1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/interrupt.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/completion.h> 33 #include <linux/hyperv.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/clockchips.h> 36 #include <linux/cpu.h> 37 #include <asm/hyperv.h> 38 #include <asm/hypervisor.h> 39 #include <asm/mshyperv.h> 40 #include <linux/notifier.h> 41 #include <linux/ptrace.h> 42 #include <linux/screen_info.h> 43 #include <linux/kdebug.h> 44 #include <linux/efi.h> 45 #include <linux/random.h> 46 #include "hyperv_vmbus.h" 47 48 struct vmbus_dynid { 49 struct list_head node; 50 struct hv_vmbus_device_id id; 51 }; 52 53 static struct acpi_device *hv_acpi_dev; 54 55 static struct completion probe_event; 56 57 static int hyperv_cpuhp_online; 58 59 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 60 void *args) 61 { 62 struct pt_regs *regs; 63 64 regs = current_pt_regs(); 65 66 hyperv_report_panic(regs); 67 return NOTIFY_DONE; 68 } 69 70 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 71 void *args) 72 { 73 struct die_args *die = (struct die_args *)args; 74 struct pt_regs *regs = die->regs; 75 76 hyperv_report_panic(regs); 77 return NOTIFY_DONE; 78 } 79 80 static struct notifier_block hyperv_die_block = { 81 .notifier_call = hyperv_die_event, 82 }; 83 static struct notifier_block hyperv_panic_block = { 84 .notifier_call = hyperv_panic_event, 85 }; 86 87 static const char *fb_mmio_name = "fb_range"; 88 static struct resource *fb_mmio; 89 static struct resource *hyperv_mmio; 90 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 91 92 static int vmbus_exists(void) 93 { 94 if (hv_acpi_dev == NULL) 95 return -ENODEV; 96 97 return 0; 98 } 99 100 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 101 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 102 { 103 int i; 104 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 105 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 106 } 107 108 static u8 channel_monitor_group(struct vmbus_channel *channel) 109 { 110 return (u8)channel->offermsg.monitorid / 32; 111 } 112 113 static u8 channel_monitor_offset(struct vmbus_channel *channel) 114 { 115 return (u8)channel->offermsg.monitorid % 32; 116 } 117 118 static u32 channel_pending(struct vmbus_channel *channel, 119 struct hv_monitor_page *monitor_page) 120 { 121 u8 monitor_group = channel_monitor_group(channel); 122 return monitor_page->trigger_group[monitor_group].pending; 123 } 124 125 static u32 channel_latency(struct vmbus_channel *channel, 126 struct hv_monitor_page *monitor_page) 127 { 128 u8 monitor_group = channel_monitor_group(channel); 129 u8 monitor_offset = channel_monitor_offset(channel); 130 return monitor_page->latency[monitor_group][monitor_offset]; 131 } 132 133 static u32 channel_conn_id(struct vmbus_channel *channel, 134 struct hv_monitor_page *monitor_page) 135 { 136 u8 monitor_group = channel_monitor_group(channel); 137 u8 monitor_offset = channel_monitor_offset(channel); 138 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 139 } 140 141 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 142 char *buf) 143 { 144 struct hv_device *hv_dev = device_to_hv_device(dev); 145 146 if (!hv_dev->channel) 147 return -ENODEV; 148 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 149 } 150 static DEVICE_ATTR_RO(id); 151 152 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 153 char *buf) 154 { 155 struct hv_device *hv_dev = device_to_hv_device(dev); 156 157 if (!hv_dev->channel) 158 return -ENODEV; 159 return sprintf(buf, "%d\n", hv_dev->channel->state); 160 } 161 static DEVICE_ATTR_RO(state); 162 163 static ssize_t monitor_id_show(struct device *dev, 164 struct device_attribute *dev_attr, char *buf) 165 { 166 struct hv_device *hv_dev = device_to_hv_device(dev); 167 168 if (!hv_dev->channel) 169 return -ENODEV; 170 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 171 } 172 static DEVICE_ATTR_RO(monitor_id); 173 174 static ssize_t class_id_show(struct device *dev, 175 struct device_attribute *dev_attr, char *buf) 176 { 177 struct hv_device *hv_dev = device_to_hv_device(dev); 178 179 if (!hv_dev->channel) 180 return -ENODEV; 181 return sprintf(buf, "{%pUl}\n", 182 hv_dev->channel->offermsg.offer.if_type.b); 183 } 184 static DEVICE_ATTR_RO(class_id); 185 186 static ssize_t device_id_show(struct device *dev, 187 struct device_attribute *dev_attr, char *buf) 188 { 189 struct hv_device *hv_dev = device_to_hv_device(dev); 190 191 if (!hv_dev->channel) 192 return -ENODEV; 193 return sprintf(buf, "{%pUl}\n", 194 hv_dev->channel->offermsg.offer.if_instance.b); 195 } 196 static DEVICE_ATTR_RO(device_id); 197 198 static ssize_t modalias_show(struct device *dev, 199 struct device_attribute *dev_attr, char *buf) 200 { 201 struct hv_device *hv_dev = device_to_hv_device(dev); 202 char alias_name[VMBUS_ALIAS_LEN + 1]; 203 204 print_alias_name(hv_dev, alias_name); 205 return sprintf(buf, "vmbus:%s\n", alias_name); 206 } 207 static DEVICE_ATTR_RO(modalias); 208 209 static ssize_t server_monitor_pending_show(struct device *dev, 210 struct device_attribute *dev_attr, 211 char *buf) 212 { 213 struct hv_device *hv_dev = device_to_hv_device(dev); 214 215 if (!hv_dev->channel) 216 return -ENODEV; 217 return sprintf(buf, "%d\n", 218 channel_pending(hv_dev->channel, 