xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision c127f98ba9aba1818a6ca3a1da5a24653a10d966)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38 
39 #include <asm/hyperv.h>
40 #include <asm/hypervisor.h>
41 #include <asm/mshyperv.h>
42 #include <linux/notifier.h>
43 #include <linux/ptrace.h>
44 #include <linux/screen_info.h>
45 #include <linux/kdebug.h>
46 #include <linux/efi.h>
47 #include <linux/random.h>
48 #include "hyperv_vmbus.h"
49 
50 struct vmbus_dynid {
51 	struct list_head node;
52 	struct hv_vmbus_device_id id;
53 };
54 
55 static struct acpi_device  *hv_acpi_dev;
56 
57 static struct completion probe_event;
58 
59 static int hyperv_cpuhp_online;
60 
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 			      void *args)
63 {
64 	struct pt_regs *regs;
65 
66 	regs = current_pt_regs();
67 
68 	hyperv_report_panic(regs, val);
69 	return NOTIFY_DONE;
70 }
71 
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 			    void *args)
74 {
75 	struct die_args *die = (struct die_args *)args;
76 	struct pt_regs *regs = die->regs;
77 
78 	hyperv_report_panic(regs, val);
79 	return NOTIFY_DONE;
80 }
81 
82 static struct notifier_block hyperv_die_block = {
83 	.notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 	.notifier_call = hyperv_panic_event,
87 };
88 
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93 
94 static int vmbus_exists(void)
95 {
96 	if (hv_acpi_dev == NULL)
97 		return -ENODEV;
98 
99 	return 0;
100 }
101 
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 	int i;
106 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109 
110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 {
112 	return (u8)channel->offermsg.monitorid / 32;
113 }
114 
115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 {
117 	return (u8)channel->offermsg.monitorid % 32;
118 }
119 
120 static u32 channel_pending(const struct vmbus_channel *channel,
121 			   const struct hv_monitor_page *monitor_page)
122 {
123 	u8 monitor_group = channel_monitor_group(channel);
124 
125 	return monitor_page->trigger_group[monitor_group].pending;
126 }
127 
128 static u32 channel_latency(const struct vmbus_channel *channel,
129 			   const struct hv_monitor_page *monitor_page)
130 {
131 	u8 monitor_group = channel_monitor_group(channel);
132 	u8 monitor_offset = channel_monitor_offset(channel);
133 
134 	return monitor_page->latency[monitor_group][monitor_offset];
135 }
136 
137 static u32 channel_conn_id(struct vmbus_channel *channel,
138 			   struct hv_monitor_page *monitor_page)
139 {
140 	u8 monitor_group = channel_monitor_group(channel);
141 	u8 monitor_offset = channel_monitor_offset(channel);
142 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 }
144 
145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146 		       char *buf)
147 {
148 	struct hv_device *hv_dev = device_to_hv_device(dev);
149 
150 	if (!hv_dev->channel)
151 		return -ENODEV;
152 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 }
154 static DEVICE_ATTR_RO(id);
155 
156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157 			  char *buf)
158 {
159 	struct hv_device *hv_dev = device_to_hv_device(dev);
160 
161 	if (!hv_dev->channel)
162 		return -ENODEV;
163 	return sprintf(buf, "%d\n", hv_dev->channel->state);
164 }
165 static DEVICE_ATTR_RO(state);
166 
167 static ssize_t monitor_id_show(struct device *dev,
168 			       struct device_attribute *dev_attr, char *buf)
169 {
170 	struct hv_device *hv_dev = device_to_hv_device(dev);
171 
172 	if (!hv_dev->channel)
173 		return -ENODEV;
174 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 }
176 static DEVICE_ATTR_RO(monitor_id);
177 
178 static ssize_t class_id_show(struct device *dev,
179 			       struct device_attribute *dev_attr, char *buf)
180 {
181 	struct hv_device *hv_dev = device_to_hv_device(dev);
182 
183 	if (!hv_dev->channel)
184 		return -ENODEV;
185 	return sprintf(buf, "{%pUl}\n",
186 		       hv_dev->channel->offermsg.offer.if_type.b);
187 }
188 static DEVICE_ATTR_RO(class_id);
189 
190 static ssize_t device_id_show(struct device *dev,
191 			      struct device_attribute *dev_attr, char *buf)
192 {
193 	struct hv_device *hv_dev = device_to_hv_device(dev);
194 
195 	if (!hv_dev->channel)
196 		return -ENODEV;
197 	return sprintf(buf, "{%pUl}\n",
198 		       hv_dev->channel->offermsg.offer.if_instance.b);
199 }
200 static DEVICE_ATTR_RO(device_id);
201 
202 static ssize_t modalias_show(struct device *dev,
203 			     struct device_attribute *dev_attr, char *buf)
204 {
205 	struct hv_device *hv_dev = device_to_hv_device(dev);
206 	char alias_name[VMBUS_ALIAS_LEN + 1];
207 
208 	print_alias_name(hv_dev, alias_name);
209 	return sprintf(buf, "vmbus:%s\n", alias_name);
210 }
211 static DEVICE_ATTR_RO(modalias);
212 
213 static ssize_t server_monitor_pending_show(struct device *dev,
214 					   struct device_attribute *dev_attr,
215 					   char *buf)
216 {
217 	struct hv_device *hv_dev = device_to_hv_device(dev);
218 
219 	if (!hv_dev->channel)
220 		return -ENODEV;
221 	return sprintf(buf, "%d\n",
222 		       channel_pending(hv_dev->channel,
223 				       vmbus_connection.monitor_pages[1]));
224 }
225 static DEVICE_ATTR_RO(server_monitor_pending);
226 
227 static ssize_t client_monitor_pending_show(struct device *dev,
228 					   struct device_attribute *dev_attr,
229 					   char *buf)
230 {
231 	struct hv_device *hv_dev = device_to_hv_device(dev);
232 
233 	if (!hv_dev->channel)
234 		return -ENODEV;
235 	return sprintf(buf, "%d\n",
236 		       channel_pending(hv_dev->channel,
237 				       vmbus_connection.monitor_pages[1]));
238 }
239 static DEVICE_ATTR_RO(client_monitor_pending);
240 
241 static ssize_t server_monitor_latency_show(struct device *dev,
242 					   struct device_attribute *dev_attr,
243 					   char *buf)
244 {
245 	struct hv_device *hv_dev = device_to_hv_device(dev);
246 
247 	if (!hv_dev->channel)
248 		return -ENODEV;
249 	return sprintf(buf, "%d\n",
250 		       channel_latency(hv_dev->channel,
251 				       vmbus_connection.monitor_pages[0]));
252 }
