xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision be2ed207)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38 
39 #include <asm/hyperv.h>
40 #include <asm/mshyperv.h>
41 #include <linux/notifier.h>
42 #include <linux/ptrace.h>
43 #include <linux/screen_info.h>
44 #include <linux/kdebug.h>
45 #include <linux/efi.h>
46 #include <linux/random.h>
47 #include "hyperv_vmbus.h"
48 
49 struct vmbus_dynid {
50 	struct list_head node;
51 	struct hv_vmbus_device_id id;
52 };
53 
54 static struct acpi_device  *hv_acpi_dev;
55 
56 static struct completion probe_event;
57 
58 static int hyperv_cpuhp_online;
59 
60 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
61 			      void *args)
62 {
63 	struct pt_regs *regs;
64 
65 	regs = current_pt_regs();
66 
67 	hyperv_report_panic(regs, val);
68 	return NOTIFY_DONE;
69 }
70 
71 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
72 			    void *args)
73 {
74 	struct die_args *die = (struct die_args *)args;
75 	struct pt_regs *regs = die->regs;
76 
77 	hyperv_report_panic(regs, val);
78 	return NOTIFY_DONE;
79 }
80 
81 static struct notifier_block hyperv_die_block = {
82 	.notifier_call = hyperv_die_event,
83 };
84 static struct notifier_block hyperv_panic_block = {
85 	.notifier_call = hyperv_panic_event,
86 };
87 
88 static const char *fb_mmio_name = "fb_range";
89 static struct resource *fb_mmio;
90 static struct resource *hyperv_mmio;
91 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
92 
93 static int vmbus_exists(void)
94 {
95 	if (hv_acpi_dev == NULL)
96 		return -ENODEV;
97 
98 	return 0;
99 }
100 
101 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
102 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
103 {
104 	int i;
105 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
106 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
107 }
108 
109 static u8 channel_monitor_group(const struct vmbus_channel *channel)
110 {
111 	return (u8)channel->offermsg.monitorid / 32;
112 }
113 
114 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
115 {
116 	return (u8)channel->offermsg.monitorid % 32;
117 }
118 
119 static u32 channel_pending(const struct vmbus_channel *channel,
120 			   const struct hv_monitor_page *monitor_page)
121 {
122 	u8 monitor_group = channel_monitor_group(channel);
123 
124 	return monitor_page->trigger_group[monitor_group].pending;
125 }
126 
127 static u32 channel_latency(const struct vmbus_channel *channel,
128 			   const struct hv_monitor_page *monitor_page)
129 {
130 	u8 monitor_group = channel_monitor_group(channel);
131 	u8 monitor_offset = channel_monitor_offset(channel);
132 
133 	return monitor_page->latency[monitor_group][monitor_offset];
134 }
135 
136 static u32 channel_conn_id(struct vmbus_channel *channel,
137 			   struct hv_monitor_page *monitor_page)
138 {
139 	u8 monitor_group = channel_monitor_group(channel);
140 	u8 monitor_offset = channel_monitor_offset(channel);
141 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
142 }
143 
144 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
145 		       char *buf)
146 {
147 	struct hv_device *hv_dev = device_to_hv_device(dev);
148 
149 	if (!hv_dev->channel)
150 		return -ENODEV;
151 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
152 }
153 static DEVICE_ATTR_RO(id);
154 
155 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
156 			  char *buf)
157 {
158 	struct hv_device *hv_dev = device_to_hv_device(dev);
159 
160 	if (!hv_dev->channel)
161 		return -ENODEV;
162 	return sprintf(buf, "%d\n", hv_dev->channel->state);
163 }
164 static DEVICE_ATTR_RO(state);
165 
166 static ssize_t monitor_id_show(struct device *dev,
167 			       struct device_attribute *dev_attr, char *buf)
168 {
169 	struct hv_device *hv_dev = device_to_hv_device(dev);
170 
171 	if (!hv_dev->channel)
172 		return -ENODEV;
173 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
174 }
175 static DEVICE_ATTR_RO(monitor_id);
176 
177 static ssize_t class_id_show(struct device *dev,
178 			       struct device_attribute *dev_attr, char *buf)
179 {
180 	struct hv_device *hv_dev = device_to_hv_device(dev);
181 
182 	if (!hv_dev->channel)
183 		return -ENODEV;
184 	return sprintf(buf, "{%pUl}\n",
185 		       hv_dev->channel->offermsg.offer.if_type.b);
186 }
187 static DEVICE_ATTR_RO(class_id);
188 
189 static ssize_t device_id_show(struct device *dev,
190 			      struct device_attribute *dev_attr, char *buf)
191 {
192 	struct hv_device *hv_dev = device_to_hv_device(dev);
193 
194 	if (!hv_dev->channel)
195 		return -ENODEV;
196 	return sprintf(buf, "{%pUl}\n",
197 		       hv_dev->channel->offermsg.offer.if_instance.b);
198 }
199 static DEVICE_ATTR_RO(device_id);
200 
201 static ssize_t modalias_show(struct device *dev,
202 			     struct device_attribute *dev_attr, char *buf)
203 {
204 	struct hv_device *hv_dev = device_to_hv_device(dev);
205 	char alias_name[VMBUS_ALIAS_LEN + 1];
206 
207 	print_alias_name(hv_dev, alias_name);
208 	return sprintf(buf, "vmbus:%s\n", alias_name);
209 }
210 static DEVICE_ATTR_RO(modalias);
211 
212 static ssize_t server_monitor_pending_show(struct device *dev,
213 					   struct device_attribute *dev_attr,
214 					   char *buf)
215 {
216 	struct hv_device *hv_dev = device_to_hv_device(dev);
217 
218 	if (!hv_dev->channel)
219 		return -ENODEV;
220 	return sprintf(buf, "%d\n",
221 		       channel_pending(hv_dev->channel,
222 				       vmbus_connection.monitor_pages[1]));
223 }
224 static DEVICE_ATTR_RO(server_monitor_pending);
225 
226 static ssize_t client_monitor_pending_show(struct device *dev,
227 					   struct device_attribute *dev_attr,
228 					   char *buf)
229 {
230 	struct hv_device *hv_dev = device_to_hv_device(dev);
231 
232 	if (!hv_dev->channel)
233 		return -ENODEV;
234 	return sprintf(buf, "%d\n",
235 		       channel_pending(hv_dev->channel,
236 				       vmbus_connection.monitor_pages[1]));
237 }
238 static DEVICE_ATTR_RO(client_monitor_pending);
239 
240 static ssize_t server_monitor_latency_show(struct device *dev,
241 					   struct device_attribute *dev_attr,
242 					   char *buf)
243 {
244 	struct hv_device *hv_dev = device_to_hv_device(dev);
245 
246 	if (!hv_dev->channel)
