1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/interrupt.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/completion.h> 33 #include <linux/hyperv.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/clockchips.h> 36 #include <linux/cpu.h> 37 #include <linux/sched/task_stack.h> 38 39 #include <asm/hyperv.h> 40 #include <asm/hypervisor.h> 41 #include <asm/mshyperv.h> 42 #include <linux/notifier.h> 43 #include <linux/ptrace.h> 44 #include <linux/screen_info.h> 45 #include <linux/kdebug.h> 46 #include <linux/efi.h> 47 #include <linux/random.h> 48 #include "hyperv_vmbus.h" 49 50 struct vmbus_dynid { 51 struct list_head node; 52 struct hv_vmbus_device_id id; 53 }; 54 55 static struct acpi_device *hv_acpi_dev; 56 57 static struct completion probe_event; 58 59 static int hyperv_cpuhp_online; 60 61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 62 void *args) 63 { 64 struct pt_regs *regs; 65 66 regs = current_pt_regs(); 67 68 hyperv_report_panic(regs, val); 69 return NOTIFY_DONE; 70 } 71 72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 73 void *args) 74 { 75 struct die_args *die = (struct die_args *)args; 76 struct pt_regs *regs = die->regs; 77 78 hyperv_report_panic(regs, val); 79 return NOTIFY_DONE; 80 } 81 82 static struct notifier_block hyperv_die_block = { 83 .notifier_call = hyperv_die_event, 84 }; 85 static struct notifier_block hyperv_panic_block = { 86 .notifier_call = hyperv_panic_event, 87 }; 88 89 static const char *fb_mmio_name = "fb_range"; 90 static struct resource *fb_mmio; 91 static struct resource *hyperv_mmio; 92 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 93 94 static int vmbus_exists(void) 95 { 96 if (hv_acpi_dev == NULL) 97 return -ENODEV; 98 99 return 0; 100 } 101 102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 104 { 105 int i; 106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 108 } 109 110 static u8 channel_monitor_group(const struct vmbus_channel *channel) 111 { 112 return (u8)channel->offermsg.monitorid / 32; 113 } 114 115 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 116 { 117 return (u8)channel->offermsg.monitorid % 32; 118 } 119 120 static u32 channel_pending(const struct vmbus_channel *channel, 121 const struct hv_monitor_page *monitor_page) 122 { 123 u8 monitor_group = channel_monitor_group(channel); 124 125 return monitor_page->trigger_group[monitor_group].pending; 126 } 127 128 static u32 channel_latency(const struct vmbus_channel *channel, 129 const struct hv_monitor_page *monitor_page) 130 { 131 u8 monitor_group = channel_monitor_group(channel); 132 u8 monitor_offset = channel_monitor_offset(channel); 133 134 return monitor_page->latency[monitor_group][monitor_offset]; 135 } 136 137 static u32 channel_conn_id(struct vmbus_channel *channel, 138 struct hv_monitor_page *monitor_page) 139 { 140 u8 monitor_group = channel_monitor_group(channel); 141 u8 monitor_offset = channel_monitor_offset(channel); 142 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 143 } 144 145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 146 char *buf) 147 { 148 struct hv_device *hv_dev = device_to_hv_device(dev); 149 150 if (!hv_dev->channel) 151 return -ENODEV; 152 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 153 } 154 static DEVICE_ATTR_RO(id); 155 156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 157 char *buf) 158 { 159 struct hv_device *hv_dev = device_to_hv_device(dev); 160 161 if (!hv_dev->channel) 162 return -ENODEV; 163 return sprintf(buf, "%d\n", hv_dev->channel->state); 164 } 165 static DEVICE_ATTR_RO(state); 166 167 static ssize_t monitor_id_show(struct device *dev, 168 struct device_attribute *dev_attr, char *buf) 169 { 170 struct hv_device *hv_dev = device_to_hv_device(dev); 171 172 if (!hv_dev->channel) 173 return -ENODEV; 174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 175 } 176 static DEVICE_ATTR_RO(monitor_id); 177 178 static ssize_t class_id_show(struct device *dev, 179 struct device_attribute *dev_attr, char *buf) 180 { 181 struct hv_device *hv_dev = device_to_hv_device(dev); 182 183 if (!hv_dev->channel) 184 return -ENODEV; 185 return sprintf(buf, "{%pUl}\n", 186 hv_dev->channel->offermsg.offer.if_type.b); 187 } 188 static DEVICE_ATTR_RO(class_id); 189 190 static ssize_t device_id_show(struct device *dev, 191 struct device_attribute *dev_attr, char *buf) 192 { 193 struct hv_device *hv_dev = device_to_hv_device(dev); 194 195 if (!hv_dev->channel) 196 return -ENODEV; 197 return sprintf(buf, "{%pUl}\n", 198 hv_dev->channel->offermsg.offer.if_instance.b); 199 } 200 static DEVICE_ATTR_RO(device_id); 201 202 static ssize_t modalias_show(struct device *dev, 203 struct device_attribute *dev_attr, char *buf) 204 { 205 struct hv_device *hv_dev = device_to_hv_device(dev); 206 char alias_name[VMBUS_ALIAS_LEN + 1]; 207 208 print_alias_name(hv_dev, alias_name); 209 return sprintf(buf, "vmbus:%s\n", alias_name); 210 } 211 static DEVICE_ATTR_RO(modalias); 212 213 static ssize_t server_monitor_pending_show(struct device *dev, 214 struct device_attribute *dev_attr, 215 char *buf) 216 { 217 struct hv_device *hv_dev = device_to_hv_device(dev); 218 219 if (!hv_dev->channel) 220 return -ENODEV; 221 return sprintf(buf, "%d\n", 222 channel_pending(hv_dev->channel, 223 vmbus_connection.monitor_pages[1])); 224 } 225 static DEVICE_ATTR_RO(server_monitor_pending); 226 227 static ssize_t client_monitor_pending_show(struct device *dev, 228 struct device_attribute *dev_attr, 229 char *buf) 230 { 231 struct hv_device *hv_dev = device_to_hv_device(dev); 232 233 if (!hv_dev->channel) 234 return -ENODEV; 235 return sprintf(buf, "%d\n", 236 channel_pending(hv_dev->channel, 237 vmbus_connection.monitor_pages[1])); 238 } 239 static DEVICE_ATTR_RO(client_monitor_pending); 240 241 static ssize_t server_monitor_latency_show(struct device *dev, 242 struct device_attribute *dev_attr, 243 char *buf) 244 { 245 struct hv_device *hv_dev = device_to_hv_device(dev); 246 247 if (!hv_dev->channel) 248 return -ENODEV; 249 return sprintf(buf, "%d\n", 250 channel_latency(hv_dev->channel, 251 vmbus_connection.monitor_pages[0])); 252 } 253 static