253 static DEVICE_ATTR_RO(server_monitor_latency);
254 
255 static ssize_t client_monitor_latency_show(struct device *dev,
256 					   struct device_attribute *dev_attr,
257 					   char *buf)
258 {
259 	struct hv_device *hv_dev = device_to_hv_device(dev);
260 
261 	if (!hv_dev->channel)
262 		return -ENODEV;
263 	return sprintf(buf, "%d\n",
264 		       channel_latency(hv_dev->channel,
265 				       vmbus_connection.monitor_pages[1]));
266 }
267 static DEVICE_ATTR_RO(client_monitor_latency);
268 
269 static ssize_t server_monitor_conn_id_show(struct device *dev,
270 					   struct device_attribute *dev_attr,
271 					   char *buf)
272 {
273 	struct hv_device *hv_dev = device_to_hv_device(dev);
274 
275 	if (!hv_dev->channel)
276 		return -ENODEV;
277 	return sprintf(buf, "%d\n",
278 		       channel_conn_id(hv_dev->channel,
279 				       vmbus_connection.monitor_pages[0]));
280 }
281 static DEVICE_ATTR_RO(server_monitor_conn_id);
282 
283 static ssize_t client_monitor_conn_id_show(struct device *dev,
284 					   struct device_attribute *dev_attr,
285 					   char *buf)
286 {
287 	struct hv_device *hv_dev = device_to_hv_device(dev);
288 
289 	if (!hv_dev->channel)
290 		return -ENODEV;
291 	return sprintf(buf, "%d\n",
292 		       channel_conn_id(hv_dev->channel,
293 				       vmbus_connection.monitor_pages[1]));
294 }
295 static DEVICE_ATTR_RO(client_monitor_conn_id);
296 
297 static ssize_t out_intr_mask_show(struct device *dev,
298 				  struct device_attribute *dev_attr, char *buf)
299 {
300 	struct hv_device *hv_dev = device_to_hv_device(dev);
301 	struct hv_ring_buffer_debug_info outbound;
302 
303 	if (!hv_dev->channel)
304 		return -ENODEV;
305 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
306 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
307 }
308 static DEVICE_ATTR_RO(out_intr_mask);
309 
310 static ssize_t out_read_index_show(struct device *dev,
311 				   struct device_attribute *dev_attr, char *buf)
312 {
313 	struct hv_device *hv_dev = device_to_hv_device(dev);
314 	struct hv_ring_buffer_debug_info outbound;
315 
316 	if (!hv_dev->channel)
317 		return -ENODEV;
318 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
319 	return sprintf(buf, "%d\n", outbound.current_read_index);
320 }
321 static DEVICE_ATTR_RO(out_read_index);
322 
323 static ssize_t out_write_index_show(struct device *dev,
324 				    struct device_attribute *dev_attr,
325 				    char *buf)
326 {
327 	struct hv_device *hv_dev = device_to_hv_device(dev);
328 	struct hv_ring_buffer_debug_info outbound;
329 
330 	if (!hv_dev->channel)
331 		return -ENODEV;
332 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
333 	return sprintf(buf, "%d\n", outbound.current_write_index);
334 }
335 static DEVICE_ATTR_RO(out_write_index);
336 
337 static ssize_t out_read_bytes_avail_show(struct device *dev,
338 					 struct device_attribute *dev_attr,
339 					 char *buf)
340 {
341 	struct hv_device *hv_dev = device_to_hv_device(dev);
342 	struct hv_ring_buffer_debug_info outbound;
343 
344 	if (!hv_dev->channel)
345 		return -ENODEV;
346 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
347 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
348 }
349 static DEVICE_ATTR_RO(out_read_bytes_avail);
350 
351 static ssize_t out_write_bytes_avail_show(struct device *dev,
352 					  struct device_attribute *dev_attr,
353 					  char *buf)
354 {
355 	struct hv_device *hv_dev = device_to_hv_device(dev);
356 	struct hv_ring_buffer_debug_info outbound;
357 
358 	if (!hv_dev->channel)
359 		return -ENODEV;
360 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
361 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
362 }
363 static DEVICE_ATTR_RO(out_write_bytes_avail);
364 
365 static ssize_t in_intr_mask_show(struct device *dev,
366 				 struct device_attribute *dev_attr, char *buf)
367 {
368 	struct hv_device *hv_dev = device_to_hv_device(dev);
369 	struct hv_ring_buffer_debug_info inbound;
370 
371 	if (!hv_dev->channel)
372 		return -ENODEV;
373 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
374 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
375 }
376 static DEVICE_ATTR_RO(in_intr_mask);
377 
378 static ssize_t in_read_index_show(struct device *dev,
379 				  struct device_attribute *dev_attr, char *buf)
380 {
381 	struct hv_device *hv_dev = device_to_hv_device(dev);
382 	struct hv_ring_buffer_debug_info inbound;
383 
384 	if (!hv_dev->channel)
385 		return -ENODEV;
386 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
387 	return sprintf(buf, "%d\n", inbound.current_read_index);
388 }
389 static DEVICE_ATTR_RO(in_read_index);
390 
391 static ssize_t in_write_index_show(struct device *dev,
392 				   struct device_attribute *dev_attr, char *buf)
393 {
394 	struct hv_device *hv_dev = device_to_hv_device(dev);
395 	struct hv_ring_buffer_debug_info inbound;
396 
397 	if (!hv_dev->channel)
398 		return -ENODEV;
399 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
400 	return sprintf(buf, "%d\n", inbound.current_write_index);
401 }
402 static DEVICE_ATTR_RO(in_write_index);
403 
404 static ssize_t in_read_bytes_avail_show(struct device *dev,
405 					struct device_attribute *dev_attr,
406 					char *buf)
407 {
408 	struct hv_device *hv_dev = device_to_hv_device(dev);
409 	struct hv_ring_buffer_debug_info inbound;
410 
411 	if (!hv_dev->channel)
412 		return -ENODEV;
413 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
415 }
416 static DEVICE_ATTR_RO(in_read_bytes_avail);
417 
418 static ssize_t in_write_bytes_avail_show(struct device *dev,
419 					 struct device_attribute *dev_attr,
420 					 char *buf)
421 {
422 	struct hv_device *hv_dev = device_to_hv_device(dev);
423 	struct hv_ring_buffer_debug_info inbound;
424 
425 	if (!hv_dev->channel)
426 		return -ENODEV;
427 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
428 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
429 }
430 static DEVICE_ATTR_RO(in_write_bytes_avail);
431 
432 static ssize_t channel_vp_mapping_show(struct device *dev,
433 				       struct device_attribute *dev_attr,