219 vmbus_connection.monitor_pages[1])); 220 } 221 static DEVICE_ATTR_RO(server_monitor_pending); 222 223 static ssize_t client_monitor_pending_show(struct device *dev, 224 struct device_attribute *dev_attr, 225 char *buf) 226 { 227 struct hv_device *hv_dev = device_to_hv_device(dev); 228 229 if (!hv_dev->channel) 230 return -ENODEV; 231 return sprintf(buf, "%d\n", 232 channel_pending(hv_dev->channel, 233 vmbus_connection.monitor_pages[1])); 234 } 235 static DEVICE_ATTR_RO(client_monitor_pending); 236 237 static ssize_t server_monitor_latency_show(struct device *dev, 238 struct device_attribute *dev_attr, 239 char *buf) 240 { 241 struct hv_device *hv_dev = device_to_hv_device(dev); 242 243 if (!hv_dev->channel) 244 return -ENODEV; 245 return sprintf(buf, "%d\n", 246 channel_latency(hv_dev->channel, 247 vmbus_connection.monitor_pages[0])); 248 } 249 static DEVICE_ATTR_RO(server_monitor_latency); 250 251 static ssize_t client_monitor_latency_show(struct device *dev, 252 struct device_attribute *dev_attr, 253 char *buf) 254 { 255 struct hv_device *hv_dev = device_to_hv_device(dev); 256 257 if (!hv_dev->channel) 258 return -ENODEV; 259 return sprintf(buf, "%d\n", 260 channel_latency(hv_dev->channel, 261 vmbus_connection.monitor_pages[1])); 262 } 263 static DEVICE_ATTR_RO(client_monitor_latency); 264 265 static ssize_t server_monitor_conn_id_show(struct device *dev, 266 struct device_attribute *dev_attr, 267 char *buf) 268 { 269 struct hv_device *hv_dev = device_to_hv_device(dev); 270 271 if (!hv_dev->channel) 272 return -ENODEV; 273 return sprintf(buf, "%d\n", 274 channel_conn_id(hv_dev->channel, 275 vmbus_connection.monitor_pages[0])); 276 } 277 static DEVICE_ATTR_RO(server_monitor_conn_id); 278 279 static ssize_t client_monitor_conn_id_show(struct device *dev, 280 struct device_attribute *dev_attr, 281 char *buf) 282 { 283 struct hv_device *hv_dev = device_to_hv_device(dev); 284 285 if (!hv_dev->channel) 286 return -ENODEV; 287 return sprintf(buf, "%d\n", 288 channel_conn_id(hv_dev->channel, 289 vmbus_connection.monitor_pages[1])); 290 } 291 static DEVICE_ATTR_RO(client_monitor_conn_id); 292 293 static ssize_t out_intr_mask_show(struct device *dev, 294 struct device_attribute *dev_attr, char *buf) 295 { 296 struct hv_device *hv_dev = device_to_hv_device(dev); 297 struct hv_ring_buffer_debug_info outbound; 298 299 if (!hv_dev->channel) 300 return -ENODEV; 301 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 302 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 303 } 304 static DEVICE_ATTR_RO(out_intr_mask); 305 306 static ssize_t out_read_index_show(struct device *dev, 307 struct device_attribute *dev_attr, char *buf) 308 { 309 struct hv_device *hv_dev = device_to_hv_device(dev); 310 struct hv_ring_buffer_debug_info outbound; 311 312 if (!hv_dev->channel) 313 return -ENODEV; 314 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 315 return sprintf(buf, "%d\n", outbound.current_read_index); 316 } 317 static DEVICE_ATTR_RO(out_read_index); 318 319 static ssize_t out_write_index_show(struct device *dev, 320 struct device_attribute *dev_attr, 321 char *buf) 322 { 323 struct hv_device *hv_dev = device_to_hv_device(dev); 324 struct hv_ring_buffer_debug_info outbound; 325 326 if (!hv_dev->channel) 327 return -ENODEV; 328 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 329 return sprintf(buf, "%d\n", outbound.current_write_index); 330 } 331 static DEVICE_ATTR_RO(out_write_index); 332 333 static ssize_t out_read_bytes_avail_show(struct device *dev, 334 struct device_attribute *dev_attr, 335 char *buf) 336 { 337 struct hv_device *hv_dev = device_to_hv_device(dev); 338 struct hv_ring_buffer_debug_info outbound; 339 340 if (!hv_dev->channel) 341 return -ENODEV; 342 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 343 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 344 } 345 static DEVICE_ATTR_RO(out_read_bytes_avail); 346 347 static ssize_t out_write_bytes_avail_show(struct device *dev, 348 struct device_attribute *dev_attr, 349 char *buf) 350 { 351 struct hv_device *hv_dev = device_to_hv_device(dev); 352 struct hv_ring_buffer_debug_info outbound; 353 354 if (!hv_dev->channel) 355 return -ENODEV; 356 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 357 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 358 } 359 static DEVICE_ATTR_RO(out_write_bytes_avail); 360 361 static ssize_t in_intr_mask_show(struct device *dev, 362 struct device_attribute *dev_attr, char *buf) 363 { 364 struct hv_device *hv_dev = device_to_hv_device(dev); 365 struct hv_ring_buffer_debug_info inbound; 366 367 if (!hv_dev->channel) 368 return -ENODEV; 369 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 370 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 371 } 372 static DEVICE_ATTR_RO(in_intr_mask); 373 374 static ssize_t in_read_index_show(struct device *dev, 375 struct device_attribute *dev_attr, char *buf) 376 { 377 struct hv_device *hv_dev = device_to_hv_device(dev); 378 struct hv_ring_buffer_debug_info inbound; 379 380 if (!hv_dev->channel) 381 return -ENODEV; 382 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 383 return sprintf(buf, "%d\n", inbound.current_read_index); 384 } 385 static DEVICE_ATTR_RO(in_read_index); 386 387 static ssize_t in_write_index_show(struct