xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision be709d48)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38 
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47 
48 struct vmbus_dynid {
49 	struct list_head node;
50 	struct hv_vmbus_device_id id;
51 };
52 
53 static struct acpi_device  *hv_acpi_dev;
54 
55 static struct completion probe_event;
56 
57 static int hyperv_cpuhp_online;
58 
59 static void *hv_panic_page;
60 
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 			      void *args)
63 {
64 	struct pt_regs *regs;
65 
66 	regs = current_pt_regs();
67 
68 	hyperv_report_panic(regs, val);
69 	return NOTIFY_DONE;
70 }
71 
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 			    void *args)
74 {
75 	struct die_args *die = (struct die_args *)args;
76 	struct pt_regs *regs = die->regs;
77 
78 	hyperv_report_panic(regs, val);
79 	return NOTIFY_DONE;
80 }
81 
82 static struct notifier_block hyperv_die_block = {
83 	.notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 	.notifier_call = hyperv_panic_event,
87 };
88 
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93 
94 static int vmbus_exists(void)
95 {
96 	if (hv_acpi_dev == NULL)
97 		return -ENODEV;
98 
99 	return 0;
100 }
101 
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 	int i;
106 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109 
110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 {
112 	return (u8)channel->offermsg.monitorid / 32;
113 }
114 
115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 {
117 	return (u8)channel->offermsg.monitorid % 32;
118 }
119 
120 static u32 channel_pending(const struct vmbus_channel *channel,
121 			   const struct hv_monitor_page *monitor_page)
122 {
123 	u8 monitor_group = channel_monitor_group(channel);
124 
125 	return monitor_page->trigger_group[monitor_group].pending;
126 }
127 
128 static u32 channel_latency(const struct vmbus_channel *channel,
129 			   const struct hv_monitor_page *monitor_page)
130 {
131 	u8 monitor_group = channel_monitor_group(channel);
132 	u8 monitor_offset = channel_monitor_offset(channel);
133 
134 	return monitor_page->latency[monitor_group][monitor_offset];
135 }
136 
137 static u32 channel_conn_id(struct vmbus_channel *channel,
138 			   struct hv_monitor_page *monitor_page)
139 {
140 	u8 monitor_group = channel_monitor_group(channel);
141 	u8 monitor_offset = channel_monitor_offset(channel);
142 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 }
144 
145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146 		       char *buf)
147 {
148 	struct hv_device *hv_dev = device_to_hv_device(dev);
149 
150 	if (!hv_dev->channel)
151 		return -ENODEV;
152 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 }
154 static DEVICE_ATTR_RO(id);
155 
156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157 			  char *buf)
158 {
159 	struct hv_device *hv_dev = device_to_hv_device(dev);
160 
161 	if (!hv_dev->channel)
162 		return -ENODEV;
163 	return sprintf(buf, "%d\n", hv_dev->channel->state);
164 }
165 static DEVICE_ATTR_RO(state);
166 
167 static ssize_t monitor_id_show(struct device *dev,
168 			       struct device_attribute *dev_attr, char *buf)
169 {
170 	struct hv_device *hv_dev = device_to_hv_device(dev);
171 
172 	if (!hv_dev->channel)
173 		return -ENODEV;
174 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 }
176 static DEVICE_ATTR_RO(monitor_id);
177 
178 static ssize_t class_id_show(struct device *dev,
179 			       struct device_attribute *dev_attr, char *buf)
180 {
181 	struct hv_device *hv_dev = device_to_hv_device(dev);
182 
183 	if (!hv_dev->channel)
184 		return -ENODEV;
185 	return sprintf(buf, "{%pUl}\n",
186 		       hv_dev->channel->offermsg.offer.if_type.b);
187 }
188 static DEVICE_ATTR_RO(class_id);
189 
190 static ssize_t device_id_show(struct device *dev,
191 			      struct device_attribute *dev_attr, char *buf)
192 {
193 	struct hv_device *hv_dev = device_to_hv_device(dev);
194 
195 	if (!hv_dev->channel)
196 		return -ENODEV;
197 	return sprintf(buf, "{%pUl}\n",
198 		       hv_dev->channel->offermsg.offer.if_instance.b);
199 }
200 static DEVICE_ATTR_RO(device_id);
201 
202 static ssize_t modalias_show(struct device *dev,
203 			     struct device_attribute *dev_attr, char *buf)
204 {
205 	struct hv_device *hv_dev = device_to_hv_device(dev);
206 	char alias_name[VMBUS_ALIAS_LEN + 1];
207 
208 	print_alias_name(hv_dev, alias_name);
209 	return sprintf(buf, "vmbus:%s\n", alias_name);
210 }
211 static DEVICE_ATTR_RO(modalias);
212 
213 #ifdef CONFIG_NUMA
214 static ssize_t numa_node_show(struct device *dev,
215 			      struct device_attribute *attr, char *buf)
216 {
217 	struct hv_device *hv_dev = device_to_hv_device(dev);
218 
219 	if (!hv_dev->channel)
220 		return -ENODEV;
221 
222 	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
223 }
224 static DEVICE_ATTR_RO(numa_node);
225 #endif
226 
227 static ssize_t server_monitor_pending_show(struct device *dev,
228 					   struct device_attribute *dev_attr,
229 					   char *buf)
230 {
231 	struct hv_device *hv_dev = device_to_hv_device(dev);
232 
233 	if (!hv_dev->channel)
234 		return -ENODEV;
235 	return sprintf(buf, "%d\n",
236 		       channel_pending(hv_dev->channel,
237 				       vmbus_connection.monitor_pages[0]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240 
241 static ssize_t client_monitor_pending_show(struct device *dev,
242 					   struct device_attribute *dev_attr,
243 					   char *buf)
244 {
245 	struct hv_device *hv_dev = device_to_hv_device(dev);
246 
247 	if (!hv_dev->channel)
248 		return -ENODEV;
249 	return sprintf(buf, "%d\n",
250 		       channel_pending(hv_dev->channel,
251 				       vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254 
255 static ssize_t server_monitor_latency_show(struct device *dev,
256 					   struct device_attribute *dev_attr,
257 					   char *buf)
258 {
259 	struct hv_device *hv_dev = device_to_hv_device(dev);
260 
261 	if (!hv_dev->channel)
262 		return -ENODEV;
263 	return sprintf(buf, "%d\n",
264 		       channel_latency(hv_dev->channel,
265 				       vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268 
269 static ssize_t client_monitor_latency_show(struct device *dev,
270 					   struct device_attribute *dev_attr,
271 					   char *buf)
272 {
273 	struct hv_device *hv_dev = device_to_hv_device(dev);
274 
275 	if (!hv_dev->channel)
276 		return -ENODEV;
277 	return sprintf(buf, "%d\n",
278 		       channel_latency(hv_dev->channel,
279 				       vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282 
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284 					   struct device_attribute *dev_attr,
285 					   char *buf)
286 {
287 	struct hv_device *hv_dev = device_to_hv_device(dev);
288 
289 	if (!hv_dev->channel)
290 		return -ENODEV;
291 	return sprintf(buf, "%d\n",
292 		       channel_conn_id(hv_dev->channel,
293 				       vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296 
