1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/interrupt.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/completion.h> 33 #include <linux/hyperv.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/clockchips.h> 36 #include <linux/cpu.h> 37 #include <linux/sched/task_stack.h> 38 39 #include <asm/mshyperv.h> 40 #include <linux/notifier.h> 41 #include <linux/ptrace.h> 42 #include <linux/screen_info.h> 43 #include <linux/kdebug.h> 44 #include <linux/efi.h> 45 #include <linux/random.h> 46 #include "hyperv_vmbus.h" 47 48 struct vmbus_dynid { 49 struct list_head node; 50 struct hv_vmbus_device_id id; 51 }; 52 53 static struct acpi_device *hv_acpi_dev; 54 55 static struct completion probe_event; 56 57 static int hyperv_cpuhp_online; 58 59 static void *hv_panic_page; 60 61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 62 void *args) 63 { 64 struct pt_regs *regs; 65 66 regs = current_pt_regs(); 67 68 hyperv_report_panic(regs, val); 69 return NOTIFY_DONE; 70 } 71 72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 73 void *args) 74 { 75 struct die_args *die = (struct die_args *)args; 76 struct pt_regs *regs = die->regs; 77 78 hyperv_report_panic(regs, val); 79 return NOTIFY_DONE; 80 } 81 82 static struct notifier_block hyperv_die_block = { 83 .notifier_call = hyperv_die_event, 84 }; 85 static struct notifier_block hyperv_panic_block = { 86 .notifier_call = hyperv_panic_event, 87 }; 88 89 static const char *fb_mmio_name = "fb_range"; 90 static struct resource *fb_mmio; 91 static struct resource *hyperv_mmio; 92 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 93 94 static int vmbus_exists(void) 95 { 96 if (hv_acpi_dev == NULL) 97 return -ENODEV; 98 99 return 0; 100 } 101 102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 104 { 105 int i; 106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 108 } 109 110 static u8 channel_monitor_group(const struct vmbus_channel *channel) 111 { 112 return (u8)channel->offermsg.monitorid / 32; 113 } 114 115 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 116 { 117 return (u8)channel->offermsg.monitorid % 32; 118 } 119 120 static u32 channel_pending(const struct vmbus_channel *channel, 121 const struct hv_monitor_page *monitor_page) 122 { 123 u8 monitor_group = channel_monitor_group(channel); 124 125 return monitor_page->trigger_group[monitor_group].pending; 126 } 127 128 static u32 channel_latency(const struct vmbus_channel *channel, 129 const struct hv_monitor_page *monitor_page) 130 { 131 u8 monitor_group = channel_monitor_group(channel); 132 u8 monitor_offset = channel_monitor_offset(channel); 133 134 return monitor_page->latency[monitor_group][monitor_offset]; 135 } 136 137 static u32 channel_conn_id(struct vmbus_channel *channel, 138 struct hv_monitor_page *monitor_page) 139 { 140 u8 monitor_group = channel_monitor_group(channel); 141 u8 monitor_offset = channel_monitor_offset(channel); 142 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 143 } 144 145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 146 char *buf) 147 { 148 struct hv_device *hv_dev = device_to_hv_device(dev); 149 150 if (!hv_dev->channel) 151 return -ENODEV; 152 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 153 } 154 static DEVICE_ATTR_RO(id); 155 156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 157 char *buf) 158 { 159 struct hv_device *hv_dev = device_to_hv_device(dev); 160 161 if (!hv_dev->channel) 162 return -ENODEV; 163 return sprintf(buf, "%d\n", hv_dev->channel->state); 164 } 165 static DEVICE_ATTR_RO(state); 166 167 static ssize_t monitor_id_show(struct device *dev, 168 struct device_attribute *dev_attr, char *buf) 169 { 170 struct hv_device *hv_dev = device_to_hv_device(dev); 171 172 if (!hv_dev->channel) 173 return -ENODEV; 174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 175 } 176 static DEVICE_ATTR_RO(monitor_id); 177 178 static ssize_t class_id_show(struct device *dev, 179 struct device_attribute *dev_attr, char *buf) 180 { 181 struct hv_device *hv_dev = device_to_hv_device(dev); 182 183 if (!hv_dev->channel) 184 return -ENODEV; 185 return sprintf(buf, "{%pUl}\n", 186 hv_dev->channel->offermsg.offer.if_type.b); 187 } 188 static DEVICE_ATTR_RO(class_id); 189 190 static ssize_t device_id_show(struct device *dev, 191 struct device_attribute *dev_attr, char *buf) 192 { 193 struct hv_device *hv_dev = device_to_hv_device(dev); 194 195 if (!hv_dev->channel) 196 return -ENODEV; 197 return sprintf(buf, "{%pUl}\n", 198 hv_dev->channel->offermsg.offer.if_instance.b); 199 } 200 static DEVICE_ATTR_RO(device_id); 201 202 static ssize_t modalias_show(struct device *dev, 203 struct device_attribute *dev_attr, char *buf) 204 { 205 struct hv_device *hv_dev = device_to_hv_device(dev); 206 char alias_name[VMBUS_ALIAS_LEN + 1]; 207 208 print_alias_name(hv_dev, alias_name); 209 return sprintf(buf, "vmbus:%s\n", alias_name); 210 } 211 static DEVICE_ATTR_RO(modalias); 212 213 #ifdef CONFIG_NUMA 214 static ssize_t numa_node_show(struct device *dev, 215 struct device_attribute *attr, char *buf) 216 { 217 struct hv_device *hv_dev = device_to_hv_device(dev); 218 219 if (!hv_dev->channel) 220 return -ENODEV; 221 222 return sprintf(buf, "%d\n", hv_dev->channel->numa_node); 223 } 224 static DEVICE_ATTR_RO(numa_node); 225 #endif 226 227 static ssize_t server_monitor_pending_show(struct device *dev, 228 struct device_attribute *dev_attr, 229 char *buf) 230 { 231 struct hv_device *hv_dev = device_to_hv_device(dev); 232 233 if (!hv_dev->channel) 234 return -ENODEV; 235 return sprintf(buf, "%d\n", 236 channel_pending(hv_dev->channel, 237 vmbus_connection.monitor_pages[0])); 238 } 239 static DEVICE_ATTR_RO(server_monitor_pending); 240 241 static ssize_t client_monitor_pending_show(struct device *dev, 242 struct device_attribute *dev_attr, 243 char *buf) 244 { 245 struct hv_device *hv_dev = device_to_hv_device(dev); 246 247 if (!hv_dev->channel) 248 return -ENODEV; 249 return sprintf(buf, "%d\n", 250 channel_pending(hv_dev->channel, 251 vmbus_connection.monitor_pages[1])); 252 } 253 static DEVICE_ATTR_RO(client_monitor_pending); 254 255 static ssize_t server_monitor_latency_show(struct device *dev, 256 struct device_attribute *dev_attr, 257 char *buf) 258 { 259 struct hv_device *hv_dev = device_to_hv_device(dev); 260 261 if (!hv_dev->channel) 262 return -ENODEV; 263 return sprintf(buf, "%d\n", 264 channel_latency(hv_dev->channel, 265 vmbus_connection.monitor_pages[0])); 266 } 267 static DEVICE_ATTR_RO(server_monitor_latency); 268 269 static ssize_t client_monitor_latency_show(struct device *dev, 270 struct device_attribute *dev_attr, 271 char *buf) 272 { 273 struct hv_device *hv_dev = device_to_hv_device(dev); 274 275 if (!hv_dev->channel) 276 return -ENODEV; 277 return sprintf(buf, "%d\n", 278 channel_latency(hv_dev->channel, 279 vmbus_connection.monitor_pages[1])); 280 } 281 static DEVICE_ATTR_RO(client_monitor_latency); 282 283 static ssize_t server_monitor_conn_id_show(struct device *dev, 284 struct device_attribute *dev_attr, 285 char *buf) 286 { 287 struct hv_device *hv_dev = device_to_hv_device(dev); 288 289 if (!hv_dev->channel) 290 return -ENODEV; 291 return sprintf(buf, "%d\n", 292 channel_conn_id(hv_dev->channel, 293 vmbus_connection.monitor_pages[0])); 294 } 295 static DEVICE_ATTR_RO(server_monitor_conn_id); 296 297 static ssize_t client_monitor_conn_id_show(struct device *dev, 298 struct device_attribute *dev_attr, 299 char *buf) 300 { 301 struct hv_device *hv_dev = device_to_hv_device(dev); 302 303 if (!hv_dev->channel) 304 return -ENODEV; 305 return sprintf(buf, "%d\n", 306 channel_conn_id(hv_dev->channel, 307 vmbus_connection.monitor_pages[1])); 308 } 309 static DEVICE_ATTR_RO(client_monitor_conn_id); 310 311 static ssize_t out_intr_mask_show(struct device *dev, 312 struct device_attribute *dev_attr, char *buf) 313 { 314 struct hv_device *hv_dev = device_to_hv_device(dev); 315 struct hv_ring_buffer_debug_info outbound; 316 int ret; 317 318 if (!hv_dev->channel) 319 return -ENODEV; 320 321 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 322 &outbound); 323 if (ret < 0) 324 return ret; 325 326 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 327 } 328 static DEVICE_ATTR_RO(out_intr_mask); 329 330 static ssize_t out_read_index_show(struct device *dev, 331 struct device_attribute *dev_attr, char *buf) 332 { 333 struct hv_device *hv_dev = device_to_hv_device(dev); 334 struct hv_ring_buffer_debug_info outbound; 335 int ret; 336 337 if (!hv_dev->channel) 338 return -ENODEV; 339 340 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 341 &outbound); 342 if (ret < 0) 343 return ret; 344 return sprintf(buf, "%d\n", outbound.current_read_index); 345 } 346 static DEVICE_ATTR_RO(out_read_index); 347 348 static ssize_t out_write_index_show(struct device *dev, 349 struct device_attribute *dev_attr, 350 char *buf) 351 { 352 struct hv_device *hv_dev = device_to_hv_device(dev); 353 struct hv_ring_buffer_debug_info outbound; 354 int ret; 355 356 if (!hv_dev->channel) 357 return -ENODEV; 358 359 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 360 &outbound); 361 if (ret < 0) 362 return ret; 363 return sprintf(buf, "%d\n", outbound.current_write_index); 364 } 365 static DEVICE_ATTR_RO(out_write_index); 366 367 static ssize_t out_read_bytes_avail_show(struct device *dev, 368 struct device_attribute *dev_attr, 369 char *buf) 370 { 371 struct hv_device *hv_dev = device_to_hv_device(dev); 372 struct hv_ring_buffer_debug_info outbound; 373 int ret; 374 375 if (!hv_dev->channel) 376 return -ENODEV; 377 378 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 379 &outbound); 380 if (ret < 0) 381 return ret; 382 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 383 } 384 static DEVICE_ATTR_RO(out_read_bytes_avail); 385 386 static ssize_t out_write_bytes_avail_show(struct device *dev, 387 struct device_attribute *dev_attr, 388 char *buf) 389 { 390 struct hv_device *hv_dev = device_to_hv_device(dev); 391 struct hv_ring_buffer_debug_info outbound; 392 int ret; 393 394 if (!hv_dev->channel) 395 return -ENODEV; 396 397 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 398 &outbound); 399 if (ret < 0) 400 return ret; 401 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 402 } 403 static DEVICE_ATTR_RO(out_write_bytes_avail); 404 405 static ssize_t in_intr_mask_show(struct device *dev, 406 struct device_attribute *dev_attr, char *buf) 407 { 408 struct hv_device *hv_dev = device_to_hv_device(dev); 409 struct hv_ring_buffer_debug_info inbound; 410 int ret; 411 412 if (!hv_dev->channel) 413 return -ENODEV; 414 415 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 416 if (ret < 0) 417 return ret; 418 419 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 420 } 421 static DEVICE_ATTR_RO(in_intr_mask); 422 423 static ssize_t in_read_index_show(struct device *dev, 424 struct device_attribute *dev_attr, char *buf) 425 { 426 struct hv_device *hv_dev = device_to_hv_device(dev); 427 struct hv_ring_buffer_debug_info inbound; 428 int ret; 429 430 if (!hv_dev->channel) 431 return -ENODEV; 432 433 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 434 if (ret < 0) 435 return ret; 436 437 return sprintf(buf, "%d\n", inbound.current_read_index); 438 } 439 static DEVICE_ATTR_RO(in_read_index); 440 441 static ssize_t in_write_index_show(struct device *dev, 442 struct device_attribute *dev_attr, char *buf) 443 { 444 struct hv_device *hv_dev = device_to_hv_device(dev); 445 struct hv_ring_buffer_debug_info inbound; 446 int ret; 447 448 if (!hv_dev->channel) 449 return -ENODEV; 450 451 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 452 if (ret < 0) 453 return ret; 454 455 return sprintf(buf, "%d\n", inbound.current_write_index); 456 } 457 static DEVICE_ATTR_RO(in_write_index); 458 459 static ssize_t in_read_bytes_avail_show(struct device *dev, 460 struct device_attribute *dev_attr, 461 char *buf) 462 { 463 struct hv_device *hv_dev = device_to_hv_device(dev); 464 struct hv_ring_buffer_debug_info inbound; 465 int ret; 466 467 if (!hv_dev->channel) 468 return -ENODEV; 469 470 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 471 if (ret < 0) 472 return ret; 473 474 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 475 } 476 static DEVICE_ATTR_RO(in_read_bytes_avail); 477 478 static ssize_t in_write_bytes_avail_show(struct device *dev, 479 struct device_attribute *dev_attr, 480 char *buf) 481 { 482 struct hv_device *hv_dev = device_to_hv_device(dev); 483 struct hv_ring_buffer_debug_info inbound; 484 int ret; 485 486 if (!hv_dev->channel) 487 return -ENODEV; 488 489 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 490 if (ret < 0) 491 return ret; 492 493 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 494 } 495 static DEVICE_ATTR_RO(in_write_bytes_avail); 496 497 static ssize_t channel_vp_mapping_show(struct device *dev, 498 struct device_attribute *dev_attr, 499 char *buf) 500 { 501 struct hv_device *hv_dev = device_to_hv_device(dev); 502 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 503 unsigned long flags; 504 int buf_size = PAGE_SIZE, n_written, tot_written; 505 struct list_head *cur; 506 507 if (!channel) 508 return -ENODEV; 509 510 tot_written = snprintf(buf, buf_size, "%u:%u\n", 511 channel->offermsg.child_relid, channel->target_cpu); 512 513 spin_lock_irqsave(&channel->lock, flags); 514 515 list_for_each(cur, &channel->sc_list) { 516 if (tot_written >= buf_size - 1) 517 break; 518 519 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 520 n_written = scnprintf(buf + tot_written, 521 buf_size - tot_written, 522 "%u:%u\n", 523 cur_sc->offermsg.child_relid, 524 cur_sc->target_cpu); 525 tot_written += n_written; 526 } 527 528 spin_unlock_irqrestore(&channel->lock, flags); 529 530 return tot_written; 531 } 532 static DEVICE_ATTR_RO(channel_vp_mapping); 533 534 static ssize_t vendor_show(struct device *dev, 535 struct device_attribute *dev_attr, 536 char *buf) 537 { 538 struct hv_device *hv_dev = device_to_hv_device(dev); 539 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 540 } 541 static DEVICE_ATTR_RO(vendor); 542 543 static ssize_t device_show(struct