247 		return -ENODEV;
248 	return sprintf(buf, "%d\n",
249 		       channel_latency(hv_dev->channel,
250 				       vmbus_connection.monitor_pages[0]));
251 }
252 static DEVICE_ATTR_RO(server_monitor_latency);
253 
254 static ssize_t client_monitor_latency_show(struct device *dev,
255 					   struct device_attribute *dev_attr,
256 					   char *buf)
257 {
258 	struct hv_device *hv_dev = device_to_hv_device(dev);
259 
260 	if (!hv_dev->channel)
261 		return -ENODEV;
262 	return sprintf(buf, "%d\n",
263 		       channel_latency(hv_dev->channel,
264 				       vmbus_connection.monitor_pages[1]));
265 }
266 static DEVICE_ATTR_RO(client_monitor_latency);
267 
268 static ssize_t server_monitor_conn_id_show(struct device *dev,
269 					   struct device_attribute *dev_attr,
270 					   char *buf)
271 {
272 	struct hv_device *hv_dev = device_to_hv_device(dev);
273 
274 	if (!hv_dev->channel)
275 		return -ENODEV;
276 	return sprintf(buf, "%d\n",
277 		       channel_conn_id(hv_dev->channel,
278 				       vmbus_connection.monitor_pages[0]));
279 }
280 static DEVICE_ATTR_RO(server_monitor_conn_id);
281 
282 static ssize_t client_monitor_conn_id_show(struct device *dev,
283 					   struct device_attribute *dev_attr,
284 					   char *buf)
285 {
286 	struct hv_device *hv_dev = device_to_hv_device(dev);
287 
288 	if (!hv_dev->channel)
289 		return -ENODEV;
290 	return sprintf(buf, "%d\n",
291 		       channel_conn_id(hv_dev->channel,
292 				       vmbus_connection.monitor_pages[1]));
293 }
294 static DEVICE_ATTR_RO(client_monitor_conn_id);
295 
296 static ssize_t out_intr_mask_show(struct device *dev,
297 				  struct device_attribute *dev_attr, char *buf)
298 {
299 	struct hv_device *hv_dev = device_to_hv_device(dev);
300 	struct hv_ring_buffer_debug_info outbound;
301 
302 	if (!hv_dev->channel)
303 		return -ENODEV;
304 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
305 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
306 }
307 static DEVICE_ATTR_RO(out_intr_mask);
308 
309 static ssize_t out_read_index_show(struct device *dev,
310 				   struct device_attribute *dev_attr, char *buf)
311 {
312 	struct hv_device *hv_dev = device_to_hv_device(dev);
313 	struct hv_ring_buffer_debug_info outbound;
314 
315 	if (!hv_dev->channel)
316 		return -ENODEV;
317 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
318 	return sprintf(buf, "%d\n", outbound.current_read_index);
319 }
320 static DEVICE_ATTR_RO(out_read_index);
321 
322 static ssize_t out_write_index_show(struct device *dev,
323 				    struct device_attribute *dev_attr,
324 				    char *buf)
325 {
326 	struct hv_device *hv_dev = device_to_hv_device(dev);
327 	struct hv_ring_buffer_debug_info outbound;
328 
329 	if (!hv_dev->channel)
330 		return -ENODEV;
331 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
332 	return sprintf(buf, "%d\n", outbound.current_write_index);
333 }
334 static DEVICE_ATTR_RO(out_write_index);
335 
336 static ssize_t out_read_bytes_avail_show(struct device *dev,
337 					 struct device_attribute *dev_attr,
338 					 char *buf)
339 {
340 	struct hv_device *hv_dev = device_to_hv_device(dev);
341 	struct hv_ring_buffer_debug_info outbound;
342 
343 	if (!hv_dev->channel)
344 		return -ENODEV;
345 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
346 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
347 }
348 static DEVICE_ATTR_RO(out_read_bytes_avail);
349 
350 static ssize_t out_write_bytes_avail_show(struct device *dev,
351 					  struct device_attribute *dev_attr,
352 					  char *buf)
353 {
354 	struct hv_device *hv_dev = device_to_hv_device(dev);
355 	struct hv_ring_buffer_debug_info outbound;
356 
357 	if (!hv_dev->channel)
358 		return -ENODEV;
359 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
360 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
361 }
362 static DEVICE_ATTR_RO(out_write_bytes_avail);
363 
364 static ssize_t in_intr_mask_show(struct device *dev,
365 				 struct device_attribute *dev_attr, char *buf)
366 {
367 	struct hv_device *hv_dev = device_to_hv_device(dev);
368 	struct hv_ring_buffer_debug_info inbound;
369 
370 	if (!hv_dev->channel)
371 		return -ENODEV;
372 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
373 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
374 }
375 static DEVICE_ATTR_RO(in_intr_mask);
376 
377 static ssize_t in_read_index_show(struct device *dev,
378 				  struct device_attribute *dev_attr, char *buf)
379 {
380 	struct hv_device *hv_dev = device_to_hv_device(dev);
381 	struct hv_ring_buffer_debug_info inbound;
382 
383 	if (!hv_dev->channel)
384 		return -ENODEV;
385 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
386 	return sprintf(buf, "%d\n", inbound.current_read_index);
387 }
388 static DEVICE_ATTR_RO(in_read_index);
389 
390 static ssize_t in_write_index_show(struct device *dev,
391 				   struct device_attribute *dev_attr, char *buf)
392 {
393 	struct hv_device *hv_dev = device_to_hv_device(dev);
394 	struct hv_ring_buffer_debug_info inbound;
395 
396 	if (!hv_dev->channel)
397 		return -ENODEV;
398 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
399 	return sprintf(buf, "%d\n", inbound.current_write_index);
400 }
401 static DEVICE_ATTR_RO(in_write_index);
402 
403 static ssize_t in_read_bytes_avail_show(struct device *dev,
404 					struct device_attribute *dev_attr,
405 					char *buf)
406 {
407 	struct hv_device *hv_dev = device_to_hv_device(dev);
408 	struct hv_ring_buffer_debug_info inbound;
409 
410 	if (!hv_dev->channel)
411 		return -ENODEV;
412 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
413 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
414 }
415 static DEVICE_ATTR_RO(in_read_bytes_avail);
416 
417 static ssize_t in_write_bytes_avail_show(struct device *dev,
418 					 struct device_attribute *dev_attr,
419 					 char *buf)
420 {
421 	struct hv_device *hv_dev = device_to_hv_device(dev);
422 	struct hv_ring_buffer_debug_info inbound;
423 
424 	if (!hv_dev->channel)
425 		return -ENODEV;
426 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
427 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
428 }
429 static DEVICE_ATTR_RO(in_write_bytes_avail);
430 
