xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision d0e22329)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38 
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47 
48 struct vmbus_dynid {
49 	struct list_head node;
50 	struct hv_vmbus_device_id id;
51 };
52 
53 static struct acpi_device  *hv_acpi_dev;
54 
55 static struct completion probe_event;
56 
57 static int hyperv_cpuhp_online;
58 
59 static void *hv_panic_page;
60 
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 			      void *args)
63 {
64 	struct pt_regs *regs;
65 
66 	regs = current_pt_regs();
67 
68 	hyperv_report_panic(regs, val);
69 	return NOTIFY_DONE;
70 }
71 
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 			    void *args)
74 {
75 	struct die_args *die = (struct die_args *)args;
76 	struct pt_regs *regs = die->regs;
77 
78 	hyperv_report_panic(regs, val);
79 	return NOTIFY_DONE;
80 }
81 
82 static struct notifier_block hyperv_die_block = {
83 	.notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 	.notifier_call = hyperv_panic_event,
87 };
88 
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93 
94 static int vmbus_exists(void)
95 {
96 	if (hv_acpi_dev == NULL)
97 		return -ENODEV;
98 
99 	return 0;
100 }
101 
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 	int i;
106 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109 
110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 {
112 	return (u8)channel->offermsg.monitorid / 32;
113 }
114 
115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 {
117 	return (u8)channel->offermsg.monitorid % 32;
118 }
119 
120 static u32 channel_pending(const struct vmbus_channel *channel,
121 			   const struct hv_monitor_page *monitor_page)
122 {
123 	u8 monitor_group = channel_monitor_group(channel);
124 
125 	return monitor_page->trigger_group[monitor_group].pending;
126 }
127 
128 static u32 channel_latency(const struct vmbus_channel *channel,
129 			   const struct hv_monitor_page *monitor_page)
130 {
131 	u8 monitor_group = channel_monitor_group(channel);
132 	u8 monitor_offset = channel_monitor_offset(channel);
133 
134 	return monitor_page->latency[monitor_group][monitor_offset];
135 }
136 
137 static u32 channel_conn_id(struct vmbus_channel *channel,
138 			   struct hv_monitor_page *monitor_page)
139 {
140 	u8 monitor_group = channel_monitor_group(channel);
141 	u8 monitor_offset = channel_monitor_offset(channel);
142 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 }
144 
145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146 		       char *buf)
147 {
148 	struct hv_device *hv_dev = device_to_hv_device(dev);
149 
150 	if (!hv_dev->channel)
151 		return -ENODEV;
152 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 }
154 static DEVICE_ATTR_RO(id);
155 
156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157 			  char *buf)
158 {
159 	struct hv_device *hv_dev = device_to_hv_device(dev);
160 
161 	if (!hv_dev->channel)
162 		return -ENODEV;
163 	return sprintf(buf, "%d\n", hv_dev->channel->state);
164 }
165 static DEVICE_ATTR_RO(state);
166 
167 static ssize_t monitor_id_show(struct device *dev,
168 			       struct device_attribute *dev_attr, char *buf)
169 {
170 	struct hv_device *hv_dev = device_to_hv_device(dev);
171 
172 	if (!hv_dev->channel)
173 		return -ENODEV;
174 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 }
176 static DEVICE_ATTR_RO(monitor_id);
177 
178 static ssize_t class_id_show(struct device *dev,
179 			       struct device_attribute *dev_attr, char *buf)
180 {
181 	struct hv_device *hv_dev = device_to_hv_device(dev);
182 
183 	if (!hv_dev->channel)
184 		return -ENODEV;
185 	return sprintf(buf, "{%pUl}\n",
186 		       hv_dev->channel->offermsg.offer.if_type.b);
187 }
188 static DEVICE_ATTR_RO(class_id);
189 
190 static ssize_t device_id_show(struct device *dev,
191 			      struct device_attribute *dev_attr, char *buf)
192 {
193 	struct hv_device *hv_dev = device_to_hv_device(dev);
194 
195 	if (!hv_dev->channel)
196 		return -ENODEV;
197 	return sprintf(buf, "{%pUl}\n",
198 		       hv_dev->channel->offermsg.offer.if_instance.b);
199 }
200 static DEVICE_ATTR_RO(device_id);
201 
202 static ssize_t modalias_show(struct device *dev,
203 			     struct device_attribute *dev_attr, char *buf)
204 {
205 	struct hv_device *hv_dev = device_to_hv_device(dev);
206 	char alias_name[VMBUS_ALIAS_LEN + 1];
207 
208 	print_alias_name(hv_dev, alias_name);
209 	return sprintf(buf, "vmbus:%s\n", alias_name);
210 }
211 static DEVICE_ATTR_RO(modalias);
212 
213 #ifdef CONFIG_NUMA
214 static ssize_t numa_node_show(struct device *dev,
215 			      struct device_attribute *attr, char *buf)
216 {
217 	struct hv_device *hv_dev = device_to_hv_device(dev);
218 
219 	if (!hv_dev->channel)
220 		return -ENODEV;
221 
222 	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
223 }
224 static DEVICE_ATTR_RO(numa_node);
225 #endif
226 
227 static ssize_t server_monitor_pending_show(struct device *dev,
228 					   struct device_attribute *dev_attr,
229 					   char *buf)
230 {
231 	struct hv_device *hv_dev = device_to_hv_device(dev);
232 
233 	if (!hv_dev->channel)
234 		return -ENODEV;
235 	return sprintf(buf, "%d\n",
236 		       channel_pending(hv_dev->channel,
237 				       vmbus_connection.monitor_pages[1]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240 
241 static ssize_t client_monitor_pending_show(struct device *dev,
242 					   struct device_attribute *dev_attr,
243 					   char *buf)
244 {
245 	struct hv_device *hv_dev = device_to_hv_device(dev);
246 
247 	if (!hv_dev->channel)
248 		return -ENODEV;
249 	return sprintf(buf, "%d\n",
250 		       channel_pending(hv_dev->channel,
251 				       vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254 
255 static ssize_t server_monitor_latency_show(struct device *dev,
256 					   struct device_attribute *dev_attr,
257 					   char *buf)
258 {
259 	struct hv_device *hv_dev = device_to_hv_device(dev);
260 
261 	if (!hv_dev->channel)
262 		return -ENODEV;
263 	return sprintf(buf, "%d\n",
264 		       channel_latency(hv_dev->channel,
265 				       vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268 
269 static ssize_t client_monitor_latency_show(struct device *dev,
270 					   struct device_attribute *dev_attr,
271 					   char *buf)
272 {
273 	struct hv_device *hv_dev = device_to_hv_device(dev);
274 
275 	if (!hv_dev->channel)
276 		return -ENODEV;
277 	return sprintf(buf, "%d\n",
278 		       channel_latency(hv_dev->channel,
279 				       vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282 
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284 					   struct device_attribute *dev_attr,
285 					   char *buf)
286 {
287 	struct hv_device *hv_dev = device_to_hv_device(dev);
288 
289 	if (!hv_dev->channel)
290 		return -ENODEV;
291 	return sprintf(buf, "%d\n",
292 		       channel_conn_id(hv_dev->channel,
293 				       vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296 
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298 					   struct device_attribute *dev_attr,
299 					   char *buf)