device *dev, 388 struct device_attribute *dev_attr, char *buf) 389 { 390 struct hv_device *hv_dev = device_to_hv_device(dev); 391 struct hv_ring_buffer_debug_info inbound; 392 393 if (!hv_dev->channel) 394 return -ENODEV; 395 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 396 return sprintf(buf, "%d\n", inbound.current_write_index); 397 } 398 static DEVICE_ATTR_RO(in_write_index); 399 400 static ssize_t in_read_bytes_avail_show(struct device *dev, 401 struct device_attribute *dev_attr, 402 char *buf) 403 { 404 struct hv_device *hv_dev = device_to_hv_device(dev); 405 struct hv_ring_buffer_debug_info inbound; 406 407 if (!hv_dev->channel) 408 return -ENODEV; 409 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 410 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 411 } 412 static DEVICE_ATTR_RO(in_read_bytes_avail); 413 414 static ssize_t in_write_bytes_avail_show(struct device *dev, 415 struct device_attribute *dev_attr, 416 char *buf) 417 { 418 struct hv_device *hv_dev = device_to_hv_device(dev); 419 struct hv_ring_buffer_debug_info inbound; 420 421 if (!hv_dev->channel) 422 return -ENODEV; 423 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 424 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 425 } 426 static DEVICE_ATTR_RO(in_write_bytes_avail); 427 428 static ssize_t channel_vp_mapping_show(struct device *dev, 429 struct device_attribute *dev_attr, 430 char *buf) 431 { 432 struct hv_device *hv_dev = device_to_hv_device(dev); 433 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 434 unsigned long flags; 435 int buf_size = PAGE_SIZE, n_written, tot_written; 436 struct list_head *cur; 437 438 if (!channel) 439 return -ENODEV; 440 441 tot_written = snprintf(buf, buf_size, "%u:%u\n", 442 channel->offermsg.child_relid, channel->target_cpu); 443 444 spin_lock_irqsave(&channel->lock, flags); 445 446 list_for_each(cur, &channel->sc_list) { 447 if (tot_written >= buf_size - 1) 448 break; 449 450 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 451 n_written = scnprintf(buf + tot_written, 452 buf_size - tot_written, 453 "%u:%u\n", 454 cur_sc->offermsg.child_relid, 455 cur_sc->target_cpu); 456 tot_written += n_written; 457 } 458 459 spin_unlock_irqrestore(&channel->lock, flags); 460 461 return tot_written; 462 } 463 static DEVICE_ATTR_RO(channel_vp_mapping); 464 465 static ssize_t vendor_show(struct device *dev, 466 struct device_attribute *dev_attr, 467 char *buf) 468 { 469 struct hv_device *hv_dev = device_to_hv_device(dev); 470 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 471 } 472 static DEVICE_ATTR_RO(vendor); 473 474 static ssize_t device_show(struct device *dev, 475 struct device_attribute *dev_attr, 476 char *buf) 477 { 478 struct hv_device *hv_dev = device_to_hv_device(dev); 479 return sprintf(buf, "0x%x\n", hv_dev->device_id); 480 } 481 static DEVICE_ATTR_RO(device); 482 483 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 484 static struct attribute *vmbus_dev_attrs[] = { 485 &dev_attr_id.attr, 486 &dev_attr_state.attr, 487 &dev_attr_monitor_id.attr, 488 &dev_attr_class_id.attr, 489 &dev_attr_device_id.attr, 490 &dev_attr_modalias.attr, 491 &dev_attr_server_monitor_pending.attr, 492 &dev_attr_client_monitor_pending.attr, 493 &dev_attr_server_monitor_latency.attr, 494 &dev_attr_client_monitor_latency.attr, 495 &dev_attr_server_monitor_conn_id.attr, 496 &dev_attr_client_monitor_conn_id.attr, 497 &dev_attr_out_intr_mask.attr, 498 &dev_attr_out_read_index.attr, 499 &dev_attr_out_write_index.attr, 500 &dev_attr_out_read_bytes_avail.attr, 501 &dev_attr_out_write_bytes_avail.attr, 502 &dev_attr_in_intr_mask.attr, 503 &dev_attr_in_read_index.attr, 504 &dev_attr_in_write_index.attr, 505 &dev_attr_in_read_bytes_avail.attr, 506 &dev_attr_in_write_bytes_avail.attr, 507 &dev_attr_channel_vp_mapping.attr, 508 &dev_attr_vendor.attr, 509 &dev_attr_device.attr, 510 NULL, 511 }; 512 ATTRIBUTE_GROUPS(vmbus_dev); 513 514 /* 515 * vmbus_uevent - add uevent for our device 516 * 517 * This routine is invoked when a device is added or removed on the vmbus to 518 * generate a uevent to udev in the userspace. The udev will then look at its 519 * rule and the uevent generated here to load the appropriate driver 520 * 521 * The alias string will be of the form vmbus:guid where guid is the string 522 * representation of the device guid (each byte of the guid will be 523 * represented with two hex characters. 524 */ 525 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 526 { 527 struct hv_device *dev = device_to_hv_device(device); 528 int ret; 529 char alias_name[VMBUS_ALIAS_LEN + 1]; 530 531 print_alias_name(dev, alias_name); 532 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 533 return ret; 534 } 535 536 static const uuid_le null_guid; 537 538 static inline bool is_null_guid(const uuid_le *guid) 539 { 540 if (uuid_le_cmp(*guid, null_guid)) 541 return false; 542 return true; 543 } 544 545 /* 546 * Return a matching hv_vmbus_device_id pointer. 