device *dev, 544 struct device_attribute *dev_attr, 545 char *buf) 546 { 547 struct hv_device *hv_dev = device_to_hv_device(dev); 548 return sprintf(buf, "0x%x\n", hv_dev->device_id); 549 } 550 static DEVICE_ATTR_RO(device); 551 552 static ssize_t driver_override_store(struct device *dev, 553 struct device_attribute *attr, 554 const char *buf, size_t count) 555 { 556 struct hv_device *hv_dev = device_to_hv_device(dev); 557 char *driver_override, *old, *cp; 558 559 /* We need to keep extra room for a newline */ 560 if (count >= (PAGE_SIZE - 1)) 561 return -EINVAL; 562 563 driver_override = kstrndup(buf, count, GFP_KERNEL); 564 if (!driver_override) 565 return -ENOMEM; 566 567 cp = strchr(driver_override, '\n'); 568 if (cp) 569 *cp = '\0'; 570 571 device_lock(dev); 572 old = hv_dev->driver_override; 573 if (strlen(driver_override)) { 574 hv_dev->driver_override = driver_override; 575 } else { 576 kfree(driver_override); 577 hv_dev->driver_override = NULL; 578 } 579 device_unlock(dev); 580 581 kfree(old); 582 583 return count; 584 } 585 586 static ssize_t driver_override_show(struct device *dev, 587 struct device_attribute *attr, char *buf) 588 { 589 struct hv_device *hv_dev = device_to_hv_device(dev); 590 ssize_t len; 591 592 device_lock(dev); 593 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 594 device_unlock(dev); 595 596 return len; 597 } 598 static DEVICE_ATTR_RW(driver_override); 599 600 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 601 static struct attribute *vmbus_dev_attrs[] = { 602 &dev_attr_id.attr, 603 &dev_attr_state.attr, 604 &dev_attr_monitor_id.attr, 605 &dev_attr_class_id.attr, 606 &dev_attr_device_id.attr, 607 &dev_attr_modalias.attr, 608 #ifdef CONFIG_NUMA 609 &dev_attr_numa_node.attr, 610 #endif 611 &dev_attr_server_monitor_pending.attr, 612 &dev_attr_client_monitor_pending.attr, 613 &dev_attr_server_monitor_latency.attr, 614 &dev_attr_client_monitor_latency.attr, 615 &dev_attr_server_monitor_conn_id.attr, 616 &dev_attr_client_monitor_conn_id.attr, 617 &dev_attr_out_intr_mask.attr, 618 &dev_attr_out_read_index.attr, 619 &dev_attr_out_write_index.attr, 620 &dev_attr_out_read_bytes_avail.attr, 621 &dev_attr_out_write_bytes_avail.attr, 622 &dev_attr_in_intr_mask.attr, 623 &dev_attr_in_read_index.attr, 624 &dev_attr_in_write_index.attr, 625 &dev_attr_in_read_bytes_avail.attr, 626 &dev_attr_in_write_bytes_avail.attr, 627 &dev_attr_channel_vp_mapping.attr, 628 &dev_attr_vendor.attr, 629 &dev_attr_device.attr, 630 &dev_attr_driver_override.attr, 631 NULL, 632 }; 633 ATTRIBUTE_GROUPS(vmbus_dev); 634 635 /* 636 * vmbus_uevent - add uevent for our device 637 * 638 * This routine is invoked when a device is added or removed on the vmbus to 639 * generate a uevent to udev in the userspace. The udev will then look at its 640 * rule and the uevent generated here to load the appropriate driver 641 * 642 * The alias string will be of the form vmbus:guid where guid is the string 643 * representation of the device guid (each byte of the guid will be 644 * represented with two hex characters. 645 */ 646 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 647 { 648 struct hv_device *dev = device_to_hv_device(device); 649 int ret; 650 char alias_name[VMBUS_ALIAS_LEN + 1]; 651 652 print_alias_name(dev, alias_name); 653 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 654 return ret; 655 } 656 657 static const struct hv_vmbus_device_id * 658 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 659 { 660 if (id == NULL) 661 return NULL; /* empty device table */ 662 663 for (; !guid_is_null(&id->guid); id++) 664 if (guid_equal(&id->guid, guid)) 665 return id; 666 667 return NULL; 668 } 669 670 static const struct hv_vmbus_device_id * 671 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 672 { 673 const struct hv_vmbus_device_id *id = NULL; 674 struct vmbus_dynid *dynid; 675 676 spin_lock(&drv->dynids.lock); 677 list_for_each_entry(dynid, &drv->dynids.list, node) { 678 if (guid_equal(&dynid->id.guid, guid)) { 679 id = &dynid->id; 680 break; 681 } 682 } 683 spin_unlock(&drv->dynids.lock); 684 685 return id; 686 } 687 688 static const struct hv_vmbus_device_id vmbus_device_null; 689 690 /* 691 * Return a matching hv_vmbus_device_id pointer. 692 * If there is no match, return NULL. 693 */ 694 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 695 struct hv_device *dev) 696 { 697 const guid_t *guid = &dev->dev_type; 698 const struct hv_vmbus_device_id *id; 699 700 /* When driver_override is set, only bind to the matching driver */ 701 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 702 return NULL; 703 704 /* Look at the dynamic ids first, before the static ones */ 705 id = hv_vmbus_dynid_match(drv, guid); 706 if (!id) 707 id = hv_vmbus_dev_match(drv->id_table, guid); 708 709 /* driver_override will always match, send a dummy id */ 710 if (!id && dev->driver_override) 711 id = &vmbus_device_null; 712 713 return id; 714 } 715 716 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 717 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 718 { 719 struct vmbus_dynid *dynid; 720 721 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 722 if (!dynid) 723 return -ENOMEM; 724 725 dynid->id.guid = *guid; 726 727 spin_lock(&drv->dynids.lock); 728 list_add_tail(&dynid->node, &drv->dynids.list); 729 spin_unlock(&drv->dynids.lock); 730 731 return driver_attach(&drv->driver); 732 } 733 734 static void vmbus_free_dynids(struct hv_driver *drv) 735 { 736 struct vmbus_dynid *dynid, *n; 737 738 spin_lock(&drv->dynids.lock); 739 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 740 list_del(&dynid->node); 741 kfree(dynid); 742 } 743 spin_unlock(&drv->dynids.lock); 744 } 745 746 /* 747 * store_new_id - sysfs frontend to vmbus_add_dynid() 748 * 749 * Allow GUIDs to be added to an existing driver via sysfs. 750 */ 751 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 752 size_t count) 753 { 754 struct hv_driver *drv = drv_to_hv_drv(driver); 755 guid_t guid; 756 ssize_t retval; 757 758 retval = guid_parse(buf, &guid); 759 if (retval) 760 return retval; 761 762 if (hv_vmbus_dynid_match(drv, &guid)) 763 return -EEXIST; 764 765 retval = vmbus_add_dynid(drv, &guid); 766 if (retval) 767 return retval; 768 return count; 769 } 770 static DRIVER_ATTR_WO(new_id); 771 772 /* 773 * store_remove_id - remove a PCI device ID from this driver 774 * 775 * Removes a dynamic pci device ID to this driver. 