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298 					   struct device_attribute *dev_attr,
299 					   char *buf)
300 {
301 	struct hv_device *hv_dev = device_to_hv_device(dev);
302 
303 	if (!hv_dev->channel)
304 		return -ENODEV;
305 	return sprintf(buf, "%d\n",
306 		       channel_conn_id(hv_dev->channel,
307 				       vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310 
311 static ssize_t out_intr_mask_show(struct device *dev,
312 				  struct device_attribute *dev_attr, char *buf)
313 {
314 	struct hv_device *hv_dev = device_to_hv_device(dev);
315 	struct hv_ring_buffer_debug_info outbound;
316 	int ret;
317 
318 	if (!hv_dev->channel)
319 		return -ENODEV;
320 
321 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
322 					  &outbound);
323 	if (ret < 0)
324 		return ret;
325 
326 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
327 }
328 static DEVICE_ATTR_RO(out_intr_mask);
329 
330 static ssize_t out_read_index_show(struct device *dev,
331 				   struct device_attribute *dev_attr, char *buf)
332 {
333 	struct hv_device *hv_dev = device_to_hv_device(dev);
334 	struct hv_ring_buffer_debug_info outbound;
335 	int ret;
336 
337 	if (!hv_dev->channel)
338 		return -ENODEV;
339 
340 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
341 					  &outbound);
342 	if (ret < 0)
343 		return ret;
344 	return sprintf(buf, "%d\n", outbound.current_read_index);
345 }
346 static DEVICE_ATTR_RO(out_read_index);
347 
348 static ssize_t out_write_index_show(struct device *dev,
349 				    struct device_attribute *dev_attr,
350 				    char *buf)
351 {
352 	struct hv_device *hv_dev = device_to_hv_device(dev);
353 	struct hv_ring_buffer_debug_info outbound;
354 	int ret;
355 
356 	if (!hv_dev->channel)
357 		return -ENODEV;
358 
359 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
360 					  &outbound);
361 	if (ret < 0)
362 		return ret;
363 	return sprintf(buf, "%d\n", outbound.current_write_index);
364 }
365 static DEVICE_ATTR_RO(out_write_index);
366 
367 static ssize_t out_read_bytes_avail_show(struct device *dev,
368 					 struct device_attribute *dev_attr,
369 					 char *buf)
370 {
371 	struct hv_device *hv_dev = device_to_hv_device(dev);
372 	struct hv_ring_buffer_debug_info outbound;
373 	int ret;
374 
375 	if (!hv_dev->channel)
376 		return -ENODEV;
377 
378 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
379 					  &outbound);
380 	if (ret < 0)
381 		return ret;
382 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
383 }
384 static DEVICE_ATTR_RO(out_read_bytes_avail);
385 
386 static ssize_t out_write_bytes_avail_show(struct device *dev,
387 					  struct device_attribute *dev_attr,
388 					  char *buf)
389 {
390 	struct hv_device *hv_dev = device_to_hv_device(dev);
391 	struct hv_ring_buffer_debug_info outbound;
392 	int ret;
393 
394 	if (!hv_dev->channel)
395 		return -ENODEV;
396 
397 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
398 					  &outbound);
399 	if (ret < 0)
400 		return ret;
401 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
402 }
403 static DEVICE_ATTR_RO(out_write_bytes_avail);
404 
405 static ssize_t in_intr_mask_show(struct device *dev,
406 				 struct device_attribute *dev_attr, char *buf)
407 {
408 	struct hv_device *hv_dev = device_to_hv_device(dev);
409 	struct hv_ring_buffer_debug_info inbound;
410 	int ret;
411 
412 	if (!hv_dev->channel)
413 		return -ENODEV;
414 
415 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
416 	if (ret < 0)
417 		return ret;
418 
419 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
420 }
421 static DEVICE_ATTR_RO(in_intr_mask);
422 
423 static ssize_t in_read_index_show(struct device *dev,
424 				  struct device_attribute *dev_attr, char *buf)
425 {
426 	struct hv_device *hv_dev = device_to_hv_device(dev);
427 	struct hv_ring_buffer_debug_info inbound;
428 	int ret;
429 
430 	if (!hv_dev->channel)
431 		return -ENODEV;
432 
433 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
434 	if (ret < 0)
435 		return ret;
436 
437 	return sprintf(buf, "%d\n", inbound.current_read_index);
438 }
439 static DEVICE_ATTR_RO(in_read_index);
440 
441 static ssize_t in_write_index_show(struct device *dev,
442 				   struct device_attribute *dev_attr, char *buf)
443 {
444 	struct hv_device *hv_dev = device_to_hv_device(dev);
445 	struct hv_ring_buffer_debug_info inbound;
446 	int ret;
447 
448 	if (!hv_dev->channel)
449 		return -ENODEV;
450 
451 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
452 	if (ret < 0)
453 		return ret;
454 
455 	return sprintf(buf, "%d\n", inbound.current_write_index);
456 }
457 static DEVICE_ATTR_RO(in_write_index);
458 
459 static ssize_t in_read_bytes_avail_show(struct device *dev,
460 					struct device_attribute *dev_attr,
461 					char *buf)
462 {
463 	struct hv_device *hv_dev = device_to_hv_device(dev);
464 	struct hv_ring_buffer_debug_info inbound;
465 	int ret;
466 
467 	if (!hv_dev->channel)
468 		return -ENODEV;
469 
470 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
471 	if (ret < 0)
472 		return ret;
473 
474 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
475 }
476 static DEVICE_ATTR_RO(in_read_bytes_avail);
477 
478 static ssize_t in_write_bytes_avail_show(struct device *dev,
479 					 struct device_attribute *dev_attr,
480 					 char *buf)
481 {
482 	struct hv_device *hv_dev = device_to_hv_device(dev);
483 	struct hv_ring_buffer_debug_info inbound;
484 	int ret;
485 
486 	if (!hv_dev->channel)
487 		return -ENODEV;
488 
489 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
490 	if (ret < 0)
491 		return ret;
492 
493 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
494 }
495 static DEVICE_ATTR_RO(in_write_bytes_avail);
496 
497 static ssize_t channel_vp_mapping_show(struct device *dev,
498 				       struct device_attribute *dev_attr,
499 				       char *buf)
500 {
501 	struct hv_device *hv_dev = device_to_hv_device(dev);
502 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
503 	unsigned long flags;
504 	int buf_size = PAGE_SIZE, n_written, tot_written;
505 	struct list_head *cur;
506 
507 	if (!channel)
508 		return -ENODEV;
509 
510 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
511 		channel->offermsg.child_relid, channel->target_cpu);
512 
513 	spin_lock_irqsave(&channel->lock, flags);
514 
515 	list_for_each(cur, &channel->sc_list) {
516 		if (tot_written >= buf_size - 1)
517 			break;
518 
519 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
520 		n_written = scnprintf(buf + tot_written,
521 				     buf_size - tot_written,
522 				     "%u:%u\n",
523 				     cur_sc->offermsg.child_relid,
524 				     cur_sc->target_cpu);
525 		tot_written += n_written;
526 	}
527 
528 	spin_unlock_irqrestore(&channel->lock, flags);
529 
530 	return tot_written;
531 }
532 static DEVICE_ATTR_RO(channel_vp_mapping);
533 
534 static ssize_t vendor_show(struct device *dev,