547 * If there is no match, return NULL. 548 */ 549 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 550 const uuid_le *guid) 551 { 552 const struct hv_vmbus_device_id *id = NULL; 553 struct vmbus_dynid *dynid; 554 555 /* Look at the dynamic ids first, before the static ones */ 556 spin_lock(&drv->dynids.lock); 557 list_for_each_entry(dynid, &drv->dynids.list, node) { 558 if (!uuid_le_cmp(dynid->id.guid, *guid)) { 559 id = &dynid->id; 560 break; 561 } 562 } 563 spin_unlock(&drv->dynids.lock); 564 565 if (id) 566 return id; 567 568 id = drv->id_table; 569 if (id == NULL) 570 return NULL; /* empty device table */ 571 572 for (; !is_null_guid(&id->guid); id++) 573 if (!uuid_le_cmp(id->guid, *guid)) 574 return id; 575 576 return NULL; 577 } 578 579 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 580 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid) 581 { 582 struct vmbus_dynid *dynid; 583 584 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 585 if (!dynid) 586 return -ENOMEM; 587 588 dynid->id.guid = *guid; 589 590 spin_lock(&drv->dynids.lock); 591 list_add_tail(&dynid->node, &drv->dynids.list); 592 spin_unlock(&drv->dynids.lock); 593 594 return driver_attach(&drv->driver); 595 } 596 597 static void vmbus_free_dynids(struct hv_driver *drv) 598 { 599 struct vmbus_dynid *dynid, *n; 600 601 spin_lock(&drv->dynids.lock); 602 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 603 list_del(&dynid->node); 604 kfree(dynid); 605 } 606 spin_unlock(&drv->dynids.lock); 607 } 608 609 /* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */ 610 static int get_uuid_le(const char *str, uuid_le *uu) 611 { 612 unsigned int b[16]; 613 int i; 614 615 if (strlen(str) < 37) 616 return -1; 617 618 for (i = 0; i < 36; i++) { 619 switch (i) { 620 case 8: case 13: case 18: case 23: 621 if (str[i] != '-') 622 return -1; 623 break; 624 default: 625 if (!isxdigit(str[i])) 626 return -1; 627 } 628 } 629 630 /* unparse little endian output byte order */ 631 if (sscanf(str, 632 "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x", 633 &b[3], &b[2], &b[1], &b[0], 634 &b[5], &b[4], &b[7], &b[6], &b[8], &b[9], 635 &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16) 636 return -1; 637 638 for (i = 0; i < 16; i++) 639 uu->b[i] = b[i]; 640 return 0; 641 } 642 643 /* 644 * store_new_id - sysfs frontend to vmbus_add_dynid() 645 * 646 * Allow GUIDs to be added to an existing driver via sysfs. 647 */ 648 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 649 size_t count) 650 { 651 struct hv_driver *drv = drv_to_hv_drv(driver); 652 uuid_le guid = NULL_UUID_LE; 653 ssize_t retval; 654 655 if (get_uuid_le(buf, &guid) != 0) 656 return -EINVAL; 657 658 if (hv_vmbus_get_id(drv, &guid)) 659 return -EEXIST; 660 661 retval = vmbus_add_dynid(drv, &guid); 662 if (retval) 663 return retval; 664 return count; 665 } 666 static DRIVER_ATTR_WO(new_id); 667 668 /* 669 * store_remove_id - remove a PCI device ID from this driver 670 * 671 * Removes a dynamic pci device ID to this driver. 672 */ 673 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 674 size_t count) 675 { 676 struct hv_driver *drv = drv_to_hv_drv(driver); 677 struct vmbus_dynid *dynid, *n; 678 uuid_le guid = NULL_UUID_LE; 679 size_t retval = -ENODEV; 680 681 if (get_uuid_le(buf, &guid)) 682 return -EINVAL; 683 684 spin_lock(&drv->dynids.lock); 685 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 686 struct hv_vmbus_device_id *id = &dynid->id; 687 688 if (!uuid_le_cmp(id->guid, guid)) { 689 list_del(&dynid->node); 690 kfree(dynid); 691 retval = count; 692 break; 693 } 694 } 695 spin_unlock(&drv->dynids.lock); 696 697 return retval; 698 } 699 static DRIVER_ATTR_WO(remove_id); 700 701 static struct attribute *vmbus_drv_attrs[] = { 702 &driver_attr_new_id.attr, 703 &driver_attr_remove_id.attr, 704 NULL, 705 }; 706 ATTRIBUTE_GROUPS(vmbus_drv); 707 708 709 /* 710 * vmbus_match - Attempt to match the specified device to the specified driver 711 */ 712 static int vmbus_match(struct device *device, struct device_driver *driver) 713 { 714 struct hv_driver *drv = drv_to_hv_drv(driver); 715 struct hv_device *hv_dev = device_to_hv_device(device); 716 717 /* The hv_sock driver handles all hv_sock offers. */ 718 if (is_hvsock_channel(hv_dev->channel)) 719 return drv->hvsock; 720 721 if (hv_vmbus_get_id(drv, &hv_dev->dev_type)) 722 return 1; 723 724 return 0; 725 } 726 727 /* 728 * vmbus_probe - Add the new vmbus's child device 729 */ 730 static int vmbus_probe(struct device *child_device) 731 { 732 int ret = 0; 733 struct hv_driver *drv = 734 drv_to_hv_drv(child_device->driver); 735 struct hv_device *dev = device_to_hv_device(child_device); 736 const struct hv_vmbus_device_id *dev_id; 737 738 dev_id = hv_vmbus_get_id(drv, &dev->dev_type); 739 if (drv->probe) { 740 ret = drv->probe(dev, dev_id); 741 if (ret != 0) 742 pr_err("probe failed for device %s (%d)\n", 743 dev_name(child_device), ret); 744 745 } else { 746 pr_err("probe not set for driver %s\n", 747 dev_name(child_device)); 748 ret = -ENODEV; 749 } 750 return ret; 751 } 752 753 /* 754 * vmbus_remove - Remove a vmbus device 755 */ 756 static int vmbus_remove(struct device *child_device) 757 { 758 struct hv_driver *drv; 759 struct hv_device *dev = device_to_hv_device(child_device); 760 761 if (child_device->driver) { 762 drv = drv_to_hv_drv(child_device->driver); 763 if (drv->remove) 764 drv->remove(dev); 765 } 766 767 return 0; 768 } 769 770 771 /* 772 * vmbus_shutdown - Shutdown a vmbus device 773 */ 774 static void vmbus_shutdown(struct device *child_device) 775 { 776 struct hv_driver *drv; 777 struct hv_device *dev = device_to_hv_device(child_device); 778 779 780 /* The device may not be attached yet */ 781 if (!child_device->driver) 782 return; 783 784 drv = drv_to_hv_drv(child_device->driver); 785 786 if (drv->shutdown) 787 drv->shutdown(dev); 788 789 return; 790 } 791 792 793 /* 794 * vmbus_device_release - Final callback release of the vmbus child device 795 */ 796 static void vmbus_device_release(struct device *device) 797 { 798 struct hv_device *hv_dev = device_to_hv_device(device); 799 struct vmbus_channel *channel = hv_dev->channel; 800 801 hv_process_channel_removal(channel, 802 channel->offermsg.child_relid); 803 kfree(hv_dev); 804 805 } 806 807 /* The one and only one */ 808 static struct bus_type hv_bus = { 809 .name = "vmbus", 810 .match = vmbus_match, 811 .shutdown = vmbus_shutdown, 812 .remove = vmbus_remove, 813 .probe = vmbus_probe, 814 .uevent = vmbus_uevent, 815 .dev_groups = vmbus_dev_groups, 816 .drv_groups = vmbus_drv_groups, 817 }; 818 819 struct onmessage_work_context { 820 struct work_struct work; 821 struct hv_message msg; 822 }; 823 824 static void vmbus_onmessage_work(struct work_struct *work) 825 { 826 struct onmessage_work_context *ctx; 827 828 /* Do not process messages if we're in DISCONNECTED state */ 829 if (vmbus_connection.conn_state == DISCONNECTED) 830 return; 831 832 ctx = container_of(work, struct onmessage_work_context, 833 work); 834 vmbus_onmessage(&ctx->msg); 835 kfree(ctx); 836 } 837 838 static void hv_process_timer_expiration(struct hv_message *msg, int cpu) 839 { 840 struct clock_event_device *dev = hv_context.clk_evt[cpu]; 841 842 if (dev->event_handler) 843 dev->event_handler(dev); 844 845 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 846 } 847 848 void vmbus_on_msg_dpc(unsigned long data) 849 { 850 int cpu = smp_processor_id(); 851 void *page_addr = hv_context.synic_message_page[cpu]; 852 struct hv_message *msg = (struct hv_message *)page_addr + 853 VMBUS_MESSAGE_SINT; 854 struct vmbus_channel_message_header *hdr; 855 struct vmbus_channel_message_table_entry *entry; 856 struct onmessage_work_context *ctx; 857 u32 message_type = msg->header.message_type; 858 859 if (message_type == HVMSG_NONE) 860 /* no msg */ 861 return; 862 863 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 864 865 if (hdr->msgtype >= CHANNELMSG_COUNT) { 866 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 867 goto msg_handled; 868 } 869 870 entry = &channel_message_table[hdr->msgtype]; 871 if (entry->handler_type == VMHT_BLOCKING) { 872 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 873 if (ctx == NULL) 874 return; 875 876 INIT_WORK(&ctx->work, vmbus_onmessage_work); 877 memcpy(&ctx->msg, msg, sizeof(*msg)); 878 879 queue_work(vmbus_connection.work_queue, &ctx->work); 880 } else 881 entry->message_handler(hdr); 882 883 msg_handled: 884 vmbus_signal_eom(msg, message_type); 885 } 886 887 static void vmbus_isr(void) 888 { 889 int cpu = smp_processor_id(); 890 void *page_addr; 891 struct hv_message *msg; 892 union hv_synic_event_flags *event; 893 bool handled = false; 894 895 page_addr = hv_context.synic_event_page[cpu]; 896 if (page_addr == NULL) 897 return; 898 899 event = (union hv_synic_event_flags *)page_addr + 900 VMBUS_MESSAGE_SINT; 901 /* 902 * Check for events before checking for messages. This is the order 903 * in which events and messages are checked in Windows guests on 904 * Hyper-V, and the Windows team suggested we do the same. 905 */ 906 907 if ((vmbus_proto_version == VERSION_WS2008) || 908 (vmbus_proto_version == VERSION_WIN7)) { 909 910 /* Since we are a child, we only need to check bit 0 */ 911 if (sync_test_and_clear_bit(0, 912 (unsigned long *) &event->flags32[0])) { 913 handled = true; 914 } 915 } else { 916 /* 917 * Our host is win8 or above. The signaling mechanism 918 * has changed and we can directly look at the event page. 919 * If bit n is set then we have an interrup on the channel 920 * whose id is n. 921 */ 922 handled = true; 923 } 924 925 if (handled) 926 tasklet_schedule(hv_context.event_dpc[cpu]); 927 928 929 page_addr = hv_context.synic_message_page[cpu]; 930 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 931 932 /* Check if there are actual msgs to be processed */ 933 if (msg->header.message_type != HVMSG_NONE) { 934 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 935 hv_process_timer_expiration(msg, cpu); 936 else 937 tasklet_schedule(hv_context.msg_dpc[cpu]); 938 } 939 940 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 941 } 942 943 944 /* 945 * vmbus_bus_init -Main vmbus driver initialization routine. 