1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/task_stack.h> 25 26 #include <linux/delay.h> 27 #include <linux/notifier.h> 28 #include <linux/ptrace.h> 29 #include <linux/screen_info.h> 30 #include <linux/kdebug.h> 31 #include <linux/efi.h> 32 #include <linux/random.h> 33 #include <linux/kernel.h> 34 #include <linux/syscore_ops.h> 35 #include <clocksource/hyperv_timer.h> 36 #include "hyperv_vmbus.h" 37 38 struct vmbus_dynid { 39 struct list_head node; 40 struct hv_vmbus_device_id id; 41 }; 42 43 static struct acpi_device *hv_acpi_dev; 44 45 static struct completion probe_event; 46 47 static int hyperv_cpuhp_online; 48 49 static void *hv_panic_page; 50 51 /* Values parsed from ACPI DSDT */ 52 static int vmbus_irq; 53 int vmbus_interrupt; 54 55 /* 56 * Boolean to control whether to report panic messages over Hyper-V. 57 * 58 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg 59 */ 60 static int sysctl_record_panic_msg = 1; 61 62 static int hyperv_report_reg(void) 63 { 64 return !sysctl_record_panic_msg || !hv_panic_page; 65 } 66 67 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 68 void *args) 69 { 70 struct pt_regs *regs; 71 72 vmbus_initiate_unload(true); 73 74 /* 75 * Hyper-V should be notified only once about a panic. If we will be 76 * doing hyperv_report_panic_msg() later with kmsg data, don't do 77 * the notification here. 78 */ 79 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE 80 && hyperv_report_reg()) { 81 regs = current_pt_regs(); 82 hyperv_report_panic(regs, val, false); 83 } 84 return NOTIFY_DONE; 85 } 86 87 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 88 void *args) 89 { 90 struct die_args *die = args; 91 struct pt_regs *regs = die->regs; 92 93 /* Don't notify Hyper-V if the die event is other than oops */ 94 if (val != DIE_OOPS) 95 return NOTIFY_DONE; 96 97 /* 98 * Hyper-V should be notified only once about a panic. If we will be 99 * doing hyperv_report_panic_msg() later with kmsg data, don't do 100 * the notification here. 101 */ 102 if (hyperv_report_reg()) 103 hyperv_report_panic(regs, val, true); 104 return NOTIFY_DONE; 105 } 106 107 static struct notifier_block hyperv_die_block = { 108 .notifier_call = hyperv_die_event, 109 }; 110 static struct notifier_block hyperv_panic_block = { 111 .notifier_call = hyperv_panic_event, 112 }; 113 114 static const char *fb_mmio_name = "fb_range"; 115 static struct resource *fb_mmio; 116 static struct resource *hyperv_mmio; 117 static DEFINE_MUTEX(hyperv_mmio_lock); 118 119 static int vmbus_exists(void) 120 { 121 if (hv_acpi_dev == NULL) 122 return -ENODEV; 123 124 return 0; 125 } 126 127 static u8 channel_monitor_group(const struct vmbus_channel *channel) 128 { 129 return (u8)channel->offermsg.monitorid / 32; 130 } 131 132 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 133 { 134 return (u8)channel->offermsg.monitorid % 32; 135 } 136 137 static u32 channel_pending(const struct vmbus_channel *channel, 138 const struct hv_monitor_page *monitor_page) 139 { 140 u8 monitor_group = channel_monitor_group(channel); 141 142 return monitor_page->trigger_group[monitor_group].pending; 143 } 144 145 static u32 channel_latency(const struct vmbus_channel *channel, 146 const struct hv_monitor_page *monitor_page) 147 { 148 u8 monitor_group = channel_monitor_group(channel); 149 u8 monitor_offset = channel_monitor_offset(channel); 150 151 return monitor_page->latency[monitor_group][monitor_offset]; 152 } 153 154 static u32 channel_conn_id(struct vmbus_channel *channel, 155 struct hv_monitor_page *monitor_page) 156 { 157 u8 monitor_group = channel_monitor_group(channel); 158 u8 monitor_offset = channel_monitor_offset(channel); 159 160 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 161 } 162 163 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 164 char *buf) 165 { 166 struct hv_device *hv_dev = device_to_hv_device(dev); 167 168 if (!hv_dev->channel) 169 return -ENODEV; 170 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 171 } 172 static DEVICE_ATTR_RO(id); 173 174 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 175 char *buf) 176 { 177 struct hv_device *hv_dev = device_to_hv_device(dev); 178 179 if (!hv_dev->channel) 180 