535 			   struct device_attribute *dev_attr,
536 			   char *buf)
537 {
538 	struct hv_device *hv_dev = device_to_hv_device(dev);
539 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
540 }
541 static DEVICE_ATTR_RO(vendor);
542 
543 static ssize_t device_show(struct device *dev,
544 			   struct device_attribute *dev_attr,
545 			   char *buf)
546 {
547 	struct hv_device *hv_dev = device_to_hv_device(dev);
548 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
549 }
550 static DEVICE_ATTR_RO(device);
551 
552 static ssize_t driver_override_store(struct device *dev,
553 				     struct device_attribute *attr,
554 				     const char *buf, size_t count)
555 {
556 	struct hv_device *hv_dev = device_to_hv_device(dev);
557 	char *driver_override, *old, *cp;
558 
559 	/* We need to keep extra room for a newline */
560 	if (count >= (PAGE_SIZE - 1))
561 		return -EINVAL;
562 
563 	driver_override = kstrndup(buf, count, GFP_KERNEL);
564 	if (!driver_override)
565 		return -ENOMEM;
566 
567 	cp = strchr(driver_override, '\n');
568 	if (cp)
569 		*cp = '\0';
570 
571 	device_lock(dev);
572 	old = hv_dev->driver_override;
573 	if (strlen(driver_override)) {
574 		hv_dev->driver_override = driver_override;
575 	} else {
576 		kfree(driver_override);
577 		hv_dev->driver_override = NULL;
578 	}
579 	device_unlock(dev);
580 
581 	kfree(old);
582 
583 	return count;
584 }
585 
586 static ssize_t driver_override_show(struct device *dev,
587 				    struct device_attribute *attr, char *buf)
588 {
589 	struct hv_device *hv_dev = device_to_hv_device(dev);
590 	ssize_t len;
591 
592 	device_lock(dev);
593 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
594 	device_unlock(dev);
595 
596 	return len;
597 }
598 static DEVICE_ATTR_RW(driver_override);
599 
600 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
601 static struct attribute *vmbus_dev_attrs[] = {
602 	&dev_attr_id.attr,
603 	&dev_attr_state.attr,
604 	&dev_attr_monitor_id.attr,
605 	&dev_attr_class_id.attr,
606 	&dev_attr_device_id.attr,
607 	&dev_attr_modalias.attr,
608 #ifdef CONFIG_NUMA
609 	&dev_attr_numa_node.attr,
610 #endif
611 	&dev_attr_server_monitor_pending.attr,
612 	&dev_attr_client_monitor_pending.attr,
613 	&dev_attr_server_monitor_latency.attr,
614 	&dev_attr_client_monitor_latency.attr,
615 	&dev_attr_server_monitor_conn_id.attr,
616 	&dev_attr_client_monitor_conn_id.attr,
617 	&dev_attr_out_intr_mask.attr,
618 	&dev_attr_out_read_index.attr,
619 	&dev_attr_out_write_index.attr,
620 	&dev_attr_out_read_bytes_avail.attr,
621 	&dev_attr_out_write_bytes_avail.attr,
622 	&dev_attr_in_intr_mask.attr,
623 	&dev_attr_in_read_index.attr,
624 	&dev_attr_in_write_index.attr,
625 	&dev_attr_in_read_bytes_avail.attr,
626 	&dev_attr_in_write_bytes_avail.attr,
627 	&dev_attr_channel_vp_mapping.attr,
628 	&dev_attr_vendor.attr,
629 	&dev_attr_device.attr,
630 	&dev_attr_driver_override.attr,
631 	NULL,
632 };
633 ATTRIBUTE_GROUPS(vmbus_dev);
634 
635 /*
636  * vmbus_uevent - add uevent for our device
637  *
638  * This routine is invoked when a device is added or removed on the vmbus to
639  * generate a uevent to udev in the userspace. The udev will then look at its
640  * rule and the uevent generated here to load the appropriate driver
641  *
642  * The alias string will be of the form vmbus:guid where guid is the string
643  * representation of the device guid (each byte of the guid will be
644  * represented with two hex characters.
645  */
646 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
647 {
648 	struct hv_device *dev = device_to_hv_device(device);
649 	int ret;
650 	char alias_name[VMBUS_ALIAS_LEN + 1];
651 
652 	print_alias_name(dev, alias_name);
653 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
654 	return ret;
655 }
656 
657 static const struct hv_vmbus_device_id *
658 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
659 {
660 	if (id == NULL)
661 		return NULL; /* empty device table */
662 
663 	for (; !guid_is_null(&id->guid); id++)
664 		if (guid_equal(&id->guid, guid))
665 			return id;
666 
667 	return NULL;
668 }
669 
670 static const struct hv_vmbus_device_id *
671 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
672 {
673 	const struct hv_vmbus_device_id *id = NULL;
674 	struct vmbus_dynid *dynid;
675 
676 	spin_lock(&drv->dynids.lock);
677 	list_for_each_entry(dynid, &drv->dynids.list, node) {
678 		if (guid_equal(&dynid->id.guid, guid)) {
679 			id = &dynid->id;
680 			break;
681 		}
682 	}
683 	spin_unlock(&drv->dynids.lock);
684 
685 	return id;
686 }
687 
688 static const struct hv_vmbus_device_id vmbus_device_null;
689 
690 /*
691  * Return a matching hv_vmbus_device_id pointer.
692  * If there is no match, return NULL.
693  */
694 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
695 							struct hv_device *dev)
696 {
697 	const guid_t *guid = &dev->dev_type;
698 	const struct hv_vmbus_device_id *id;
699 
700 	/* When driver_override is set, only bind to the matching driver */
701 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
702 		return NULL;
703 
704 	/* Look at the dynamic ids first, before the static ones */
705 	id = hv_vmbus_dynid_match(drv, guid);
706 	if (!id)
707 		id = hv_vmbus_dev_match(drv->id_table, guid);
708 
709 	/* driver_override will always match, send a dummy id */
710 	if (!id && dev->driver_override)
711 		id = &vmbus_device_null;
712 
713 	return id;
714 }
715 
716 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
717 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
718 {
719 	struct vmbus_dynid *dynid;
720 
721 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
722 	if (!dynid)
723 		return -ENOMEM;
724 
725 	dynid->id.guid = *guid;
726 
727 	spin_lock(&drv->dynids.lock);
728 	list_add_tail(&dynid->node, &drv->dynids.list);
729 	spin_unlock(&drv->dynids.lock);
730 
731 	return driver_attach(&drv->driver);
732 }
733 
734 static void vmbus_free_dynids(struct hv_driver *drv)
735 {
736 	struct vmbus_dynid *dynid, *n;
737 
738 	spin_lock(&drv->dynids.lock);
739 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
740 		list_del(&dynid->node);
741 		kfree(dynid);
742 	}
743 	spin_unlock(&drv->dynids.lock);
744 }
745 
746 /*
747  * store_new_id - sysfs frontend to vmbus_add_dynid()
748  *
749  * Allow GUIDs to be added to an existing driver via sysfs.
750  */
751 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
752 			    size_t count)
753 {
754 	struct hv_driver *drv = drv_to_hv_drv(driver);
755 	guid_t guid;
756 	ssize_t retval;
757 
758 	retval = guid_parse(buf, &guid);
759 	if (retval)
760 		return retval;
761 
762 	if (hv_vmbus_dynid_match(drv, &guid))
763 		return -EEXIST;
764 
765 	retval = vmbus_add_dynid(drv, &guid);
766 	if (retval)
767 		return retval;
768 	return count;
769 }
770 static DRIVER_ATTR_WO(new_id);
771 
772 /*
773  * store_remove_id - remove a PCI device ID from this driver
774  *
775  * Removes a dynamic pci device ID to this driver.