946 * 947 * Here, we 948 * - initialize the vmbus driver context 949 * - invoke the vmbus hv main init routine 950 * - retrieve the channel offers 951 */ 952 static int vmbus_bus_init(void) 953 { 954 int ret; 955 956 /* Hypervisor initialization...setup hypercall page..etc */ 957 ret = hv_init(); 958 if (ret != 0) { 959 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 960 return ret; 961 } 962 963 ret = bus_register(&hv_bus); 964 if (ret) 965 goto err_cleanup; 966 967 hv_setup_vmbus_irq(vmbus_isr); 968 969 ret = hv_synic_alloc(); 970 if (ret) 971 goto err_alloc; 972 /* 973 * Initialize the per-cpu interrupt state and 974 * connect to the host. 975 */ 976 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online", 977 hv_synic_init, hv_synic_cleanup); 978 if (ret < 0) 979 goto err_alloc; 980 hyperv_cpuhp_online = ret; 981 982 ret = vmbus_connect(); 983 if (ret) 984 goto err_connect; 985 986 /* 987 * Only register if the crash MSRs are available 988 */ 989 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 990 register_die_notifier(&hyperv_die_block); 991 atomic_notifier_chain_register(&panic_notifier_list, 992 &hyperv_panic_block); 993 } 994 995 vmbus_request_offers(); 996 997 return 0; 998 999 err_connect: 1000 cpuhp_remove_state(hyperv_cpuhp_online); 1001 err_alloc: 1002 hv_synic_free(); 1003 hv_remove_vmbus_irq(); 1004 1005 bus_unregister(&hv_bus); 1006 1007 err_cleanup: 1008 hv_cleanup(false); 1009 1010 return ret; 1011 } 1012 1013 /** 1014 * __vmbus_child_driver_register() - Register a vmbus's driver 1015 * @hv_driver: Pointer to driver structure you want to register 1016 * @owner: owner module of the drv 1017 * @mod_name: module name string 1018 * 1019 * Registers the given driver with Linux through the 'driver_register()' call 1020 * and sets up the hyper-v vmbus handling for this driver. 1021 * It will return the state of the 'driver_register()' call. 1022 * 1023 */ 1024 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1025 { 1026 int ret; 1027 1028 pr_info("registering driver %s\n", hv_driver->name); 1029 1030 ret = vmbus_exists(); 1031 if (ret < 0) 1032 return ret; 1033 1034 hv_driver->driver.name = hv_driver->name; 1035 hv_driver->driver.owner = owner; 1036 hv_driver->driver.mod_name = mod_name; 1037 hv_driver->driver.bus = &hv_bus; 1038 1039 spin_lock_init(&hv_driver->dynids.lock); 1040 INIT_LIST_HEAD(&hv_driver->dynids.list); 1041 1042 ret = driver_register(&hv_driver->driver); 1043 1044 return ret; 1045 } 1046 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1047 1048 /** 1049 * vmbus_driver_unregister() - Unregister a vmbus's driver 1050 * @hv_driver: Pointer to driver structure you want to 1051 * un-register 1052 * 1053 * Un-register the given driver that was previous registered with a call to 1054 * vmbus_driver_register() 1055 */ 1056 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1057 { 1058 pr_info("unregistering driver %s\n", hv_driver->name); 1059 1060 if (!vmbus_exists()) { 1061 driver_unregister(&hv_driver->driver); 1062 vmbus_free_dynids(hv_driver); 1063 } 1064 } 1065 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1066 1067 /* 1068 * vmbus_device_create - Creates and registers a new child device 1069 * on the vmbus. 1070 */ 1071 struct hv_device *vmbus_device_create(const uuid_le *type, 1072 const uuid_le *instance, 1073 struct vmbus_channel *channel) 1074 { 1075 struct hv_device *child_device_obj; 1076 1077 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1078 if (!child_device_obj) { 1079 pr_err("Unable to allocate device object for child device\n"); 1080 return NULL; 1081 } 1082 1083 child_device_obj->channel = channel; 1084 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le)); 1085 memcpy(&child_device_obj->dev_instance, instance, 1086 sizeof(uuid_le)); 1087 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1088 1089 1090 return child_device_obj; 1091 } 1092 1093 /* 1094 * vmbus_device_register - Register the child device 1095 */ 1096 int vmbus_device_register(struct hv_device *child_device_obj) 1097 { 1098 int ret = 0; 1099 1100 dev_set_name(&child_device_obj->device, "%pUl", 1101 child_device_obj->channel->offermsg.offer.if_instance.b); 1102 1103 child_device_obj->device.bus = &hv_bus; 1104 child_device_obj->device.parent = &hv_acpi_dev->dev; 1105 child_device_obj->device.release = vmbus_device_release; 1106 1107 /* 1108 * Register with the LDM. This will kick off the driver/device 1109 * binding...which will eventually call vmbus_match() and vmbus_probe() 1110 */ 1111 ret = device_register(&child_device_obj->device); 1112 1113 if (ret) 1114 pr_err("Unable to register child device\n"); 1115 else 1116 pr_debug("child device %s registered\n", 1117 dev_name(&child_device_obj->device)); 1118 1119 return ret; 1120 } 1121 1122 /* 1123 * vmbus_device_unregister - Remove the specified child device 1124 * from the vmbus. 1125 */ 1126 void vmbus_device_unregister(struct hv_device *device_obj) 1127 { 1128 pr_debug("child device %s unregistered\n", 1129 dev_name(&device_obj->device)); 1130 1131 /* 1132 * Kick off the process of unregistering the device. 1133 * This will call vmbus_remove() and eventually vmbus_device_release() 1134 */ 1135 device_unregister(&device_obj->device); 1136 } 1137 1138 1139 /* 1140 * VMBUS is an acpi enumerated device. Get the information we 1141 * need from DSDT. 1142 */ 1143 #define VTPM_BASE_ADDRESS 0xfed40000 1144 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1145 { 1146 resource_size_t start = 0; 1147 resource_size_t end = 0; 1148 struct resource *new_res; 1149 struct resource **old_res = &hyperv_mmio; 1150 struct resource **prev_res = NULL; 1151 1152 switch (res->type) { 1153 1154 /* 1155 * "Address" descriptors are for bus windows. Ignore 1156 * "memory" descriptors, which are for registers on 1157 * devices. 