431 static ssize_t channel_vp_mapping_show(struct device *dev,
432 				       struct device_attribute *dev_attr,
433 				       char *buf)
434 {
435 	struct hv_device *hv_dev = device_to_hv_device(dev);
436 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
437 	unsigned long flags;
438 	int buf_size = PAGE_SIZE, n_written, tot_written;
439 	struct list_head *cur;
440 
441 	if (!channel)
442 		return -ENODEV;
443 
444 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
445 		channel->offermsg.child_relid, channel->target_cpu);
446 
447 	spin_lock_irqsave(&channel->lock, flags);
448 
449 	list_for_each(cur, &channel->sc_list) {
450 		if (tot_written >= buf_size - 1)
451 			break;
452 
453 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
454 		n_written = scnprintf(buf + tot_written,
455 				     buf_size - tot_written,
456 				     "%u:%u\n",
457 				     cur_sc->offermsg.child_relid,
458 				     cur_sc->target_cpu);
459 		tot_written += n_written;
460 	}
461 
462 	spin_unlock_irqrestore(&channel->lock, flags);
463 
464 	return tot_written;
465 }
466 static DEVICE_ATTR_RO(channel_vp_mapping);
467 
468 static ssize_t vendor_show(struct device *dev,
469 			   struct device_attribute *dev_attr,
470 			   char *buf)
471 {
472 	struct hv_device *hv_dev = device_to_hv_device(dev);
473 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
474 }
475 static DEVICE_ATTR_RO(vendor);
476 
477 static ssize_t device_show(struct device *dev,
478 			   struct device_attribute *dev_attr,
479 			   char *buf)
480 {
481 	struct hv_device *hv_dev = device_to_hv_device(dev);
482 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
483 }
484 static DEVICE_ATTR_RO(device);
485 
486 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
487 static struct attribute *vmbus_dev_attrs[] = {
488 	&dev_attr_id.attr,
489 	&dev_attr_state.attr,
490 	&dev_attr_monitor_id.attr,
491 	&dev_attr_class_id.attr,
492 	&dev_attr_device_id.attr,
493 	&dev_attr_modalias.attr,
494 	&dev_attr_server_monitor_pending.attr,
495 	&dev_attr_client_monitor_pending.attr,
496 	&dev_attr_server_monitor_latency.attr,
497 	&dev_attr_client_monitor_latency.attr,
498 	&dev_attr_server_monitor_conn_id.attr,
499 	&dev_attr_client_monitor_conn_id.attr,
500 	&dev_attr_out_intr_mask.attr,
501 	&dev_attr_out_read_index.attr,
502 	&dev_attr_out_write_index.attr,
503 	&dev_attr_out_read_bytes_avail.attr,
504 	&dev_attr_out_write_bytes_avail.attr,
505 	&dev_attr_in_intr_mask.attr,
506 	&dev_attr_in_read_index.attr,
507 	&dev_attr_in_write_index.attr,
508 	&dev_attr_in_read_bytes_avail.attr,
509 	&dev_attr_in_write_bytes_avail.attr,
510 	&dev_attr_channel_vp_mapping.attr,
511 	&dev_attr_vendor.attr,
512 	&dev_attr_device.attr,
513 	NULL,
514 };
515 ATTRIBUTE_GROUPS(vmbus_dev);
516 
517 /*
518  * vmbus_uevent - add uevent for our device
519  *
520  * This routine is invoked when a device is added or removed on the vmbus to
521  * generate a uevent to udev in the userspace. The udev will then look at its
522  * rule and the uevent generated here to load the appropriate driver
523  *
524  * The alias string will be of the form vmbus:guid where guid is the string
525  * representation of the device guid (each byte of the guid will be
526  * represented with two hex characters.
527  */
528 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
529 {
530 	struct hv_device *dev = device_to_hv_device(device);
531 	int ret;
532 	char alias_name[VMBUS_ALIAS_LEN + 1];
533 
534 	print_alias_name(dev, alias_name);
535 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
536 	return ret;
537 }
538 
539 static const uuid_le null_guid;
540 
541 static inline bool is_null_guid(const uuid_le *guid)
542 {
543 	if (uuid_le_cmp(*guid, null_guid))
544 		return false;
545 	return true;
546 }
547 
548 /*
549  * Return a matching hv_vmbus_device_id pointer.
550  * If there is no match, return NULL.
551  */
552 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
553 					const uuid_le *guid)
554 {
555 	const struct hv_vmbus_device_id *id = NULL;
556 	struct vmbus_dynid *dynid;
557 
558 	/* Look at the dynamic ids first, before the static ones */
559 	spin_lock(&drv->dynids.lock);
560 	list_for_each_entry(dynid, &drv->dynids.list, node) {
561 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
562 			id = &dynid->id;
563 			break;
564 		}
565 	}
566 	spin_unlock(&drv->dynids.lock);
567 
568 	if (id)
569 		return id;
570 
571 	id = drv->id_table;
572 	if (id == NULL)
573 		return NULL; /* empty device table */
574 
575 	for (; !is_null_guid(&id->guid); id++)
576 		if (!uuid_le_cmp(id->guid, *guid))
577 			return id;
578 
579 	return NULL;
580 }
581 
582 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
583 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
584 {
585 	struct vmbus_dynid *dynid;
586 
587 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
588 	if (!dynid)
589 		return -ENOMEM;
590 
591 	dynid->id.guid = *guid;
592 
593 	spin_lock(&drv->dynids.lock);
594 	list_add_tail(&dynid->node, &drv->dynids.list);
595 	spin_unlock(&drv->dynids.lock);
596 
597 	return driver_attach(&drv->driver);
598 }
599 
600 static void vmbus_free_dynids(struct hv_driver *drv)
601 {
602 	struct vmbus_dynid *dynid, *n;
603 
604 	spin_lock(&drv->dynids.lock);
605 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
606 		list_del(&dynid->node);
607 		kfree(dynid);
608 	}
609 	spin_unlock(&drv->dynids.lock);
610 }
611 
612 /*
613  * store_new_id - sysfs frontend to vmbus_add_dynid()
614  *
615  * Allow GUIDs to be added to an existing driver via sysfs.
616  */
617 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
618 			    size_t count)
619 {
620 	struct hv_driver *drv = drv_to_hv_drv(driver);
621 	uuid_le guid;
622 	ssize_t retval;
623 
624 	retval = uuid_le_to_bin(buf, &guid);
625 	if (retval)
626 		return retval;
627 
628 	if (hv_vmbus_get_id(drv, &guid))
629 		return -EEXIST;
630 
631 	retval = vmbus_add_dynid(drv, &guid);
632 	if (retval)
633 		return retval;
634 	return count;
635 }
636 static DRIVER_ATTR_WO(new_id);
637 
638 /*
639  * store_remove_id - remove a PCI device ID from this driver
640  *
641  * Removes a dynamic pci device ID to this driver.