776 */ 777 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 778 size_t count) 779 { 780 struct hv_driver *drv = drv_to_hv_drv(driver); 781 struct vmbus_dynid *dynid, *n; 782 guid_t guid; 783 ssize_t retval; 784 785 retval = guid_parse(buf, &guid); 786 if (retval) 787 return retval; 788 789 retval = -ENODEV; 790 spin_lock(&drv->dynids.lock); 791 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 792 struct hv_vmbus_device_id *id = &dynid->id; 793 794 if (guid_equal(&id->guid, &guid)) { 795 list_del(&dynid->node); 796 kfree(dynid); 797 retval = count; 798 break; 799 } 800 } 801 spin_unlock(&drv->dynids.lock); 802 803 return retval; 804 } 805 static DRIVER_ATTR_WO(remove_id); 806 807 static struct attribute *vmbus_drv_attrs[] = { 808 &driver_attr_new_id.attr, 809 &driver_attr_remove_id.attr, 810 NULL, 811 }; 812 ATTRIBUTE_GROUPS(vmbus_drv); 813 814 815 /* 816 * vmbus_match - Attempt to match the specified device to the specified driver 817 */ 818 static int vmbus_match(struct device *device, struct device_driver *driver) 819 { 820 struct hv_driver *drv = drv_to_hv_drv(driver); 821 struct hv_device *hv_dev = device_to_hv_device(device); 822 823 /* The hv_sock driver handles all hv_sock offers. */ 824 if (is_hvsock_channel(hv_dev->channel)) 825 return drv->hvsock; 826 827 if (hv_vmbus_get_id(drv, hv_dev)) 828 return 1; 829 830 return 0; 831 } 832 833 /* 834 * vmbus_probe - Add the new vmbus's child device 835 */ 836 static int vmbus_probe(struct device *child_device) 837 { 838 int ret = 0; 839 struct hv_driver *drv = 840 drv_to_hv_drv(child_device->driver); 841 struct hv_device *dev = device_to_hv_device(child_device); 842 const struct hv_vmbus_device_id *dev_id; 843 844 dev_id = hv_vmbus_get_id(drv, dev); 845 if (drv->probe) { 846 ret = drv->probe(dev, dev_id); 847 if (ret != 0) 848 pr_err("probe failed for device %s (%d)\n", 849 dev_name(child_device), ret); 850 851 } else { 852 pr_err("probe not set for driver %s\n", 853 dev_name(child_device)); 854 ret = -ENODEV; 855 } 856 return ret; 857 } 858 859 /* 860 * vmbus_remove - Remove a vmbus device 861 */ 862 static int vmbus_remove(struct device *child_device) 863 { 864 struct hv_driver *drv; 865 struct hv_device *dev = device_to_hv_device(child_device); 866 867 if (child_device->driver) { 868 drv = drv_to_hv_drv(child_device->driver); 869 if (drv->remove) 870 drv->remove(dev); 871 } 872 873 return 0; 874 } 875 876 877 /* 878 * vmbus_shutdown - Shutdown a vmbus device 879 */ 880 static void vmbus_shutdown(struct device *child_device) 881 { 882 struct hv_driver *drv; 883 struct hv_device *dev = device_to_hv_device(child_device); 884 885 886 /* The device may not be attached yet */ 887 if (!child_device->driver) 888 return; 889 890 drv = drv_to_hv_drv(child_device->driver); 891 892 if (drv->shutdown) 893 drv->shutdown(dev); 894 } 895 896 897 /* 898 * vmbus_device_release - Final callback release of the vmbus child device 899 */ 900 static void vmbus_device_release(struct device *device) 901 { 902 struct hv_device *hv_dev = device_to_hv_device(device); 903 struct vmbus_channel *channel = hv_dev->channel; 904 905 mutex_lock(&vmbus_connection.channel_mutex); 906 hv_process_channel_removal(channel); 907 mutex_unlock(&vmbus_connection.channel_mutex); 908 kfree(hv_dev); 909 } 910 911 /* The one and only one */ 912 static struct bus_type hv_bus = { 913 .name = "vmbus", 914 .match = vmbus_match, 915 .shutdown = vmbus_shutdown, 916 .remove = vmbus_remove, 917 .probe = vmbus_probe, 918 .uevent = vmbus_uevent, 919 .dev_groups = vmbus_dev_groups, 920 .drv_groups = vmbus_drv_groups, 921 }; 922 923 struct onmessage_work_context { 924 struct work_struct work; 925 struct hv_message msg; 926 }; 927 928 static void vmbus_onmessage_work(struct work_struct *work) 929 { 930 struct onmessage_work_context *ctx; 931 932 /* Do not process messages if we're in DISCONNECTED state */ 933 if (vmbus_connection.conn_state == DISCONNECTED) 934 return; 935 936 ctx = container_of(work, struct onmessage_work_context, 937 work); 938 vmbus_onmessage(&ctx->msg); 939 kfree(ctx); 940 } 941 942 static void hv_process_timer_expiration(struct hv_message *msg, 943 struct hv_per_cpu_context *hv_cpu) 944 { 945 struct clock_event_device *dev = hv_cpu->clk_evt; 946 947 if (dev->event_handler) 948 dev->event_handler(dev); 949 950 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 951 } 952 953 void vmbus_on_msg_dpc(unsigned long data) 954 { 955 struct hv_per_cpu_context *hv_cpu = (void *)data; 956 void *page_addr = hv_cpu->synic_message_page; 957 struct hv_message *msg = (struct hv_message *)page_addr + 958 VMBUS_MESSAGE_SINT; 959 struct vmbus_channel_message_header *hdr; 960 const struct vmbus_channel_message_table_entry *entry; 961 struct onmessage_work_context *ctx; 962 u32 message_type = msg->header.message_type; 963 964 if (message_type == HVMSG_NONE) 965 /* no msg */ 966 return; 967 968 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 969 970 trace_vmbus_on_msg_dpc(hdr); 971 972 if (hdr->msgtype >= CHANNELMSG_COUNT) { 973 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 974 goto msg_handled; 975 } 976 977 entry = &channel_message_table[hdr->msgtype]; 978 if (entry->handler_type == VMHT_BLOCKING) { 979 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 980 if (ctx == NULL) 981 return; 982 983 INIT_WORK(&ctx->work, vmbus_onmessage_work); 984 memcpy(&ctx->msg, msg, sizeof(*msg)); 985 986 /* 987 * The host can generate a rescind message while we 988 * may still be handling the original offer. We deal with 989 * this condition by ensuring the processing is done on the 990 * same CPU. 991 */ 992 switch (hdr->msgtype) { 993 case CHANNELMSG_RESCIND_CHANNELOFFER: 994 /* 995 * If we are handling the rescind message; 996 * schedule the work on the global work queue. 997 */ 998 schedule_work_on(vmbus_connection.connect_cpu, 999 &ctx->work); 1000 break; 1001 1002 case CHANNELMSG_OFFERCHANNEL: 1003 atomic_inc(&vmbus_connection.offer_in_progress); 1004 queue_work_on(vmbus_connection.connect_cpu, 1005 vmbus_connection.work_queue, 1006 &ctx->work); 1007 break; 1008 1009 default: 1010 queue_work(vmbus_connection.work_queue, &ctx->work); 1011 } 1012 } else 1013 entry->message_handler(hdr); 1014 1015 msg_handled: 1016 vmbus_signal_eom(msg, message_type); 1017 } 1018 1019 1020 /* 1021 * Direct callback for channels using other deferred processing 1022 */ 1023 static void vmbus_channel_isr(struct vmbus_channel *channel) 1024 { 1025 void (*callback_fn)(void *); 1026 1027 callback_fn = READ_ONCE(channel->onchannel_callback); 1028 if (likely(callback_fn != NULL)) 1029 (*callback_fn)(channel->channel_callback_context); 1030 } 1031 1032 /* 1033 * Schedule all channels with events pending 1034 */ 1035 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1036 { 1037 unsigned long *recv_int_page; 1038 u32 maxbits, relid; 1039 1040 if (vmbus_proto_version < VERSION_WIN8) { 1041 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1042 recv_int_page = vmbus_connection.recv_int_page; 1043 } else { 1044 /* 1045 * When the host is win8 and beyond, the event page 1046 * can be directly checked to get the id of the channel 1047 * that has the interrupt pending. 