1158 */ 1159 case ACPI_RESOURCE_TYPE_ADDRESS32: 1160 start = res->data.address32.address.minimum; 1161 end = res->data.address32.address.maximum; 1162 break; 1163 1164 case ACPI_RESOURCE_TYPE_ADDRESS64: 1165 start = res->data.address64.address.minimum; 1166 end = res->data.address64.address.maximum; 1167 break; 1168 1169 default: 1170 /* Unused resource type */ 1171 return AE_OK; 1172 1173 } 1174 /* 1175 * Ignore ranges that are below 1MB, as they're not 1176 * necessary or useful here. 1177 */ 1178 if (end < 0x100000) 1179 return AE_OK; 1180 1181 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1182 if (!new_res) 1183 return AE_NO_MEMORY; 1184 1185 /* If this range overlaps the virtual TPM, truncate it. */ 1186 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1187 end = VTPM_BASE_ADDRESS; 1188 1189 new_res->name = "hyperv mmio"; 1190 new_res->flags = IORESOURCE_MEM; 1191 new_res->start = start; 1192 new_res->end = end; 1193 1194 /* 1195 * If two ranges are adjacent, merge them. 1196 */ 1197 do { 1198 if (!*old_res) { 1199 *old_res = new_res; 1200 break; 1201 } 1202 1203 if (((*old_res)->end + 1) == new_res->start) { 1204 (*old_res)->end = new_res->end; 1205 kfree(new_res); 1206 break; 1207 } 1208 1209 if ((*old_res)->start == new_res->end + 1) { 1210 (*old_res)->start = new_res->start; 1211 kfree(new_res); 1212 break; 1213 } 1214 1215 if ((*old_res)->start > new_res->end) { 1216 new_res->sibling = *old_res; 1217 if (prev_res) 1218 (*prev_res)->sibling = new_res; 1219 *old_res = new_res; 1220 break; 1221 } 1222 1223 prev_res = old_res; 1224 old_res = &(*old_res)->sibling; 1225 1226 } while (1); 1227 1228 return AE_OK; 1229 } 1230 1231 static int vmbus_acpi_remove(struct acpi_device *device) 1232 { 1233 struct resource *cur_res; 1234 struct resource *next_res; 1235 1236 if (hyperv_mmio) { 1237 if (fb_mmio) { 1238 __release_region(hyperv_mmio, fb_mmio->start, 1239 resource_size(fb_mmio)); 1240 fb_mmio = NULL; 1241 } 1242 1243 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1244 next_res = cur_res->sibling; 1245 kfree(cur_res); 1246 } 1247 } 1248 1249 return 0; 1250 } 1251 1252 static void vmbus_reserve_fb(void) 1253 { 1254 int size; 1255 /* 1256 * Make a claim for the frame buffer in the resource tree under the 1257 * first node, which will be the one below 4GB. The length seems to 1258 * be underreported, particularly in a Generation 1 VM. So start out 1259 * reserving a larger area and make it smaller until it succeeds. 1260 */ 1261 1262 if (screen_info.lfb_base) { 1263 if (efi_enabled(EFI_BOOT)) 1264 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1265 else 1266 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1267 1268 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1269 fb_mmio = __request_region(hyperv_mmio, 1270 screen_info.lfb_base, size, 1271 fb_mmio_name, 0); 1272 } 1273 } 1274 } 1275 1276 /** 1277 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1278 * @new: If successful, supplied a pointer to the 1279 * allocated MMIO space. 1280 * @device_obj: Identifies the caller 1281 * @min: Minimum guest physical address of the 1282 * allocation 1283 * @max: Maximum guest physical address 1284 * @size: Size of the range to be allocated 1285 * @align: Alignment of the range to be allocated 1286 * @fb_overlap_ok: Whether this allocation can be allowed 1287 * to overlap the video frame buffer. 1288 * 1289 * This function walks the resources granted to VMBus by the 1290 * _CRS object in the ACPI namespace underneath the parent 1291 * "bridge" whether that's a root PCI bus in the Generation 1 1292 * case or a Module Device in the Generation 2 case. It then 1293 * attempts to allocate from the global MMIO pool in a way that 1294 * matches the constraints supplied in these parameters and by 1295 * that _CRS. 1296 * 1297 * Return: 0 on success, -errno on failure 1298 */ 1299 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1300 resource_size_t min, resource_size_t max, 1301 resource_size_t size, resource_size_t align, 1302 bool fb_overlap_ok) 1303 { 1304 struct resource *iter, *shadow; 1305 resource_size_t range_min, range_max, start; 1306 const char *dev_n = dev_name(&device_obj->device); 1307 int retval; 1308 1309 retval = -ENXIO; 1310 down(&hyperv_mmio_lock); 1311 1312 /* 1313 * If overlaps with frame buffers are allowed, then first attempt to 1314 * make the allocation from within the reserved region. Because it 1315 * is already reserved, no shadow allocation is necessary. 1316 */ 1317 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1318 !(max < fb_mmio->start)) { 1319 1320 range_min = fb_mmio->start; 1321 range_max = fb_mmio->end; 1322 start = (range_min + align - 1) & ~(align - 1); 1323 for (; start + size - 1 <= range_max; start += align) { 1324 *new = request_mem_region_exclusive(start, size, dev_n); 1325 if (*new) { 1326 retval = 0; 1327 goto exit; 1328 } 1329 } 1330 } 1331 1332 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1333 if ((iter->start >= max) || (iter->end <= min)) 1334 continue; 1335 1336 range_min = iter->start; 1337 range_max = iter->end; 1338 start = (range_min + align - 1) & ~(align - 1); 1339 for (; start + size - 1 <= range_max; start += align) { 1340 shadow = __request_region(iter, start, size, NULL, 1341 IORESOURCE_BUSY); 1342 if (!shadow) 1343 continue; 1344 1345 *new = request_mem_region_exclusive(start, size, dev_n); 1346 if (*new) { 1347 shadow->name = (char *)*new; 1348 retval = 0; 1349 goto exit; 1350 } 1351 1352 __release_region(iter, start, size); 1353 } 1354 } 1355 1356 exit: 1357 up(&hyperv_mmio_lock); 1358 return retval; 1359 } 1360 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1361 1362 /** 1363 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1364 * @start: Base address of region to release. 