DEVICE_ATTR_RO(server_monitor_latency); 254 255 static ssize_t client_monitor_latency_show(struct device *dev, 256 struct device_attribute *dev_attr, 257 char *buf) 258 { 259 struct hv_device *hv_dev = device_to_hv_device(dev); 260 261 if (!hv_dev->channel) 262 return -ENODEV; 263 return sprintf(buf, "%d\n", 264 channel_latency(hv_dev->channel, 265 vmbus_connection.monitor_pages[1])); 266 } 267 static DEVICE_ATTR_RO(client_monitor_latency); 268 269 static ssize_t server_monitor_conn_id_show(struct device *dev, 270 struct device_attribute *dev_attr, 271 char *buf) 272 { 273 struct hv_device *hv_dev = device_to_hv_device(dev); 274 275 if (!hv_dev->channel) 276 return -ENODEV; 277 return sprintf(buf, "%d\n", 278 channel_conn_id(hv_dev->channel, 279 vmbus_connection.monitor_pages[0])); 280 } 281 static DEVICE_ATTR_RO(server_monitor_conn_id); 282 283 static ssize_t client_monitor_conn_id_show(struct device *dev, 284 struct device_attribute *dev_attr, 285 char *buf) 286 { 287 struct hv_device *hv_dev = device_to_hv_device(dev); 288 289 if (!hv_dev->channel) 290 return -ENODEV; 291 return sprintf(buf, "%d\n", 292 channel_conn_id(hv_dev->channel, 293 vmbus_connection.monitor_pages[1])); 294 } 295 static DEVICE_ATTR_RO(client_monitor_conn_id); 296 297 static ssize_t out_intr_mask_show(struct device *dev, 298 struct device_attribute *dev_attr, char *buf) 299 { 300 struct hv_device *hv_dev = device_to_hv_device(dev); 301 struct hv_ring_buffer_debug_info outbound; 302 303 if (!hv_dev->channel) 304 return -ENODEV; 305 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 306 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 307 } 308 static DEVICE_ATTR_RO(out_intr_mask); 309 310 static ssize_t out_read_index_show(struct device *dev, 311 struct device_attribute *dev_attr, char *buf) 312 { 313 struct hv_device *hv_dev = device_to_hv_device(dev); 314 struct hv_ring_buffer_debug_info outbound; 315 316 if (!hv_dev->channel) 317 return -ENODEV; 318 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 319 return sprintf(buf, "%d\n", outbound.current_read_index); 320 } 321 static DEVICE_ATTR_RO(out_read_index); 322 323 static ssize_t out_write_index_show(struct device *dev, 324 struct device_attribute *dev_attr, 325 char *buf) 326 { 327 struct hv_device *hv_dev = device_to_hv_device(dev); 328 struct hv_ring_buffer_debug_info outbound; 329 330 if (!hv_dev->channel) 331 return -ENODEV; 332 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 333 return sprintf(buf, "%d\n", outbound.current_write_index); 334 } 335 static DEVICE_ATTR_RO(out_write_index); 336 337 static ssize_t out_read_bytes_avail_show(struct device *dev, 338 struct device_attribute *dev_attr, 339 char *buf) 340 { 341 struct hv_device *hv_dev = device_to_hv_device(dev); 342 struct hv_ring_buffer_debug_info outbound; 343 344 if (!hv_dev->channel) 345 return -ENODEV; 346 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 347 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 348 } 349 static DEVICE_ATTR_RO(out_read_bytes_avail); 350 351 static ssize_t out_write_bytes_avail_show(struct device *dev, 352 struct device_attribute *dev_attr, 353 char *buf) 354 { 355 struct hv_device *hv_dev = device_to_hv_device(dev); 356 struct hv_ring_buffer_debug_info outbound; 357 358 if (!hv_dev->channel) 359 return -ENODEV; 360 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 361 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 362 } 363 static DEVICE_ATTR_RO(out_write_bytes_avail); 364 365 static ssize_t in_intr_mask_show(struct device *dev, 366 struct device_attribute *dev_attr, char *buf) 367 { 368 struct hv_device *hv_dev = device_to_hv_device(dev); 369 struct hv_ring_buffer_debug_info inbound; 370 371 if (!hv_dev->channel) 372 return -ENODEV; 373 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 374 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 375 } 376 static DEVICE_ATTR_RO(in_intr_mask); 377 378 static ssize_t in_read_index_show(struct device *dev, 379 struct device_attribute *dev_attr, char *buf) 380 { 381 struct hv_device *hv_dev = device_to_hv_device(dev); 382 struct hv_ring_buffer_debug_info inbound; 383 384 if (!hv_dev->channel) 385 return -ENODEV; 386 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 387 return sprintf(buf, "%d\n", inbound.current_read_index); 388 } 389 static DEVICE_ATTR_RO(in_read_index); 390 391 static ssize_t in_write_index_show(struct device *dev, 392 struct device_attribute *dev_attr, char *buf) 393 { 394 struct hv_device *hv_dev = device_to_hv_device(dev); 395 struct hv_ring_buffer_debug_info inbound; 396 397 if (!hv_dev->channel) 398 return -ENODEV; 399 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 400 return sprintf(buf, "%d\n", inbound.current_write_index); 401 } 402 static DEVICE_ATTR_RO(in_write_index); 403 404 static ssize_t in_read_bytes_avail_show(struct device *dev, 405 struct device_attribute *dev_attr, 406 char *buf) 407 { 408 struct hv_device *hv_dev = device_to_hv_device(dev); 409 struct hv_ring_buffer_debug_info inbound; 410 411 if (!hv_dev->channel) 412 return -ENODEV; 413 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 414 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 415 } 416 static DEVICE_ATTR_RO(in_read_bytes_avail); 417 418 static ssize_t in_write_bytes_avail_show(struct device *dev, 419 struct device_attribute *dev_attr, 420 char *buf) 421 { 422 struct hv_device *hv_dev = device_to_hv_device(dev); 423 struct hv_ring_buffer_debug_info inbound; 424 425 if (!hv_dev->channel) 426 return -ENODEV; 427 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 428 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 429 } 430 static DEVICE_ATTR_RO(in_write_bytes_avail); 431 432 static ssize_t channel_vp_mapping_show(struct device *dev, 433 struct device_attribute *dev_attr, 434 char *buf) 435 { 436 struct hv_device *hv_dev = device_to_hv_device(dev); 437 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 438 unsigned long flags; 439 int buf_size = PAGE_SIZE, n_written, tot_written; 440 struct list_head *cur; 441 442 if (!channel) 443 return -ENODEV; 444 445 tot_written = snprintf(buf, buf_size, "%u:%u\n", 446 channel->offermsg.child_relid, channel->target_cpu); 447 448 spin_lock_irqsave(&channel->lock, flags); 449 450 list_for_each(cur, &channel->sc_list) { 451 if (tot_written >= buf_size - 1) 452 break; 453 454 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 455 n_written = scnprintf(buf + tot_written, 456 buf_size - tot_written, 457 "%u:%u\n", 458 cur_sc->offermsg.child_relid, 459 cur_sc->target_cpu); 460 tot_written += n_written; 461 } 462 463 spin_unlock_irqrestore(&channel->lock, flags); 464 465 return tot_written; 466 } 467 static DEVICE_ATTR_RO(channel_vp_mapping); 468 469 static ssize_t vendor_show(struct device *dev, 470 struct device_attribute *dev_attr, 471 char *buf) 472 { 473 struct hv_device *hv_dev = device_to_hv_device(dev); 474 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 475 } 476 static DEVICE_ATTR_RO(vendor); 477 478 static ssize_t device_show(struct device *dev, 479 struct device_attribute *dev_attr, 480 char *buf) 481 { 482 struct hv_device *hv_dev = device_to_hv_device(dev); 483 return sprintf(buf, "0x%x\n", hv_dev->device_id); 484 } 485 static DEVICE_ATTR_RO(device); 486 487 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 488 static struct attribute *vmbus_dev_attrs[] = { 489 &dev_attr_id.attr, 490 &dev_attr_state.attr, 491 &dev_attr_monitor_id.attr, 492 &dev_attr_class_id.attr, 493 &dev_attr_device_id.attr, 494 &dev_attr_modalias.attr, 495 &dev_attr_server_monitor_pending.attr, 496 &dev_attr_client_monitor_pending.attr, 497 &dev_attr_server_monitor_latency.attr, 498 &dev_attr_client_monitor_latency.attr, 499 &dev_attr_server_monitor_conn_id.attr, 500 &dev_attr_client_monitor_conn_id.attr, 501 &dev_attr_out_intr_mask.attr, 502 &dev_attr_out_read_index.attr, 503 &dev_attr_out_write_index.attr, 504 &dev_attr_out_read_bytes_avail.attr, 505 &dev_attr_out_write_bytes_avail.attr, 506 &dev_attr_in_intr_mask.attr, 507 &dev_attr_in_read_index.attr, 508 &dev_attr_in_write_index.attr, 509 &dev_attr_in_read_bytes_avail.attr, 510 &dev_attr_in_write_bytes_avail.attr, 511 &dev_attr_channel_vp_mapping.attr, 512 &dev_attr_vendor.attr, 513 &dev_attr_device.attr, 514 NULL, 515 }; 516 ATTRIBUTE_GROUPS(vmbus_dev); 517 518 /* 519 * vmbus_uevent - add uevent for our device 520 * 521 * This routine is invoked when a device is added or removed on the vmbus to 522 * generate a uevent to udev in the userspace. The udev will then look at its 523 * rule and the uevent generated here to load the appropriate driver 524 * 525 * The alias string will be of the form vmbus:guid where guid is the string 526 * representation of the device guid (each byte of the guid will be 527 * represented with two hex characters. 528 */ 529 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 530 { 531 struct hv_device *dev = device_to_hv_device(device); 532 int ret; 533 char alias_name[VMBUS_ALIAS_LEN + 1]; 534 535 print_alias_name(dev, alias_name); 536 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 537 return ret; 538 } 539 540 static const uuid_le null_guid; 541 542 static inline bool is_null_guid(const uuid_le *guid) 543 { 544 if (uuid_le_cmp(*guid, null_guid)) 545 return false; 546 return true; 547 } 548 549 /* 550 * Return a matching hv_vmbus_device_id pointer. 551 * If there is no match, return NULL. 552 */ 553 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 554 const uuid_le *guid) 555 { 556 const struct hv_vmbus_device_id *id = NULL; 557 struct vmbus_dynid *dynid; 558 559 /* Look at the dynamic ids first, before the static ones */ 560 spin_lock(&drv->dynids.lock); 561 list_for_each_entry(dynid, &drv->dynids.list, node) { 562 if (!uuid_le_cmp(dynid->id.guid, *guid)) { 563 id = &dynid->id; 564 break; 565 } 566 } 567 spin_unlock(&drv->dynids.lock); 568 569 if (id) 570 return id; 571 572 id = drv->id_table; 573 if (id == NULL) 574 return NULL; /* empty device table */ 575 576 for (; !is_null_guid(&id->guid); id++) 577 if (!uuid_le_cmp(id->guid, *guid)) 578 return id; 579 580 return NULL; 581 } 582 583 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 584 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid) 585 { 586 struct vmbus_dynid *dynid; 587 588 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 589 if (!dynid) 590 return -ENOMEM; 591 592 dynid->id.guid = *guid; 593 594 spin_lock(&drv->dynids.lock); 595 list_add_tail(&dynid->node, &drv->dynids.list); 596 spin_unlock(&drv->dynids.lock); 597 598 return driver_attach(&drv->driver); 599 } 600 601 static void vmbus_free_dynids(struct hv_driver *drv) 602 { 603 struct vmbus_dynid *dynid, *n; 604 605 spin_lock(&drv->dynids.lock); 606 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 607 list_del(&dynid->node); 608 kfree(dynid); 609 } 610 spin_unlock(&drv->dynids.lock); 611 } 612 613 /* 614 * store_new_id - sysfs frontend to vmbus_add_dynid() 615 * 616 * Allow GUIDs to be added to an existing driver via sysfs. 617 */ 618 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 619 size_t count) 620 { 621 struct hv_driver *drv = drv_to_hv_drv(driver); 622 uuid_le guid; 623 ssize_t retval; 624 625 retval = uuid_le_to_bin(buf, &guid); 626 if (retval) 627 return retval; 628 629 if (hv_vmbus_get_id(drv, &guid)) 630 return -EEXIST; 631 632 retval = vmbus_add_dynid(drv, &guid); 633 if (retval) 634 return retval; 635 return count; 636 } 637 static DRIVER_ATTR_WO(new_id); 638 639 /* 640 * store_remove_id - remove a PCI device ID from this driver 641 * 642 * Removes a dynamic pci device ID to this driver. 