642  */
643 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
644 			       size_t count)
645 {
646 	struct hv_driver *drv = drv_to_hv_drv(driver);
647 	struct vmbus_dynid *dynid, *n;
648 	uuid_le guid;
649 	ssize_t retval;
650 
651 	retval = uuid_le_to_bin(buf, &guid);
652 	if (retval)
653 		return retval;
654 
655 	retval = -ENODEV;
656 	spin_lock(&drv->dynids.lock);
657 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
658 		struct hv_vmbus_device_id *id = &dynid->id;
659 
660 		if (!uuid_le_cmp(id->guid, guid)) {
661 			list_del(&dynid->node);
662 			kfree(dynid);
663 			retval = count;
664 			break;
665 		}
666 	}
667 	spin_unlock(&drv->dynids.lock);
668 
669 	return retval;
670 }
671 static DRIVER_ATTR_WO(remove_id);
672 
673 static struct attribute *vmbus_drv_attrs[] = {
674 	&driver_attr_new_id.attr,
675 	&driver_attr_remove_id.attr,
676 	NULL,
677 };
678 ATTRIBUTE_GROUPS(vmbus_drv);
679 
680 
681 /*
682  * vmbus_match - Attempt to match the specified device to the specified driver
683  */
684 static int vmbus_match(struct device *device, struct device_driver *driver)
685 {
686 	struct hv_driver *drv = drv_to_hv_drv(driver);
687 	struct hv_device *hv_dev = device_to_hv_device(device);
688 
689 	/* The hv_sock driver handles all hv_sock offers. */
690 	if (is_hvsock_channel(hv_dev->channel))
691 		return drv->hvsock;
692 
693 	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
694 		return 1;
695 
696 	return 0;
697 }
698 
699 /*
700  * vmbus_probe - Add the new vmbus's child device
701  */
702 static int vmbus_probe(struct device *child_device)
703 {
704 	int ret = 0;
705 	struct hv_driver *drv =
706 			drv_to_hv_drv(child_device->driver);
707 	struct hv_device *dev = device_to_hv_device(child_device);
708 	const struct hv_vmbus_device_id *dev_id;
709 
710 	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
711 	if (drv->probe) {
712 		ret = drv->probe(dev, dev_id);
713 		if (ret != 0)
714 			pr_err("probe failed for device %s (%d)\n",
715 			       dev_name(child_device), ret);
716 
717 	} else {
718 		pr_err("probe not set for driver %s\n",
719 		       dev_name(child_device));
720 		ret = -ENODEV;
721 	}
722 	return ret;
723 }
724 
725 /*
726  * vmbus_remove - Remove a vmbus device
727  */
728 static int vmbus_remove(struct device *child_device)
729 {
730 	struct hv_driver *drv;
731 	struct hv_device *dev = device_to_hv_device(child_device);
732 
733 	if (child_device->driver) {
734 		drv = drv_to_hv_drv(child_device->driver);
735 		if (drv->remove)
736 			drv->remove(dev);
737 	}
738 
739 	return 0;
740 }
741 
742 
743 /*
744  * vmbus_shutdown - Shutdown a vmbus device
745  */
746 static void vmbus_shutdown(struct device *child_device)
747 {
748 	struct hv_driver *drv;
749 	struct hv_device *dev = device_to_hv_device(child_device);
750 
751 
752 	/* The device may not be attached yet */
753 	if (!child_device->driver)
754 		return;
755 
756 	drv = drv_to_hv_drv(child_device->driver);
757 
758 	if (drv->shutdown)
759 		drv->shutdown(dev);
760 }
761 
762 
763 /*
764  * vmbus_device_release - Final callback release of the vmbus child device
765  */
766 static void vmbus_device_release(struct device *device)
767 {
768 	struct hv_device *hv_dev = device_to_hv_device(device);
769 	struct vmbus_channel *channel = hv_dev->channel;
770 
771 	mutex_lock(&vmbus_connection.channel_mutex);
772 	hv_process_channel_removal(channel->offermsg.child_relid);
773 	mutex_unlock(&vmbus_connection.channel_mutex);
774 	kfree(hv_dev);
775 
776 }
777 
778 /* The one and only one */
779 static struct bus_type  hv_bus = {
780 	.name =		"vmbus",
781 	.match =		vmbus_match,
782 	.shutdown =		vmbus_shutdown,
783 	.remove =		vmbus_remove,
784 	.probe =		vmbus_probe,
785 	.uevent =		vmbus_uevent,
786 	.dev_groups =		vmbus_dev_groups,
787 	.drv_groups =		vmbus_drv_groups,
788 };
789 
790 struct onmessage_work_context {
791 	struct work_struct work;
792 	struct hv_message msg;
793 };
794 
795 static void vmbus_onmessage_work(struct work_struct *work)
796 {
797 	struct onmessage_work_context *ctx;
798 
799 	/* Do not process messages if we're in DISCONNECTED state */
800 	if (vmbus_connection.conn_state == DISCONNECTED)
801 		return;
802 
803 	ctx = container_of(work, struct onmessage_work_context,
804 			   work);
805 	vmbus_onmessage(&ctx->msg);
806 	kfree(ctx);
807 }
808 
809 static void hv_process_timer_expiration(struct hv_message *msg,
810 					struct hv_per_cpu_context *hv_cpu)
811 {
812 	struct clock_event_device *dev = hv_cpu->clk_evt;
813 
814 	if (dev->event_handler)
815 		dev->event_handler(dev);
816 
817 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
818 }
819 
820 void vmbus_on_msg_dpc(unsigned long data)
821 {
822 	struct hv_per_cpu_context *hv_cpu = (void *)data;
823 	void *page_addr = hv_cpu->synic_message_page;
824 	struct hv_message *msg = (struct hv_message *)page_addr +
825 				  VMBUS_MESSAGE_SINT;
826 	struct vmbus_channel_message_header *hdr;
827 	const struct vmbus_channel_message_table_entry *entry;
828 	struct onmessage_work_context *ctx;
829 	u32 message_type = msg->header.message_type;
830 
831 	if (message_type == HVMSG_NONE)
832 		/* no msg */
833 		return;
834 
835 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
836 
837 	trace_vmbus_on_msg_dpc(hdr);
838 
839 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
840 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
841 		goto msg_handled;
842 	}
843 
844 	entry = &channel_message_table[hdr->msgtype];
845 	if (entry->handler_type	== VMHT_BLOCKING) {
846 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
847 		if (ctx == NULL)
848 			return;
849 
850 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
851 		memcpy(&ctx->msg, msg, sizeof(*msg));
852 
853 		/*
854 		 * The host can generate a rescind message while we
855 		 * may still be handling the original offer. We deal with
856 		 * this condition by ensuring the processing is done on the
857 		 * same CPU.
858 		 */
859 		switch (hdr->msgtype) {
860 		case CHANNELMSG_RESCIND_CHANNELOFFER:
861 			/*
862 			 * If we are handling the rescind message;
863 			 * schedule the work on the global work queue.