1365 * @size: Size of the range to be allocated 1366 * 1367 * This function releases anything requested by 1368 * vmbus_mmio_allocate(). 1369 */ 1370 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1371 { 1372 struct resource *iter; 1373 1374 down(&hyperv_mmio_lock); 1375 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1376 if ((iter->start >= start + size) || (iter->end <= start)) 1377 continue; 1378 1379 __release_region(iter, start, size); 1380 } 1381 release_mem_region(start, size); 1382 up(&hyperv_mmio_lock); 1383 1384 } 1385 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 1386 1387 /** 1388 * vmbus_cpu_number_to_vp_number() - Map CPU to VP. 1389 * @cpu_number: CPU number in Linux terms 1390 * 1391 * This function returns the mapping between the Linux processor 1392 * number and the hypervisor's virtual processor number, useful 1393 * in making hypercalls and such that talk about specific 1394 * processors. 1395 * 1396 * Return: Virtual processor number in Hyper-V terms 1397 */ 1398 int vmbus_cpu_number_to_vp_number(int cpu_number) 1399 { 1400 return hv_context.vp_index[cpu_number]; 1401 } 1402 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number); 1403 1404 static int vmbus_acpi_add(struct acpi_device *device) 1405 { 1406 acpi_status result; 1407 int ret_val = -ENODEV; 1408 struct acpi_device *ancestor; 1409 1410 hv_acpi_dev = device; 1411 1412 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 1413 vmbus_walk_resources, NULL); 1414 1415 if (ACPI_FAILURE(result)) 1416 goto acpi_walk_err; 1417 /* 1418 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 1419 * firmware) is the VMOD that has the mmio ranges. Get that. 1420 */ 1421 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 1422 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 1423 vmbus_walk_resources, NULL); 1424 1425 if (ACPI_FAILURE(result)) 1426 continue; 1427 if (hyperv_mmio) { 1428 vmbus_reserve_fb(); 1429 break; 1430 } 1431 } 1432 ret_val = 0; 1433 1434 acpi_walk_err: 1435 complete(&probe_event); 1436 if (ret_val) 1437 vmbus_acpi_remove(device); 1438 return ret_val; 1439 } 1440 1441 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 1442 {"VMBUS", 0}, 1443 {"VMBus", 0}, 1444 {"", 0}, 1445 }; 1446 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 1447 1448 static struct acpi_driver vmbus_acpi_driver = { 1449 .name = "vmbus", 1450 .ids = vmbus_acpi_device_ids, 1451 .ops = { 1452 .add = vmbus_acpi_add, 1453 .remove = vmbus_acpi_remove, 1454 }, 1455 }; 1456 1457 static void hv_kexec_handler(void) 1458 { 1459 hv_synic_clockevents_cleanup(); 1460 vmbus_initiate_unload(false); 1461 vmbus_connection.conn_state = DISCONNECTED; 1462 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 1463 mb(); 1464 cpuhp_remove_state(hyperv_cpuhp_online); 1465 hv_cleanup(false); 1466 }; 1467 1468 static void hv_crash_handler(struct pt_regs *regs) 1469 { 1470 vmbus_initiate_unload(true); 1471 /* 1472 * In crash handler we can't schedule synic cleanup for all CPUs, 1473 * doing the cleanup for current CPU only. This should be sufficient 1474 * for kdump. 1475 */ 1476 vmbus_connection.conn_state = DISCONNECTED; 1477 hv_synic_cleanup(smp_processor_id()); 1478 hv_cleanup(true); 1479 }; 1480 1481 static int __init hv_acpi_init(void) 1482 { 1483 int ret, t; 1484 1485 if (x86_hyper != &x86_hyper_ms_hyperv) 1486 return -ENODEV; 1487 1488 init_completion(&probe_event); 1489 1490 /* 1491 * Get ACPI resources first. 1492 */ 1493 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 1494 1495 if (ret) 1496 return ret; 1497 1498 t = wait_for_completion_timeout(&probe_event, 5*HZ); 1499 if (t == 0) { 1500 ret = -ETIMEDOUT; 1501 goto cleanup; 1502 } 1503 1504 ret = vmbus_bus_init(); 1505 if (ret) 1506 goto cleanup; 1507 1508 hv_setup_kexec_handler(hv_kexec_handler); 1509 hv_setup_crash_handler(hv_crash_handler); 1510 1511 return 0; 1512 1513 cleanup: 1514 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1515 hv_acpi_dev = NULL; 1516 return ret; 1517 } 1518 1519 static void __exit vmbus_exit(void) 1520 { 1521 int cpu; 1522 1523 hv_remove_kexec_handler(); 1524 hv_remove_crash_handler(); 1525 vmbus_connection.conn_state = DISCONNECTED; 1526 hv_synic_clockevents_cleanup(); 1527 vmbus_disconnect(); 1528 hv_remove_vmbus_irq(); 1529 for_each_online_cpu(cpu) 1530 tasklet_kill(hv_context.msg_dpc[cpu]); 1531 vmbus_free_channels(); 1532 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1533 unregister_die_notifier(&hyperv_die_block); 1534 atomic_notifier_chain_unregister(&panic_notifier_list, 1535 &hyperv_panic_block); 1536 } 1537 bus_unregister(&hv_bus); 1538 hv_cleanup(false); 1539 for_each_online_cpu(cpu) { 1540 tasklet_kill(hv_context.event_dpc[cpu]); 1541 } 1542 cpuhp_remove_state(hyperv_cpuhp_online); 1543 hv_synic_free(); 1544 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1545 } 1546 1547 1548 MODULE_LICENSE("GPL"); 1549 1550 subsys_initcall(hv_acpi_init); 1551 module_exit(vmbus_exit); 1552