643 */ 644 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 645 size_t count) 646 { 647 struct hv_driver *drv = drv_to_hv_drv(driver); 648 struct vmbus_dynid *dynid, *n; 649 uuid_le guid; 650 ssize_t retval; 651 652 retval = uuid_le_to_bin(buf, &guid); 653 if (retval) 654 return retval; 655 656 retval = -ENODEV; 657 spin_lock(&drv->dynids.lock); 658 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 659 struct hv_vmbus_device_id *id = &dynid->id; 660 661 if (!uuid_le_cmp(id->guid, guid)) { 662 list_del(&dynid->node); 663 kfree(dynid); 664 retval = count; 665 break; 666 } 667 } 668 spin_unlock(&drv->dynids.lock); 669 670 return retval; 671 } 672 static DRIVER_ATTR_WO(remove_id); 673 674 static struct attribute *vmbus_drv_attrs[] = { 675 &driver_attr_new_id.attr, 676 &driver_attr_remove_id.attr, 677 NULL, 678 }; 679 ATTRIBUTE_GROUPS(vmbus_drv); 680 681 682 /* 683 * vmbus_match - Attempt to match the specified device to the specified driver 684 */ 685 static int vmbus_match(struct device *device, struct device_driver *driver) 686 { 687 struct hv_driver *drv = drv_to_hv_drv(driver); 688 struct hv_device *hv_dev = device_to_hv_device(device); 689 690 /* The hv_sock driver handles all hv_sock offers. */ 691 if (is_hvsock_channel(hv_dev->channel)) 692 return drv->hvsock; 693 694 if (hv_vmbus_get_id(drv, &hv_dev->dev_type)) 695 return 1; 696 697 return 0; 698 } 699 700 /* 701 * vmbus_probe - Add the new vmbus's child device 702 */ 703 static int vmbus_probe(struct device *child_device) 704 { 705 int ret = 0; 706 struct hv_driver *drv = 707 drv_to_hv_drv(child_device->driver); 708 struct hv_device *dev = device_to_hv_device(child_device); 709 const struct hv_vmbus_device_id *dev_id; 710 711 dev_id = hv_vmbus_get_id(drv, &dev->dev_type); 712 if (drv->probe) { 713 ret = drv->probe(dev, dev_id); 714 if (ret != 0) 715 pr_err("probe failed for device %s (%d)\n", 716 dev_name(child_device), ret); 717 718 } else { 719 pr_err("probe not set for driver %s\n", 720 dev_name(child_device)); 721 ret = -ENODEV; 722 } 723 return ret; 724 } 725 726 /* 727 * vmbus_remove - Remove a vmbus device 728 */ 729 static int vmbus_remove(struct device *child_device) 730 { 731 struct hv_driver *drv; 732 struct hv_device *dev = device_to_hv_device(child_device); 733 734 if (child_device->driver) { 735 drv = drv_to_hv_drv(child_device->driver); 736 if (drv->remove) 737 drv->remove(dev); 738 } 739 740 return 0; 741 } 742 743 744 /* 745 * vmbus_shutdown - Shutdown a vmbus device 746 */ 747 static void vmbus_shutdown(struct device *child_device) 748 { 749 struct hv_driver *drv; 750 struct hv_device *dev = device_to_hv_device(child_device); 751 752 753 /* The device may not be attached yet */ 754 if (!child_device->driver) 755 return; 756 757 drv = drv_to_hv_drv(child_device->driver); 758 759 if (drv->shutdown) 760 drv->shutdown(dev); 761 } 762 763 764 /* 765 * vmbus_device_release - Final callback release of the vmbus child device 766 */ 767 static void vmbus_device_release(struct device *device) 768 { 769 struct hv_device *hv_dev = device_to_hv_device(device); 770 struct vmbus_channel *channel = hv_dev->channel; 771 772 mutex_lock(&vmbus_connection.channel_mutex); 773 hv_process_channel_removal(channel->offermsg.child_relid); 774 mutex_unlock(&vmbus_connection.channel_mutex); 775 kfree(hv_dev); 776 777 } 778 779 /* The one and only one */ 780 static struct bus_type hv_bus = { 781 .name = "vmbus", 782 .match = vmbus_match, 783 .shutdown = vmbus_shutdown, 784 .remove = vmbus_remove, 785 .probe = vmbus_probe, 786 .uevent = vmbus_uevent, 787 .dev_groups = vmbus_dev_groups, 788 .drv_groups = vmbus_drv_groups, 789 }; 790 791 struct onmessage_work_context { 792 struct work_struct work; 793 struct hv_message msg; 794 }; 795 796 static void vmbus_onmessage_work(struct work_struct *work) 797 { 798 struct onmessage_work_context *ctx; 799 800 /* Do not process messages if we're in DISCONNECTED state */ 801 if (vmbus_connection.conn_state == DISCONNECTED) 802 return; 803 804 ctx = container_of(work, struct onmessage_work_context, 805 work); 806 vmbus_onmessage(&ctx->msg); 807 kfree(ctx); 808 } 809 810 static void hv_process_timer_expiration(struct hv_message *msg, 811 struct hv_per_cpu_context *hv_cpu) 812 { 813 struct clock_event_device *dev = hv_cpu->clk_evt; 814 815 if (dev->event_handler) 816 dev->event_handler(dev); 817 818 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 819 } 820 821 void vmbus_on_msg_dpc(unsigned long data) 822 { 823 struct hv_per_cpu_context *hv_cpu = (void *)data; 824 void *page_addr = hv_cpu->synic_message_page; 825 struct hv_message *msg = (struct hv_message *)page_addr + 826 VMBUS_MESSAGE_SINT; 827 struct vmbus_channel_message_header *hdr; 828 const struct vmbus_channel_message_table_entry *entry; 829 struct onmessage_work_context *ctx; 830 u32 message_type = msg->header.message_type; 831 832 if (message_type == HVMSG_NONE) 833 /* no msg */ 834 return; 835 836 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 837 838 trace_vmbus_on_msg_dpc(hdr); 839 840 if (hdr->msgtype >= CHANNELMSG_COUNT) { 841 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 842 goto msg_handled; 843 } 844 845 entry = &channel_message_table[hdr->msgtype]; 846 if (entry->handler_type == VMHT_BLOCKING) { 847 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 848 if (ctx == NULL) 849 return; 850 851 INIT_WORK(&ctx->work, vmbus_onmessage_work); 852 memcpy(&ctx->msg, msg, sizeof(*msg)); 853 854 /* 855 * The host can generate a rescind message while we 856 * may still be handling the original offer. We deal with 857 * this condition by ensuring the processing is done on the 858 * same CPU. 859 */ 860 switch (hdr->msgtype) { 861 case CHANNELMSG_RESCIND_CHANNELOFFER: 862 /* 863 * If we are handling the rescind message; 864 * schedule the work on the global work queue. 865 */ 866 schedule_work_on(vmbus_connection.connect_cpu, 867 &ctx->work); 868 break; 869 870 case CHANNELMSG_OFFERCHANNEL: 871 atomic_inc(&vmbus_connection.offer_in_progress); 872 queue_work_on(vmbus_connection.connect_cpu, 873 vmbus_connection.work_queue, 874 &ctx->work); 875 break; 876 877 default: 878 queue_work(vmbus_connection.work_queue, &ctx->work); 879 } 880 } else 881 entry->message_handler(hdr); 882 883 msg_handled: 884 vmbus_signal_eom(msg, message_type); 885 } 886 887 888 /* 889 * Direct callback for channels using other deferred processing 890 */ 891 static void vmbus_channel_isr(struct vmbus_channel *channel) 892 { 893 void (*callback_fn)(void *); 894 895 callback_fn = READ_ONCE(channel->onchannel_callback); 896 if (likely(callback_fn != NULL)) 897 (*callback_fn)(channel->channel_callback_context); 898 } 899 900 /* 901 * Schedule all channels with events pending 902 */ 903 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 904 { 905 unsigned long *recv_int_page; 906 u32 maxbits, relid; 907 908 if (vmbus_proto_version < VERSION_WIN8) { 909 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 910 recv_int_page = vmbus_connection.recv_int_page; 911 } else { 912 /* 913 * When the host is win8 and beyond, the event page 914 * can be directly checked to get the id of the channel 915 * that has the interrupt pending. 