776  */
777 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
778 			       size_t count)
779 {
780 	struct hv_driver *drv = drv_to_hv_drv(driver);
781 	struct vmbus_dynid *dynid, *n;
782 	guid_t guid;
783 	ssize_t retval;
784 
785 	retval = guid_parse(buf, &guid);
786 	if (retval)
787 		return retval;
788 
789 	retval = -ENODEV;
790 	spin_lock(&drv->dynids.lock);
791 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
792 		struct hv_vmbus_device_id *id = &dynid->id;
793 
794 		if (guid_equal(&id->guid, &guid)) {
795 			list_del(&dynid->node);
796 			kfree(dynid);
797 			retval = count;
798 			break;
799 		}
800 	}
801 	spin_unlock(&drv->dynids.lock);
802 
803 	return retval;
804 }
805 static DRIVER_ATTR_WO(remove_id);
806 
807 static struct attribute *vmbus_drv_attrs[] = {
808 	&driver_attr_new_id.attr,
809 	&driver_attr_remove_id.attr,
810 	NULL,
811 };
812 ATTRIBUTE_GROUPS(vmbus_drv);
813 
814 
815 /*
816  * vmbus_match - Attempt to match the specified device to the specified driver
817  */
818 static int vmbus_match(struct device *device, struct device_driver *driver)
819 {
820 	struct hv_driver *drv = drv_to_hv_drv(driver);
821 	struct hv_device *hv_dev = device_to_hv_device(device);
822 
823 	/* The hv_sock driver handles all hv_sock offers. */
824 	if (is_hvsock_channel(hv_dev->channel))
825 		return drv->hvsock;
826 
827 	if (hv_vmbus_get_id(drv, hv_dev))
828 		return 1;
829 
830 	return 0;
831 }
832 
833 /*
834  * vmbus_probe - Add the new vmbus's child device
835  */
836 static int vmbus_probe(struct device *child_device)
837 {
838 	int ret = 0;
839 	struct hv_driver *drv =
840 			drv_to_hv_drv(child_device->driver);
841 	struct hv_device *dev = device_to_hv_device(child_device);
842 	const struct hv_vmbus_device_id *dev_id;
843 
844 	dev_id = hv_vmbus_get_id(drv, dev);
845 	if (drv->probe) {
846 		ret = drv->probe(dev, dev_id);
847 		if (ret != 0)
848 			pr_err("probe failed for device %s (%d)\n",
849 			       dev_name(child_device), ret);
850 
851 	} else {
852 		pr_err("probe not set for driver %s\n",
853 		       dev_name(child_device));
854 		ret = -ENODEV;
855 	}
856 	return ret;
857 }
858 
859 /*
860  * vmbus_remove - Remove a vmbus device
861  */
862 static int vmbus_remove(struct device *child_device)
863 {
864 	struct hv_driver *drv;
865 	struct hv_device *dev = device_to_hv_device(child_device);
866 
867 	if (child_device->driver) {
868 		drv = drv_to_hv_drv(child_device->driver);
869 		if (drv->remove)
870 			drv->remove(dev);
871 	}
872 
873 	return 0;
874 }
875 
876 
877 /*
878  * vmbus_shutdown - Shutdown a vmbus device
879  */
880 static void vmbus_shutdown(struct device *child_device)
881 {
882 	struct hv_driver *drv;
883 	struct hv_device *dev = device_to_hv_device(child_device);
884 
885 
886 	/* The device may not be attached yet */
887 	if (!child_device->driver)
888 		return;
889 
890 	drv = drv_to_hv_drv(child_device->driver);
891 
892 	if (drv->shutdown)
893 		drv->shutdown(dev);
894 }
895 
896 
897 /*
898  * vmbus_device_release - Final callback release of the vmbus child device
899  */
900 static void vmbus_device_release(struct device *device)
901 {
902 	struct hv_device *hv_dev = device_to_hv_device(device);
903 	struct vmbus_channel *channel = hv_dev->channel;
904 
905 	mutex_lock(&vmbus_connection.channel_mutex);
906 	hv_process_channel_removal(channel);
907 	mutex_unlock(&vmbus_connection.channel_mutex);
908 	kfree(hv_dev);
909 }
910 
911 /* The one and only one */
912 static struct bus_type  hv_bus = {
913 	.name =		"vmbus",
914 	.match =		vmbus_match,
915 	.shutdown =		vmbus_shutdown,
916 	.remove =		vmbus_remove,
917 	.probe =		vmbus_probe,
918 	.uevent =		vmbus_uevent,
919 	.dev_groups =		vmbus_dev_groups,
920 	.drv_groups =		vmbus_drv_groups,
921 };
922 
923 struct onmessage_work_context {
924 	struct work_struct work;
925 	struct hv_message msg;
926 };
927 
928 static void vmbus_onmessage_work(struct work_struct *work)
929 {
930 	struct onmessage_work_context *ctx;
931 
932 	/* Do not process messages if we're in DISCONNECTED state */
933 	if (vmbus_connection.conn_state == DISCONNECTED)
934 		return;
935 
936 	ctx = container_of(work, struct onmessage_work_context,
937 			   work);
938 	vmbus_onmessage(&ctx->msg);
939 	kfree(ctx);
940 }
941 
942 static void hv_process_timer_expiration(struct hv_message *msg,
943 					struct hv_per_cpu_context *hv_cpu)
944 {
945 	struct clock_event_device *dev = hv_cpu->clk_evt;
946 
947 	if (dev->event_handler)
948 		dev->event_handler(dev);
949 
950 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
951 }
952 
953 void vmbus_on_msg_dpc(unsigned long data)
954 {
955 	struct hv_per_cpu_context *hv_cpu = (void *)data;
956 	void *page_addr = hv_cpu->synic_message_page;
957 	struct hv_message *msg = (struct hv_message *)page_addr +
958 				  VMBUS_MESSAGE_SINT;
959 	struct vmbus_channel_message_header *hdr;
960 	const struct vmbus_channel_message_table_entry *entry;
961 	struct onmessage_work_context *ctx;
962 	u32 message_type = msg->header.message_type;
963 
964 	if (message_type == HVMSG_NONE)
965 		/* no msg */
966 		return;
967 
968 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
969 
970 	trace_vmbus_on_msg_dpc(hdr);
971 
972 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
973 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
974 		goto msg_handled;
975 	}
976 
977 	entry = &channel_message_table[hdr->msgtype];
978 	if (entry->handler_type	== VMHT_BLOCKING) {
979 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
980 		if (ctx == NULL)
981 			return;
982 
983 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
984 		memcpy(&ctx->msg, msg, sizeof(*msg));
985 
986 		/*
987 		 * The host can generate a rescind message while we
988 		 * may still be handling the original offer. We deal with
989 		 * this condition by ensuring the processing is done on the
990 		 * same CPU.
991 		 */
992 		switch (hdr->msgtype) {
993 		case CHANNELMSG_RESCIND_CHANNELOFFER:
994 			/*
995 			 * If we are handling the rescind message;
996 			 * schedule the work on the global work queue.
997 			 */
998 			schedule_work_on(vmbus_connection.connect_cpu,
999 					 &ctx->work);
1000 			break;
1001 
1002 		case CHANNELMSG_OFFERCHANNEL:
1003 			atomic_inc(&vmbus_connection.offer_in_progress);
1004 			queue_work_on(vmbus_connection.connect_cpu,
1005 				      vmbus_connection.work_queue,
1006 				      &ctx->work);
1007 			break;
1008 
1009 		default:
1010 			queue_work(vmbus_connection.work_queue, &ctx->work);
1011 		}
1012 	} else
1013 		entry->message_handler(hdr);
1014 
1015 msg_handled:
1016 	vmbus_signal_eom(msg, message_type);
1017 }
1018 
1019 
1020 /*
1021  * Direct callback for channels using other deferred processing
1022  */
1023 static void vmbus_channel_isr(struct vmbus_channel *channel)
1024 {
1025 	void (*callback_fn)(void *);
1026 
1027 	callback_fn = READ_ONCE(channel->onchannel_callback);
1028 	if (likely(callback_fn != NULL))
1029 		(*callback_fn)(channel->channel_callback_context);
1030 }
1031 
1032 /*
1033  * Schedule all channels with events pending
1034  */
1035 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1036 {
1037 	unsigned long *recv_int_page;
1038 	u32 maxbits, relid;
1039 
1040 	if (vmbus_proto_version < VERSION_WIN8) {
1041 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1042 		recv_int_page = vmbus_connection.recv_int_page;
1043 	} else {
1044 		/*
1045 		 * When the host is win8 and beyond, the event page
1046 		 * can be directly checked to get the id of the channel
1047 		 * that has the interrupt pending.