864 			 */
865 			schedule_work_on(vmbus_connection.connect_cpu,
866 					 &ctx->work);
867 			break;
868 
869 		case CHANNELMSG_OFFERCHANNEL:
870 			atomic_inc(&vmbus_connection.offer_in_progress);
871 			queue_work_on(vmbus_connection.connect_cpu,
872 				      vmbus_connection.work_queue,
873 				      &ctx->work);
874 			break;
875 
876 		default:
877 			queue_work(vmbus_connection.work_queue, &ctx->work);
878 		}
879 	} else
880 		entry->message_handler(hdr);
881 
882 msg_handled:
883 	vmbus_signal_eom(msg, message_type);
884 }
885 
886 
887 /*
888  * Direct callback for channels using other deferred processing
889  */
890 static void vmbus_channel_isr(struct vmbus_channel *channel)
891 {
892 	void (*callback_fn)(void *);
893 
894 	callback_fn = READ_ONCE(channel->onchannel_callback);
895 	if (likely(callback_fn != NULL))
896 		(*callback_fn)(channel->channel_callback_context);
897 }
898 
899 /*
900  * Schedule all channels with events pending
901  */
902 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
903 {
904 	unsigned long *recv_int_page;
905 	u32 maxbits, relid;
906 
907 	if (vmbus_proto_version < VERSION_WIN8) {
908 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
909 		recv_int_page = vmbus_connection.recv_int_page;
910 	} else {
911 		/*
912 		 * When the host is win8 and beyond, the event page
913 		 * can be directly checked to get the id of the channel
914 		 * that has the interrupt pending.
915 		 */
916 		void *page_addr = hv_cpu->synic_event_page;
917 		union hv_synic_event_flags *event
918 			= (union hv_synic_event_flags *)page_addr +
919 						 VMBUS_MESSAGE_SINT;
920 
921 		maxbits = HV_EVENT_FLAGS_COUNT;
922 		recv_int_page = event->flags;
923 	}
924 
925 	if (unlikely(!recv_int_page))
926 		return;
927 
928 	for_each_set_bit(relid, recv_int_page, maxbits) {
929 		struct vmbus_channel *channel;
930 
931 		if (!sync_test_and_clear_bit(relid, recv_int_page))
932 			continue;
933 
934 		/* Special case - vmbus channel protocol msg */
935 		if (relid == 0)
936 			continue;
937 
938 		rcu_read_lock();
939 
940 		/* Find channel based on relid */
941 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
942 			if (channel->offermsg.child_relid != relid)
943 				continue;
944 
945 			if (channel->rescind)
946 				continue;
947 
948 			trace_vmbus_chan_sched(channel);
949 
950 			++channel->interrupts;
951 
952 			switch (channel->callback_mode) {
953 			case HV_CALL_ISR:
954 				vmbus_channel_isr(channel);
955 				break;
956 
957 			case HV_CALL_BATCHED:
958 				hv_begin_read(&channel->inbound);
959 				/* fallthrough */
960 			case HV_CALL_DIRECT:
961 				tasklet_schedule(&channel->callback_event);
962 			}
963 		}
964 
965 		rcu_read_unlock();
966 	}
967 }
968 
969 static void vmbus_isr(void)
970 {
971 	struct hv_per_cpu_context *hv_cpu
972 		= this_cpu_ptr(hv_context.cpu_context);
973 	void *page_addr = hv_cpu->synic_event_page;
974 	struct hv_message *msg;
975 	union hv_synic_event_flags *event;
976 	bool handled = false;
977 
978 	if (unlikely(page_addr == NULL))
979 		return;
980 
981 	event = (union hv_synic_event_flags *)page_addr +
982 					 VMBUS_MESSAGE_SINT;
983 	/*
984 	 * Check for events before checking for messages. This is the order
985 	 * in which events and messages are checked in Windows guests on
986 	 * Hyper-V, and the Windows team suggested we do the same.
987 	 */
988 
989 	if ((vmbus_proto_version == VERSION_WS2008) ||
990 		(vmbus_proto_version == VERSION_WIN7)) {
991 
992 		/* Since we are a child, we only need to check bit 0 */
993 		if (sync_test_and_clear_bit(0, event->flags))
994 			handled = true;
995 	} else {
996 		/*
997 		 * Our host is win8 or above. The signaling mechanism
998 		 * has changed and we can directly look at the event page.
999 		 * If bit n is set then we have an interrup on the channel
1000 		 * whose id is n.
1001 		 */
1002 		handled = true;
1003 	}
1004 
1005 	if (handled)
1006 		vmbus_chan_sched(hv_cpu);
1007 
1008 	page_addr = hv_cpu->synic_message_page;
1009 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1010 
1011 	/* Check if there are actual msgs to be processed */
1012 	if (msg->header.message_type != HVMSG_NONE) {
1013 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1014 			hv_process_timer_expiration(msg, hv_cpu);
1015 		else
1016 			tasklet_schedule(&hv_cpu->msg_dpc);
1017 	}
1018 
1019 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1020 }
1021 
1022 
1023 /*
1024  * vmbus_bus_init -Main vmbus driver initialization routine.
1025  *
1026  * Here, we
1027  *	- initialize the vmbus driver context
1028  *	- invoke the vmbus hv main init routine
1029  *	- retrieve the channel offers
1030  */
1031 static int vmbus_bus_init(void)
1032 {
1033 	int ret;
1034 
1035 	/* Hypervisor initialization...setup hypercall page..etc */
1036 	ret = hv_init();
1037 	if (ret != 0) {
1038 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1039 		return ret;
1040 	}
1041 
1042 	ret = bus_register(&hv_bus);
1043 	if (ret)
1044 		return ret;
1045 
1046 	hv_setup_vmbus_irq(vmbus_isr);
1047 
1048 	ret = hv_synic_alloc();
1049 	if (ret)
1050 		goto err_alloc;
1051 	/*
1052 	 * Initialize the per-cpu interrupt state and
1053 	 * connect to the host.
1054 	 */
1055 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1056 				hv_synic_init, hv_synic_cleanup);
1057 	if (ret < 0)
1058 		goto err_alloc;
1059 	hyperv_cpuhp_online = ret;
1060 
1061 	ret = vmbus_connect();
1062 	if (ret)
1063 		goto err_connect;
1064 
1065 	/*
1066 	 * Only register if the crash MSRs are available
1067 	 */
1068 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1069 		register_die_notifier(&hyperv_die_block);
1070 		atomic_notifier_chain_register(&panic_notifier_list,
1071 					       &hyperv_panic_block);
1072 	}
1073 
1074 	vmbus_request_offers();
1075 
1076 	return 0;
1077 
1078 err_connect:
1079 	cpuhp_remove_state(hyperv_cpuhp_online);
1080 err_alloc:
1081 	hv_synic_free();
1082 	hv_remove_vmbus_irq();
1083 
1084 	bus_unregister(&hv_bus);
1085 
1086 	return ret;
1087 }
1088 
1089 /**
1090  * __vmbus_child_driver_register() - Register a vmbus's driver
1091  * @hv_driver: Pointer to driver structure you want to register
1092  * @owner: owner module of the drv
1093  * @mod_name: module name string
1094  *
1095  * Registers the given driver with Linux through the 'driver_register()' call
1096  * and sets up the hyper-v vmbus handling for this driver.
1097  * It will return the state of the 'driver_register()' call.