916 */ 917 void *page_addr = hv_cpu->synic_event_page; 918 union hv_synic_event_flags *event 919 = (union hv_synic_event_flags *)page_addr + 920 VMBUS_MESSAGE_SINT; 921 922 maxbits = HV_EVENT_FLAGS_COUNT; 923 recv_int_page = event->flags; 924 } 925 926 if (unlikely(!recv_int_page)) 927 return; 928 929 for_each_set_bit(relid, recv_int_page, maxbits) { 930 struct vmbus_channel *channel; 931 932 if (!sync_test_and_clear_bit(relid, recv_int_page)) 933 continue; 934 935 /* Special case - vmbus channel protocol msg */ 936 if (relid == 0) 937 continue; 938 939 rcu_read_lock(); 940 941 /* Find channel based on relid */ 942 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 943 if (channel->offermsg.child_relid != relid) 944 continue; 945 946 if (channel->rescind) 947 continue; 948 949 trace_vmbus_chan_sched(channel); 950 951 ++channel->interrupts; 952 953 switch (channel->callback_mode) { 954 case HV_CALL_ISR: 955 vmbus_channel_isr(channel); 956 break; 957 958 case HV_CALL_BATCHED: 959 hv_begin_read(&channel->inbound); 960 /* fallthrough */ 961 case HV_CALL_DIRECT: 962 tasklet_schedule(&channel->callback_event); 963 } 964 } 965 966 rcu_read_unlock(); 967 } 968 } 969 970 static void vmbus_isr(void) 971 { 972 struct hv_per_cpu_context *hv_cpu 973 = this_cpu_ptr(hv_context.cpu_context); 974 void *page_addr = hv_cpu->synic_event_page; 975 struct hv_message *msg; 976 union hv_synic_event_flags *event; 977 bool handled = false; 978 979 if (unlikely(page_addr == NULL)) 980 return; 981 982 event = (union hv_synic_event_flags *)page_addr + 983 VMBUS_MESSAGE_SINT; 984 /* 985 * Check for events before checking for messages. This is the order 986 * in which events and messages are checked in Windows guests on 987 * Hyper-V, and the Windows team suggested we do the same. 988 */ 989 990 if ((vmbus_proto_version == VERSION_WS2008) || 991 (vmbus_proto_version == VERSION_WIN7)) { 992 993 /* Since we are a child, we only need to check bit 0 */ 994 if (sync_test_and_clear_bit(0, event->flags)) 995 handled = true; 996 } else { 997 /* 998 * Our host is win8 or above. The signaling mechanism 999 * has changed and we can directly look at the event page. 1000 * If bit n is set then we have an interrup on the channel 1001 * whose id is n. 1002 */ 1003 handled = true; 1004 } 1005 1006 if (handled) 1007 vmbus_chan_sched(hv_cpu); 1008 1009 page_addr = hv_cpu->synic_message_page; 1010 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1011 1012 /* Check if there are actual msgs to be processed */ 1013 if (msg->header.message_type != HVMSG_NONE) { 1014 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 1015 hv_process_timer_expiration(msg, hv_cpu); 1016 else 1017 tasklet_schedule(&hv_cpu->msg_dpc); 1018 } 1019 1020 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1021 } 1022 1023 1024 /* 1025 * vmbus_bus_init -Main vmbus driver initialization routine. 1026 * 1027 * Here, we 1028 * - initialize the vmbus driver context 1029 * - invoke the vmbus hv main init routine 1030 * - retrieve the channel offers 1031 */ 1032 static int vmbus_bus_init(void) 1033 { 1034 int ret; 1035 1036 /* Hypervisor initialization...setup hypercall page..etc */ 1037 ret = hv_init(); 1038 if (ret != 0) { 1039 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1040 return ret; 1041 } 1042 1043 ret = bus_register(&hv_bus); 1044 if (ret) 1045 return ret; 1046 1047 hv_setup_vmbus_irq(vmbus_isr); 1048 1049 ret = hv_synic_alloc(); 1050 if (ret) 1051 goto err_alloc; 1052 /* 1053 * Initialize the per-cpu interrupt state and 1054 * connect to the host. 1055 */ 1056 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online", 1057 hv_synic_init, hv_synic_cleanup); 1058 if (ret < 0) 1059 goto err_alloc; 1060 hyperv_cpuhp_online = ret; 1061 1062 ret = vmbus_connect(); 1063 if (ret) 1064 goto err_connect; 1065 1066 /* 1067 * Only register if the crash MSRs are available 1068 */ 1069 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1070 register_die_notifier(&hyperv_die_block); 1071 atomic_notifier_chain_register(&panic_notifier_list, 1072 &hyperv_panic_block); 1073 } 1074 1075 vmbus_request_offers(); 1076 1077 return 0; 1078 1079 err_connect: 1080 cpuhp_remove_state(hyperv_cpuhp_online); 1081 err_alloc: 1082 hv_synic_free(); 1083 hv_remove_vmbus_irq(); 1084 1085 bus_unregister(&hv_bus); 1086 1087 return ret; 1088 } 1089 1090 /** 1091 * __vmbus_child_driver_register() - Register a vmbus's driver 1092 * @hv_driver: Pointer to driver structure you want to register 1093 * @owner: owner module of the drv 1094 * @mod_name: module name string 1095 * 1096 * Registers the given driver with Linux through the 'driver_register()' call 1097 * and sets up the hyper-v vmbus handling for this driver. 1098 * It will return the state of the 'driver_register()' call. 1099 * 1100 */ 1101 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1102 { 1103 int ret; 1104 1105 pr_info("registering driver %s\n", hv_driver->name); 1106 1107 ret = vmbus_exists(); 1108 if (ret < 0) 1109 return ret; 1110 1111 hv_driver->driver.name = hv_driver->name; 1112 hv_driver->driver.owner = owner; 1113 hv_driver->driver.mod_name = mod_name; 1114 hv_driver->driver.bus = &hv_bus; 1115 1116 spin_lock_init(&hv_driver->dynids.lock); 1117 INIT_LIST_HEAD(&hv_driver->dynids.list); 1118 1119 ret = driver_register(&hv_driver->driver); 1120 1121 return ret; 1122 } 1123 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1124 1125 /** 1126 * vmbus_driver_unregister() - Unregister a vmbus's driver 1127 * @hv_driver: Pointer to driver structure you want to 1128 * un-register 1129 * 1130 * Un-register the given driver that was previous registered with a call to 1131 * vmbus_driver_register() 