return -ENODEV; 181 return sprintf(buf, "%d\n", hv_dev->channel->state); 182 } 183 static DEVICE_ATTR_RO(state); 184 185 static ssize_t monitor_id_show(struct device *dev, 186 struct device_attribute *dev_attr, char *buf) 187 { 188 struct hv_device *hv_dev = device_to_hv_device(dev); 189 190 if (!hv_dev->channel) 191 return -ENODEV; 192 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 193 } 194 static DEVICE_ATTR_RO(monitor_id); 195 196 static ssize_t class_id_show(struct device *dev, 197 struct device_attribute *dev_attr, char *buf) 198 { 199 struct hv_device *hv_dev = device_to_hv_device(dev); 200 201 if (!hv_dev->channel) 202 return -ENODEV; 203 return sprintf(buf, "{%pUl}\n", 204 &hv_dev->channel->offermsg.offer.if_type); 205 } 206 static DEVICE_ATTR_RO(class_id); 207 208 static ssize_t device_id_show(struct device *dev, 209 struct device_attribute *dev_attr, char *buf) 210 { 211 struct hv_device *hv_dev = device_to_hv_device(dev); 212 213 if (!hv_dev->channel) 214 return -ENODEV; 215 return sprintf(buf, "{%pUl}\n", 216 &hv_dev->channel->offermsg.offer.if_instance); 217 } 218 static DEVICE_ATTR_RO(device_id); 219 220 static ssize_t modalias_show(struct device *dev, 221 struct device_attribute *dev_attr, char *buf) 222 { 223 struct hv_device *hv_dev = device_to_hv_device(dev); 224 225 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type); 226 } 227 static DEVICE_ATTR_RO(modalias); 228 229 #ifdef CONFIG_NUMA 230 static ssize_t numa_node_show(struct device *dev, 231 struct device_attribute *attr, char *buf) 232 { 233 struct hv_device *hv_dev = device_to_hv_device(dev); 234 235 if (!hv_dev->channel) 236 return -ENODEV; 237 238 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu)); 239 } 240 static DEVICE_ATTR_RO(numa_node); 241 #endif 242 243 static ssize_t server_monitor_pending_show(struct device *dev, 244 struct device_attribute *dev_attr, 245 char *buf) 246 { 247 struct hv_device *hv_dev = device_to_hv_device(dev); 248 249 if (!hv_dev->channel) 250 return -ENODEV; 251 return sprintf(buf, "%d\n", 252 channel_pending(hv_dev->channel, 253 vmbus_connection.monitor_pages[0])); 254 } 255 static DEVICE_ATTR_RO(server_monitor_pending); 256 257 static ssize_t client_monitor_pending_show(struct device *dev, 258 struct device_attribute *dev_attr, 259 char *buf) 260 { 261 struct hv_device *hv_dev = device_to_hv_device(dev); 262 263 if (!hv_dev->channel) 264 return -ENODEV; 265 return sprintf(buf, "%d\n", 266 channel_pending(hv_dev->channel, 267 vmbus_connection.monitor_pages[1])); 268 } 269 static DEVICE_ATTR_RO(client_monitor_pending); 270 271 static ssize_t server_monitor_latency_show(struct device *dev, 272 struct device_attribute *dev_attr, 273 char *buf) 274 { 275 struct hv_device *hv_dev = device_to_hv_device(dev); 276 277 if (!hv_dev->channel) 278 return -ENODEV; 279 return sprintf(buf, "%d\n", 280 channel_latency(hv_dev->channel, 281 vmbus_connection.monitor_pages[0])); 282 } 283 static DEVICE_ATTR_RO(server_monitor_latency); 284 285 static ssize_t client_monitor_latency_show(struct device *dev, 286 struct device_attribute *dev_attr, 287 char *buf) 288 { 289 struct hv_device *hv_dev = device_to_hv_device(dev); 290 291 if (!hv_dev->channel) 292 return -ENODEV; 293 return sprintf(buf, "%d\n", 294 channel_latency(hv_dev->channel, 295 vmbus_connection.monitor_pages[1])); 296 } 297 static DEVICE_ATTR_RO(client_monitor_latency); 298 299 static ssize_t server_monitor_conn_id_show(struct device *dev, 300 struct device_attribute *dev_attr, 301 char *buf) 302 { 303 struct hv_device *hv_dev = device_to_hv_device(dev); 304 305 if (!hv_dev->channel) 306 return -ENODEV; 307 return sprintf(buf, "%d\n", 308 channel_conn_id(hv_dev->channel, 309 vmbus_connection.monitor_pages[0])); 310 } 311 static DEVICE_ATTR_RO(server_monitor_conn_id); 312 313 static ssize_t client_monitor_conn_id_show(struct device *dev, 314 struct device_attribute *dev_attr, 315 char *buf) 316 { 317 struct hv_device *hv_dev = device_to_hv_device(dev); 318 319 if (!hv_dev->channel) 320 return -ENODEV; 321 return sprintf(buf, "%d\n", 322 channel_conn_id(hv_dev->channel, 323 vmbus_connection.monitor_pages[1])); 324 } 325 static DEVICE_ATTR_RO(client_monitor_conn_id); 