1098  *
1099  */
1100 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1101 {
1102 	int ret;
1103 
1104 	pr_info("registering driver %s\n", hv_driver->name);
1105 
1106 	ret = vmbus_exists();
1107 	if (ret < 0)
1108 		return ret;
1109 
1110 	hv_driver->driver.name = hv_driver->name;
1111 	hv_driver->driver.owner = owner;
1112 	hv_driver->driver.mod_name = mod_name;
1113 	hv_driver->driver.bus = &hv_bus;
1114 
1115 	spin_lock_init(&hv_driver->dynids.lock);
1116 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1117 
1118 	ret = driver_register(&hv_driver->driver);
1119 
1120 	return ret;
1121 }
1122 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1123 
1124 /**
1125  * vmbus_driver_unregister() - Unregister a vmbus's driver
1126  * @hv_driver: Pointer to driver structure you want to
1127  *             un-register
1128  *
1129  * Un-register the given driver that was previous registered with a call to
1130  * vmbus_driver_register()
1131  */
1132 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1133 {
1134 	pr_info("unregistering driver %s\n", hv_driver->name);
1135 
1136 	if (!vmbus_exists()) {
1137 		driver_unregister(&hv_driver->driver);
1138 		vmbus_free_dynids(hv_driver);
1139 	}
1140 }
1141 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1142 
1143 
1144 /*
1145  * Called when last reference to channel is gone.
1146  */
1147 static void vmbus_chan_release(struct kobject *kobj)
1148 {
1149 	struct vmbus_channel *channel
1150 		= container_of(kobj, struct vmbus_channel, kobj);
1151 
1152 	kfree_rcu(channel, rcu);
1153 }
1154 
1155 struct vmbus_chan_attribute {
1156 	struct attribute attr;
1157 	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1158 	ssize_t (*store)(struct vmbus_channel *chan,
1159 			 const char *buf, size_t count);
1160 };
1161 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1162 	struct vmbus_chan_attribute chan_attr_##_name \
1163 		= __ATTR(_name, _mode, _show, _store)
1164 #define VMBUS_CHAN_ATTR_RW(_name) \
1165 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1166 #define VMBUS_CHAN_ATTR_RO(_name) \
1167 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1168 #define VMBUS_CHAN_ATTR_WO(_name) \
1169 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1170 
1171 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1172 				    struct attribute *attr, char *buf)
1173 {
1174 	const struct vmbus_chan_attribute *attribute
1175 		= container_of(attr, struct vmbus_chan_attribute, attr);
1176 	const struct vmbus_channel *chan
1177 		= container_of(kobj, struct vmbus_channel, kobj);
1178 
1179 	if (!attribute->show)
1180 		return -EIO;
1181 
1182 	return attribute->show(chan, buf);
1183 }
1184 
1185 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1186 	.show = vmbus_chan_attr_show,
1187 };
1188 
1189 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1190 {
1191 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1192 
1193 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1194 }
1195 static VMBUS_CHAN_ATTR_RO(out_mask);
1196 
1197 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1198 {
1199 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1200 
1201 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1202 }
1203 static VMBUS_CHAN_ATTR_RO(in_mask);
1204 
1205 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1206 {
1207 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1208 
1209 	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1210 }
1211 static VMBUS_CHAN_ATTR_RO(read_avail);
1212 
1213 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1214 {
1215 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1216 
1217 	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1218 }
1219 static VMBUS_CHAN_ATTR_RO(write_avail);
1220 
1221 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1222 {
1223 	return sprintf(buf, "%u\n", channel->target_cpu);
1224 }
1225 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1226 
1227 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1228 				    char *buf)
1229 {
1230 	return sprintf(buf, "%d\n",
1231 		       channel_pending(channel,
1232 				       vmbus_connection.monitor_pages[1]));
1233 }
1234 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1235 
1236 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1237 				    char *buf)
1238 {
1239 	return sprintf(buf, "%d\n",
1240 		       channel_latency(channel,
1241 				       vmbus_connection.monitor_pages[1]));
1242 }
1243 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1244 
1245 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1246 {
1247 	return sprintf(buf, "%llu\n", channel->interrupts);
1248 }
1249 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1250 
1251 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1252 {
1253 	return sprintf(buf, "%llu\n", channel->sig_events);
1254 }
1255 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1256 
1257 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1258 					  char *buf)
1259 {
1260 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1261 }
1262 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1263 
1264 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1265 				  char *buf)
1266 {
1267 	return sprintf(buf, "%u\n",
1268 		       channel->offermsg.offer.sub_channel_index);
1269 }
1270 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1271 
1272 static struct attribute *vmbus_chan_attrs[] = {
1273 	&chan_attr_out_mask.attr,
1274 	&chan_attr_in_mask.attr,
1275 	&chan_attr_read_avail.attr,
1276 	&chan_attr_write_avail.attr,
1277 	&chan_attr_cpu.attr,
1278 	&chan_attr_pending.attr,
1279 	&chan_attr_latency.attr,
1280 	&chan_attr_interrupts.attr,
1281 	&chan_attr_events.attr,
1282 	&chan_attr_monitor_id.attr,
1283 	&chan_attr_subchannel_id.attr,
1284 	NULL
1285 };
1286 
1287 static struct kobj_type vmbus_chan_ktype = {
1288 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1289 	.release = vmbus_chan_release,
1290 	.default_attrs = vmbus_chan_attrs,
1291 };
1292 
1293 /*
1294  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1295  */
1296 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1297 {
1298 	struct kobject *kobj = &channel->kobj;
1299 	u32 relid = channel->offermsg.child_relid;
1300 	int ret;
1301 
1302 	kobj->kset = dev->channels_kset;
1303 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1304 				   "%u", relid);
1305 	if (ret)
1306 		return ret;
1307 
1308 	kobject_uevent(kobj, KOBJ_ADD);
1309 
1310 	return 0;
1311 }
1312 
1313 /*
1314  * vmbus_device_create - Creates and registers a new child device
1315  * on the vmbus.