1048 		 */
1049 		void *page_addr = hv_cpu->synic_event_page;
1050 		union hv_synic_event_flags *event
1051 			= (union hv_synic_event_flags *)page_addr +
1052 						 VMBUS_MESSAGE_SINT;
1053 
1054 		maxbits = HV_EVENT_FLAGS_COUNT;
1055 		recv_int_page = event->flags;
1056 	}
1057 
1058 	if (unlikely(!recv_int_page))
1059 		return;
1060 
1061 	for_each_set_bit(relid, recv_int_page, maxbits) {
1062 		struct vmbus_channel *channel;
1063 
1064 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1065 			continue;
1066 
1067 		/* Special case - vmbus channel protocol msg */
1068 		if (relid == 0)
1069 			continue;
1070 
1071 		rcu_read_lock();
1072 
1073 		/* Find channel based on relid */
1074 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1075 			if (channel->offermsg.child_relid != relid)
1076 				continue;
1077 
1078 			if (channel->rescind)
1079 				continue;
1080 
1081 			trace_vmbus_chan_sched(channel);
1082 
1083 			++channel->interrupts;
1084 
1085 			switch (channel->callback_mode) {
1086 			case HV_CALL_ISR:
1087 				vmbus_channel_isr(channel);
1088 				break;
1089 
1090 			case HV_CALL_BATCHED:
1091 				hv_begin_read(&channel->inbound);
1092 				/* fallthrough */
1093 			case HV_CALL_DIRECT:
1094 				tasklet_schedule(&channel->callback_event);
1095 			}
1096 		}
1097 
1098 		rcu_read_unlock();
1099 	}
1100 }
1101 
1102 static void vmbus_isr(void)
1103 {
1104 	struct hv_per_cpu_context *hv_cpu
1105 		= this_cpu_ptr(hv_context.cpu_context);
1106 	void *page_addr = hv_cpu->synic_event_page;
1107 	struct hv_message *msg;
1108 	union hv_synic_event_flags *event;
1109 	bool handled = false;
1110 
1111 	if (unlikely(page_addr == NULL))
1112 		return;
1113 
1114 	event = (union hv_synic_event_flags *)page_addr +
1115 					 VMBUS_MESSAGE_SINT;
1116 	/*
1117 	 * Check for events before checking for messages. This is the order
1118 	 * in which events and messages are checked in Windows guests on
1119 	 * Hyper-V, and the Windows team suggested we do the same.
1120 	 */
1121 
1122 	if ((vmbus_proto_version == VERSION_WS2008) ||
1123 		(vmbus_proto_version == VERSION_WIN7)) {
1124 
1125 		/* Since we are a child, we only need to check bit 0 */
1126 		if (sync_test_and_clear_bit(0, event->flags))
1127 			handled = true;
1128 	} else {
1129 		/*
1130 		 * Our host is win8 or above. The signaling mechanism
1131 		 * has changed and we can directly look at the event page.
1132 		 * If bit n is set then we have an interrup on the channel
1133 		 * whose id is n.
1134 		 */
1135 		handled = true;
1136 	}
1137 
1138 	if (handled)
1139 		vmbus_chan_sched(hv_cpu);
1140 
1141 	page_addr = hv_cpu->synic_message_page;
1142 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1143 
1144 	/* Check if there are actual msgs to be processed */
1145 	if (msg->header.message_type != HVMSG_NONE) {
1146 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1147 			hv_process_timer_expiration(msg, hv_cpu);
1148 		else
1149 			tasklet_schedule(&hv_cpu->msg_dpc);
1150 	}
1151 
1152 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1153 }
1154 
1155 /*
1156  * Boolean to control whether to report panic messages over Hyper-V.
1157  *
1158  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1159  */
1160 static int sysctl_record_panic_msg = 1;
1161 
1162 /*
1163  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1164  * buffer and call into Hyper-V to transfer the data.
1165  */
1166 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1167 			 enum kmsg_dump_reason reason)
1168 {
1169 	size_t bytes_written;
1170 	phys_addr_t panic_pa;
1171 
1172 	/* We are only interested in panics. */
1173 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1174 		return;
1175 
1176 	panic_pa = virt_to_phys(hv_panic_page);
1177 
1178 	/*
1179 	 * Write dump contents to the page. No need to synchronize; panic should
1180 	 * be single-threaded.
1181 	 */
1182 	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1183 			     &bytes_written);
1184 	if (bytes_written)
1185 		hyperv_report_panic_msg(panic_pa, bytes_written);
1186 }
1187 
1188 static struct kmsg_dumper hv_kmsg_dumper = {
1189 	.dump = hv_kmsg_dump,
1190 };
1191 
1192 static struct ctl_table_header *hv_ctl_table_hdr;
1193 static int zero;
1194 static int one = 1;
1195 
1196 /*
1197  * sysctl option to allow the user to control whether kmsg data should be
1198  * reported to Hyper-V on panic.
1199  */
1200 static struct ctl_table hv_ctl_table[] = {
1201 	{
1202 		.procname       = "hyperv_record_panic_msg",
1203 		.data           = &sysctl_record_panic_msg,
1204 		.maxlen         = sizeof(int),
1205 		.mode           = 0644,
1206 		.proc_handler   = proc_dointvec_minmax,
1207 		.extra1		= &zero,
1208 		.extra2		= &one
1209 	},
1210 	{}
1211 };
1212 
1213 static struct ctl_table hv_root_table[] = {
1214 	{
1215 		.procname	= "kernel",
1216 		.mode		= 0555,
1217 		.child		= hv_ctl_table
1218 	},
1219 	{}
1220 };
1221 
1222 /*
1223  * vmbus_bus_init -Main vmbus driver initialization routine.
1224  *
1225  * Here, we
1226  *	- initialize the vmbus driver context
1227  *	- invoke the vmbus hv main init routine
1228  *	- retrieve the channel offers
1229  */
1230 static int vmbus_bus_init(void)
1231 {
1232 	int ret;
1233 
1234 	/* Hypervisor initialization...setup hypercall page..etc */
1235 	ret = hv_init();
1236 	if (ret != 0) {
1237 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1238 		return ret;
1239 	}
1240 
1241 	ret = bus_register(&hv_bus);
1242 	if (ret)
1243 		return ret;
1244 
1245 	hv_setup_vmbus_irq(vmbus_isr);
1246 
1247 	ret = hv_synic_alloc();
1248 	if (ret)
1249 		goto err_alloc;
1250 	/*
1251 	 * Initialize the per-cpu interrupt state and
1252 	 * connect to the host.
1253 	 */
1254 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1255 				hv_synic_init, hv_synic_cleanup);
1256 	if (ret < 0)
1257 		goto err_alloc;
1258 	hyperv_cpuhp_online = ret;
1259 
1260 	ret = vmbus_connect();
1261 	if (ret)
1262 		goto err_connect;
1263 
1264 	/*
1265 	 * Only register if the crash MSRs are available
1266 	 */
1267 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1268 		u64 hyperv_crash_ctl;
1269 		/*
1270 		 * Sysctl registration is not fatal, since by default
1271 		 * reporting is enabled.
1272 		 */
1273 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1274 		if (!hv_ctl_table_hdr)
1275 			pr_err("Hyper-V: sysctl table register error");
1276 
1277 		/*
1278 		 * Register for panic kmsg callback only if the right
1279 		 * capability is supported by the hypervisor.