300 {
301 	struct hv_device *hv_dev = device_to_hv_device(dev);
302 
303 	if (!hv_dev->channel)
304 		return -ENODEV;
305 	return sprintf(buf, "%d\n",
306 		       channel_conn_id(hv_dev->channel,
307 				       vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310 
311 static ssize_t out_intr_mask_show(struct device *dev,
312 				  struct device_attribute *dev_attr, char *buf)
313 {
314 	struct hv_device *hv_dev = device_to_hv_device(dev);
315 	struct hv_ring_buffer_debug_info outbound;
316 
317 	if (!hv_dev->channel)
318 		return -ENODEV;
319 	if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
320 		return -EINVAL;
321 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
322 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
323 }
324 static DEVICE_ATTR_RO(out_intr_mask);
325 
326 static ssize_t out_read_index_show(struct device *dev,
327 				   struct device_attribute *dev_attr, char *buf)
328 {
329 	struct hv_device *hv_dev = device_to_hv_device(dev);
330 	struct hv_ring_buffer_debug_info outbound;
331 
332 	if (!hv_dev->channel)
333 		return -ENODEV;
334 	if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
335 		return -EINVAL;
336 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
337 	return sprintf(buf, "%d\n", outbound.current_read_index);
338 }
339 static DEVICE_ATTR_RO(out_read_index);
340 
341 static ssize_t out_write_index_show(struct device *dev,
342 				    struct device_attribute *dev_attr,
343 				    char *buf)
344 {
345 	struct hv_device *hv_dev = device_to_hv_device(dev);
346 	struct hv_ring_buffer_debug_info outbound;
347 
348 	if (!hv_dev->channel)
349 		return -ENODEV;
350 	if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
351 		return -EINVAL;
352 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
353 	return sprintf(buf, "%d\n", outbound.current_write_index);
354 }
355 static DEVICE_ATTR_RO(out_write_index);
356 
357 static ssize_t out_read_bytes_avail_show(struct device *dev,
358 					 struct device_attribute *dev_attr,
359 					 char *buf)
360 {
361 	struct hv_device *hv_dev = device_to_hv_device(dev);
362 	struct hv_ring_buffer_debug_info outbound;
363 
364 	if (!hv_dev->channel)
365 		return -ENODEV;
366 	if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
367 		return -EINVAL;
368 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
369 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
370 }
371 static DEVICE_ATTR_RO(out_read_bytes_avail);
372 
373 static ssize_t out_write_bytes_avail_show(struct device *dev,
374 					  struct device_attribute *dev_attr,
375 					  char *buf)
376 {
377 	struct hv_device *hv_dev = device_to_hv_device(dev);
378 	struct hv_ring_buffer_debug_info outbound;
379 
380 	if (!hv_dev->channel)
381 		return -ENODEV;
382 	if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
383 		return -EINVAL;
384 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
385 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
386 }
387 static DEVICE_ATTR_RO(out_write_bytes_avail);
388 
389 static ssize_t in_intr_mask_show(struct device *dev,
390 				 struct device_attribute *dev_attr, char *buf)
391 {
392 	struct hv_device *hv_dev = device_to_hv_device(dev);
393 	struct hv_ring_buffer_debug_info inbound;
394 
395 	if (!hv_dev->channel)
396 		return -ENODEV;
397 	if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
398 		return -EINVAL;
399 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
400 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
401 }
402 static DEVICE_ATTR_RO(in_intr_mask);
403 
404 static ssize_t in_read_index_show(struct device *dev,
405 				  struct device_attribute *dev_attr, char *buf)
406 {
407 	struct hv_device *hv_dev = device_to_hv_device(dev);
408 	struct hv_ring_buffer_debug_info inbound;
409 
410 	if (!hv_dev->channel)
411 		return -ENODEV;
412 	if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
413 		return -EINVAL;
414 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
415 	return sprintf(buf, "%d\n", inbound.current_read_index);
416 }
417 static DEVICE_ATTR_RO(in_read_index);
418 
419 static ssize_t in_write_index_show(struct device *dev,
420 				   struct device_attribute *dev_attr, char *buf)
421 {
422 	struct hv_device *hv_dev = device_to_hv_device(dev);
423 	struct hv_ring_buffer_debug_info inbound;
424 
425 	if (!hv_dev->channel)
426 		return -ENODEV;
427 	if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
428 		return -EINVAL;
429 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
430 	return sprintf(buf, "%d\n", inbound.current_write_index);
431 }
432 static DEVICE_ATTR_RO(in_write_index);
433 
434 static ssize_t in_read_bytes_avail_show(struct device *dev,
435 					struct device_attribute *dev_attr,
436 					char *buf)
437 {
438 	struct hv_device *hv_dev = device_to_hv_device(dev);
439 	struct hv_ring_buffer_debug_info inbound;
440 
441 	if (!hv_dev->channel)
442 		return -ENODEV;
443 	if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
444 		return -EINVAL;
445 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
446 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
447 }
448 static DEVICE_ATTR_RO(in_read_bytes_avail);
449 
450 static ssize_t in_write_bytes_avail_show(struct device *dev,
451 					 struct device_attribute *dev_attr,
452 					 char *buf)
453 {
454 	struct hv_device *hv_dev = device_to_hv_device(dev);
455 	struct hv_ring_buffer_debug_info inbound;
456 
457 	if (!hv_dev->channel)
458 		return -ENODEV;
459 	if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
460 		return -EINVAL;
461 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
462 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
463 }
464 static DEVICE_ATTR_RO(in_write_bytes_avail);
465 
466 static ssize_t channel_vp_mapping_show(struct device *dev,
467 				       struct device_attribute *dev_attr,
468 				       char *buf)
469 {
470 	struct hv_device *hv_dev = device_to_hv_device(dev);
471 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
472 	unsigned long flags;
473 	int buf_size = PAGE_SIZE, n_written, tot_written;
474 	struct list_head *cur;
475 
476 	if (!channel)
477 		return -ENODEV;
478 
479 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
480 		channel->offermsg.child_relid, channel->target_cpu);
481 
482 	spin_lock_irqsave(&channel->lock, flags);
483 
484 	list_for_each(cur, &channel->sc_list) {
485 		if (tot_written >= buf_size - 1)
486 			break;
487 
488 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
489 		n_written = scnprintf(buf + tot_written,
490 				     buf_size - tot_written,
491 				     "%u:%u\n",
492 				     cur_sc->offermsg.child_relid,
493 				     cur_sc->target_cpu);
494 		tot_written += n_written;
495 	}
496 
497 	spin_unlock_irqrestore(&channel->lock, flags);
498 
499 	return tot_written;
500 }
501 static DEVICE_ATTR_RO(channel_vp_mapping);
502 
503 static ssize_t vendor_show(struct device *dev,
504 			   struct device_attribute *dev_attr,
505 			   char *buf)
506 {
507 	struct hv_device *hv_dev = device_to_hv_device(dev);
508 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