1316  */
1317 struct hv_device *vmbus_device_create(const uuid_le *type,
1318 				      const uuid_le *instance,
1319 				      struct vmbus_channel *channel)
1320 {
1321 	struct hv_device *child_device_obj;
1322 
1323 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1324 	if (!child_device_obj) {
1325 		pr_err("Unable to allocate device object for child device\n");
1326 		return NULL;
1327 	}
1328 
1329 	child_device_obj->channel = channel;
1330 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1331 	memcpy(&child_device_obj->dev_instance, instance,
1332 	       sizeof(uuid_le));
1333 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1334 
1335 
1336 	return child_device_obj;
1337 }
1338 
1339 /*
1340  * vmbus_device_register - Register the child device
1341  */
1342 int vmbus_device_register(struct hv_device *child_device_obj)
1343 {
1344 	struct kobject *kobj = &child_device_obj->device.kobj;
1345 	int ret;
1346 
1347 	dev_set_name(&child_device_obj->device, "%pUl",
1348 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1349 
1350 	child_device_obj->device.bus = &hv_bus;
1351 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1352 	child_device_obj->device.release = vmbus_device_release;
1353 
1354 	/*
1355 	 * Register with the LDM. This will kick off the driver/device
1356 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1357 	 */
1358 	ret = device_register(&child_device_obj->device);
1359 	if (ret) {
1360 		pr_err("Unable to register child device\n");
1361 		return ret;
1362 	}
1363 
1364 	child_device_obj->channels_kset = kset_create_and_add("channels",
1365 							      NULL, kobj);
1366 	if (!child_device_obj->channels_kset) {
1367 		ret = -ENOMEM;
1368 		goto err_dev_unregister;
1369 	}
1370 
1371 	ret = vmbus_add_channel_kobj(child_device_obj,
1372 				     child_device_obj->channel);
1373 	if (ret) {
1374 		pr_err("Unable to register primary channeln");
1375 		goto err_kset_unregister;
1376 	}
1377 
1378 	return 0;
1379 
1380 err_kset_unregister:
1381 	kset_unregister(child_device_obj->channels_kset);
1382 
1383 err_dev_unregister:
1384 	device_unregister(&child_device_obj->device);
1385 	return ret;
1386 }
1387 
1388 /*
1389  * vmbus_device_unregister - Remove the specified child device
1390  * from the vmbus.
1391  */
1392 void vmbus_device_unregister(struct hv_device *device_obj)
1393 {
1394 	pr_debug("child device %s unregistered\n",
1395 		dev_name(&device_obj->device));
1396 
1397 	kset_unregister(device_obj->channels_kset);
1398 
1399 	/*
1400 	 * Kick off the process of unregistering the device.
1401 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1402 	 */
1403 	device_unregister(&device_obj->device);
1404 }
1405 
1406 
1407 /*
1408  * VMBUS is an acpi enumerated device. Get the information we
1409  * need from DSDT.
1410  */
1411 #define VTPM_BASE_ADDRESS 0xfed40000
1412 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1413 {
1414 	resource_size_t start = 0;
1415 	resource_size_t end = 0;
1416 	struct resource *new_res;
1417 	struct resource **old_res = &hyperv_mmio;
1418 	struct resource **prev_res = NULL;
1419 
1420 	switch (res->type) {
1421 
1422 	/*
1423 	 * "Address" descriptors are for bus windows. Ignore
1424 	 * "memory" descriptors, which are for registers on
1425 	 * devices.
1426 	 */
1427 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1428 		start = res->data.address32.address.minimum;
1429 		end = res->data.address32.address.maximum;
1430 		break;
1431 
1432 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1433 		start = res->data.address64.address.minimum;
1434 		end = res->data.address64.address.maximum;
1435 		break;
1436 
1437 	default:
1438 		/* Unused resource type */
1439 		return AE_OK;
1440 
1441 	}
1442 	/*
1443 	 * Ignore ranges that are below 1MB, as they're not
1444 	 * necessary or useful here.
1445 	 */
1446 	if (end < 0x100000)
1447 		return AE_OK;
1448 
1449 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1450 	if (!new_res)
1451 		return AE_NO_MEMORY;
1452 
1453 	/* If this range overlaps the virtual TPM, truncate it. */
1454 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1455 		end = VTPM_BASE_ADDRESS;
1456 
1457 	new_res->name = "hyperv mmio";
1458 	new_res->flags = IORESOURCE_MEM;
1459 	new_res->start = start;
1460 	new_res->end = end;
1461 
1462 	/*
1463 	 * If two ranges are adjacent, merge them.
1464 	 */
1465 	do {
1466 		if (!*old_res) {
1467 			*old_res = new_res;
1468 			break;
1469 		}
1470 
1471 		if (((*old_res)->end + 1) == new_res->start) {
1472 			(*old_res)->end = new_res->end;
1473 			kfree(new_res);
1474 			break;
1475 		}
1476 
1477 		if ((*old_res)->start == new_res->end + 1) {
1478 			(*old_res)->start = new_res->start;
1479 			kfree(new_res);
1480 			break;
1481 		}
1482 
1483 		if ((*old_res)->start > new_res->end) {
1484 			new_res->sibling = *old_res;
1485 			if (prev_res)
1486 				(*prev_res)->sibling = new_res;
1487 			*old_res = new_res;
1488 			break;
1489 		}
1490 
1491 		prev_res = old_res;
1492 		old_res = &(*old_res)->sibling;
1493 
1494 	} while (1);
1495 
1496 	return AE_OK;
1497 }
1498 
1499 static int vmbus_acpi_remove(struct acpi_device *device)
1500 {
1501 	struct resource *cur_res;
1502 	struct resource *next_res;
1503 
1504 	if (hyperv_mmio) {
1505 		if (fb_mmio) {
1506 			__release_region(hyperv_mmio, fb_mmio->start,
1507 					 resource_size(fb_mmio));
1508 			fb_mmio = NULL;
1509 		}
1510 
1511 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1512 			next_res = cur_res->sibling;
1513 			kfree(cur_res);
1514 		}
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 static void vmbus_reserve_fb(void)
1521 {
1522 	int size;
1523 	/*
1524 	 * Make a claim for the frame buffer in the resource tree under the
1525 	 * first node, which will be the one below 4GB.  The length seems to
1526 	 * be underreported, particularly in a Generation 1 VM.  So start out
1527 	 * reserving a larger area and make it smaller until it succeeds.
1528 	 */
1529 
1530 	if (screen_info.lfb_base) {
1531 		if (efi_enabled(EFI_BOOT))
1532 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1533 		else
1534 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1535 
1536 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1537 			fb_mmio = __request_region(hyperv_mmio,
1538 						   screen_info.lfb_base, size,
1539 						   fb_mmio_name, 0);
1540 		}
1541 	}
1542 }
1543 
1544 /**
1545  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1546  * @new:		If successful, supplied a pointer to the
1547  *			allocated MMIO space.
1548  * @device_obj:		Identifies the caller
1549  * @min:		Minimum guest physical address of the
1550  *			allocation
1551  * @max:		Maximum guest physical address
1552  * @size:		Size of the range to be allocated
1553  * @align:		Alignment of the range to be allocated
1554  * @fb_overlap_ok:	Whether this allocation can be allowed
1555  *			to overlap the video frame buffer.
1556  *
1557  * This function walks the resources granted to VMBus by the
1558  * _CRS object in the ACPI namespace underneath the parent
1559  * "bridge" whether that's a root PCI bus in the Generation 1
1560  * case or a Module Device in the Generation 2 case.  It then
1561  * attempts to allocate from the global MMIO pool in a way that
1562  * matches the constraints supplied in these parameters and by
1563  * that _CRS.