1048 */ 1049 void *page_addr = hv_cpu->synic_event_page; 1050 union hv_synic_event_flags *event 1051 = (union hv_synic_event_flags *)page_addr + 1052 VMBUS_MESSAGE_SINT; 1053 1054 maxbits = HV_EVENT_FLAGS_COUNT; 1055 recv_int_page = event->flags; 1056 } 1057 1058 if (unlikely(!recv_int_page)) 1059 return; 1060 1061 for_each_set_bit(relid, recv_int_page, maxbits) { 1062 struct vmbus_channel *channel; 1063 1064 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1065 continue; 1066 1067 /* Special case - vmbus channel protocol msg */ 1068 if (relid == 0) 1069 continue; 1070 1071 rcu_read_lock(); 1072 1073 /* Find channel based on relid */ 1074 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 1075 if (channel->offermsg.child_relid != relid) 1076 continue; 1077 1078 if (channel->rescind) 1079 continue; 1080 1081 trace_vmbus_chan_sched(channel); 1082 1083 ++channel->interrupts; 1084 1085 switch (channel->callback_mode) { 1086 case HV_CALL_ISR: 1087 vmbus_channel_isr(channel); 1088 break; 1089 1090 case HV_CALL_BATCHED: 1091 hv_begin_read(&channel->inbound); 1092 /* fallthrough */ 1093 case HV_CALL_DIRECT: 1094 tasklet_schedule(&channel->callback_event); 1095 } 1096 } 1097 1098 rcu_read_unlock(); 1099 } 1100 } 1101 1102 static void vmbus_isr(void) 1103 { 1104 struct hv_per_cpu_context *hv_cpu 1105 = this_cpu_ptr(hv_context.cpu_context); 1106 void *page_addr = hv_cpu->synic_event_page; 1107 struct hv_message *msg; 1108 union hv_synic_event_flags *event; 1109 bool handled = false; 1110 1111 if (unlikely(page_addr == NULL)) 1112 return; 1113 1114 event = (union hv_synic_event_flags *)page_addr + 1115 VMBUS_MESSAGE_SINT; 1116 /* 1117 * Check for events before checking for messages. This is the order 1118 * in which events and messages are checked in Windows guests on 1119 * Hyper-V, and the Windows team suggested we do the same. 1120 */ 1121 1122 if ((vmbus_proto_version == VERSION_WS2008) || 1123 (vmbus_proto_version == VERSION_WIN7)) { 1124 1125 /* Since we are a child, we only need to check bit 0 */ 1126 if (sync_test_and_clear_bit(0, event->flags)) 1127 handled = true; 1128 } else { 1129 /* 1130 * Our host is win8 or above. The signaling mechanism 1131 * has changed and we can directly look at the event page. 1132 * If bit n is set then we have an interrup on the channel 1133 * whose id is n. 1134 */ 1135 handled = true; 1136 } 1137 1138 if (handled) 1139 vmbus_chan_sched(hv_cpu); 1140 1141 page_addr = hv_cpu->synic_message_page; 1142 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1143 1144 /* Check if there are actual msgs to be processed */ 1145 if (msg->header.message_type != HVMSG_NONE) { 1146 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 1147 hv_process_timer_expiration(msg, hv_cpu); 1148 else 1149 tasklet_schedule(&hv_cpu->msg_dpc); 1150 } 1151 1152 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1153 } 1154 1155 /* 1156 * Boolean to control whether to report panic messages over Hyper-V. 1157 * 1158 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg 1159 */ 1160 static int sysctl_record_panic_msg = 1; 1161 1162 /* 1163 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1164 * buffer and call into Hyper-V to transfer the data. 1165 */ 1166 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1167 enum kmsg_dump_reason reason) 1168 { 1169 size_t bytes_written; 1170 phys_addr_t panic_pa; 1171 1172 /* We are only interested in panics. */ 1173 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1174 return; 1175 1176 panic_pa = virt_to_phys(hv_panic_page); 1177 1178 /* 1179 * Write dump contents to the page. No need to synchronize; panic should 1180 * be single-threaded. 1181 */ 1182 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE, 1183 &bytes_written); 1184 if (bytes_written) 1185 hyperv_report_panic_msg(panic_pa, bytes_written); 1186 } 1187 1188 static struct kmsg_dumper hv_kmsg_dumper = { 1189 .dump = hv_kmsg_dump, 1190 }; 1191 1192 static struct ctl_table_header *hv_ctl_table_hdr; 1193 static int zero; 1194 static int one = 1; 1195 1196 /* 1197 * sysctl option to allow the user to control whether kmsg data should be 1198 * reported to Hyper-V on panic. 1199 */ 1200 static struct ctl_table hv_ctl_table[] = { 1201 { 1202 .procname = "hyperv_record_panic_msg", 1203 .data = &sysctl_record_panic_msg, 1204 .maxlen = sizeof(int), 1205 .mode = 0644, 1206 .proc_handler = proc_dointvec_minmax, 1207 .extra1 = &zero, 1208 .extra2 = &one 1209 }, 1210 {} 1211 }; 1212 1213 static struct ctl_table hv_root_table[] = { 1214 { 1215 .procname = "kernel", 1216 .mode = 0555, 1217 .child = hv_ctl_table 1218 }, 1219 {} 1220 }; 1221 1222 /* 1223 * vmbus_bus_init -Main vmbus driver initialization routine. 1224 * 1225 * Here, we 1226 * - initialize the vmbus driver context 1227 * - invoke the vmbus hv main init routine 1228 * - retrieve the channel offers 1229 */ 1230 static int vmbus_bus_init(void) 1231 { 1232 int ret; 1233 1234 /* Hypervisor initialization...setup hypercall page..etc */ 1235 ret = hv_init(); 1236 if (ret != 0) { 1237 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1238 return ret; 1239 } 1240 1241 ret = bus_register(&hv_bus); 1242 if (ret) 1243 return ret; 1244 1245 hv_setup_vmbus_irq(vmbus_isr); 1246 1247 ret = hv_synic_alloc(); 1248 if (ret) 1249 goto err_alloc; 1250 /* 1251 * Initialize the per-cpu interrupt state and 1252 * connect to the host. 1253 */ 1254 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1255 hv_synic_init, hv_synic_cleanup); 1256 if (ret < 0) 1257 goto err_alloc; 1258 hyperv_cpuhp_online = ret; 1259 1260 ret = vmbus_connect(); 1261 if (ret) 1262 goto err_connect; 1263 1264 /* 1265 * Only register if the crash MSRs are available 1266 */ 1267 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1268 u64 hyperv_crash_ctl; 1269 /* 1270 * Sysctl registration is not fatal, since by default 1271 * reporting is enabled. 1272 */ 1273 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1274 if (!hv_ctl_table_hdr) 1275 pr_err("Hyper-V: sysctl table register error"); 1276 1277 /* 1278 * Register for panic kmsg callback only if the right 1279 * capability is supported by the hypervisor. 1280 */ 1281 hv_get_crash_ctl(hyperv_crash_ctl); 1282 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) { 1283 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL); 1284 if (hv_panic_page) { 1285 ret = kmsg_dump_register(&hv_kmsg_dumper); 1286 if (ret) 1287 pr_err("Hyper-V: kmsg dump register " 1288 "error 0x%x\n", ret); 1289 } else 1290 pr_err("Hyper-V: panic message page memory " 1291 "allocation failed"); 1292 } 1293 1294 register_die_notifier(&hyperv_die_block); 1295 atomic_notifier_chain_register(&panic_notifier_list, 1296 &hyperv_panic_block); 1297 } 1298 1299 vmbus_request_offers(); 1300 1301 return 0; 1302 1303 err_connect: 1304 cpuhp_remove_state(hyperv_cpuhp_online); 1305 err_alloc: 1306 hv_synic_free(); 1307 hv_remove_vmbus_irq(); 1308 1309 bus_unregister(&hv_bus); 1310 free_page((unsigned long)hv_panic_page); 1311 unregister_sysctl_table(hv_ctl_table_hdr); 1312 hv_ctl_table_hdr = NULL; 1313 return ret; 1314 } 1315 1316 /** 1317 * __vmbus_child_driver_register() - Register a vmbus's driver 1318 * @hv_driver: Pointer to driver structure you want to register 1319 * @owner: owner module of the drv 1320 * @mod_name: module name string 1321 * 1322 * Registers the given driver with Linux through the 'driver_register()' call 1323 * and sets up the hyper-v vmbus handling for this driver. 