509 }
510 static DEVICE_ATTR_RO(vendor);
511 
512 static ssize_t device_show(struct device *dev,
513 			   struct device_attribute *dev_attr,
514 			   char *buf)
515 {
516 	struct hv_device *hv_dev = device_to_hv_device(dev);
517 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
518 }
519 static DEVICE_ATTR_RO(device);
520 
521 static ssize_t driver_override_store(struct device *dev,
522 				     struct device_attribute *attr,
523 				     const char *buf, size_t count)
524 {
525 	struct hv_device *hv_dev = device_to_hv_device(dev);
526 	char *driver_override, *old, *cp;
527 
528 	/* We need to keep extra room for a newline */
529 	if (count >= (PAGE_SIZE - 1))
530 		return -EINVAL;
531 
532 	driver_override = kstrndup(buf, count, GFP_KERNEL);
533 	if (!driver_override)
534 		return -ENOMEM;
535 
536 	cp = strchr(driver_override, '\n');
537 	if (cp)
538 		*cp = '\0';
539 
540 	device_lock(dev);
541 	old = hv_dev->driver_override;
542 	if (strlen(driver_override)) {
543 		hv_dev->driver_override = driver_override;
544 	} else {
545 		kfree(driver_override);
546 		hv_dev->driver_override = NULL;
547 	}
548 	device_unlock(dev);
549 
550 	kfree(old);
551 
552 	return count;
553 }
554 
555 static ssize_t driver_override_show(struct device *dev,
556 				    struct device_attribute *attr, char *buf)
557 {
558 	struct hv_device *hv_dev = device_to_hv_device(dev);
559 	ssize_t len;
560 
561 	device_lock(dev);
562 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
563 	device_unlock(dev);
564 
565 	return len;
566 }
567 static DEVICE_ATTR_RW(driver_override);
568 
569 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
570 static struct attribute *vmbus_dev_attrs[] = {
571 	&dev_attr_id.attr,
572 	&dev_attr_state.attr,
573 	&dev_attr_monitor_id.attr,
574 	&dev_attr_class_id.attr,
575 	&dev_attr_device_id.attr,
576 	&dev_attr_modalias.attr,
577 #ifdef CONFIG_NUMA
578 	&dev_attr_numa_node.attr,
579 #endif
580 	&dev_attr_server_monitor_pending.attr,
581 	&dev_attr_client_monitor_pending.attr,
582 	&dev_attr_server_monitor_latency.attr,
583 	&dev_attr_client_monitor_latency.attr,
584 	&dev_attr_server_monitor_conn_id.attr,
585 	&dev_attr_client_monitor_conn_id.attr,
586 	&dev_attr_out_intr_mask.attr,
587 	&dev_attr_out_read_index.attr,
588 	&dev_attr_out_write_index.attr,
589 	&dev_attr_out_read_bytes_avail.attr,
590 	&dev_attr_out_write_bytes_avail.attr,
591 	&dev_attr_in_intr_mask.attr,
592 	&dev_attr_in_read_index.attr,
593 	&dev_attr_in_write_index.attr,
594 	&dev_attr_in_read_bytes_avail.attr,
595 	&dev_attr_in_write_bytes_avail.attr,
596 	&dev_attr_channel_vp_mapping.attr,
597 	&dev_attr_vendor.attr,
598 	&dev_attr_device.attr,
599 	&dev_attr_driver_override.attr,
600 	NULL,
601 };
602 ATTRIBUTE_GROUPS(vmbus_dev);
603 
604 /*
605  * vmbus_uevent - add uevent for our device
606  *
607  * This routine is invoked when a device is added or removed on the vmbus to
608  * generate a uevent to udev in the userspace. The udev will then look at its
609  * rule and the uevent generated here to load the appropriate driver
610  *
611  * The alias string will be of the form vmbus:guid where guid is the string
612  * representation of the device guid (each byte of the guid will be
613  * represented with two hex characters.
614  */
615 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
616 {
617 	struct hv_device *dev = device_to_hv_device(device);
618 	int ret;
619 	char alias_name[VMBUS_ALIAS_LEN + 1];
620 
621 	print_alias_name(dev, alias_name);
622 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
623 	return ret;
624 }
625 
626 static const uuid_le null_guid;
627 
628 static inline bool is_null_guid(const uuid_le *guid)
629 {
630 	if (uuid_le_cmp(*guid, null_guid))
631 		return false;
632 	return true;
633 }
634 
635 static const struct hv_vmbus_device_id *
636 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const uuid_le *guid)
637 
638 {
639 	if (id == NULL)
640 		return NULL; /* empty device table */
641 
642 	for (; !is_null_guid(&id->guid); id++)
643 		if (!uuid_le_cmp(id->guid, *guid))
644 			return id;
645 
646 	return NULL;
647 }
648 
649 static const struct hv_vmbus_device_id *
650 hv_vmbus_dynid_match(struct hv_driver *drv, const uuid_le *guid)
651 {
652 	const struct hv_vmbus_device_id *id = NULL;
653 	struct vmbus_dynid *dynid;
654 
655 	spin_lock(&drv->dynids.lock);
656 	list_for_each_entry(dynid, &drv->dynids.list, node) {
657 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
658 			id = &dynid->id;
659 			break;
660 		}
661 	}
662 	spin_unlock(&drv->dynids.lock);
663 
664 	return id;
665 }
666 
667 static const struct hv_vmbus_device_id vmbus_device_null = {
668 	.guid = NULL_UUID_LE,
669 };
670 
671 /*
672  * Return a matching hv_vmbus_device_id pointer.
673  * If there is no match, return NULL.
674  */
675 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
676 							struct hv_device *dev)
677 {
678 	const uuid_le *guid = &dev->dev_type;
679 	const struct hv_vmbus_device_id *id;
680 
681 	/* When driver_override is set, only bind to the matching driver */
682 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
683 		return NULL;
684 
685 	/* Look at the dynamic ids first, before the static ones */
686 	id = hv_vmbus_dynid_match(drv, guid);
687 	if (!id)
688 		id = hv_vmbus_dev_match(drv->id_table, guid);
689 
690 	/* driver_override will always match, send a dummy id */
691 	if (!id && dev->driver_override)
692 		id = &vmbus_device_null;
693 
694 	return id;
695 }
696 
697 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
698 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
699 {
700 	struct vmbus_dynid *dynid;
701 
702 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
703 	if (!dynid)
704 		return -ENOMEM;
705 
706 	dynid->id.guid = *guid;
707 
708 	spin_lock(&drv->dynids.lock);
709 	list_add_tail(&dynid->node, &drv->dynids.list);
710 	spin_unlock(&drv->dynids.lock);
711 
712 	return driver_attach(&drv->driver);
713 }
714 
715 static void vmbus_free_dynids(struct hv_driver *drv)
716 {
717 	struct vmbus_dynid *dynid, *n;
718 
719 	spin_lock(&drv->dynids.lock);
720 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
721 		list_del(&dynid->node);
722 		kfree(dynid);
723 	}
724 	spin_unlock(&drv->dynids.lock);
725 }
726 
727 /*
728  * store_new_id - sysfs frontend to vmbus_add_dynid()
729  *
730  * Allow GUIDs to be added to an existing driver via sysfs.
731  */
732 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
733 			    size_t count)
734 {
735 	struct hv_driver *drv = drv_to_hv_drv(driver);
736 	uuid_le guid;
737 	ssize_t retval;
738 
739 	retval = uuid_le_to_bin(buf, &guid);
740 	if (retval)
741 		return retval;
742 
743 	if (hv_vmbus_dynid_match(drv, &guid))
744 		return -EEXIST;
745 
746 	retval = vmbus_add_dynid(drv, &guid);
747 	if (retval)
748 		return retval;
749 	return count;
750 }
751 static DRIVER_ATTR_WO(new_id);
752 
753 /*
754  * store_remove_id - remove a PCI device ID from this driver
755  *
756  * Removes a dynamic pci device ID to this driver.