1564  *
1565  * Return: 0 on success, -errno on failure
1566  */
1567 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1568 			resource_size_t min, resource_size_t max,
1569 			resource_size_t size, resource_size_t align,
1570 			bool fb_overlap_ok)
1571 {
1572 	struct resource *iter, *shadow;
1573 	resource_size_t range_min, range_max, start;
1574 	const char *dev_n = dev_name(&device_obj->device);
1575 	int retval;
1576 
1577 	retval = -ENXIO;
1578 	down(&hyperv_mmio_lock);
1579 
1580 	/*
1581 	 * If overlaps with frame buffers are allowed, then first attempt to
1582 	 * make the allocation from within the reserved region.  Because it
1583 	 * is already reserved, no shadow allocation is necessary.
1584 	 */
1585 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1586 	    !(max < fb_mmio->start)) {
1587 
1588 		range_min = fb_mmio->start;
1589 		range_max = fb_mmio->end;
1590 		start = (range_min + align - 1) & ~(align - 1);
1591 		for (; start + size - 1 <= range_max; start += align) {
1592 			*new = request_mem_region_exclusive(start, size, dev_n);
1593 			if (*new) {
1594 				retval = 0;
1595 				goto exit;
1596 			}
1597 		}
1598 	}
1599 
1600 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1601 		if ((iter->start >= max) || (iter->end <= min))
1602 			continue;
1603 
1604 		range_min = iter->start;
1605 		range_max = iter->end;
1606 		start = (range_min + align - 1) & ~(align - 1);
1607 		for (; start + size - 1 <= range_max; start += align) {
1608 			shadow = __request_region(iter, start, size, NULL,
1609 						  IORESOURCE_BUSY);
1610 			if (!shadow)
1611 				continue;
1612 
1613 			*new = request_mem_region_exclusive(start, size, dev_n);
1614 			if (*new) {
1615 				shadow->name = (char *)*new;
1616 				retval = 0;
1617 				goto exit;
1618 			}
1619 
1620 			__release_region(iter, start, size);
1621 		}
1622 	}
1623 
1624 exit:
1625 	up(&hyperv_mmio_lock);
1626 	return retval;
1627 }
1628 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1629 
1630 /**
1631  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1632  * @start:		Base address of region to release.
1633  * @size:		Size of the range to be allocated
1634  *
1635  * This function releases anything requested by
1636  * vmbus_mmio_allocate().
1637  */
1638 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1639 {
1640 	struct resource *iter;
1641 
1642 	down(&hyperv_mmio_lock);
1643 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1644 		if ((iter->start >= start + size) || (iter->end <= start))
1645 			continue;
1646 
1647 		__release_region(iter, start, size);
1648 	}
1649 	release_mem_region(start, size);
1650 	up(&hyperv_mmio_lock);
1651 
1652 }
1653 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1654 
1655 static int vmbus_acpi_add(struct acpi_device *device)
1656 {
1657 	acpi_status result;
1658 	int ret_val = -ENODEV;
1659 	struct acpi_device *ancestor;
1660 
1661 	hv_acpi_dev = device;
1662 
1663 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1664 					vmbus_walk_resources, NULL);
1665 
1666 	if (ACPI_FAILURE(result))
1667 		goto acpi_walk_err;
1668 	/*
1669 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1670 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1671 	 */
1672 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1673 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1674 					     vmbus_walk_resources, NULL);
1675 
1676 		if (ACPI_FAILURE(result))
1677 			continue;
1678 		if (hyperv_mmio) {
1679 			vmbus_reserve_fb();
1680 			break;
1681 		}
1682 	}
1683 	ret_val = 0;
1684 
1685 acpi_walk_err:
1686 	complete(&probe_event);
1687 	if (ret_val)
1688 		vmbus_acpi_remove(device);
1689 	return ret_val;
1690 }
1691 
1692 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1693 	{"VMBUS", 0},
1694 	{"VMBus", 0},
1695 	{"", 0},
1696 };
1697 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1698 
1699 static struct acpi_driver vmbus_acpi_driver = {
1700 	.name = "vmbus",
1701 	.ids = vmbus_acpi_device_ids,
1702 	.ops = {
1703 		.add = vmbus_acpi_add,
1704 		.remove = vmbus_acpi_remove,
1705 	},
1706 };
1707 
1708 static void hv_kexec_handler(void)
1709 {
1710 	hv_synic_clockevents_cleanup();
1711 	vmbus_initiate_unload(false);
1712 	vmbus_connection.conn_state = DISCONNECTED;
1713 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1714 	mb();
1715 	cpuhp_remove_state(hyperv_cpuhp_online);
1716 	hyperv_cleanup();
1717 };
1718 
1719 static void hv_crash_handler(struct pt_regs *regs)
1720 {
1721 	vmbus_initiate_unload(true);
1722 	/*
1723 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1724 	 * doing the cleanup for current CPU only. This should be sufficient
1725 	 * for kdump.
1726 	 */
1727 	vmbus_connection.conn_state = DISCONNECTED;
1728 	hv_synic_cleanup(smp_processor_id());
1729 	hyperv_cleanup();
1730 };
1731 
1732 static int __init hv_acpi_init(void)
1733 {
1734 	int ret, t;
1735 
1736 	if (!hv_is_hyperv_initialized())
1737 		return -ENODEV;
1738 
1739 	init_completion(&probe_event);
1740 
1741 	/*
1742 	 * Get ACPI resources first.
1743 	 */
1744 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1745 
1746 	if (ret)
1747 		return ret;
1748 
1749 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1750 	if (t == 0) {
1751 		ret = -ETIMEDOUT;
1752 		goto cleanup;
1753 	}
1754 
1755 	ret = vmbus_bus_init();
1756 	if (ret)
1757 		goto cleanup;
1758 
1759 	hv_setup_kexec_handler(hv_kexec_handler);
1760 	hv_setup_crash_handler(hv_crash_handler);
1761 
1762 	return 0;
1763 
1764 cleanup:
1765 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1766 	hv_acpi_dev = NULL;
1767 	return ret;
1768 }
1769 
1770 static void __exit vmbus_exit(void)
1771 {
1772 	int cpu;
1773 
1774 	hv_remove_kexec_handler();
1775 	hv_remove_crash_handler();
1776 	vmbus_connection.conn_state = DISCONNECTED;
1777 	hv_synic_clockevents_cleanup();
1778 	vmbus_disconnect();
1779 	hv_remove_vmbus_irq();
1780 	for_each_online_cpu(cpu) {
1781 		struct hv_per_cpu_context *hv_cpu
1782 			= per_cpu_ptr(hv_context.cpu_context, cpu);
1783 
1784 		tasklet_kill(&hv_cpu->msg_dpc);
1785 	}
1786 	vmbus_free_channels();
1787 
1788 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1789 		unregister_die_notifier(&hyperv_die_block);
1790 		atomic_notifier_chain_unregister(&panic_notifier_list,
1791 						 &hyperv_panic_block);
1792 	}
1793 	bus_unregister(&hv_bus);
1794 
1795 	cpuhp_remove_state(hyperv_cpuhp_online);
1796 	hv_synic_free();
1797 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1798 }
1799 
1800 
1801 MODULE_LICENSE("GPL");
1802 
1803 subsys_initcall(hv_acpi_init);
1804 module_exit(vmbus_exit);
1805