434 				       char *buf)
435 {
436 	struct hv_device *hv_dev = device_to_hv_device(dev);
437 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
438 	unsigned long flags;
439 	int buf_size = PAGE_SIZE, n_written, tot_written;
440 	struct list_head *cur;
441 
442 	if (!channel)
443 		return -ENODEV;
444 
445 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
446 		channel->offermsg.child_relid, channel->target_cpu);
447 
448 	spin_lock_irqsave(&channel->lock, flags);
449 
450 	list_for_each(cur, &channel->sc_list) {
451 		if (tot_written >= buf_size - 1)
452 			break;
453 
454 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
455 		n_written = scnprintf(buf + tot_written,
456 				     buf_size - tot_written,
457 				     "%u:%u\n",
458 				     cur_sc->offermsg.child_relid,
459 				     cur_sc->target_cpu);
460 		tot_written += n_written;
461 	}
462 
463 	spin_unlock_irqrestore(&channel->lock, flags);
464 
465 	return tot_written;
466 }
467 static DEVICE_ATTR_RO(channel_vp_mapping);
468 
469 static ssize_t vendor_show(struct device *dev,
470 			   struct device_attribute *dev_attr,
471 			   char *buf)
472 {
473 	struct hv_device *hv_dev = device_to_hv_device(dev);
474 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
475 }
476 static DEVICE_ATTR_RO(vendor);
477 
478 static ssize_t device_show(struct device *dev,
479 			   struct device_attribute *dev_attr,
480 			   char *buf)
481 {
482 	struct hv_device *hv_dev = device_to_hv_device(dev);
483 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
484 }
485 static DEVICE_ATTR_RO(device);
486 
487 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
488 static struct attribute *vmbus_dev_attrs[] = {
489 	&dev_attr_id.attr,
490 	&dev_attr_state.attr,
491 	&dev_attr_monitor_id.attr,
492 	&dev_attr_class_id.attr,
493 	&dev_attr_device_id.attr,
494 	&dev_attr_modalias.attr,
495 	&dev_attr_server_monitor_pending.attr,
496 	&dev_attr_client_monitor_pending.attr,
497 	&dev_attr_server_monitor_latency.attr,
498 	&dev_attr_client_monitor_latency.attr,
499 	&dev_attr_server_monitor_conn_id.attr,
500 	&dev_attr_client_monitor_conn_id.attr,
501 	&dev_attr_out_intr_mask.attr,
502 	&dev_attr_out_read_index.attr,
503 	&dev_attr_out_write_index.attr,
504 	&dev_attr_out_read_bytes_avail.attr,
505 	&dev_attr_out_write_bytes_avail.attr,
506 	&dev_attr_in_intr_mask.attr,
507 	&dev_attr_in_read_index.attr,
508 	&dev_attr_in_write_index.attr,
509 	&dev_attr_in_read_bytes_avail.attr,
510 	&dev_attr_in_write_bytes_avail.attr,
511 	&dev_attr_channel_vp_mapping.attr,
512 	&dev_attr_vendor.attr,
513 	&dev_attr_device.attr,
514 	NULL,
515 };
516 ATTRIBUTE_GROUPS(vmbus_dev);
517 
518 /*
519  * vmbus_uevent - add uevent for our device
520  *
521  * This routine is invoked when a device is added or removed on the vmbus to
522  * generate a uevent to udev in the userspace. The udev will then look at its
523  * rule and the uevent generated here to load the appropriate driver
524  *
525  * The alias string will be of the form vmbus:guid where guid is the string
526  * representation of the device guid (each byte of the guid will be
527  * represented with two hex characters.
528  */
529 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
530 {
531 	struct hv_device *dev = device_to_hv_device(device);
532 	int ret;
533 	char alias_name[VMBUS_ALIAS_LEN + 1];
534 
535 	print_alias_name(dev, alias_name);
536 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
537 	return ret;
538 }
539 
540 static const uuid_le null_guid;
541 
542 static inline bool is_null_guid(const uuid_le *guid)
543 {
544 	if (uuid_le_cmp(*guid, null_guid))
545 		return false;
546 	return true;
547 }
548 
549 /*
550  * Return a matching hv_vmbus_device_id pointer.
551  * If there is no match, return NULL.
552  */
553 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
554 					const uuid_le *guid)
555 {
556 	const struct hv_vmbus_device_id *id = NULL;
557 	struct vmbus_dynid *dynid;
558 
559 	/* Look at the dynamic ids first, before the static ones */
560 	spin_lock(&drv->dynids.lock);
561 	list_for_each_entry(dynid, &drv->dynids.list, node) {
562 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
563 			id = &dynid->id;
564 			break;
565 		}
566 	}
567 	spin_unlock(&drv->dynids.lock);
568 
569 	if (id)
570 		return id;
571 
572 	id = drv->id_table;
573 	if (id == NULL)
574 		return NULL; /* empty device table */
575 
576 	for (; !is_null_guid(&id->guid); id++)
577 		if (!uuid_le_cmp(id->guid, *guid))
578 			return id;
579 
580 	return NULL;
581 }
582 
583 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
584 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
585 {
586 	struct vmbus_dynid *dynid;
587 
588 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
589 	if (!dynid)
590 		return -ENOMEM;
591 
592 	dynid->id.guid = *guid;
593 
594 	spin_lock(&drv->dynids.lock);
595 	list_add_tail(&dynid->node, &drv->dynids.list);
596 	spin_unlock(&drv->dynids.lock);
597 
598 	return driver_attach(&drv->driver);
599 }
600 
601 static void vmbus_free_dynids(struct hv_driver *drv)
602 {
603 	struct vmbus_dynid *dynid, *n;
604 
605 	spin_lock(&drv->dynids.lock);
606 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
607 		list_del(&dynid->node);
608 		kfree(dynid);
609 	}
610 	spin_unlock(&drv->dynids.lock);
611 }
612 
613 /*
614  * store_new_id - sysfs frontend to vmbus_add_dynid()
615  *
616  * Allow GUIDs to be added to an existing driver via sysfs.
617  */
618 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
619 			    size_t count)
620 {
621 	struct hv_driver *drv = drv_to_hv_drv(driver);
622 	uuid_le guid;
623 	ssize_t retval;
624 
625 	retval = uuid_le_to_bin(buf, &guid);
626 	if (retval)
627 		return retval;
628 
629 	if (hv_vmbus_get_id(drv, &guid))
630 		return -EEXIST;
631 
632 	retval = vmbus_add_dynid(drv, &guid);
633 	if (retval)
634 		return retval;
635 	return count;
636 }
637 static DRIVER_ATTR_WO(new_id);
638 
639 /*
640  * store_remove_id - remove a PCI device ID from this driver
641  *
642  * Removes a dynamic pci device ID to this driver.