757  */
758 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
759 			       size_t count)
760 {
761 	struct hv_driver *drv = drv_to_hv_drv(driver);
762 	struct vmbus_dynid *dynid, *n;
763 	uuid_le guid;
764 	ssize_t retval;
765 
766 	retval = uuid_le_to_bin(buf, &guid);
767 	if (retval)
768 		return retval;
769 
770 	retval = -ENODEV;
771 	spin_lock(&drv->dynids.lock);
772 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
773 		struct hv_vmbus_device_id *id = &dynid->id;
774 
775 		if (!uuid_le_cmp(id->guid, guid)) {
776 			list_del(&dynid->node);
777 			kfree(dynid);
778 			retval = count;
779 			break;
780 		}
781 	}
782 	spin_unlock(&drv->dynids.lock);
783 
784 	return retval;
785 }
786 static DRIVER_ATTR_WO(remove_id);
787 
788 static struct attribute *vmbus_drv_attrs[] = {
789 	&driver_attr_new_id.attr,
790 	&driver_attr_remove_id.attr,
791 	NULL,
792 };
793 ATTRIBUTE_GROUPS(vmbus_drv);
794 
795 
796 /*
797  * vmbus_match - Attempt to match the specified device to the specified driver
798  */
799 static int vmbus_match(struct device *device, struct device_driver *driver)
800 {
801 	struct hv_driver *drv = drv_to_hv_drv(driver);
802 	struct hv_device *hv_dev = device_to_hv_device(device);
803 
804 	/* The hv_sock driver handles all hv_sock offers. */
805 	if (is_hvsock_channel(hv_dev->channel))
806 		return drv->hvsock;
807 
808 	if (hv_vmbus_get_id(drv, hv_dev))
809 		return 1;
810 
811 	return 0;
812 }
813 
814 /*
815  * vmbus_probe - Add the new vmbus's child device
816  */
817 static int vmbus_probe(struct device *child_device)
818 {
819 	int ret = 0;
820 	struct hv_driver *drv =
821 			drv_to_hv_drv(child_device->driver);
822 	struct hv_device *dev = device_to_hv_device(child_device);
823 	const struct hv_vmbus_device_id *dev_id;
824 
825 	dev_id = hv_vmbus_get_id(drv, dev);
826 	if (drv->probe) {
827 		ret = drv->probe(dev, dev_id);
828 		if (ret != 0)
829 			pr_err("probe failed for device %s (%d)\n",
830 			       dev_name(child_device), ret);
831 
832 	} else {
833 		pr_err("probe not set for driver %s\n",
834 		       dev_name(child_device));
835 		ret = -ENODEV;
836 	}
837 	return ret;
838 }
839 
840 /*
841  * vmbus_remove - Remove a vmbus device
842  */
843 static int vmbus_remove(struct device *child_device)
844 {
845 	struct hv_driver *drv;
846 	struct hv_device *dev = device_to_hv_device(child_device);
847 
848 	if (child_device->driver) {
849 		drv = drv_to_hv_drv(child_device->driver);
850 		if (drv->remove)
851 			drv->remove(dev);
852 	}
853 
854 	return 0;
855 }
856 
857 
858 /*
859  * vmbus_shutdown - Shutdown a vmbus device
860  */
861 static void vmbus_shutdown(struct device *child_device)
862 {
863 	struct hv_driver *drv;
864 	struct hv_device *dev = device_to_hv_device(child_device);
865 
866 
867 	/* The device may not be attached yet */
868 	if (!child_device->driver)
869 		return;
870 
871 	drv = drv_to_hv_drv(child_device->driver);
872 
873 	if (drv->shutdown)
874 		drv->shutdown(dev);
875 }
876 
877 
878 /*
879  * vmbus_device_release - Final callback release of the vmbus child device
880  */
881 static void vmbus_device_release(struct device *device)
882 {
883 	struct hv_device *hv_dev = device_to_hv_device(device);
884 	struct vmbus_channel *channel = hv_dev->channel;
885 
886 	mutex_lock(&vmbus_connection.channel_mutex);
887 	hv_process_channel_removal(channel);
888 	mutex_unlock(&vmbus_connection.channel_mutex);
889 	kfree(hv_dev);
890 }
891 
892 /* The one and only one */
893 static struct bus_type  hv_bus = {
894 	.name =		"vmbus",
895 	.match =		vmbus_match,
896 	.shutdown =		vmbus_shutdown,
897 	.remove =		vmbus_remove,
898 	.probe =		vmbus_probe,
899 	.uevent =		vmbus_uevent,
900 	.dev_groups =		vmbus_dev_groups,
901 	.drv_groups =		vmbus_drv_groups,
902 };
903 
904 struct onmessage_work_context {
905 	struct work_struct work;
906 	struct hv_message msg;
907 };
908 
909 static void vmbus_onmessage_work(struct work_struct *work)
910 {
911 	struct onmessage_work_context *ctx;
912 
913 	/* Do not process messages if we're in DISCONNECTED state */
914 	if (vmbus_connection.conn_state == DISCONNECTED)
915 		return;
916 
917 	ctx = container_of(work, struct onmessage_work_context,
918 			   work);
919 	vmbus_onmessage(&ctx->msg);
920 	kfree(ctx);
921 }
922 
923 static void hv_process_timer_expiration(struct hv_message *msg,
924 					struct hv_per_cpu_context *hv_cpu)
925 {
926 	struct clock_event_device *dev = hv_cpu->clk_evt;
927 
928 	if (dev->event_handler)
929 		dev->event_handler(dev);
930 
931 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
932 }
933 
934 void vmbus_on_msg_dpc(unsigned long data)
935 {
936 	struct hv_per_cpu_context *hv_cpu = (void *)data;
937 	void *page_addr = hv_cpu->synic_message_page;
938 	struct hv_message *msg = (struct hv_message *)page_addr +
939 				  VMBUS_MESSAGE_SINT;
940 	struct vmbus_channel_message_header *hdr;
941 	const struct vmbus_channel_message_table_entry *entry;
942 	struct onmessage_work_context *ctx;
943 	u32 message_type = msg->header.message_type;
944 
945 	if (message_type == HVMSG_NONE)
946 		/* no msg */
947 		return;
948 
949 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
950 
951 	trace_vmbus_on_msg_dpc(hdr);
952 
953 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
954 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
955 		goto msg_handled;
956 	}
957 
958 	entry = &channel_message_table[hdr->msgtype];
959 	if (entry->handler_type	== VMHT_BLOCKING) {
960 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
961 		if (ctx == NULL)
962 			return;
963 
964 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
965 		memcpy(&ctx->msg, msg, sizeof(*msg));
966 
967 		/*
968 		 * The host can generate a rescind message while we
969 		 * may still be handling the original offer. We deal with
970 		 * this condition by ensuring the processing is done on the
971 		 * same CPU.
972 		 */
973 		switch (hdr->msgtype) {
974 		case CHANNELMSG_RESCIND_CHANNELOFFER:
975 			/*
976 			 * If we are handling the rescind message;
977 			 * schedule the work on the global work queue.
978 			 */
979 			schedule_work_on(vmbus_connection.connect_cpu,
980 					 &ctx->work);
981 			break;
982 
983 		case CHANNELMSG_OFFERCHANNEL:
984 			atomic_inc(&vmbus_connection.offer_in_progress);
985 			queue_work_on(vmbus_connection.connect_cpu,
986 				      vmbus_connection.work_queue,
987 				      &ctx->work);
988 			break;
989 
990 		default:
991 			queue_work(vmbus_connection.work_queue, &ctx->work);
992 		}
993 	} else
994 		entry->message_handler(hdr);
995 
996 msg_handled:
997 	vmbus_signal_eom(msg, message_type);
998 }
999 
1000 
1001 /*
1002  * Direct callback for channels using other deferred processing
1003  */
1004 static void vmbus_channel_isr(struct vmbus_channel *channel)
1005 {
1006 	void (*callback_fn)(void *);
1007 
1008 	callback_fn = READ_ONCE(channel->onchannel_callback);
1009 	if (likely(callback_fn != NULL))
1010 		(*callback_fn)(channel->channel_callback_context);
1011 }
1012 
1013 /*
1014  * Schedule all channels with events pending
1015  */
1016 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1017 {
1018 	unsigned long *recv_int_page;
1019 	u32 maxbits, relid;
1020 
1021 	if (vmbus_proto_version < VERSION_WIN8) {
1022 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1023 		recv_int_page = vmbus_connection.recv_int_page;
1024 	} else {
1025 		/*
1026 		 * When the host is win8 and beyond, the event page
1027 		 * can be directly checked to get the id of the channel
1028 		 * that has the interrupt pending.