1280 		 */
1281 		hv_get_crash_ctl(hyperv_crash_ctl);
1282 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1283 			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1284 			if (hv_panic_page) {
1285 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1286 				if (ret)
1287 					pr_err("Hyper-V: kmsg dump register "
1288 						"error 0x%x\n", ret);
1289 			} else
1290 				pr_err("Hyper-V: panic message page memory "
1291 					"allocation failed");
1292 		}
1293 
1294 		register_die_notifier(&hyperv_die_block);
1295 		atomic_notifier_chain_register(&panic_notifier_list,
1296 					       &hyperv_panic_block);
1297 	}
1298 
1299 	vmbus_request_offers();
1300 
1301 	return 0;
1302 
1303 err_connect:
1304 	cpuhp_remove_state(hyperv_cpuhp_online);
1305 err_alloc:
1306 	hv_synic_free();
1307 	hv_remove_vmbus_irq();
1308 
1309 	bus_unregister(&hv_bus);
1310 	free_page((unsigned long)hv_panic_page);
1311 	unregister_sysctl_table(hv_ctl_table_hdr);
1312 	hv_ctl_table_hdr = NULL;
1313 	return ret;
1314 }
1315 
1316 /**
1317  * __vmbus_child_driver_register() - Register a vmbus's driver
1318  * @hv_driver: Pointer to driver structure you want to register
1319  * @owner: owner module of the drv
1320  * @mod_name: module name string
1321  *
1322  * Registers the given driver with Linux through the 'driver_register()' call
1323  * and sets up the hyper-v vmbus handling for this driver.
1324  * It will return the state of the 'driver_register()' call.
1325  *
1326  */
1327 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1328 {
1329 	int ret;
1330 
1331 	pr_info("registering driver %s\n", hv_driver->name);
1332 
1333 	ret = vmbus_exists();
1334 	if (ret < 0)
1335 		return ret;
1336 
1337 	hv_driver->driver.name = hv_driver->name;
1338 	hv_driver->driver.owner = owner;
1339 	hv_driver->driver.mod_name = mod_name;
1340 	hv_driver->driver.bus = &hv_bus;
1341 
1342 	spin_lock_init(&hv_driver->dynids.lock);
1343 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1344 
1345 	ret = driver_register(&hv_driver->driver);
1346 
1347 	return ret;
1348 }
1349 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1350 
1351 /**
1352  * vmbus_driver_unregister() - Unregister a vmbus's driver
1353  * @hv_driver: Pointer to driver structure you want to
1354  *             un-register
1355  *
1356  * Un-register the given driver that was previous registered with a call to
1357  * vmbus_driver_register()
1358  */
1359 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1360 {
1361 	pr_info("unregistering driver %s\n", hv_driver->name);
1362 
1363 	if (!vmbus_exists()) {
1364 		driver_unregister(&hv_driver->driver);
1365 		vmbus_free_dynids(hv_driver);
1366 	}
1367 }
1368 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1369 
1370 
1371 /*
1372  * Called when last reference to channel is gone.
1373  */
1374 static void vmbus_chan_release(struct kobject *kobj)
1375 {
1376 	struct vmbus_channel *channel
1377 		= container_of(kobj, struct vmbus_channel, kobj);
1378 
1379 	kfree_rcu(channel, rcu);
1380 }
1381 
1382 struct vmbus_chan_attribute {
1383 	struct attribute attr;
1384 	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1385 	ssize_t (*store)(struct vmbus_channel *chan,
1386 			 const char *buf, size_t count);
1387 };
1388 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1389 	struct vmbus_chan_attribute chan_attr_##_name \
1390 		= __ATTR(_name, _mode, _show, _store)
1391 #define VMBUS_CHAN_ATTR_RW(_name) \
1392 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1393 #define VMBUS_CHAN_ATTR_RO(_name) \
1394 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1395 #define VMBUS_CHAN_ATTR_WO(_name) \
1396 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1397 
1398 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1399 				    struct attribute *attr, char *buf)
1400 {
1401 	const struct vmbus_chan_attribute *attribute
1402 		= container_of(attr, struct vmbus_chan_attribute, attr);
1403 	const struct vmbus_channel *chan
1404 		= container_of(kobj, struct vmbus_channel, kobj);
1405 
1406 	if (!attribute->show)
1407 		return -EIO;
1408 
1409 	if (chan->state != CHANNEL_OPENED_STATE)
1410 		return -EINVAL;
1411 
1412 	return attribute->show(chan, buf);
1413 }
1414 
1415 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1416 	.show = vmbus_chan_attr_show,
1417 };
1418 
1419 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1420 {
1421 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1422 
1423 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1424 }
1425 static VMBUS_CHAN_ATTR_RO(out_mask);
1426 
1427 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1428 {
1429 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1430 
1431 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1432 }
1433 static VMBUS_CHAN_ATTR_RO(in_mask);
1434 
1435 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1436 {
1437 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1438 
1439 	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1440 }
1441 static VMBUS_CHAN_ATTR_RO(read_avail);
1442 
1443 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1444 {
1445 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1446 
1447 	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1448 }
1449 static VMBUS_CHAN_ATTR_RO(write_avail);
1450 
1451 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1452 {
1453 	return sprintf(buf, "%u\n", channel->target_cpu);
1454 }
1455 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1456 
1457 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1458 				    char *buf)
1459 {
1460 	return sprintf(buf, "%d\n",
1461 		       channel_pending(channel,
1462 				       vmbus_connection.monitor_pages[1]));
1463 }
1464 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1465 
1466 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1467 				    char *buf)
1468 {
1469 	return sprintf(buf, "%d\n",
1470 		       channel_latency(channel,
1471 				       vmbus_connection.monitor_pages[1]));
1472 }
1473 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1474 
1475 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1476 {
1477 	return sprintf(buf, "%llu\n", channel->interrupts);
1478 }
1479 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1480 
1481 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1482 {
1483 	return sprintf(buf, "%llu\n", channel->sig_events);
1484 }
1485 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1486 
1487 static ssize_t channel_intr_in_full_show(const struct vmbus_channel *channel,
1488 					 char *buf)
1489 {
1490 	return sprintf(buf, "%llu\n",
1491 		       (unsigned long long)channel->intr_in_full);
1492 }
1493 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1494 
1495 static ssize_t channel_intr_out_empty_show(const struct vmbus_channel *channel,
1496 					   char *buf)
1497 {
1498 	return sprintf(buf, "%llu\n",
1499 		       (unsigned long long)channel->intr_out_empty);
1500 }
1501 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1502 
1503 static ssize_t channel_out_full_first_show(const struct vmbus_channel *channel,
1504 					   char *buf)
1505 {
1506 	return sprintf(buf, "%llu\n",
1507 		       (unsigned long long)channel->out_full_first);
1508 }
1509 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1510 
1511 static ssize_t channel_out_full_total_show(const struct vmbus_channel *channel,
1512 					   char *buf)
1513 {
1514 	return sprintf(buf, "%llu\n",
1515 		       (unsigned long long)channel->out_full_total);
1516 }
1517 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1518 
1519 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1520 					  char *buf)
1521 {
1522 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1523 }
1524 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1525 
1526 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1527 				  char *buf)
1528 {
1529 	return sprintf(buf, "%u\n",
1530 		       channel->offermsg.offer.sub_channel_index);
1531 }
1532 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1533 
1534 static struct attribute *vmbus_chan_attrs[] = {
1535 	&chan_attr_out_mask.attr,
1536 	&chan_attr_in_mask.attr,
1537 	&chan_attr_read_avail.attr,
1538 	&chan_attr_write_avail.attr,
1539 	&chan_attr_cpu.attr,
1540 	&chan_attr_pending.attr,
1541 	&chan_attr_latency.attr,
1542 	&chan_attr_interrupts.attr,
1543 	&chan_attr_events.attr,
1544 	&chan_attr_intr_in_full.attr,
1545 	&chan_attr_intr_out_empty.attr,
1546 	&chan_attr_out_full_first.attr,
1547 	&chan_attr_out_full_total.attr,
1548 	&chan_attr_monitor_id.attr,
1549 	&chan_attr_subchannel_id.attr,
1550 	NULL
1551 };
1552 
1553 static struct kobj_type vmbus_chan_ktype = {
1554 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1555 	.release = vmbus_chan_release,
1556 	.default_attrs = vmbus_chan_attrs,
1557 };
1558 
1559 /*
1560  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1561  */
1562 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1563 {
1564 	struct kobject *kobj = &channel->kobj;
1565 	u32 relid = channel->offermsg.child_relid;
1566 	int ret;
1567 
1568 	kobj->kset = dev->channels_kset;
1569 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1570 				   "%u", relid);
1571 	if (ret)
1572 		return ret;
1573 
1574 	kobject_uevent(kobj, KOBJ_ADD);
1575 
1576 	return 0;
1577 }
1578 
1579 /*
1580  * vmbus_device_create - Creates and registers a new child device
1581  * on the vmbus.