643  */
644 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
645 			       size_t count)
646 {
647 	struct hv_driver *drv = drv_to_hv_drv(driver);
648 	struct vmbus_dynid *dynid, *n;
649 	uuid_le guid;
650 	ssize_t retval;
651 
652 	retval = uuid_le_to_bin(buf, &guid);
653 	if (retval)
654 		return retval;
655 
656 	retval = -ENODEV;
657 	spin_lock(&drv->dynids.lock);
658 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
659 		struct hv_vmbus_device_id *id = &dynid->id;
660 
661 		if (!uuid_le_cmp(id->guid, guid)) {
662 			list_del(&dynid->node);
663 			kfree(dynid);
664 			retval = count;
665 			break;
666 		}
667 	}
668 	spin_unlock(&drv->dynids.lock);
669 
670 	return retval;
671 }
672 static DRIVER_ATTR_WO(remove_id);
673 
674 static struct attribute *vmbus_drv_attrs[] = {
675 	&driver_attr_new_id.attr,
676 	&driver_attr_remove_id.attr,
677 	NULL,
678 };
679 ATTRIBUTE_GROUPS(vmbus_drv);
680 
681 
682 /*
683  * vmbus_match - Attempt to match the specified device to the specified driver
684  */
685 static int vmbus_match(struct device *device, struct device_driver *driver)
686 {
687 	struct hv_driver *drv = drv_to_hv_drv(driver);
688 	struct hv_device *hv_dev = device_to_hv_device(device);
689 
690 	/* The hv_sock driver handles all hv_sock offers. */
691 	if (is_hvsock_channel(hv_dev->channel))
692 		return drv->hvsock;
693 
694 	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
695 		return 1;
696 
697 	return 0;
698 }
699 
700 /*
701  * vmbus_probe - Add the new vmbus's child device
702  */
703 static int vmbus_probe(struct device *child_device)
704 {
705 	int ret = 0;
706 	struct hv_driver *drv =
707 			drv_to_hv_drv(child_device->driver);
708 	struct hv_device *dev = device_to_hv_device(child_device);
709 	const struct hv_vmbus_device_id *dev_id;
710 
711 	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
712 	if (drv->probe) {
713 		ret = drv->probe(dev, dev_id);
714 		if (ret != 0)
715 			pr_err("probe failed for device %s (%d)\n",
716 			       dev_name(child_device), ret);
717 
718 	} else {
719 		pr_err("probe not set for driver %s\n",
720 		       dev_name(child_device));
721 		ret = -ENODEV;
722 	}
723 	return ret;
724 }
725 
726 /*
727  * vmbus_remove - Remove a vmbus device
728  */
729 static int vmbus_remove(struct device *child_device)
730 {
731 	struct hv_driver *drv;
732 	struct hv_device *dev = device_to_hv_device(child_device);
733 
734 	if (child_device->driver) {
735 		drv = drv_to_hv_drv(child_device->driver);
736 		if (drv->remove)
737 			drv->remove(dev);
738 	}
739 
740 	return 0;
741 }
742 
743 
744 /*
745  * vmbus_shutdown - Shutdown a vmbus device
746  */
747 static void vmbus_shutdown(struct device *child_device)
748 {
749 	struct hv_driver *drv;
750 	struct hv_device *dev = device_to_hv_device(child_device);
751 
752 
753 	/* The device may not be attached yet */
754 	if (!child_device->driver)
755 		return;
756 
757 	drv = drv_to_hv_drv(child_device->driver);
758 
759 	if (drv->shutdown)
760 		drv->shutdown(dev);
761 }
762 
763 
764 /*
765  * vmbus_device_release - Final callback release of the vmbus child device
766  */
767 static void vmbus_device_release(struct device *device)
768 {
769 	struct hv_device *hv_dev = device_to_hv_device(device);
770 	struct vmbus_channel *channel = hv_dev->channel;
771 
772 	mutex_lock(&vmbus_connection.channel_mutex);
773 	hv_process_channel_removal(channel->offermsg.child_relid);
774 	mutex_unlock(&vmbus_connection.channel_mutex);
775 	kfree(hv_dev);
776 
777 }
778 
779 /* The one and only one */
780 static struct bus_type  hv_bus = {
781 	.name =		"vmbus",
782 	.match =		vmbus_match,
783 	.shutdown =		vmbus_shutdown,
784 	.remove =		vmbus_remove,
785 	.probe =		vmbus_probe,
786 	.uevent =		vmbus_uevent,
787 	.dev_groups =		vmbus_dev_groups,
788 	.drv_groups =		vmbus_drv_groups,
789 };
790 
791 struct onmessage_work_context {
792 	struct work_struct work;
793 	struct hv_message msg;
794 };
795 
796 static void vmbus_onmessage_work(struct work_struct *work)
797 {
798 	struct onmessage_work_context *ctx;
799 
800 	/* Do not process messages if we're in DISCONNECTED state */
801 	if (vmbus_connection.conn_state == DISCONNECTED)
802 		return;
803 
804 	ctx = container_of(work, struct onmessage_work_context,
805 			   work);
806 	vmbus_onmessage(&ctx->msg);
807 	kfree(ctx);
808 }
809 
810 static void hv_process_timer_expiration(struct hv_message *msg,
811 					struct hv_per_cpu_context *hv_cpu)
812 {
813 	struct clock_event_device *dev = hv_cpu->clk_evt;
814 
815 	if (dev->event_handler)
816 		dev->event_handler(dev);
817 
818 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
819 }
820 
821 void vmbus_on_msg_dpc(unsigned long data)
822 {
823 	struct hv_per_cpu_context *hv_cpu = (void *)data;
824 	void *page_addr = hv_cpu->synic_message_page;
825 	struct hv_message *msg = (struct hv_message *)page_addr +
826 				  VMBUS_MESSAGE_SINT;
827 	struct vmbus_channel_message_header *hdr;
828 	const struct vmbus_channel_message_table_entry *entry;
829 	struct onmessage_work_context *ctx;
830 	u32 message_type = msg->header.message_type;
831 
832 	if (message_type == HVMSG_NONE)
833 		/* no msg */
834 		return;
835 
836 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
837 
838 	trace_vmbus_on_msg_dpc(hdr);
839 
840 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
841 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
842 		goto msg_handled;
843 	}
844 
845 	entry = &channel_message_table[hdr->msgtype];
846 	if (entry->handler_type	== VMHT_BLOCKING) {
847 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
848 		if (ctx == NULL)
849 			return;
850 
851 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
852 		memcpy(&ctx->msg, msg, sizeof(*msg));
853 
854 		/*
855 		 * The host can generate a rescind message while we
856 		 * may still be handling the original offer. We deal with
857 		 * this condition by ensuring the processing is done on the
858 		 * same CPU.
859 		 */
860 		switch (hdr->msgtype) {
861 		case CHANNELMSG_RESCIND_CHANNELOFFER:
862 			/*
863 			 * If we are handling the rescind message;
864 			 * schedule the work on the global work queue.