1132 */ 1133 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1134 { 1135 pr_info("unregistering driver %s\n", hv_driver->name); 1136 1137 if (!vmbus_exists()) { 1138 driver_unregister(&hv_driver->driver); 1139 vmbus_free_dynids(hv_driver); 1140 } 1141 } 1142 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1143 1144 1145 /* 1146 * Called when last reference to channel is gone. 1147 */ 1148 static void vmbus_chan_release(struct kobject *kobj) 1149 { 1150 struct vmbus_channel *channel 1151 = container_of(kobj, struct vmbus_channel, kobj); 1152 1153 kfree_rcu(channel, rcu); 1154 } 1155 1156 struct vmbus_chan_attribute { 1157 struct attribute attr; 1158 ssize_t (*show)(const struct vmbus_channel *chan, char *buf); 1159 ssize_t (*store)(struct vmbus_channel *chan, 1160 const char *buf, size_t count); 1161 }; 1162 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1163 struct vmbus_chan_attribute chan_attr_##_name \ 1164 = __ATTR(_name, _mode, _show, _store) 1165 #define VMBUS_CHAN_ATTR_RW(_name) \ 1166 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1167 #define VMBUS_CHAN_ATTR_RO(_name) \ 1168 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1169 #define VMBUS_CHAN_ATTR_WO(_name) \ 1170 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1171 1172 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1173 struct attribute *attr, char *buf) 1174 { 1175 const struct vmbus_chan_attribute *attribute 1176 = container_of(attr, struct vmbus_chan_attribute, attr); 1177 const struct vmbus_channel *chan 1178 = container_of(kobj, struct vmbus_channel, kobj); 1179 1180 if (!attribute->show) 1181 return -EIO; 1182 1183 return attribute->show(chan, buf); 1184 } 1185 1186 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1187 .show = vmbus_chan_attr_show, 1188 }; 1189 1190 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf) 1191 { 1192 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1193 1194 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1195 } 1196 VMBUS_CHAN_ATTR_RO(out_mask); 1197 1198 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf) 1199 { 1200 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1201 1202 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1203 } 1204 VMBUS_CHAN_ATTR_RO(in_mask); 1205 1206 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf) 1207 { 1208 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1209 1210 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1211 } 1212 VMBUS_CHAN_ATTR_RO(read_avail); 1213 1214 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf) 1215 { 1216 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1217 1218 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1219 } 1220 VMBUS_CHAN_ATTR_RO(write_avail); 1221 1222 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf) 1223 { 1224 return sprintf(buf, "%u\n", channel->target_cpu); 1225 } 1226 VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1227 1228 static ssize_t channel_pending_show(const struct vmbus_channel *channel, 1229 char *buf) 1230 { 1231 return sprintf(buf, "%d\n", 1232 channel_pending(channel, 1233 vmbus_connection.monitor_pages[1])); 1234 } 1235 VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1236 1237 static ssize_t channel_latency_show(const struct vmbus_channel *channel, 1238 char *buf) 1239 { 1240 return sprintf(buf, "%d\n", 1241 channel_latency(channel, 1242 vmbus_connection.monitor_pages[1])); 1243 } 1244 VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1245 1246 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf) 1247 { 1248 return sprintf(buf, "%llu\n", channel->interrupts); 1249 } 1250 VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1251 1252 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf) 1253 { 1254 return sprintf(buf, "%llu\n", channel->sig_events); 1255 } 1256 VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1257 1258 static struct attribute *vmbus_chan_attrs[] = { 1259 &chan_attr_out_mask.attr, 1260 &chan_attr_in_mask.attr, 1261 &chan_attr_read_avail.attr, 1262 &chan_attr_write_avail.attr, 1263 &chan_attr_cpu.attr, 1264 &chan_attr_pending.attr, 1265 &chan_attr_latency.attr, 1266 &chan_attr_interrupts.attr, 1267 &chan_attr_events.attr, 1268 NULL 1269 }; 1270 1271 static struct kobj_type vmbus_chan_ktype = { 1272 .sysfs_ops = &vmbus_chan_sysfs_ops, 1273 .release = vmbus_chan_release, 1274 .default_attrs = vmbus_chan_attrs, 1275 }; 1276 1277 /* 1278 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1279 */ 1280 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1281 { 1282 struct kobject *kobj = &channel->kobj; 1283 u32 relid = channel->offermsg.child_relid; 1284 int ret; 1285 1286 kobj->kset = dev->channels_kset; 1287 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1288 "%u", relid); 1289 if (ret) 1290 return ret; 1291 1292 kobject_uevent(kobj, KOBJ_ADD); 1293 1294 return 0; 1295 } 1296 1297 /* 1298 * vmbus_device_create - Creates and registers a new child device 1299 * on the vmbus. 1300 */ 1301 struct hv_device *vmbus_device_create(const uuid_le *type, 1302 const uuid_le *instance, 1303 struct vmbus_channel *channel) 1304 { 1305 struct hv_device *child_device_obj; 1306 1307 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1308 if (!child_device_obj) { 1309 pr_err("Unable to allocate device object for child device\n"); 1310 return NULL; 1311 } 1312 1313 child_device_obj->channel = channel; 1314 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le)); 1315 memcpy(&child_device_obj->dev_instance, instance, 1316 sizeof(uuid_le)); 1317 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1318 1319 1320 return child_device_obj; 1321 } 1322 1323 /* 1324 * vmbus_device_register - Register the child device 1325 */ 1326 int vmbus_device_register(struct hv_device *child_device_obj) 1327 { 1328 struct kobject *kobj = &child_device_obj->device.kobj; 1329 int ret; 1330 1331 dev_set_name(&child_device_obj->device, "%pUl", 1332 child_device_obj->channel->offermsg.offer.if_instance.b); 1333 1334 child_device_obj->device.bus = &hv_bus; 1335 child_device_obj->device.parent = &hv_acpi_dev->dev; 