1324 * It will return the state of the 'driver_register()' call. 1325 * 1326 */ 1327 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1328 { 1329 int ret; 1330 1331 pr_info("registering driver %s\n", hv_driver->name); 1332 1333 ret = vmbus_exists(); 1334 if (ret < 0) 1335 return ret; 1336 1337 hv_driver->driver.name = hv_driver->name; 1338 hv_driver->driver.owner = owner; 1339 hv_driver->driver.mod_name = mod_name; 1340 hv_driver->driver.bus = &hv_bus; 1341 1342 spin_lock_init(&hv_driver->dynids.lock); 1343 INIT_LIST_HEAD(&hv_driver->dynids.list); 1344 1345 ret = driver_register(&hv_driver->driver); 1346 1347 return ret; 1348 } 1349 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1350 1351 /** 1352 * vmbus_driver_unregister() - Unregister a vmbus's driver 1353 * @hv_driver: Pointer to driver structure you want to 1354 * un-register 1355 * 1356 * Un-register the given driver that was previous registered with a call to 1357 * vmbus_driver_register() 1358 */ 1359 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1360 { 1361 pr_info("unregistering driver %s\n", hv_driver->name); 1362 1363 if (!vmbus_exists()) { 1364 driver_unregister(&hv_driver->driver); 1365 vmbus_free_dynids(hv_driver); 1366 } 1367 } 1368 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1369 1370 1371 /* 1372 * Called when last reference to channel is gone. 1373 */ 1374 static void vmbus_chan_release(struct kobject *kobj) 1375 { 1376 struct vmbus_channel *channel 1377 = container_of(kobj, struct vmbus_channel, kobj); 1378 1379 kfree_rcu(channel, rcu); 1380 } 1381 1382 struct vmbus_chan_attribute { 1383 struct attribute attr; 1384 ssize_t (*show)(const struct vmbus_channel *chan, char *buf); 1385 ssize_t (*store)(struct vmbus_channel *chan, 1386 const char *buf, size_t count); 1387 }; 1388 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1389 struct vmbus_chan_attribute chan_attr_##_name \ 1390 = __ATTR(_name, _mode, _show, _store) 1391 #define VMBUS_CHAN_ATTR_RW(_name) \ 1392 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1393 #define VMBUS_CHAN_ATTR_RO(_name) \ 1394 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1395 #define VMBUS_CHAN_ATTR_WO(_name) \ 1396 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1397 1398 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1399 struct attribute *attr, char *buf) 1400 { 1401 const struct vmbus_chan_attribute *attribute 1402 = container_of(attr, struct vmbus_chan_attribute, attr); 1403 const struct vmbus_channel *chan 1404 = container_of(kobj, struct vmbus_channel, kobj); 1405 1406 if (!attribute->show) 1407 return -EIO; 1408 1409 if (chan->state != CHANNEL_OPENED_STATE) 1410 return -EINVAL; 1411 1412 return attribute->show(chan, buf); 1413 } 1414 1415 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1416 .show = vmbus_chan_attr_show, 1417 }; 1418 1419 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf) 1420 { 1421 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1422 1423 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1424 } 1425 static VMBUS_CHAN_ATTR_RO(out_mask); 1426 1427 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf) 1428 { 1429 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1430 1431 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1432 } 1433 static VMBUS_CHAN_ATTR_RO(in_mask); 1434 1435 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf) 1436 { 1437 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1438 1439 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1440 } 1441 static VMBUS_CHAN_ATTR_RO(read_avail); 1442 1443 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf) 1444 { 1445 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1446 1447 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1448 } 1449 static VMBUS_CHAN_ATTR_RO(write_avail); 1450 1451 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf) 1452 { 1453 return sprintf(buf, "%u\n", channel->target_cpu); 1454 } 1455 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1456 1457 static ssize_t channel_pending_show(const struct vmbus_channel *channel, 1458 char *buf) 1459 { 1460 return sprintf(buf, "%d\n", 1461 channel_pending(channel, 1462 vmbus_connection.monitor_pages[1])); 1463 } 1464 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1465 1466 static ssize_t channel_latency_show(const struct vmbus_channel *channel, 1467 char *buf) 1468 { 1469 return sprintf(buf, "%d\n", 1470 channel_latency(channel, 1471 vmbus_connection.monitor_pages[1])); 1472 } 1473 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1474 1475 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf) 1476 { 1477 return sprintf(buf, "%llu\n", channel->interrupts); 1478 } 1479 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1480 1481 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf) 1482 { 1483 return sprintf(buf, "%llu\n", channel->sig_events); 1484 } 1485 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1486 1487 static ssize_t channel_intr_in_full_show(const struct vmbus_channel *channel, 1488 char *buf) 1489 { 1490 return sprintf(buf, "%llu\n", 1491 (unsigned long long)channel->intr_in_full); 1492 } 1493 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1494 1495 static ssize_t channel_intr_out_empty_show(const struct vmbus_channel *channel, 1496 char *buf) 1497 { 1498 return sprintf(buf, "%llu\n", 1499 (unsigned long long)channel->intr_out_empty); 1500 } 1501 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1502 1503 static ssize_t channel_out_full_first_show(const struct vmbus_channel *channel, 1504 char *buf) 1505 { 1506 return sprintf(buf, "%llu\n", 1507 (unsigned long long)channel->out_full_first); 1508 } 1509 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1510 1511 static ssize_t channel_out_full_total_show(const struct vmbus_channel *channel, 1512 char *buf) 1513 { 1514 return sprintf(buf, "%llu\n", 1515 (unsigned long long)channel->out_full_total); 1516 } 1517 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1518 1519 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel, 1520 char *buf) 1521 { 1522 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1523 } 1524 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1525 1526 static ssize_t subchannel_id_show(const struct vmbus_channel *channel, 1527 char *buf) 1528 { 1529 return sprintf(buf, "%u\n", 1530 channel->offermsg.offer.sub_channel_index); 1531 } 1532 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1533 1534 static struct attribute *vmbus_chan_attrs[] = { 1535 &chan_attr_out_mask.attr, 1536 &chan_attr_in_mask.attr, 1537 &chan_attr_read_avail.attr, 1538 &chan_attr_write_avail.attr, 1539 &chan_attr_cpu.attr, 1540 &chan_attr_pending.attr, 1541 &chan_attr_latency.attr, 1542 &chan_attr_interrupts.attr, 1543 &chan_attr_events.attr, 1544 &chan_attr_intr_in_full.attr, 1545 &chan_attr_intr_out_empty.attr, 1546 &chan_attr_out_full_first.attr, 1547 &chan_attr_out_full_total.attr, 1548 &chan_attr_monitor_id.attr, 1549 &chan_attr_subchannel_id.attr, 1550 NULL 1551 }; 1552 1553 static struct kobj_type vmbus_chan_ktype = { 1554 .sysfs_ops = &vmbus_chan_sysfs_ops, 1555 .release = vmbus_chan_release, 1556 .default_attrs = vmbus_chan_attrs, 1557 }; 1558 1559 /* 1560 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1561 */ 1562 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1563 { 1564 struct kobject *kobj = &channel->kobj; 1565 u32 relid = channel->offermsg.child_relid; 1566 int ret; 1567 1568 kobj->kset = dev->channels_kset; 1569 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1570 "%u", relid); 1571 if (ret) 1572 return ret; 1573 1574 kobject_uevent(kobj, KOBJ_ADD); 1575 1576 return 0; 1577 } 1578 1579 /* 1580 * vmbus_device_create - Creates and registers a new child device 1581 * on the vmbus. 