865 			 */
866 			schedule_work_on(vmbus_connection.connect_cpu,
867 					 &ctx->work);
868 			break;
869 
870 		case CHANNELMSG_OFFERCHANNEL:
871 			atomic_inc(&vmbus_connection.offer_in_progress);
872 			queue_work_on(vmbus_connection.connect_cpu,
873 				      vmbus_connection.work_queue,
874 				      &ctx->work);
875 			break;
876 
877 		default:
878 			queue_work(vmbus_connection.work_queue, &ctx->work);
879 		}
880 	} else
881 		entry->message_handler(hdr);
882 
883 msg_handled:
884 	vmbus_signal_eom(msg, message_type);
885 }
886 
887 
888 /*
889  * Direct callback for channels using other deferred processing
890  */
891 static void vmbus_channel_isr(struct vmbus_channel *channel)
892 {
893 	void (*callback_fn)(void *);
894 
895 	callback_fn = READ_ONCE(channel->onchannel_callback);
896 	if (likely(callback_fn != NULL))
897 		(*callback_fn)(channel->channel_callback_context);
898 }
899 
900 /*
901  * Schedule all channels with events pending
902  */
903 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
904 {
905 	unsigned long *recv_int_page;
906 	u32 maxbits, relid;
907 
908 	if (vmbus_proto_version < VERSION_WIN8) {
909 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
910 		recv_int_page = vmbus_connection.recv_int_page;
911 	} else {
912 		/*
913 		 * When the host is win8 and beyond, the event page
914 		 * can be directly checked to get the id of the channel
915 		 * that has the interrupt pending.
916 		 */
917 		void *page_addr = hv_cpu->synic_event_page;
918 		union hv_synic_event_flags *event
919 			= (union hv_synic_event_flags *)page_addr +
920 						 VMBUS_MESSAGE_SINT;
921 
922 		maxbits = HV_EVENT_FLAGS_COUNT;
923 		recv_int_page = event->flags;
924 	}
925 
926 	if (unlikely(!recv_int_page))
927 		return;
928 
929 	for_each_set_bit(relid, recv_int_page, maxbits) {
930 		struct vmbus_channel *channel;
931 
932 		if (!sync_test_and_clear_bit(relid, recv_int_page))
933 			continue;
934 
935 		/* Special case - vmbus channel protocol msg */
936 		if (relid == 0)
937 			continue;
938 
939 		rcu_read_lock();
940 
941 		/* Find channel based on relid */
942 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
943 			if (channel->offermsg.child_relid != relid)
944 				continue;
945 
946 			if (channel->rescind)
947 				continue;
948 
949 			trace_vmbus_chan_sched(channel);
950 
951 			++channel->interrupts;
952 
953 			switch (channel->callback_mode) {
954 			case HV_CALL_ISR:
955 				vmbus_channel_isr(channel);
956 				break;
957 
958 			case HV_CALL_BATCHED:
959 				hv_begin_read(&channel->inbound);
960 				/* fallthrough */
961 			case HV_CALL_DIRECT:
962 				tasklet_schedule(&channel->callback_event);
963 			}
964 		}
965 
966 		rcu_read_unlock();
967 	}
968 }
969 
970 static void vmbus_isr(void)
971 {
972 	struct hv_per_cpu_context *hv_cpu
973 		= this_cpu_ptr(hv_context.cpu_context);
974 	void *page_addr = hv_cpu->synic_event_page;
975 	struct hv_message *msg;
976 	union hv_synic_event_flags *event;
977 	bool handled = false;
978 
979 	if (unlikely(page_addr == NULL))
980 		return;
981 
982 	event = (union hv_synic_event_flags *)page_addr +
983 					 VMBUS_MESSAGE_SINT;
984 	/*
985 	 * Check for events before checking for messages. This is the order
986 	 * in which events and messages are checked in Windows guests on
987 	 * Hyper-V, and the Windows team suggested we do the same.
988 	 */
989 
990 	if ((vmbus_proto_version == VERSION_WS2008) ||
991 		(vmbus_proto_version == VERSION_WIN7)) {
992 
993 		/* Since we are a child, we only need to check bit 0 */
994 		if (sync_test_and_clear_bit(0, event->flags))
995 			handled = true;
996 	} else {
997 		/*
998 		 * Our host is win8 or above. The signaling mechanism
999 		 * has changed and we can directly look at the event page.
1000 		 * If bit n is set then we have an interrup on the channel
1001 		 * whose id is n.
1002 		 */
1003 		handled = true;
1004 	}
1005 
1006 	if (handled)
1007 		vmbus_chan_sched(hv_cpu);
1008 
1009 	page_addr = hv_cpu->synic_message_page;
1010 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1011 
1012 	/* Check if there are actual msgs to be processed */
1013 	if (msg->header.message_type != HVMSG_NONE) {
1014 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1015 			hv_process_timer_expiration(msg, hv_cpu);
1016 		else
1017 			tasklet_schedule(&hv_cpu->msg_dpc);
1018 	}
1019 
1020 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1021 }
1022 
1023 
1024 /*
1025  * vmbus_bus_init -Main vmbus driver initialization routine.
1026  *
1027  * Here, we
1028  *	- initialize the vmbus driver context
1029  *	- invoke the vmbus hv main init routine
1030  *	- retrieve the channel offers
1031  */
1032 static int vmbus_bus_init(void)
1033 {
1034 	int ret;
1035 
1036 	/* Hypervisor initialization...setup hypercall page..etc */
1037 	ret = hv_init();
1038 	if (ret != 0) {
1039 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1040 		return ret;
1041 	}
1042 
1043 	ret = bus_register(&hv_bus);
1044 	if (ret)
1045 		return ret;
1046 
1047 	hv_setup_vmbus_irq(vmbus_isr);
1048 
1049 	ret = hv_synic_alloc();
1050 	if (ret)
1051 		goto err_alloc;
1052 	/*
1053 	 * Initialize the per-cpu interrupt state and
1054 	 * connect to the host.
1055 	 */
1056 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
1057 				hv_synic_init, hv_synic_cleanup);
1058 	if (ret < 0)
1059 		goto err_alloc;
1060 	hyperv_cpuhp_online = ret;
1061 
1062 	ret = vmbus_connect();
1063 	if (ret)
1064 		goto err_connect;
1065 
1066 	/*
1067 	 * Only register if the crash MSRs are available
1068 	 */
1069 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1070 		register_die_notifier(&hyperv_die_block);
1071 		atomic_notifier_chain_register(&panic_notifier_list,
1072 					       &hyperv_panic_block);
1073 	}
1074 
1075 	vmbus_request_offers();
1076 
1077 	return 0;
1078 
1079 err_connect:
1080 	cpuhp_remove_state(hyperv_cpuhp_online);
1081 err_alloc:
1082 	hv_synic_free();
1083 	hv_remove_vmbus_irq();
1084 
1085 	bus_unregister(&hv_bus);
1086 
1087 	return ret;
1088 }
1089 
1090 /**
1091  * __vmbus_child_driver_register() - Register a vmbus's driver
1092  * @hv_driver: Pointer to driver structure you want to register
1093  * @owner: owner module of the drv
1094  * @mod_name: module name string
1095  *
1096  * Registers the given driver with Linux through the 'driver_register()' call
1097  * and sets up the hyper-v vmbus handling for this driver.