1029 		 */
1030 		void *page_addr = hv_cpu->synic_event_page;
1031 		union hv_synic_event_flags *event
1032 			= (union hv_synic_event_flags *)page_addr +
1033 						 VMBUS_MESSAGE_SINT;
1034 
1035 		maxbits = HV_EVENT_FLAGS_COUNT;
1036 		recv_int_page = event->flags;
1037 	}
1038 
1039 	if (unlikely(!recv_int_page))
1040 		return;
1041 
1042 	for_each_set_bit(relid, recv_int_page, maxbits) {
1043 		struct vmbus_channel *channel;
1044 
1045 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1046 			continue;
1047 
1048 		/* Special case - vmbus channel protocol msg */
1049 		if (relid == 0)
1050 			continue;
1051 
1052 		rcu_read_lock();
1053 
1054 		/* Find channel based on relid */
1055 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1056 			if (channel->offermsg.child_relid != relid)
1057 				continue;
1058 
1059 			if (channel->rescind)
1060 				continue;
1061 
1062 			trace_vmbus_chan_sched(channel);
1063 
1064 			++channel->interrupts;
1065 
1066 			switch (channel->callback_mode) {
1067 			case HV_CALL_ISR:
1068 				vmbus_channel_isr(channel);
1069 				break;
1070 
1071 			case HV_CALL_BATCHED:
1072 				hv_begin_read(&channel->inbound);
1073 				/* fallthrough */
1074 			case HV_CALL_DIRECT:
1075 				tasklet_schedule(&channel->callback_event);
1076 			}
1077 		}
1078 
1079 		rcu_read_unlock();
1080 	}
1081 }
1082 
1083 static void vmbus_isr(void)
1084 {
1085 	struct hv_per_cpu_context *hv_cpu
1086 		= this_cpu_ptr(hv_context.cpu_context);
1087 	void *page_addr = hv_cpu->synic_event_page;
1088 	struct hv_message *msg;
1089 	union hv_synic_event_flags *event;
1090 	bool handled = false;
1091 
1092 	if (unlikely(page_addr == NULL))
1093 		return;
1094 
1095 	event = (union hv_synic_event_flags *)page_addr +
1096 					 VMBUS_MESSAGE_SINT;
1097 	/*
1098 	 * Check for events before checking for messages. This is the order
1099 	 * in which events and messages are checked in Windows guests on
1100 	 * Hyper-V, and the Windows team suggested we do the same.
1101 	 */
1102 
1103 	if ((vmbus_proto_version == VERSION_WS2008) ||
1104 		(vmbus_proto_version == VERSION_WIN7)) {
1105 
1106 		/* Since we are a child, we only need to check bit 0 */
1107 		if (sync_test_and_clear_bit(0, event->flags))
1108 			handled = true;
1109 	} else {
1110 		/*
1111 		 * Our host is win8 or above. The signaling mechanism
1112 		 * has changed and we can directly look at the event page.
1113 		 * If bit n is set then we have an interrup on the channel
1114 		 * whose id is n.
1115 		 */
1116 		handled = true;
1117 	}
1118 
1119 	if (handled)
1120 		vmbus_chan_sched(hv_cpu);
1121 
1122 	page_addr = hv_cpu->synic_message_page;
1123 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1124 
1125 	/* Check if there are actual msgs to be processed */
1126 	if (msg->header.message_type != HVMSG_NONE) {
1127 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1128 			hv_process_timer_expiration(msg, hv_cpu);
1129 		else
1130 			tasklet_schedule(&hv_cpu->msg_dpc);
1131 	}
1132 
1133 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1134 }
1135 
1136 /*
1137  * Boolean to control whether to report panic messages over Hyper-V.
1138  *
1139  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1140  */
1141 static int sysctl_record_panic_msg = 1;
1142 
1143 /*
1144  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1145  * buffer and call into Hyper-V to transfer the data.
1146  */
1147 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1148 			 enum kmsg_dump_reason reason)
1149 {
1150 	size_t bytes_written;
1151 	phys_addr_t panic_pa;
1152 
1153 	/* We are only interested in panics. */
1154 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1155 		return;
1156 
1157 	panic_pa = virt_to_phys(hv_panic_page);
1158 
1159 	/*
1160 	 * Write dump contents to the page. No need to synchronize; panic should
1161 	 * be single-threaded.
1162 	 */
1163 	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1164 			     &bytes_written);
1165 	if (bytes_written)
1166 		hyperv_report_panic_msg(panic_pa, bytes_written);
1167 }
1168 
1169 static struct kmsg_dumper hv_kmsg_dumper = {
1170 	.dump = hv_kmsg_dump,
1171 };
1172 
1173 static struct ctl_table_header *hv_ctl_table_hdr;
1174 static int zero;
1175 static int one = 1;
1176 
1177 /*
1178  * sysctl option to allow the user to control whether kmsg data should be
1179  * reported to Hyper-V on panic.
1180  */
1181 static struct ctl_table hv_ctl_table[] = {
1182 	{
1183 		.procname       = "hyperv_record_panic_msg",
1184 		.data           = &sysctl_record_panic_msg,
1185 		.maxlen         = sizeof(int),
1186 		.mode           = 0644,
1187 		.proc_handler   = proc_dointvec_minmax,
1188 		.extra1		= &zero,
1189 		.extra2		= &one
1190 	},
1191 	{}
1192 };
1193 
1194 static struct ctl_table hv_root_table[] = {
1195 	{
1196 		.procname	= "kernel",
1197 		.mode		= 0555,
1198 		.child		= hv_ctl_table
1199 	},
1200 	{}
1201 };
1202 
1203 /*
1204  * vmbus_bus_init -Main vmbus driver initialization routine.
1205  *
1206  * Here, we
1207  *	- initialize the vmbus driver context
1208  *	- invoke the vmbus hv main init routine
1209  *	- retrieve the channel offers
1210  */
1211 static int vmbus_bus_init(void)
1212 {
1213 	int ret;
1214 
1215 	/* Hypervisor initialization...setup hypercall page..etc */
1216 	ret = hv_init();
1217 	if (ret != 0) {
1218 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1219 		return ret;
1220 	}
1221 
1222 	ret = bus_register(&hv_bus);
1223 	if (ret)
1224 		return ret;
1225 
1226 	hv_setup_vmbus_irq(vmbus_isr);
1227 
1228 	ret = hv_synic_alloc();
1229 	if (ret)
1230 		goto err_alloc;
1231 	/*
1232 	 * Initialize the per-cpu interrupt state and
1233 	 * connect to the host.
1234 	 */
1235 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1236 				hv_synic_init, hv_synic_cleanup);
1237 	if (ret < 0)
1238 		goto err_alloc;
1239 	hyperv_cpuhp_online = ret;
1240 
1241 	ret = vmbus_connect();
1242 	if (ret)
1243 		goto err_connect;
1244 
1245 	/*
1246 	 * Only register if the crash MSRs are available
1247 	 */
1248 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1249 		u64 hyperv_crash_ctl;
1250 		/*
1251 		 * Sysctl registration is not fatal, since by default
1252 		 * reporting is enabled.
1253 		 */
1254 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1255 		if (!hv_ctl_table_hdr)
1256 			pr_err("Hyper-V: sysctl table register error");
1257 
1258 		/*
1259 		 * Register for panic kmsg callback only if the right
1260 		 * capability is supported by the hypervisor.