1582 */ 1583 struct hv_device *vmbus_device_create(const guid_t *type, 1584 const guid_t *instance, 1585 struct vmbus_channel *channel) 1586 { 1587 struct hv_device *child_device_obj; 1588 1589 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1590 if (!child_device_obj) { 1591 pr_err("Unable to allocate device object for child device\n"); 1592 return NULL; 1593 } 1594 1595 child_device_obj->channel = channel; 1596 guid_copy(&child_device_obj->dev_type, type); 1597 guid_copy(&child_device_obj->dev_instance, instance); 1598 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1599 1600 return child_device_obj; 1601 } 1602 1603 /* 1604 * vmbus_device_register - Register the child device 1605 */ 1606 int vmbus_device_register(struct hv_device *child_device_obj) 1607 { 1608 struct kobject *kobj = &child_device_obj->device.kobj; 1609 int ret; 1610 1611 dev_set_name(&child_device_obj->device, "%pUl", 1612 child_device_obj->channel->offermsg.offer.if_instance.b); 1613 1614 child_device_obj->device.bus = &hv_bus; 1615 child_device_obj->device.parent = &hv_acpi_dev->dev; 1616 child_device_obj->device.release = vmbus_device_release; 1617 1618 /* 1619 * Register with the LDM. This will kick off the driver/device 1620 * binding...which will eventually call vmbus_match() and vmbus_probe() 1621 */ 1622 ret = device_register(&child_device_obj->device); 1623 if (ret) { 1624 pr_err("Unable to register child device\n"); 1625 return ret; 1626 } 1627 1628 child_device_obj->channels_kset = kset_create_and_add("channels", 1629 NULL, kobj); 1630 if (!child_device_obj->channels_kset) { 1631 ret = -ENOMEM; 1632 goto err_dev_unregister; 1633 } 1634 1635 ret = vmbus_add_channel_kobj(child_device_obj, 1636 child_device_obj->channel); 1637 if (ret) { 1638 pr_err("Unable to register primary channeln"); 1639 goto err_kset_unregister; 1640 } 1641 1642 return 0; 1643 1644 err_kset_unregister: 1645 kset_unregister(child_device_obj->channels_kset); 1646 1647 err_dev_unregister: 1648 device_unregister(&child_device_obj->device); 1649 return ret; 1650 } 1651 1652 /* 1653 * vmbus_device_unregister - Remove the specified child device 1654 * from the vmbus. 1655 */ 1656 void vmbus_device_unregister(struct hv_device *device_obj) 1657 { 1658 pr_debug("child device %s unregistered\n", 1659 dev_name(&device_obj->device)); 1660 1661 kset_unregister(device_obj->channels_kset); 1662 1663 /* 1664 * Kick off the process of unregistering the device. 1665 * This will call vmbus_remove() and eventually vmbus_device_release() 1666 */ 1667 device_unregister(&device_obj->device); 1668 } 1669 1670 1671 /* 1672 * VMBUS is an acpi enumerated device. Get the information we 1673 * need from DSDT. 1674 */ 1675 #define VTPM_BASE_ADDRESS 0xfed40000 1676 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1677 { 1678 resource_size_t start = 0; 1679 resource_size_t end = 0; 1680 struct resource *new_res; 1681 struct resource **old_res = &hyperv_mmio; 1682 struct resource **prev_res = NULL; 1683 1684 switch (res->type) { 1685 1686 /* 1687 * "Address" descriptors are for bus windows. Ignore 1688 * "memory" descriptors, which are for registers on 1689 * devices. 1690 */ 1691 case ACPI_RESOURCE_TYPE_ADDRESS32: 1692 start = res->data.address32.address.minimum; 1693 end = res->data.address32.address.maximum; 1694 break; 1695 1696 case ACPI_RESOURCE_TYPE_ADDRESS64: 1697 start = res->data.address64.address.minimum; 1698 end = res->data.address64.address.maximum; 1699 break; 1700 1701 default: 1702 /* Unused resource type */ 1703 return AE_OK; 1704 1705 } 1706 /* 1707 * Ignore ranges that are below 1MB, as they're not 1708 * necessary or useful here. 1709 */ 1710 if (end < 0x100000) 1711 return AE_OK; 1712 1713 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1714 if (!new_res) 1715 return AE_NO_MEMORY; 1716 1717 /* If this range overlaps the virtual TPM, truncate it. */ 1718 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1719 end = VTPM_BASE_ADDRESS; 1720 1721 new_res->name = "hyperv mmio"; 1722 new_res->flags = IORESOURCE_MEM; 1723 new_res->start = start; 1724 new_res->end = end; 1725 1726 /* 1727 * If two ranges are adjacent, merge them. 1728 */ 1729 do { 1730 if (!*old_res) { 1731 *old_res = new_res; 1732 break; 1733 } 1734 1735 if (((*old_res)->end + 1) == new_res->start) { 1736 (*old_res)->end = new_res->end; 1737 kfree(new_res); 1738 break; 1739 } 1740 1741 if ((*old_res)->start == new_res->end + 1) { 1742 (*old_res)->start = new_res->start; 1743 kfree(new_res); 1744 break; 1745 } 1746 1747 if ((*old_res)->start > new_res->end) { 1748 new_res->sibling = *old_res; 1749 if (prev_res) 1750 (*prev_res)->sibling = new_res; 1751 *old_res = new_res; 1752 break; 1753 } 1754 1755 prev_res = old_res; 1756 old_res = &(*old_res)->sibling; 1757 1758 } while (1); 1759 1760 return AE_OK; 1761 } 1762 1763 static int vmbus_acpi_remove(struct acpi_device *device) 1764 { 1765 struct resource *cur_res; 1766 struct resource *next_res; 1767 1768 if (hyperv_mmio) { 1769 if (fb_mmio) { 1770 __release_region(hyperv_mmio, fb_mmio->start, 1771 resource_size(fb_mmio)); 1772 fb_mmio = NULL; 1773 } 1774 1775 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1776 next_res = cur_res->sibling; 1777 kfree(cur_res); 1778 } 1779 } 1780 1781 return 0; 1782 } 1783 1784 static void vmbus_reserve_fb(void) 1785 { 1786 int size; 1787 /* 1788 * Make a claim for the frame buffer in the resource tree under the 1789 * first node, which will be the one below 4GB. The length seems to 1790 * be underreported, particularly in a Generation 1 VM. So start out 1791 * reserving a larger area and make it smaller until it succeeds. 1792 */ 1793 1794 if (screen_info.lfb_base) { 1795 if (efi_enabled(EFI_BOOT)) 1796 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1797 else 1798 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1799 1800 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1801 fb_mmio = __request_region(hyperv_mmio, 1802 screen_info.lfb_base, size, 1803 fb_mmio_name, 0); 1804 } 1805 } 1806 } 1807 1808 /** 1809 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1810 * @new: If successful, supplied a pointer to the 1811 * allocated MMIO space. 1812 * @device_obj: Identifies the caller 1813 * @min: Minimum guest physical address of the 1814 * allocation 1815 * @max: Maximum guest physical address 1816 * @size: Size of the range to be allocated 1817 * @align: Alignment of the range to be allocated 1818 * @fb_overlap_ok: Whether this allocation can be allowed 1819 * to overlap the video frame buffer. 