1582  */
1583 struct hv_device *vmbus_device_create(const guid_t *type,
1584 				      const guid_t *instance,
1585 				      struct vmbus_channel *channel)
1586 {
1587 	struct hv_device *child_device_obj;
1588 
1589 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1590 	if (!child_device_obj) {
1591 		pr_err("Unable to allocate device object for child device\n");
1592 		return NULL;
1593 	}
1594 
1595 	child_device_obj->channel = channel;
1596 	guid_copy(&child_device_obj->dev_type, type);
1597 	guid_copy(&child_device_obj->dev_instance, instance);
1598 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1599 
1600 	return child_device_obj;
1601 }
1602 
1603 /*
1604  * vmbus_device_register - Register the child device
1605  */
1606 int vmbus_device_register(struct hv_device *child_device_obj)
1607 {
1608 	struct kobject *kobj = &child_device_obj->device.kobj;
1609 	int ret;
1610 
1611 	dev_set_name(&child_device_obj->device, "%pUl",
1612 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1613 
1614 	child_device_obj->device.bus = &hv_bus;
1615 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1616 	child_device_obj->device.release = vmbus_device_release;
1617 
1618 	/*
1619 	 * Register with the LDM. This will kick off the driver/device
1620 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1621 	 */
1622 	ret = device_register(&child_device_obj->device);
1623 	if (ret) {
1624 		pr_err("Unable to register child device\n");
1625 		return ret;
1626 	}
1627 
1628 	child_device_obj->channels_kset = kset_create_and_add("channels",
1629 							      NULL, kobj);
1630 	if (!child_device_obj->channels_kset) {
1631 		ret = -ENOMEM;
1632 		goto err_dev_unregister;
1633 	}
1634 
1635 	ret = vmbus_add_channel_kobj(child_device_obj,
1636 				     child_device_obj->channel);
1637 	if (ret) {
1638 		pr_err("Unable to register primary channeln");
1639 		goto err_kset_unregister;
1640 	}
1641 
1642 	return 0;
1643 
1644 err_kset_unregister:
1645 	kset_unregister(child_device_obj->channels_kset);
1646 
1647 err_dev_unregister:
1648 	device_unregister(&child_device_obj->device);
1649 	return ret;
1650 }
1651 
1652 /*
1653  * vmbus_device_unregister - Remove the specified child device
1654  * from the vmbus.
1655  */
1656 void vmbus_device_unregister(struct hv_device *device_obj)
1657 {
1658 	pr_debug("child device %s unregistered\n",
1659 		dev_name(&device_obj->device));
1660 
1661 	kset_unregister(device_obj->channels_kset);
1662 
1663 	/*
1664 	 * Kick off the process of unregistering the device.
1665 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1666 	 */
1667 	device_unregister(&device_obj->device);
1668 }
1669 
1670 
1671 /*
1672  * VMBUS is an acpi enumerated device. Get the information we
1673  * need from DSDT.
1674  */
1675 #define VTPM_BASE_ADDRESS 0xfed40000
1676 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1677 {
1678 	resource_size_t start = 0;
1679 	resource_size_t end = 0;
1680 	struct resource *new_res;
1681 	struct resource **old_res = &hyperv_mmio;
1682 	struct resource **prev_res = NULL;
1683 
1684 	switch (res->type) {
1685 
1686 	/*
1687 	 * "Address" descriptors are for bus windows. Ignore
1688 	 * "memory" descriptors, which are for registers on
1689 	 * devices.
1690 	 */
1691 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1692 		start = res->data.address32.address.minimum;
1693 		end = res->data.address32.address.maximum;
1694 		break;
1695 
1696 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1697 		start = res->data.address64.address.minimum;
1698 		end = res->data.address64.address.maximum;
1699 		break;
1700 
1701 	default:
1702 		/* Unused resource type */
1703 		return AE_OK;
1704 
1705 	}
1706 	/*
1707 	 * Ignore ranges that are below 1MB, as they're not
1708 	 * necessary or useful here.
1709 	 */
1710 	if (end < 0x100000)
1711 		return AE_OK;
1712 
1713 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1714 	if (!new_res)
1715 		return AE_NO_MEMORY;
1716 
1717 	/* If this range overlaps the virtual TPM, truncate it. */
1718 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1719 		end = VTPM_BASE_ADDRESS;
1720 
1721 	new_res->name = "hyperv mmio";
1722 	new_res->flags = IORESOURCE_MEM;
1723 	new_res->start = start;
1724 	new_res->end = end;
1725 
1726 	/*
1727 	 * If two ranges are adjacent, merge them.
1728 	 */
1729 	do {
1730 		if (!*old_res) {
1731 			*old_res = new_res;
1732 			break;
1733 		}
1734 
1735 		if (((*old_res)->end + 1) == new_res->start) {
1736 			(*old_res)->end = new_res->end;
1737 			kfree(new_res);
1738 			break;
1739 		}
1740 
1741 		if ((*old_res)->start == new_res->end + 1) {
1742 			(*old_res)->start = new_res->start;
1743 			kfree(new_res);
1744 			break;
1745 		}
1746 
1747 		if ((*old_res)->start > new_res->end) {
1748 			new_res->sibling = *old_res;
1749 			if (prev_res)
1750 				(*prev_res)->sibling = new_res;
1751 			*old_res = new_res;
1752 			break;
1753 		}
1754 
1755 		prev_res = old_res;
1756 		old_res = &(*old_res)->sibling;
1757 
1758 	} while (1);
1759 
1760 	return AE_OK;
1761 }
1762 
1763 static int vmbus_acpi_remove(struct acpi_device *device)
1764 {
1765 	struct resource *cur_res;
1766 	struct resource *next_res;
1767 
1768 	if (hyperv_mmio) {
1769 		if (fb_mmio) {
1770 			__release_region(hyperv_mmio, fb_mmio->start,
1771 					 resource_size(fb_mmio));
1772 			fb_mmio = NULL;
1773 		}
1774 
1775 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1776 			next_res = cur_res->sibling;
1777 			kfree(cur_res);
1778 		}
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 static void vmbus_reserve_fb(void)
1785 {
1786 	int size;
1787 	/*
1788 	 * Make a claim for the frame buffer in the resource tree under the
1789 	 * first node, which will be the one below 4GB.  The length seems to
1790 	 * be underreported, particularly in a Generation 1 VM.  So start out
1791 	 * reserving a larger area and make it smaller until it succeeds.
1792 	 */
1793 
1794 	if (screen_info.lfb_base) {
1795 		if (efi_enabled(EFI_BOOT))
1796 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1797 		else
1798 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1799 
1800 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1801 			fb_mmio = __request_region(hyperv_mmio,
1802 						   screen_info.lfb_base, size,
1803 						   fb_mmio_name, 0);
1804 		}
1805 	}
1806 }
1807 
1808 /**
1809  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1810  * @new:		If successful, supplied a pointer to the
1811  *			allocated MMIO space.
1812  * @device_obj:		Identifies the caller
1813  * @min:		Minimum guest physical address of the
1814  *			allocation
1815  * @max:		Maximum guest physical address
1816  * @size:		Size of the range to be allocated
1817  * @align:		Alignment of the range to be allocated
1818  * @fb_overlap_ok:	Whether this allocation can be allowed
1819  *			to overlap the video frame buffer.