1336 child_device_obj->device.release = vmbus_device_release; 1337 1338 /* 1339 * Register with the LDM. This will kick off the driver/device 1340 * binding...which will eventually call vmbus_match() and vmbus_probe() 1341 */ 1342 ret = device_register(&child_device_obj->device); 1343 if (ret) { 1344 pr_err("Unable to register child device\n"); 1345 return ret; 1346 } 1347 1348 child_device_obj->channels_kset = kset_create_and_add("channels", 1349 NULL, kobj); 1350 if (!child_device_obj->channels_kset) { 1351 ret = -ENOMEM; 1352 goto err_dev_unregister; 1353 } 1354 1355 ret = vmbus_add_channel_kobj(child_device_obj, 1356 child_device_obj->channel); 1357 if (ret) { 1358 pr_err("Unable to register primary channeln"); 1359 goto err_kset_unregister; 1360 } 1361 1362 return 0; 1363 1364 err_kset_unregister: 1365 kset_unregister(child_device_obj->channels_kset); 1366 1367 err_dev_unregister: 1368 device_unregister(&child_device_obj->device); 1369 return ret; 1370 } 1371 1372 /* 1373 * vmbus_device_unregister - Remove the specified child device 1374 * from the vmbus. 1375 */ 1376 void vmbus_device_unregister(struct hv_device *device_obj) 1377 { 1378 pr_debug("child device %s unregistered\n", 1379 dev_name(&device_obj->device)); 1380 1381 kset_unregister(device_obj->channels_kset); 1382 1383 /* 1384 * Kick off the process of unregistering the device. 1385 * This will call vmbus_remove() and eventually vmbus_device_release() 1386 */ 1387 device_unregister(&device_obj->device); 1388 } 1389 1390 1391 /* 1392 * VMBUS is an acpi enumerated device. Get the information we 1393 * need from DSDT. 1394 */ 1395 #define VTPM_BASE_ADDRESS 0xfed40000 1396 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1397 { 1398 resource_size_t start = 0; 1399 resource_size_t end = 0; 1400 struct resource *new_res; 1401 struct resource **old_res = &hyperv_mmio; 1402 struct resource **prev_res = NULL; 1403 1404 switch (res->type) { 1405 1406 /* 1407 * "Address" descriptors are for bus windows. Ignore 1408 * "memory" descriptors, which are for registers on 1409 * devices. 1410 */ 1411 case ACPI_RESOURCE_TYPE_ADDRESS32: 1412 start = res->data.address32.address.minimum; 1413 end = res->data.address32.address.maximum; 1414 break; 1415 1416 case ACPI_RESOURCE_TYPE_ADDRESS64: 1417 start = res->data.address64.address.minimum; 1418 end = res->data.address64.address.maximum; 1419 break; 1420 1421 default: 1422 /* Unused resource type */ 1423 return AE_OK; 1424 1425 } 1426 /* 1427 * Ignore ranges that are below 1MB, as they're not 1428 * necessary or useful here. 1429 */ 1430 if (end < 0x100000) 1431 return AE_OK; 1432 1433 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1434 if (!new_res) 1435 return AE_NO_MEMORY; 1436 1437 /* If this range overlaps the virtual TPM, truncate it. */ 1438 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1439 end = VTPM_BASE_ADDRESS; 1440 1441 new_res->name = "hyperv mmio"; 1442 new_res->flags = IORESOURCE_MEM; 1443 new_res->start = start; 1444 new_res->end = end; 1445 1446 /* 1447 * If two ranges are adjacent, merge them. 1448 */ 1449 do { 1450 if (!*old_res) { 1451 *old_res = new_res; 1452 break; 1453 } 1454 1455 if (((*old_res)->end + 1) == new_res->start) { 1456 (*old_res)->end = new_res->end; 1457 kfree(new_res); 1458 break; 1459 } 1460 1461 if ((*old_res)->start == new_res->end + 1) { 1462 (*old_res)->start = new_res->start; 1463 kfree(new_res); 1464 break; 1465 } 1466 1467 if ((*old_res)->start > new_res->end) { 1468 new_res->sibling = *old_res; 1469 if (prev_res) 1470 (*prev_res)->sibling = new_res; 1471 *old_res = new_res; 1472 break; 1473 } 1474 1475 prev_res = old_res; 1476 old_res = &(*old_res)->sibling; 1477 1478 } while (1); 1479 1480 return AE_OK; 1481 } 1482 1483 static int vmbus_acpi_remove(struct acpi_device *device) 1484 { 1485 struct resource *cur_res; 1486 struct resource *next_res; 1487 1488 if (hyperv_mmio) { 1489 if (fb_mmio) { 1490 __release_region(hyperv_mmio, fb_mmio->start, 1491 resource_size(fb_mmio)); 1492 fb_mmio = NULL; 1493 } 1494 1495 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1496 next_res = cur_res->sibling; 1497 kfree(cur_res); 1498 } 1499 } 1500 1501 return 0; 1502 } 1503 1504 static void vmbus_reserve_fb(void) 1505 { 1506 int size; 1507 /* 1508 * Make a claim for the frame buffer in the resource tree under the 1509 * first node, which will be the one below 4GB. The length seems to 1510 * be underreported, particularly in a Generation 1 VM. So start out 1511 * reserving a larger area and make it smaller until it succeeds. 1512 */ 1513 1514 if (screen_info.lfb_base) { 1515 if (efi_enabled(EFI_BOOT)) 1516 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1517 else 1518 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1519 1520 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1521 fb_mmio = __request_region(hyperv_mmio, 1522 screen_info.lfb_base, size, 1523 fb_mmio_name, 0); 1524 } 1525 } 1526 } 1527 1528 /** 1529 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1530 * @new: If successful, supplied a pointer to the 1531 * allocated MMIO space. 1532 * @device_obj: Identifies the caller 1533 * @min: Minimum guest physical address of the 1534 * allocation 1535 * @max: Maximum guest physical address 1536 * @size: Size of the range to be allocated 1537 * @align: Alignment of the range to be allocated 1538 * @fb_overlap_ok: Whether this allocation can be allowed 1539 * to overlap the video frame buffer. 1540 * 1541 * This function walks the resources granted to VMBus by the 1542 * _CRS object in the ACPI namespace underneath the parent 1543 * "bridge" whether that's a root PCI bus in the Generation 1 1544 * case or a Module Device in the Generation 2 case. It then 1545 * attempts to allocate from the global MMIO pool in a way that 1546 * matches the constraints supplied in these parameters and by 1547 * that _CRS. 1548 * 1549 * Return: 0 on success, -errno on failure 1550 */ 1551 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1552 resource_size_t min, resource_size_t max, 1553 resource_size_t size, resource_size_t align, 1554 bool fb_overlap_ok) 1555 { 1556 struct resource *iter, *shadow; 1557 resource_size_t range_min, range_max, start; 1558 const char *dev_n = dev_name(&device_obj->device); 1559 int retval; 1560 1561 retval = -ENXIO; 1562 down(&hyperv_mmio_lock); 1563 1564 /* 1565 * If overlaps with frame buffers are allowed, then first attempt to 1566 * make the allocation from within the reserved region. Because it 1567 * is already reserved, no shadow allocation is necessary. 