1261 		 */
1262 		hv_get_crash_ctl(hyperv_crash_ctl);
1263 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1264 			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1265 			if (hv_panic_page) {
1266 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1267 				if (ret)
1268 					pr_err("Hyper-V: kmsg dump register "
1269 						"error 0x%x\n", ret);
1270 			} else
1271 				pr_err("Hyper-V: panic message page memory "
1272 					"allocation failed");
1273 		}
1274 
1275 		register_die_notifier(&hyperv_die_block);
1276 		atomic_notifier_chain_register(&panic_notifier_list,
1277 					       &hyperv_panic_block);
1278 	}
1279 
1280 	vmbus_request_offers();
1281 
1282 	return 0;
1283 
1284 err_connect:
1285 	cpuhp_remove_state(hyperv_cpuhp_online);
1286 err_alloc:
1287 	hv_synic_free();
1288 	hv_remove_vmbus_irq();
1289 
1290 	bus_unregister(&hv_bus);
1291 	free_page((unsigned long)hv_panic_page);
1292 	unregister_sysctl_table(hv_ctl_table_hdr);
1293 	hv_ctl_table_hdr = NULL;
1294 	return ret;
1295 }
1296 
1297 /**
1298  * __vmbus_child_driver_register() - Register a vmbus's driver
1299  * @hv_driver: Pointer to driver structure you want to register
1300  * @owner: owner module of the drv
1301  * @mod_name: module name string
1302  *
1303  * Registers the given driver with Linux through the 'driver_register()' call
1304  * and sets up the hyper-v vmbus handling for this driver.
1305  * It will return the state of the 'driver_register()' call.
1306  *
1307  */
1308 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1309 {
1310 	int ret;
1311 
1312 	pr_info("registering driver %s\n", hv_driver->name);
1313 
1314 	ret = vmbus_exists();
1315 	if (ret < 0)
1316 		return ret;
1317 
1318 	hv_driver->driver.name = hv_driver->name;
1319 	hv_driver->driver.owner = owner;
1320 	hv_driver->driver.mod_name = mod_name;
1321 	hv_driver->driver.bus = &hv_bus;
1322 
1323 	spin_lock_init(&hv_driver->dynids.lock);
1324 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1325 
1326 	ret = driver_register(&hv_driver->driver);
1327 
1328 	return ret;
1329 }
1330 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1331 
1332 /**
1333  * vmbus_driver_unregister() - Unregister a vmbus's driver
1334  * @hv_driver: Pointer to driver structure you want to
1335  *             un-register
1336  *
1337  * Un-register the given driver that was previous registered with a call to
1338  * vmbus_driver_register()
1339  */
1340 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1341 {
1342 	pr_info("unregistering driver %s\n", hv_driver->name);
1343 
1344 	if (!vmbus_exists()) {
1345 		driver_unregister(&hv_driver->driver);
1346 		vmbus_free_dynids(hv_driver);
1347 	}
1348 }
1349 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1350 
1351 
1352 /*
1353  * Called when last reference to channel is gone.
1354  */
1355 static void vmbus_chan_release(struct kobject *kobj)
1356 {
1357 	struct vmbus_channel *channel
1358 		= container_of(kobj, struct vmbus_channel, kobj);
1359 
1360 	kfree_rcu(channel, rcu);
1361 }
1362 
1363 struct vmbus_chan_attribute {
1364 	struct attribute attr;
1365 	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1366 	ssize_t (*store)(struct vmbus_channel *chan,
1367 			 const char *buf, size_t count);
1368 };
1369 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1370 	struct vmbus_chan_attribute chan_attr_##_name \
1371 		= __ATTR(_name, _mode, _show, _store)
1372 #define VMBUS_CHAN_ATTR_RW(_name) \
1373 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1374 #define VMBUS_CHAN_ATTR_RO(_name) \
1375 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1376 #define VMBUS_CHAN_ATTR_WO(_name) \
1377 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1378 
1379 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1380 				    struct attribute *attr, char *buf)
1381 {
1382 	const struct vmbus_chan_attribute *attribute
1383 		= container_of(attr, struct vmbus_chan_attribute, attr);
1384 	const struct vmbus_channel *chan
1385 		= container_of(kobj, struct vmbus_channel, kobj);
1386 
1387 	if (!attribute->show)
1388 		return -EIO;
1389 
1390 	if (chan->state != CHANNEL_OPENED_STATE)
1391 		return -EINVAL;
1392 
1393 	return attribute->show(chan, buf);
1394 }
1395 
1396 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1397 	.show = vmbus_chan_attr_show,
1398 };
1399 
1400 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1401 {
1402 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1403 
1404 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1405 }
1406 static VMBUS_CHAN_ATTR_RO(out_mask);
1407 
1408 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1409 {
1410 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1411 
1412 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1413 }
1414 static VMBUS_CHAN_ATTR_RO(in_mask);
1415 
1416 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1417 {
1418 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1419 
1420 	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1421 }
1422 static VMBUS_CHAN_ATTR_RO(read_avail);
1423 
1424 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1425 {
1426 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1427 
1428 	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1429 }
1430 static VMBUS_CHAN_ATTR_RO(write_avail);
1431 
1432 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1433 {
1434 	return sprintf(buf, "%u\n", channel->target_cpu);
1435 }
1436 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1437 
1438 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1439 				    char *buf)
1440 {
1441 	return sprintf(buf, "%d\n",
1442 		       channel_pending(channel,
1443 				       vmbus_connection.monitor_pages[1]));
1444 }
1445 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1446 
1447 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1448 				    char *buf)
1449 {
1450 	return sprintf(buf, "%d\n",
1451 		       channel_latency(channel,
1452 				       vmbus_connection.monitor_pages[1]));
1453 }
1454 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1455 
1456 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1457 {
1458 	return sprintf(buf, "%llu\n", channel->interrupts);
1459 }
1460 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1461 
1462 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1463 {
1464 	return sprintf(buf, "%llu\n", channel->sig_events);
1465 }
1466 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1467 
1468 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1469 					  char *buf)
1470 {
1471 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1472 }
1473 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1474 
1475 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1476 				  char *buf)
1477 {
1478 	return sprintf(buf, "%u\n",
1479 		       channel->offermsg.offer.sub_channel_index);
1480 }
1481 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1482 
1483 static struct attribute *vmbus_chan_attrs[] = {
1484 	&chan_attr_out_mask.attr,
1485 	&chan_attr_in_mask.attr,
1486 	&chan_attr_read_avail.attr,
1487 	&chan_attr_write_avail.attr,
1488 	&chan_attr_cpu.attr,
1489 	&chan_attr_pending.attr,
1490 	&chan_attr_latency.attr,
1491 	&chan_attr_interrupts.attr,
1492 	&chan_attr_events.attr,
1493 	&chan_attr_monitor_id.attr,
1494 	&chan_attr_subchannel_id.attr,
1495 	NULL
1496 };
1497 
1498 static struct kobj_type vmbus_chan_ktype = {
1499 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1500 	.release = vmbus_chan_release,
1501 	.default_attrs = vmbus_chan_attrs,
1502 };
1503 
1504 /*
1505  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1506  */
1507 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1508 {
1509 	struct kobject *kobj = &channel->kobj;
1510 	u32 relid = channel->offermsg.child_relid;
1511 	int ret;
1512 
1513 	kobj->kset = dev->channels_kset;
1514 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1515 				   "%u", relid);
1516 	if (ret)
1517 		return ret;
1518 
1519 	kobject_uevent(kobj, KOBJ_ADD);
1520 
1521 	return 0;
1522 }
1523 
1524 /*
1525  * vmbus_device_create - Creates and registers a new child device
1526  * on the vmbus.
