handler);
2733 	hv_setup_crash_handler(hv_crash_handler);
2734 
2735 	register_syscore_ops(&hv_synic_syscore_ops);
2736 
2737 	return 0;
2738 
2739 cleanup:
2740 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2741 	hv_acpi_dev = NULL;
2742 	return ret;
2743 }
2744 
2745 static void __exit vmbus_exit(void)
2746 {
2747 	int cpu;
2748 
2749 	unregister_syscore_ops(&hv_synic_syscore_ops);
2750 
2751 	hv_remove_kexec_handler();
2752 	hv_remove_crash_handler();
2753 	vmbus_connection.conn_state = DISCONNECTED;
2754 	hv_stimer_global_cleanup();
2755 	vmbus_disconnect();
2756 	if (vmbus_irq == -1) {
2757 		hv_remove_vmbus_handler();
2758 	} else {
2759 		free_percpu_irq(vmbus_irq, vmbus_evt);
2760 		free_percpu(vmbus_evt);
2761 	}
2762 	for_each_online_cpu(cpu) {
2763 		struct hv_per_cpu_context *hv_cpu
2764 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2765 
2766 		tasklet_kill(&hv_cpu->msg_dpc);
2767 	}
2768 	hv_debug_rm_all_dir();
2769 
2770 	vmbus_free_channels();
2771 	kfree(vmbus_connection.channels);
2772 
2773 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2774 		kmsg_dump_unregister(&hv_kmsg_dumper);
2775 		unregister_die_notifier(&hyperv_die_block);
2776 		atomic_notifier_chain_unregister(&panic_notifier_list,
2777 						 &hyperv_panic_block);
2778 	}
2779 
2780 	free_page((unsigned long)hv_panic_page);
2781 	unregister_sysctl_table(hv_ctl_table_hdr);
2782 	hv_ctl_table_hdr = NULL;
2783 	bus_unregister(&hv_bus);
2784 
2785 	cpuhp_remove_state(hyperv_cpuhp_online);
2786 	hv_synic_free();
2787 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2788 }
2789 
2790 
2791 MODULE_LICENSE("GPL");
2792 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2793 
2794 subsys_initcall(hv_acpi_init);
2795 module_exit(vmbus_exit);
2796