1098  * It will return the state of the 'driver_register()' call.
1099  *
1100  */
1101 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1102 {
1103 	int ret;
1104 
1105 	pr_info("registering driver %s\n", hv_driver->name);
1106 
1107 	ret = vmbus_exists();
1108 	if (ret < 0)
1109 		return ret;
1110 
1111 	hv_driver->driver.name = hv_driver->name;
1112 	hv_driver->driver.owner = owner;
1113 	hv_driver->driver.mod_name = mod_name;
1114 	hv_driver->driver.bus = &hv_bus;
1115 
1116 	spin_lock_init(&hv_driver->dynids.lock);
1117 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1118 
1119 	ret = driver_register(&hv_driver->driver);
1120 
1121 	return ret;
1122 }
1123 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1124 
1125 /**
1126  * vmbus_driver_unregister() - Unregister a vmbus's driver
1127  * @hv_driver: Pointer to driver structure you want to
1128  *             un-register
1129  *
1130  * Un-register the given driver that was previous registered with a call to
1131  * vmbus_driver_register()
1132  */
1133 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1134 {
1135 	pr_info("unregistering driver %s\n", hv_driver->name);
1136 
1137 	if (!vmbus_exists()) {
1138 		driver_unregister(&hv_driver->driver);
1139 		vmbus_free_dynids(hv_driver);
1140 	}
1141 }
1142 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1143 
1144 
1145 /*
1146  * Called when last reference to channel is gone.
1147  */
1148 static void vmbus_chan_release(struct kobject *kobj)
1149 {
1150 	struct vmbus_channel *channel
1151 		= container_of(kobj, struct vmbus_channel, kobj);
1152 
1153 	kfree_rcu(channel, rcu);
1154 }
1155 
1156 struct vmbus_chan_attribute {
1157 	struct attribute attr;
1158 	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1159 	ssize_t (*store)(struct vmbus_channel *chan,
1160 			 const char *buf, size_t count);
1161 };
1162 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1163 	struct vmbus_chan_attribute chan_attr_##_name \
1164 		= __ATTR(_name, _mode, _show, _store)
1165 #define VMBUS_CHAN_ATTR_RW(_name) \
1166 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1167 #define VMBUS_CHAN_ATTR_RO(_name) \
1168 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1169 #define VMBUS_CHAN_ATTR_WO(_name) \
1170 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1171 
1172 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1173 				    struct attribute *attr, char *buf)
1174 {
1175 	const struct vmbus_chan_attribute *attribute
1176 		= container_of(attr, struct vmbus_chan_attribute, attr);
1177 	const struct vmbus_channel *chan
1178 		= container_of(kobj, struct vmbus_channel, kobj);
1179 
1180 	if (!attribute->show)
1181 		return -EIO;
1182 
1183 	return attribute->show(chan, buf);
1184 }
1185 
1186 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1187 	.show = vmbus_chan_attr_show,
1188 };
1189 
1190 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1191 {
1192 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1193 
1194 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1195 }
1196 VMBUS_CHAN_ATTR_RO(out_mask);
1197 
1198 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1199 {
1200 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1201 
1202 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1203 }
1204 VMBUS_CHAN_ATTR_RO(in_mask);
1205 
1206 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1207 {
1208 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1209 
1210 	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1211 }
1212 VMBUS_CHAN_ATTR_RO(read_avail);
1213 
1214 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1215 {
1216 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1217 
1218 	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1219 }
1220 VMBUS_CHAN_ATTR_RO(write_avail);
1221 
1222 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1223 {
1224 	return sprintf(buf, "%u\n", channel->target_cpu);
1225 }
1226 VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1227 
1228 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1229 				    char *buf)
1230 {
1231 	return sprintf(buf, "%d\n",
1232 		       channel_pending(channel,
1233 				       vmbus_connection.monitor_pages[1]));
1234 }
1235 VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1236 
1237 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1238 				    char *buf)
1239 {
1240 	return sprintf(buf, "%d\n",
1241 		       channel_latency(channel,
1242 				       vmbus_connection.monitor_pages[1]));
1243 }
1244 VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1245 
1246 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1247 {
1248 	return sprintf(buf, "%llu\n", channel->interrupts);
1249 }
1250 VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1251 
1252 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1253 {
1254 	return sprintf(buf, "%llu\n", channel->sig_events);
1255 }
1256 VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1257 
1258 static struct attribute *vmbus_chan_attrs[] = {
1259 	&chan_attr_out_mask.attr,
1260 	&chan_attr_in_mask.attr,
1261 	&chan_attr_read_avail.attr,
1262 	&chan_attr_write_avail.attr,
1263 	&chan_attr_cpu.attr,
1264 	&chan_attr_pending.attr,
1265 	&chan_attr_latency.attr,
1266 	&chan_attr_interrupts.attr,
1267 	&chan_attr_events.attr,
1268 	NULL
1269 };
1270 
1271 static struct kobj_type vmbus_chan_ktype = {
1272 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1273 	.release = vmbus_chan_release,
1274 	.default_attrs = vmbus_chan_attrs,
1275 };
1276 
1277 /*
1278  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1279  */
1280 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1281 {
1282 	struct kobject *kobj = &channel->kobj;
1283 	u32 relid = channel->offermsg.child_relid;
1284 	int ret;
1285 
1286 	kobj->kset = dev->channels_kset;
1287 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1288 				   "%u", relid);
1289 	if (ret)
1290 		return ret;
1291 
1292 	kobject_uevent(kobj, KOBJ_ADD);
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * vmbus_device_create - Creates and registers a new child device
1299  * on the vmbus.
1300  */
1301 struct hv_device *vmbus_device_create(const uuid_le *type,
1302 				      const uuid_le *instance,
1303 				      struct vmbus_channel *channel)
1304 {
1305 	struct hv_device *child_device_obj;
1306 
1307 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1308 	if (!child_device_obj) {
1309 		pr_err("Unable to allocate device object for child device\n");
1310 		return NULL;
1311 	}
1312 
1313 	child_device_obj->channel = channel;
1314 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1315 	memcpy(&child_device_obj->dev_instance, instance,
1316 	       sizeof(uuid_le));
1317 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1318 
1319 
1320 	return child_device_obj;
1321 }
1322 
1323 /*
1324  * vmbus_device_register - Register the child device
1325  */
1326 int vmbus_device_register(struct hv_device *child_device_obj)
1327 {
1328 	struct kobject *kobj = &child_device_obj->device.kobj;
1329 	int ret;
1330 
1331 	dev_set_name(&child_device_obj->device, "%pUl",
1332 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1333 
1334 	child_device_obj->device.bus = &hv_bus;
1335 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1336 	child_device_obj->device.release = vmbus_device_release;
1337 
1338 	/*
1339 	 * Register with the LDM. This will kick off the driver/device
1340 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1341 	 */
1342 	ret = device_register(&child_device_obj->device);
1343 	if (ret) {
1344 		pr_err("Unable to register child device\n");
1345 		return ret;
1346 	}
1347 
1348 	child_device_obj->channels_kset = kset_create_and_add("channels",
1349 							      NULL, kobj);
1350 	if (!child_device_obj->channels_kset) {
1351 		ret = -ENOMEM;
1352 		goto err_dev_unregister;
1353 	}
1354 
1355 	ret = vmbus_add_channel_kobj(child_device_obj,
1356 				     child_device_obj->channel);
1357 	if (ret) {
1358 		pr_err("Unable to register primary channeln");
1359 		goto err_kset_unregister;
1360 	}
1361 
1362 	return 0;
1363 
1364 err_kset_unregister:
1365 	kset_unregister(child_device_obj->channels_kset);
1366 
1367 err_dev_unregister:
1368 	device_unregister(&child_device_obj->device);
1369 	return ret;
1370 }
1371 
1372 /*
1373  * vmbus_device_unregister - Remove the specified child device
1374  * from the vmbus.