1527  */
1528 struct hv_device *vmbus_device_create(const uuid_le *type,
1529 				      const uuid_le *instance,
1530 				      struct vmbus_channel *channel)
1531 {
1532 	struct hv_device *child_device_obj;
1533 
1534 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1535 	if (!child_device_obj) {
1536 		pr_err("Unable to allocate device object for child device\n");
1537 		return NULL;
1538 	}
1539 
1540 	child_device_obj->channel = channel;
1541 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1542 	memcpy(&child_device_obj->dev_instance, instance,
1543 	       sizeof(uuid_le));
1544 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1545 
1546 
1547 	return child_device_obj;
1548 }
1549 
1550 /*
1551  * vmbus_device_register - Register the child device
1552  */
1553 int vmbus_device_register(struct hv_device *child_device_obj)
1554 {
1555 	struct kobject *kobj = &child_device_obj->device.kobj;
1556 	int ret;
1557 
1558 	dev_set_name(&child_device_obj->device, "%pUl",
1559 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1560 
1561 	child_device_obj->device.bus = &hv_bus;
1562 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1563 	child_device_obj->device.release = vmbus_device_release;
1564 
1565 	/*
1566 	 * Register with the LDM. This will kick off the driver/device
1567 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1568 	 */
1569 	ret = device_register(&child_device_obj->device);
1570 	if (ret) {
1571 		pr_err("Unable to register child device\n");
1572 		return ret;
1573 	}
1574 
1575 	child_device_obj->channels_kset = kset_create_and_add("channels",
1576 							      NULL, kobj);
1577 	if (!child_device_obj->channels_kset) {
1578 		ret = -ENOMEM;
1579 		goto err_dev_unregister;
1580 	}
1581 
1582 	ret = vmbus_add_channel_kobj(child_device_obj,
1583 				     child_device_obj->channel);
1584 	if (ret) {
1585 		pr_err("Unable to register primary channeln");
1586 		goto err_kset_unregister;
1587 	}
1588 
1589 	return 0;
1590 
1591 err_kset_unregister:
1592 	kset_unregister(child_device_obj->channels_kset);
1593 
1594 err_dev_unregister:
1595 	device_unregister(&child_device_obj->device);
1596 	return ret;
1597 }
1598 
1599 /*
1600  * vmbus_device_unregister - Remove the specified child device
1601  * from the vmbus.
1602  */
1603 void vmbus_device_unregister(struct hv_device *device_obj)
1604 {
1605 	pr_debug("child device %s unregistered\n",
1606 		dev_name(&device_obj->device));
1607 
1608 	kset_unregister(device_obj->channels_kset);
1609 
1610 	/*
1611 	 * Kick off the process of unregistering the device.
1612 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1613 	 */
1614 	device_unregister(&device_obj->device);
1615 }
1616 
1617 
1618 /*
1619  * VMBUS is an acpi enumerated device. Get the information we
1620  * need from DSDT.
1621  */
1622 #define VTPM_BASE_ADDRESS 0xfed40000
1623 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1624 {
1625 	resource_size_t start = 0;
1626 	resource_size_t end = 0;
1627 	struct resource *new_res;
1628 	struct resource **old_res = &hyperv_mmio;
1629 	struct resource **prev_res = NULL;
1630 
1631 	switch (res->type) {
1632 
1633 	/*
1634 	 * "Address" descriptors are for bus windows. Ignore
1635 	 * "memory" descriptors, which are for registers on
1636 	 * devices.
1637 	 */
1638 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1639 		start = res->data.address32.address.minimum;
1640 		end = res->data.address32.address.maximum;
1641 		break;
1642 
1643 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1644 		start = res->data.address64.address.minimum;
1645 		end = res->data.address64.address.maximum;
1646 		break;
1647 
1648 	default:
1649 		/* Unused resource type */
1650 		return AE_OK;
1651 
1652 	}
1653 	/*
1654 	 * Ignore ranges that are below 1MB, as they're not
1655 	 * necessary or useful here.
1656 	 */
1657 	if (end < 0x100000)
1658 		return AE_OK;
1659 
1660 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1661 	if (!new_res)
1662 		return AE_NO_MEMORY;
1663 
1664 	/* If this range overlaps the virtual TPM, truncate it. */
1665 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1666 		end = VTPM_BASE_ADDRESS;
1667 
1668 	new_res->name = "hyperv mmio";
1669 	new_res->flags = IORESOURCE_MEM;
1670 	new_res->start = start;
1671 	new_res->end = end;
1672 
1673 	/*
1674 	 * If two ranges are adjacent, merge them.
1675 	 */
1676 	do {
1677 		if (!*old_res) {
1678 			*old_res = new_res;
1679 			break;
1680 		}
1681 
1682 		if (((*old_res)->end + 1) == new_res->start) {
1683 			(*old_res)->end = new_res->end;
1684 			kfree(new_res);
1685 			break;
1686 		}
1687 
1688 		if ((*old_res)->start == new_res->end + 1) {
1689 			(*old_res)->start = new_res->start;
1690 			kfree(new_res);
1691 			break;
1692 		}
1693 
1694 		if ((*old_res)->start > new_res->end) {
1695 			new_res->sibling = *old_res;
1696 			if (prev_res)
1697 				(*prev_res)->sibling = new_res;
1698 			*old_res = new_res;
1699 			break;
1700 		}
1701 
1702 		prev_res = old_res;
1703 		old_res = &(*old_res)->sibling;
1704 
1705 	} while (1);
1706 
1707 	return AE_OK;
1708 }
1709 
1710 static int vmbus_acpi_remove(struct acpi_device *device)
1711 {
1712 	struct resource *cur_res;
1713 	struct resource *next_res;
1714 
1715 	if (hyperv_mmio) {
1716 		if (fb_mmio) {
1717 			__release_region(hyperv_mmio, fb_mmio->start,
1718 					 resource_size(fb_mmio));
1719 			fb_mmio = NULL;
1720 		}
1721 
1722 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1723 			next_res = cur_res->sibling;
1724 			kfree(cur_res);
1725 		}
1726 	}
1727 
1728 	return 0;
1729 }
1730 
1731 static void vmbus_reserve_fb(void)
1732 {
1733 	int size;
1734 	/*
1735 	 * Make a claim for the frame buffer in the resource tree under the
1736 	 * first node, which will be the one below 4GB.  The length seems to
1737 	 * be underreported, particularly in a Generation 1 VM.  So start out
1738 	 * reserving a larger area and make it smaller until it succeeds.
1739 	 */
1740 
1741 	if (screen_info.lfb_base) {
1742 		if (efi_enabled(EFI_BOOT))
1743 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1744 		else
1745 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1746 
1747 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1748 			fb_mmio = __request_region(hyperv_mmio,
1749 						   screen_info.lfb_base, size,
1750 						   fb_mmio_name, 0);
1751 		}
1752 	}
1753 }
1754 
1755 /**
1756  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1757  * @new:		If successful, supplied a pointer to the
1758  *			allocated MMIO space.
1759  * @device_obj:		Identifies the caller
1760  * @min:		Minimum guest physical address of the
1761  *			allocation
1762  * @max:		Maximum guest physical address
1763  * @size:		Size of the range to be allocated
1764  * @align:		Alignment of the range to be allocated
1765  * @fb_overlap_ok:	Whether this allocation can be allowed
1766  *			to overlap the video frame buffer.
1767  *
1768  * This function walks the resources granted to VMBus by the
1769  * _CRS object in the ACPI namespace underneath the parent
1770  * "bridge" whether that's a root PCI bus in the Generation 1
1771  * case or a Module Device in the Generation 2 case.  It then
1772  * attempts to allocate from the global MMIO pool in a way that
1773  * matches the constraints supplied in these parameters and by
1774  * that _CRS.