1568 */ 1569 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1570 !(max < fb_mmio->start)) { 1571 1572 range_min = fb_mmio->start; 1573 range_max = fb_mmio->end; 1574 start = (range_min + align - 1) & ~(align - 1); 1575 for (; start + size - 1 <= range_max; start += align) { 1576 *new = request_mem_region_exclusive(start, size, dev_n); 1577 if (*new) { 1578 retval = 0; 1579 goto exit; 1580 } 1581 } 1582 } 1583 1584 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1585 if ((iter->start >= max) || (iter->end <= min)) 1586 continue; 1587 1588 range_min = iter->start; 1589 range_max = iter->end; 1590 start = (range_min + align - 1) & ~(align - 1); 1591 for (; start + size - 1 <= range_max; start += align) { 1592 shadow = __request_region(iter, start, size, NULL, 1593 IORESOURCE_BUSY); 1594 if (!shadow) 1595 continue; 1596 1597 *new = request_mem_region_exclusive(start, size, dev_n); 1598 if (*new) { 1599 shadow->name = (char *)*new; 1600 retval = 0; 1601 goto exit; 1602 } 1603 1604 __release_region(iter, start, size); 1605 } 1606 } 1607 1608 exit: 1609 up(&hyperv_mmio_lock); 1610 return retval; 1611 } 1612 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1613 1614 /** 1615 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1616 * @start: Base address of region to release. 1617 * @size: Size of the range to be allocated 1618 * 1619 * This function releases anything requested by 1620 * vmbus_mmio_allocate(). 1621 */ 1622 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1623 { 1624 struct resource *iter; 1625 1626 down(&hyperv_mmio_lock); 1627 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1628 if ((iter->start >= start + size) || (iter->end <= start)) 1629 continue; 1630 1631 __release_region(iter, start, size); 1632 } 1633 release_mem_region(start, size); 1634 up(&hyperv_mmio_lock); 1635 1636 } 1637 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 1638 1639 static int vmbus_acpi_add(struct acpi_device *device) 1640 { 1641 acpi_status result; 1642 int ret_val = -ENODEV; 1643 struct acpi_device *ancestor; 1644 1645 hv_acpi_dev = device; 1646 1647 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 1648 vmbus_walk_resources, NULL); 1649 1650 if (ACPI_FAILURE(result)) 1651 goto acpi_walk_err; 1652 /* 1653 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 1654 * firmware) is the VMOD that has the mmio ranges. Get that. 1655 */ 1656 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 1657 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 1658 vmbus_walk_resources, NULL); 1659 1660 if (ACPI_FAILURE(result)) 1661 continue; 1662 if (hyperv_mmio) { 1663 vmbus_reserve_fb(); 1664 break; 1665 } 1666 } 1667 ret_val = 0; 1668 1669 acpi_walk_err: 1670 complete(&probe_event); 1671 if (ret_val) 1672 vmbus_acpi_remove(device); 1673 return ret_val; 1674 } 1675 1676 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 1677 {"VMBUS", 0}, 1678 {"VMBus", 0}, 1679 {"", 0}, 1680 }; 1681 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 1682 1683 static struct acpi_driver vmbus_acpi_driver = { 1684 .name = "vmbus", 1685 .ids = vmbus_acpi_device_ids, 1686 .ops = { 1687 .add = vmbus_acpi_add, 1688 .remove = vmbus_acpi_remove, 1689 }, 1690 }; 1691 1692 static void hv_kexec_handler(void) 1693 { 1694 hv_synic_clockevents_cleanup(); 1695 vmbus_initiate_unload(false); 1696 vmbus_connection.conn_state = DISCONNECTED; 1697 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 1698 mb(); 1699 cpuhp_remove_state(hyperv_cpuhp_online); 1700 hyperv_cleanup(); 1701 }; 1702 1703 static void hv_crash_handler(struct pt_regs *regs) 1704 { 1705 vmbus_initiate_unload(true); 1706 /* 1707 * In crash handler we can't schedule synic cleanup for all CPUs, 1708 * doing the cleanup for current CPU only. This should be sufficient 1709 * for kdump. 1710 */ 1711 vmbus_connection.conn_state = DISCONNECTED; 1712 hv_synic_cleanup(smp_processor_id()); 1713 hyperv_cleanup(); 1714 }; 1715 1716 static int __init hv_acpi_init(void) 1717 { 1718 int ret, t; 1719 1720 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 1721 return -ENODEV; 1722 1723 init_completion(&probe_event); 1724 1725 /* 1726 * Get ACPI resources first. 1727 */ 1728 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 1729 1730 if (ret) 1731 return ret; 1732 1733 t = wait_for_completion_timeout(&probe_event, 5*HZ); 1734 if (t == 0) { 1735 ret = -ETIMEDOUT; 1736 goto cleanup; 1737 } 1738 1739 ret = vmbus_bus_init(); 1740 if (ret) 1741 goto cleanup; 1742 1743 hv_setup_kexec_handler(hv_kexec_handler); 1744 hv_setup_crash_handler(hv_crash_handler); 1745 1746 return 0; 1747 1748 cleanup: 1749 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1750 hv_acpi_dev = NULL; 1751 return ret; 1752 } 1753 1754 static void __exit vmbus_exit(void) 1755 { 1756 int cpu; 1757 1758 hv_remove_kexec_handler(); 1759 hv_remove_crash_handler(); 1760 vmbus_connection.conn_state = DISCONNECTED; 1761 hv_synic_clockevents_cleanup(); 1762 vmbus_disconnect(); 1763 hv_remove_vmbus_irq(); 1764 for_each_online_cpu(cpu) { 1765 struct hv_per_cpu_context *hv_cpu 1766 = per_cpu_ptr(hv_context.cpu_context, cpu); 1767 1768 tasklet_kill(&hv_cpu->msg_dpc); 1769 } 1770 vmbus_free_channels(); 1771 1772 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1773 unregister_die_notifier(&hyperv_die_block); 1774 atomic_notifier_chain_unregister(&panic_notifier_list, 1775 &hyperv_panic_block); 1776 } 1777 bus_unregister(&hv_bus); 1778 1779 cpuhp_remove_state(hyperv_cpuhp_online); 1780 hv_synic_free(); 1781 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1782 } 1783 1784 1785 MODULE_LICENSE("GPL"); 1786 1787 subsys_initcall(hv_acpi_init); 1788 module_exit(vmbus_exit); 1789