1375  */
1376 void vmbus_device_unregister(struct hv_device *device_obj)
1377 {
1378 	pr_debug("child device %s unregistered\n",
1379 		dev_name(&device_obj->device));
1380 
1381 	kset_unregister(device_obj->channels_kset);
1382 
1383 	/*
1384 	 * Kick off the process of unregistering the device.
1385 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1386 	 */
1387 	device_unregister(&device_obj->device);
1388 }
1389 
1390 
1391 /*
1392  * VMBUS is an acpi enumerated device. Get the information we
1393  * need from DSDT.
1394  */
1395 #define VTPM_BASE_ADDRESS 0xfed40000
1396 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1397 {
1398 	resource_size_t start = 0;
1399 	resource_size_t end = 0;
1400 	struct resource *new_res;
1401 	struct resource **old_res = &hyperv_mmio;
1402 	struct resource **prev_res = NULL;
1403 
1404 	switch (res->type) {
1405 
1406 	/*
1407 	 * "Address" descriptors are for bus windows. Ignore
1408 	 * "memory" descriptors, which are for registers on
1409 	 * devices.
1410 	 */
1411 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1412 		start = res->data.address32.address.minimum;
1413 		end = res->data.address32.address.maximum;
1414 		break;
1415 
1416 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1417 		start = res->data.address64.address.minimum;
1418 		end = res->data.address64.address.maximum;
1419 		break;
1420 
1421 	default:
1422 		/* Unused resource type */
1423 		return AE_OK;
1424 
1425 	}
1426 	/*
1427 	 * Ignore ranges that are below 1MB, as they're not
1428 	 * necessary or useful here.
1429 	 */
1430 	if (end < 0x100000)
1431 		return AE_OK;
1432 
1433 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1434 	if (!new_res)
1435 		return AE_NO_MEMORY;
1436 
1437 	/* If this range overlaps the virtual TPM, truncate it. */
1438 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1439 		end = VTPM_BASE_ADDRESS;
1440 
1441 	new_res->name = "hyperv mmio";
1442 	new_res->flags = IORESOURCE_MEM;
1443 	new_res->start = start;
1444 	new_res->end = end;
1445 
1446 	/*
1447 	 * If two ranges are adjacent, merge them.
1448 	 */
1449 	do {
1450 		if (!*old_res) {
1451 			*old_res = new_res;
1452 			break;
1453 		}
1454 
1455 		if (((*old_res)->end + 1) == new_res->start) {
1456 			(*old_res)->end = new_res->end;
1457 			kfree(new_res);
1458 			break;
1459 		}
1460 
1461 		if ((*old_res)->start == new_res->end + 1) {
1462 			(*old_res)->start = new_res->start;
1463 			kfree(new_res);
1464 			break;
1465 		}
1466 
1467 		if ((*old_res)->start > new_res->end) {
1468 			new_res->sibling = *old_res;
1469 			if (prev_res)
1470 				(*prev_res)->sibling = new_res;
1471 			*old_res = new_res;
1472 			break;
1473 		}
1474 
1475 		prev_res = old_res;
1476 		old_res = &(*old_res)->sibling;
1477 
1478 	} while (1);
1479 
1480 	return AE_OK;
1481 }
1482 
1483 static int vmbus_acpi_remove(struct acpi_device *device)
1484 {
1485 	struct resource *cur_res;
1486 	struct resource *next_res;
1487 
1488 	if (hyperv_mmio) {
1489 		if (fb_mmio) {
1490 			__release_region(hyperv_mmio, fb_mmio->start,
1491 					 resource_size(fb_mmio));
1492 			fb_mmio = NULL;
1493 		}
1494 
1495 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1496 			next_res = cur_res->sibling;
1497 			kfree(cur_res);
1498 		}
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 static void vmbus_reserve_fb(void)
1505 {
1506 	int size;
1507 	/*
1508 	 * Make a claim for the frame buffer in the resource tree under the
1509 	 * first node, which will be the one below 4GB.  The length seems to
1510 	 * be underreported, particularly in a Generation 1 VM.  So start out
1511 	 * reserving a larger area and make it smaller until it succeeds.
1512 	 */
1513 
1514 	if (screen_info.lfb_base) {
1515 		if (efi_enabled(EFI_BOOT))
1516 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1517 		else
1518 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1519 
1520 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1521 			fb_mmio = __request_region(hyperv_mmio,
1522 						   screen_info.lfb_base, size,
1523 						   fb_mmio_name, 0);
1524 		}
1525 	}
1526 }
1527 
1528 /**
1529  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1530  * @new:		If successful, supplied a pointer to the
1531  *			allocated MMIO space.
1532  * @device_obj:		Identifies the caller
1533  * @min:		Minimum guest physical address of the
1534  *			allocation
1535  * @max:		Maximum guest physical address
1536  * @size:		Size of the range to be allocated
1537  * @align:		Alignment of the range to be allocated
1538  * @fb_overlap_ok:	Whether this allocation can be allowed
1539  *			to overlap the video frame buffer.
1540  *
1541  * This function walks the resources granted to VMBus by the
1542  * _CRS object in the ACPI namespace underneath the parent
1543  * "bridge" whether that's a root PCI bus in the Generation 1
1544  * case or a Module Device in the Generation 2 case.  It then
1545  * attempts to allocate from the global MMIO pool in a way that
1546  * matches the constraints supplied in these parameters and by
1547  * that _CRS.
1548  *
1549  * Return: 0 on success, -errno on failure
1550  */
1551 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1552 			resource_size_t min, resource_size_t max,
1553 			resource_size_t size, resource_size_t align,
1554 			bool fb_overlap_ok)
1555 {
1556 	struct resource *iter, *shadow;
1557 	resource_size_t range_min, range_max, start;
1558 	const char *dev_n = dev_name(&device_obj->device);
1559 	int retval;
1560 
1561 	retval = -ENXIO;
1562 	down(&hyperv_mmio_lock);
1563 
1564 	/*
1565 	 * If overlaps with frame buffers are allowed, then first attempt to
1566 	 * make the allocation from within the reserved region.  Because it
1567 	 * is already reserved, no shadow allocation is necessary.