1775  *
1776  * Return: 0 on success, -errno on failure
1777  */
1778 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1779 			resource_size_t min, resource_size_t max,
1780 			resource_size_t size, resource_size_t align,
1781 			bool fb_overlap_ok)
1782 {
1783 	struct resource *iter, *shadow;
1784 	resource_size_t range_min, range_max, start;
1785 	const char *dev_n = dev_name(&device_obj->device);
1786 	int retval;
1787 
1788 	retval = -ENXIO;
1789 	down(&hyperv_mmio_lock);
1790 
1791 	/*
1792 	 * If overlaps with frame buffers are allowed, then first attempt to
1793 	 * make the allocation from within the reserved region.  Because it
1794 	 * is already reserved, no shadow allocation is necessary.
1795 	 */
1796 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1797 	    !(max < fb_mmio->start)) {
1798 
1799 		range_min = fb_mmio->start;
1800 		range_max = fb_mmio->end;
1801 		start = (range_min + align - 1) & ~(align - 1);
1802 		for (; start + size - 1 <= range_max; start += align) {
1803 			*new = request_mem_region_exclusive(start, size, dev_n);
1804 			if (*new) {
1805 				retval = 0;
1806 				goto exit;
1807 			}
1808 		}
1809 	}
1810 
1811 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1812 		if ((iter->start >= max) || (iter->end <= min))
1813 			continue;
1814 
1815 		range_min = iter->start;
1816 		range_max = iter->end;
1817 		start = (range_min + align - 1) & ~(align - 1);
1818 		for (; start + size - 1 <= range_max; start += align) {
1819 			shadow = __request_region(iter, start, size, NULL,
1820 						  IORESOURCE_BUSY);
1821 			if (!shadow)
1822 				continue;
1823 
1824 			*new = request_mem_region_exclusive(start, size, dev_n);
1825 			if (*new) {
1826 				shadow->name = (char *)*new;
1827 				retval = 0;
1828 				goto exit;
1829 			}
1830 
1831 			__release_region(iter, start, size);
1832 		}
1833 	}
1834 
1835 exit:
1836 	up(&hyperv_mmio_lock);
1837 	return retval;
1838 }
1839 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1840 
1841 /**
1842  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1843  * @start:		Base address of region to release.
1844  * @size:		Size of the range to be allocated
1845  *
1846  * This function releases anything requested by
1847  * vmbus_mmio_allocate().
1848  */
1849 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1850 {
1851 	struct resource *iter;
1852 
1853 	down(&hyperv_mmio_lock);
1854 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1855 		if ((iter->start >= start + size) || (iter->end <= start))
1856 			continue;
1857 
1858 		__release_region(iter, start, size);
1859 	}
1860 	release_mem_region(start, size);
1861 	up(&hyperv_mmio_lock);
1862 
1863 }
1864 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1865 
1866 static int vmbus_acpi_add(struct acpi_device *device)
1867 {
1868 	acpi_status result;
1869 	int ret_val = -ENODEV;
1870 	struct acpi_device *ancestor;
1871 
1872 	hv_acpi_dev = device;
1873 
1874 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1875 					vmbus_walk_resources, NULL);
1876 
1877 	if (ACPI_FAILURE(result))
1878 		goto acpi_walk_err;
1879 	/*
1880 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1881 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1882 	 */
1883 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1884 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1885 					     vmbus_walk_resources, NULL);
1886 
1887 		if (ACPI_FAILURE(result))
1888 			continue;
1889 		if (hyperv_mmio) {
1890 			vmbus_reserve_fb();
1891 			break;
1892 		}
1893 	}
1894 	ret_val = 0;
1895 
1896 acpi_walk_err:
1897 	complete(&probe_event);
1898 	if (ret_val)
1899 		vmbus_acpi_remove(device);
1900 	return ret_val;
1901 }
1902 
1903 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1904 	{"VMBUS", 0},
1905 	{"VMBus", 0},
1906 	{"", 0},
1907 };
1908 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1909 
1910 static struct acpi_driver vmbus_acpi_driver = {
1911 	.name = "vmbus",
1912 	.ids = vmbus_acpi_device_ids,
1913 	.ops = {
1914 		.add = vmbus_acpi_add,
1915 		.remove = vmbus_acpi_remove,
1916 	},
1917 };
1918 
1919 static void hv_kexec_handler(void)
1920 {
1921 	hv_synic_clockevents_cleanup();
1922 	vmbus_initiate_unload(false);
1923 	vmbus_connection.conn_state = DISCONNECTED;
1924 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1925 	mb();
1926 	cpuhp_remove_state(hyperv_cpuhp_online);
1927 	hyperv_cleanup();
1928 };
1929 
1930 static void hv_crash_handler(struct pt_regs *regs)
1931 {
1932 	vmbus_initiate_unload(true);
1933 	/*
1934 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1935 	 * doing the cleanup for current CPU only. This should be sufficient
1936 	 * for kdump.
1937 	 */
1938 	vmbus_connection.conn_state = DISCONNECTED;
1939 	hv_synic_cleanup(smp_processor_id());
1940 	hyperv_cleanup();
1941 };
1942 
1943 static int __init hv_acpi_init(void)
1944 {
1945 	int ret, t;
1946 
1947 	if (!hv_is_hyperv_initialized())
1948 		return -ENODEV;
1949 
1950 	init_completion(&probe_event);
1951 
1952 	/*
1953 	 * Get ACPI resources first.
1954 	 */
1955 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1956 
1957 	if (ret)
1958 		return ret;
1959 
1960 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1961 	if (t == 0) {
1962 		ret = -ETIMEDOUT;
1963 		goto cleanup;
1964 	}
1965 
1966 	ret = vmbus_bus_init();
1967 	if (ret)
1968 		goto cleanup;
1969 
1970 	hv_setup_kexec_handler(hv_kexec_handler);
1971 	hv_setup_crash_handler(hv_crash_handler);
1972 
1973 	return 0;
1974 
1975 cleanup:
1976 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1977 	hv_acpi_dev = NULL;
1978 	return ret;
1979 }
1980 
1981 static void __exit vmbus_exit(void)
1982 {
1983 	int cpu;
1984 
1985 	hv_remove_kexec_handler();
1986 	hv_remove_crash_handler();
1987 	vmbus_connection.conn_state = DISCONNECTED;
1988 	hv_synic_clockevents_cleanup();
1989 	vmbus_disconnect();
1990 	hv_remove_vmbus_irq();
1991 	for_each_online_cpu(cpu) {
1992 		struct hv_per_cpu_context *hv_cpu
1993 			= per_cpu_ptr(hv_context.cpu_context, cpu);
1994 
1995 		tasklet_kill(&hv_cpu->msg_dpc);
1996 	}
1997 	vmbus_free_channels();
1998 
1999 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2000 		kmsg_dump_unregister(&hv_kmsg_dumper);
2001 		unregister_die_notifier(&hyperv_die_block);
2002 		atomic_notifier_chain_unregister(&panic_notifier_list,
2003 						 &hyperv_panic_block);
2004 	}
2005 
2006 	free_page((unsigned long)hv_panic_page);
2007 	unregister_sysctl_table(hv_ctl_table_hdr);
2008 	hv_ctl_table_hdr = NULL;
2009 	bus_unregister(&hv_bus);
2010 
2011 	cpuhp_remove_state(hyperv_cpuhp_online);
2012 	hv_synic_free();
2013 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2014 }
2015 
2016 
2017 MODULE_LICENSE("GPL");
2018 
2019 subsys_initcall(hv_acpi_init);
2020 module_exit(vmbus_exit);
2021