1820  *
1821  * This function walks the resources granted to VMBus by the
1822  * _CRS object in the ACPI namespace underneath the parent
1823  * "bridge" whether that's a root PCI bus in the Generation 1
1824  * case or a Module Device in the Generation 2 case.  It then
1825  * attempts to allocate from the global MMIO pool in a way that
1826  * matches the constraints supplied in these parameters and by
1827  * that _CRS.
1828  *
1829  * Return: 0 on success, -errno on failure
1830  */
1831 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1832 			resource_size_t min, resource_size_t max,
1833 			resource_size_t size, resource_size_t align,
1834 			bool fb_overlap_ok)
1835 {
1836 	struct resource *iter, *shadow;
1837 	resource_size_t range_min, range_max, start;
1838 	const char *dev_n = dev_name(&device_obj->device);
1839 	int retval;
1840 
1841 	retval = -ENXIO;
1842 	down(&hyperv_mmio_lock);
1843 
1844 	/*
1845 	 * If overlaps with frame buffers are allowed, then first attempt to
1846 	 * make the allocation from within the reserved region.  Because it
1847 	 * is already reserved, no shadow allocation is necessary.
1848 	 */
1849 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1850 	    !(max < fb_mmio->start)) {
1851 
1852 		range_min = fb_mmio->start;
1853 		range_max = fb_mmio->end;
1854 		start = (range_min + align - 1) & ~(align - 1);
1855 		for (; start + size - 1 <= range_max; start += align) {
1856 			*new = request_mem_region_exclusive(start, size, dev_n);
1857 			if (*new) {
1858 				retval = 0;
1859 				goto exit;
1860 			}
1861 		}
1862 	}
1863 
1864 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1865 		if ((iter->start >= max) || (iter->end <= min))
1866 			continue;
1867 
1868 		range_min = iter->start;
1869 		range_max = iter->end;
1870 		start = (range_min + align - 1) & ~(align - 1);
1871 		for (; start + size - 1 <= range_max; start += align) {
1872 			shadow = __request_region(iter, start, size, NULL,
1873 						  IORESOURCE_BUSY);
1874 			if (!shadow)
1875 				continue;
1876 
1877 			*new = request_mem_region_exclusive(start, size, dev_n);
1878 			if (*new) {
1879 				shadow->name = (char *)*new;
1880 				retval = 0;
1881 				goto exit;
1882 			}
1883 
1884 			__release_region(iter, start, size);
1885 		}
1886 	}
1887 
1888 exit:
1889 	up(&hyperv_mmio_lock);
1890 	return retval;
1891 }
1892 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1893 
1894 /**
1895  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1896  * @start:		Base address of region to release.
1897  * @size:		Size of the range to be allocated
1898  *
1899  * This function releases anything requested by
1900  * vmbus_mmio_allocate().
1901  */
1902 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1903 {
1904 	struct resource *iter;
1905 
1906 	down(&hyperv_mmio_lock);
1907 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1908 		if ((iter->start >= start + size) || (iter->end <= start))
1909 			continue;
1910 
1911 		__release_region(iter, start, size);
1912 	}
1913 	release_mem_region(start, size);
1914 	up(&hyperv_mmio_lock);
1915 
1916 }
1917 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1918 
1919 static int vmbus_acpi_add(struct acpi_device *device)
1920 {
1921 	acpi_status result;
1922 	int ret_val = -ENODEV;
1923 	struct acpi_device *ancestor;
1924 
1925 	hv_acpi_dev = device;
1926 
1927 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1928 					vmbus_walk_resources, NULL);
1929 
1930 	if (ACPI_FAILURE(result))
1931 		goto acpi_walk_err;
1932 	/*
1933 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1934 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1935 	 */
1936 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1937 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1938 					     vmbus_walk_resources, NULL);
1939 
1940 		if (ACPI_FAILURE(result))
1941 			continue;
1942 		if (hyperv_mmio) {
1943 			vmbus_reserve_fb();
1944 			break;
1945 		}
1946 	}
1947 	ret_val = 0;
1948 
1949 acpi_walk_err:
1950 	complete(&probe_event);
1951 	if (ret_val)
1952 		vmbus_acpi_remove(device);
1953 	return ret_val;
1954 }
1955 
1956 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1957 	{"VMBUS", 0},
1958 	{"VMBus", 0},
1959 	{"", 0},
1960 };
1961 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1962 
1963 static struct acpi_driver vmbus_acpi_driver = {
1964 	.name = "vmbus",
1965 	.ids = vmbus_acpi_device_ids,
1966 	.ops = {
1967 		.add = vmbus_acpi_add,
1968 		.remove = vmbus_acpi_remove,
1969 	},
1970 };
1971 
1972 static void hv_kexec_handler(void)
1973 {
1974 	hv_synic_clockevents_cleanup();
1975 	vmbus_initiate_unload(false);
1976 	vmbus_connection.conn_state = DISCONNECTED;
1977 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1978 	mb();
1979 	cpuhp_remove_state(hyperv_cpuhp_online);
1980 	hyperv_cleanup();
1981 };
1982 
1983 static void hv_crash_handler(struct pt_regs *regs)
1984 {
1985 	vmbus_initiate_unload(true);
1986 	/*
1987 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1988 	 * doing the cleanup for current CPU only. This should be sufficient
1989 	 * for kdump.
1990 	 */
1991 	vmbus_connection.conn_state = DISCONNECTED;
1992 	hv_synic_cleanup(smp_processor_id());
1993 	hyperv_cleanup();
1994 };
1995 
1996 static int __init hv_acpi_init(void)
1997 {
1998 	int ret, t;
1999 
2000 	if (!hv_is_hyperv_initialized())
2001 		return -ENODEV;
2002 
2003 	init_completion(&probe_event);
2004 
2005 	/*
2006 	 * Get ACPI resources first.
2007 	 */
2008 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2009 
2010 	if (ret)
2011 		return ret;
2012 
2013 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2014 	if (t == 0) {
2015 		ret = -ETIMEDOUT;
2016 		goto cleanup;
2017 	}
2018 
2019 	ret = vmbus_bus_init();
2020 	if (ret)
2021 		goto cleanup;
2022 
2023 	hv_setup_kexec_handler(hv_kexec_handler);
2024 	hv_setup_crash_handler(hv_crash_handler);
2025 
2026 	return 0;
2027 
2028 cleanup:
2029 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2030 	hv_acpi_dev = NULL;
2031 	return ret;
2032 }
2033 
2034 static void __exit vmbus_exit(void)
2035 {
2036 	int cpu;
2037 
2038 	hv_remove_kexec_handler();
2039 	hv_remove_crash_handler();
2040 	vmbus_connection.conn_state = DISCONNECTED;
2041 	hv_synic_clockevents_cleanup();
2042 	vmbus_disconnect();
2043 	hv_remove_vmbus_irq();
2044 	for_each_online_cpu(cpu) {
2045 		struct hv_per_cpu_context *hv_cpu
2046 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2047 
2048 		tasklet_kill(&hv_cpu->msg_dpc);
2049 	}
2050 	vmbus_free_channels();
2051 
2052 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2053 		kmsg_dump_unregister(&hv_kmsg_dumper);
2054 		unregister_die_notifier(&hyperv_die_block);
2055 		atomic_notifier_chain_unregister(&panic_notifier_list,
2056 						 &hyperv_panic_block);
2057 	}
2058 
2059 	free_page((unsigned long)hv_panic_page);
2060 	unregister_sysctl_table(hv_ctl_table_hdr);
2061 	hv_ctl_table_hdr = NULL;
2062 	bus_unregister(&hv_bus);
2063 
2064 	cpuhp_remove_state(hyperv_cpuhp_online);
2065 	hv_synic_free();
2066 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2067 }
2068 
2069 
2070 MODULE_LICENSE("GPL");
2071 
2072 subsys_initcall(hv_acpi_init);
2073 module_exit(vmbus_exit);
2074