1568 	 */
1569 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1570 	    !(max < fb_mmio->start)) {
1571 
1572 		range_min = fb_mmio->start;
1573 		range_max = fb_mmio->end;
1574 		start = (range_min + align - 1) & ~(align - 1);
1575 		for (; start + size - 1 <= range_max; start += align) {
1576 			*new = request_mem_region_exclusive(start, size, dev_n);
1577 			if (*new) {
1578 				retval = 0;
1579 				goto exit;
1580 			}
1581 		}
1582 	}
1583 
1584 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1585 		if ((iter->start >= max) || (iter->end <= min))
1586 			continue;
1587 
1588 		range_min = iter->start;
1589 		range_max = iter->end;
1590 		start = (range_min + align - 1) & ~(align - 1);
1591 		for (; start + size - 1 <= range_max; start += align) {
1592 			shadow = __request_region(iter, start, size, NULL,
1593 						  IORESOURCE_BUSY);
1594 			if (!shadow)
1595 				continue;
1596 
1597 			*new = request_mem_region_exclusive(start, size, dev_n);
1598 			if (*new) {
1599 				shadow->name = (char *)*new;
1600 				retval = 0;
1601 				goto exit;
1602 			}
1603 
1604 			__release_region(iter, start, size);
1605 		}
1606 	}
1607 
1608 exit:
1609 	up(&hyperv_mmio_lock);
1610 	return retval;
1611 }
1612 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1613 
1614 /**
1615  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1616  * @start:		Base address of region to release.
1617  * @size:		Size of the range to be allocated
1618  *
1619  * This function releases anything requested by
1620  * vmbus_mmio_allocate().
1621  */
1622 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1623 {
1624 	struct resource *iter;
1625 
1626 	down(&hyperv_mmio_lock);
1627 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1628 		if ((iter->start >= start + size) || (iter->end <= start))
1629 			continue;
1630 
1631 		__release_region(iter, start, size);
1632 	}
1633 	release_mem_region(start, size);
1634 	up(&hyperv_mmio_lock);
1635 
1636 }
1637 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1638 
1639 static int vmbus_acpi_add(struct acpi_device *device)
1640 {
1641 	acpi_status result;
1642 	int ret_val = -ENODEV;
1643 	struct acpi_device *ancestor;
1644 
1645 	hv_acpi_dev = device;
1646 
1647 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1648 					vmbus_walk_resources, NULL);
1649 
1650 	if (ACPI_FAILURE(result))
1651 		goto acpi_walk_err;
1652 	/*
1653 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1654 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1655 	 */
1656 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1657 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1658 					     vmbus_walk_resources, NULL);
1659 
1660 		if (ACPI_FAILURE(result))
1661 			continue;
1662 		if (hyperv_mmio) {
1663 			vmbus_reserve_fb();
1664 			break;
1665 		}
1666 	}
1667 	ret_val = 0;
1668 
1669 acpi_walk_err:
1670 	complete(&probe_event);
1671 	if (ret_val)
1672 		vmbus_acpi_remove(device);
1673 	return ret_val;
1674 }
1675 
1676 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1677 	{"VMBUS", 0},
1678 	{"VMBus", 0},
1679 	{"", 0},
1680 };
1681 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1682 
1683 static struct acpi_driver vmbus_acpi_driver = {
1684 	.name = "vmbus",
1685 	.ids = vmbus_acpi_device_ids,
1686 	.ops = {
1687 		.add = vmbus_acpi_add,
1688 		.remove = vmbus_acpi_remove,
1689 	},
1690 };
1691 
1692 static void hv_kexec_handler(void)
1693 {
1694 	hv_synic_clockevents_cleanup();
1695 	vmbus_initiate_unload(false);
1696 	vmbus_connection.conn_state = DISCONNECTED;
1697 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1698 	mb();
1699 	cpuhp_remove_state(hyperv_cpuhp_online);
1700 	hyperv_cleanup();
1701 };
1702 
1703 static void hv_crash_handler(struct pt_regs *regs)
1704 {
1705 	vmbus_initiate_unload(true);
1706 	/*
1707 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1708 	 * doing the cleanup for current CPU only. This should be sufficient
1709 	 * for kdump.
1710 	 */
1711 	vmbus_connection.conn_state = DISCONNECTED;
1712 	hv_synic_cleanup(smp_processor_id());
1713 	hyperv_cleanup();
1714 };
1715 
1716 static int __init hv_acpi_init(void)
1717 {
1718 	int ret, t;
1719 
1720 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
1721 		return -ENODEV;
1722 
1723 	init_completion(&probe_event);
1724 
1725 	/*
1726 	 * Get ACPI resources first.
1727 	 */
1728 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1729 
1730 	if (ret)
1731 		return ret;
1732 
1733 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1734 	if (t == 0) {
1735 		ret = -ETIMEDOUT;
1736 		goto cleanup;
1737 	}
1738 
1739 	ret = vmbus_bus_init();
1740 	if (ret)
1741 		goto cleanup;
1742 
1743 	hv_setup_kexec_handler(hv_kexec_handler);
1744 	hv_setup_crash_handler(hv_crash_handler);
1745 
1746 	return 0;
1747 
1748 cleanup:
1749 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1750 	hv_acpi_dev = NULL;
1751 	return ret;
1752 }
1753 
1754 static void __exit vmbus_exit(void)
1755 {
1756 	int cpu;
1757 
1758 	hv_remove_kexec_handler();
1759 	hv_remove_crash_handler();
1760 	vmbus_connection.conn_state = DISCONNECTED;
1761 	hv_synic_clockevents_cleanup();
1762 	vmbus_disconnect();
1763 	hv_remove_vmbus_irq();
1764 	for_each_online_cpu(cpu) {
1765 		struct hv_per_cpu_context *hv_cpu
1766 			= per_cpu_ptr(hv_context.cpu_context, cpu);
1767 
1768 		tasklet_kill(&hv_cpu->msg_dpc);
1769 	}
1770 	vmbus_free_channels();
1771 
1772 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1773 		unregister_die_notifier(&hyperv_die_block);
1774 		atomic_notifier_chain_unregister(&panic_notifier_list,
1775 						 &hyperv_panic_block);
1776 	}
1777 	bus_unregister(&hv_bus);
1778 
1779 	cpuhp_remove_state(hyperv_cpuhp_online);
1780 	hv_synic_free();
1781 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1782 }
1783 
1784 
1785 MODULE_LICENSE("GPL");
1786 
1787 subsys_initcall(hv_acpi_init);
1788 module_exit(vmbus_exit);
1789