1820 * 1821 * This function walks the resources granted to VMBus by the 1822 * _CRS object in the ACPI namespace underneath the parent 1823 * "bridge" whether that's a root PCI bus in the Generation 1 1824 * case or a Module Device in the Generation 2 case. It then 1825 * attempts to allocate from the global MMIO pool in a way that 1826 * matches the constraints supplied in these parameters and by 1827 * that _CRS. 1828 * 1829 * Return: 0 on success, -errno on failure 1830 */ 1831 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1832 resource_size_t min, resource_size_t max, 1833 resource_size_t size, resource_size_t align, 1834 bool fb_overlap_ok) 1835 { 1836 struct resource *iter, *shadow; 1837 resource_size_t range_min, range_max, start; 1838 const char *dev_n = dev_name(&device_obj->device); 1839 int retval; 1840 1841 retval = -ENXIO; 1842 down(&hyperv_mmio_lock); 1843 1844 /* 1845 * If overlaps with frame buffers are allowed, then first attempt to 1846 * make the allocation from within the reserved region. Because it 1847 * is already reserved, no shadow allocation is necessary. 1848 */ 1849 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1850 !(max < fb_mmio->start)) { 1851 1852 range_min = fb_mmio->start; 1853 range_max = fb_mmio->end; 1854 start = (range_min + align - 1) & ~(align - 1); 1855 for (; start + size - 1 <= range_max; start += align) { 1856 *new = request_mem_region_exclusive(start, size, dev_n); 1857 if (*new) { 1858 retval = 0; 1859 goto exit; 1860 } 1861 } 1862 } 1863 1864 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1865 if ((iter->start >= max) || (iter->end <= min)) 1866 continue; 1867 1868 range_min = iter->start; 1869 range_max = iter->end; 1870 start = (range_min + align - 1) & ~(align - 1); 1871 for (; start + size - 1 <= range_max; start += align) { 1872 shadow = __request_region(iter, start, size, NULL, 1873 IORESOURCE_BUSY); 1874 if (!shadow) 1875 continue; 1876 1877 *new = request_mem_region_exclusive(start, size, dev_n); 1878 if (*new) { 1879 shadow->name = (char *)*new; 1880 retval = 0; 1881 goto exit; 1882 } 1883 1884 __release_region(iter, start, size); 1885 } 1886 } 1887 1888 exit: 1889 up(&hyperv_mmio_lock); 1890 return retval; 1891 } 1892 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1893 1894 /** 1895 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1896 * @start: Base address of region to release. 1897 * @size: Size of the range to be allocated 1898 * 1899 * This function releases anything requested by 1900 * vmbus_mmio_allocate(). 1901 */ 1902 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1903 { 1904 struct resource *iter; 1905 1906 down(&hyperv_mmio_lock); 1907 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1908 if ((iter->start >= start + size) || (iter->end <= start)) 1909 continue; 1910 1911 __release_region(iter, start, size); 1912 } 1913 release_mem_region(start, size); 1914 up(&hyperv_mmio_lock); 1915 1916 } 1917 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 1918 1919 static int vmbus_acpi_add(struct acpi_device *device) 1920 { 1921 acpi_status result; 1922 int ret_val = -ENODEV; 1923 struct acpi_device *ancestor; 1924 1925 hv_acpi_dev = device; 1926 1927 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 1928 vmbus_walk_resources, NULL); 1929 1930 if (ACPI_FAILURE(result)) 1931 goto acpi_walk_err; 1932 /* 1933 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 1934 * firmware) is the VMOD that has the mmio ranges. Get that. 1935 */ 1936 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 1937 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 1938 vmbus_walk_resources, NULL); 1939 1940 if (ACPI_FAILURE(result)) 1941 continue; 1942 if (hyperv_mmio) { 1943 vmbus_reserve_fb(); 1944 break; 1945 } 1946 } 1947 ret_val = 0; 1948 1949 acpi_walk_err: 1950 complete(&probe_event); 1951 if (ret_val) 1952 vmbus_acpi_remove(device); 1953 return ret_val; 1954 } 1955 1956 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 1957 {"VMBUS", 0}, 1958 {"VMBus", 0}, 1959 {"", 0}, 1960 }; 1961 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 1962 1963 static struct acpi_driver vmbus_acpi_driver = { 1964 .name = "vmbus", 1965 .ids = vmbus_acpi_device_ids, 1966 .ops = { 1967 .add = vmbus_acpi_add, 1968 .remove = vmbus_acpi_remove, 1969 }, 1970 }; 1971 1972 static void hv_kexec_handler(void) 1973 { 1974 hv_synic_clockevents_cleanup(); 1975 vmbus_initiate_unload(false); 1976 vmbus_connection.conn_state = DISCONNECTED; 1977 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 1978 mb(); 1979 cpuhp_remove_state(hyperv_cpuhp_online); 1980 hyperv_cleanup(); 1981 }; 1982 1983 static void hv_crash_handler(struct pt_regs *regs) 1984 { 1985 vmbus_initiate_unload(true); 1986 /* 1987 * In crash handler we can't schedule synic cleanup for all CPUs, 1988 * doing the cleanup for current CPU only. This should be sufficient 1989 * for kdump. 1990 */ 1991 vmbus_connection.conn_state = DISCONNECTED; 1992 hv_synic_cleanup(smp_processor_id()); 1993 hyperv_cleanup(); 1994 }; 1995 1996 static int __init hv_acpi_init(void) 1997 { 1998 int ret, t; 1999 2000 if (!hv_is_hyperv_initialized()) 2001 return -ENODEV; 2002 2003 init_completion(&probe_event); 2004 2005 /* 2006 * Get ACPI resources first. 2007 */ 2008 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2009 2010 if (ret) 2011 return ret; 2012 2013 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2014 if (t == 0) { 2015 ret = -ETIMEDOUT; 2016 goto cleanup; 2017 } 2018 2019 ret = vmbus_bus_init(); 2020 if (ret) 2021 goto cleanup; 2022 2023 hv_setup_kexec_handler(hv_kexec_handler); 2024 hv_setup_crash_handler(hv_crash_handler); 2025 2026 return 0; 2027 2028 cleanup: 2029 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2030 hv_acpi_dev = NULL; 2031 return ret; 2032 } 2033 2034 static void __exit vmbus_exit(void) 2035 { 2036 int cpu; 2037 2038 hv_remove_kexec_handler(); 2039 hv_remove_crash_handler(); 2040 vmbus_connection.conn_state = DISCONNECTED; 2041 hv_synic_clockevents_cleanup(); 2042 vmbus_disconnect(); 2043 hv_remove_vmbus_irq(); 2044 for_each_online_cpu(cpu) { 2045 struct hv_per_cpu_context *hv_cpu 2046 = per_cpu_ptr(hv_context.cpu_context, cpu); 2047 2048 tasklet_kill(&hv_cpu->msg_dpc); 2049 } 2050 vmbus_free_channels(); 2051 2052 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2053 kmsg_dump_unregister(&hv_kmsg_dumper); 2054 unregister_die_notifier(&hyperv_die_block); 2055 atomic_notifier_chain_unregister(&panic_notifier_list, 2056 &hyperv_panic_block); 2057 } 2058 2059 free_page((unsigned long)hv_panic_page); 2060 unregister_sysctl_table(hv_ctl_table_hdr); 2061 hv_ctl_table_hdr = NULL; 2062 bus_unregister(&hv_bus); 2063 2064 cpuhp_remove_state(hyperv_cpuhp_online); 2065 hv_synic_free(); 2066 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2067 } 2068 2069 2070 MODULE_LICENSE("GPL"); 2071 2072 subsys_initcall(hv_acpi_init); 2073 module_exit(vmbus_exit); 2074