326 327 static ssize_t out_intr_mask_show(struct device *dev, 328 struct device_attribute *dev_attr, char *buf) 329 { 330 struct hv_device *hv_dev = device_to_hv_device(dev); 331 struct hv_ring_buffer_debug_info outbound; 332 int ret; 333 334 if (!hv_dev->channel) 335 return -ENODEV; 336 337 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 338 &outbound); 339 if (ret < 0) 340 return ret; 341 342 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 343 } 344 static DEVICE_ATTR_RO(out_intr_mask); 345 346 static ssize_t out_read_index_show(struct device *dev, 347 struct device_attribute *dev_attr, char *buf) 348 { 349 struct hv_device *hv_dev = device_to_hv_device(dev); 350 struct hv_ring_buffer_debug_info outbound; 351 int ret; 352 353 if (!hv_dev->channel) 354 return -ENODEV; 355 356 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 357 &outbound); 358 if (ret < 0) 359 return ret; 360 return sprintf(buf, "%d\n", outbound.current_read_index); 361 } 362 static DEVICE_ATTR_RO(out_read_index); 363 364 static ssize_t out_write_index_show(struct device *dev, 365 struct device_attribute *dev_attr, 366 char *buf) 367 { 368 struct hv_device *hv_dev = device_to_hv_device(dev); 369 struct hv_ring_buffer_debug_info outbound; 370 int ret; 371 372 if (!hv_dev->channel) 373 return -ENODEV; 374 375 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 376 &outbound); 377 if (ret < 0) 378 return ret; 379 return sprintf(buf, "%d\n", outbound.current_write_index); 380 } 381 static DEVICE_ATTR_RO(out_write_index); 382 383 static ssize_t out_read_bytes_avail_show(struct device *dev, 384 struct device_attribute *dev_attr, 385 char *buf) 386 { 387 struct hv_device *hv_dev = device_to_hv_device(dev); 388 struct hv_ring_buffer_debug_info outbound; 389 int ret; 390 391 if (!hv_dev->channel) 392 return -ENODEV; 393 394 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 395 &outbound); 396 if (ret < 0) 397 return ret; 398 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 399 } 400 static DEVICE_ATTR_RO(out_read_bytes_avail); 401 402 static ssize_t out_write_bytes_avail_show(struct device *dev, 403 struct device_attribute *dev_attr, 404 char *buf) 405 { 406 struct hv_device *hv_dev = device_to_hv_device(dev); 407 struct hv_ring_buffer_debug_info outbound; 408 int ret; 409 410 if (!hv_dev->channel) 411 return -ENODEV; 412 413 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 414 &outbound); 415 if (ret < 0) 416 return ret; 417 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 418 } 419 static DEVICE_ATTR_RO(out_write_bytes_avail); 420 421 static ssize_t in_intr_mask_show(struct device *dev, 422 struct device_attribute *dev_attr, char *buf) 423 { 424 struct hv_device *hv_dev = device_to_hv_device(dev); 425 struct hv_ring_buffer_debug_info inbound; 426 int ret; 427 428 if (!hv_dev->channel) 429 return -ENODEV; 430 431 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 432 if (ret < 0) 433 return ret; 434 435 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 436 } 437 static DEVICE_ATTR_RO(in_intr_mask); 438 439 static ssize_t in_read_index_show(struct device *dev, 440 struct device_attribute *dev_attr, char *buf) 441 { 442 struct hv_device *hv_dev = device_to_hv_device(dev); 443 struct hv_ring_buffer_debug_info inbound; 444 int ret; 445 446 if (!hv_dev->channel) 447 return -ENODEV; 448 449 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 450 if (ret < 0) 451 return ret; 452 453 return sprintf(buf, "%d\n", inbound.current_read_index); 454 } 455 static DEVICE_ATTR_RO(in_read_index); 456 457 static ssize_t in_write_index_show(struct device *dev, 458 struct device_attribute *dev_attr, char *buf) 459 { 460 struct hv_device *hv_dev = device_to_hv_device(dev); 461 struct hv_ring_buffer_debug_info inbound; 462 int ret; 463 464 if (!hv_dev->channel) 465 return -ENODEV; 466 467 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 468 if (ret < 0) 469 return ret; 470 471 return sprintf(buf, "%d\n", inbound.current_write_index); 472 } 473 static DEVICE_ATTR_RO(in_write_index); 474 475 static ssize_t in_read_bytes_avail_show(struct device *dev, 476 struct device_attribute *dev_attr, 477 char *buf) 478 { 479 struct hv_device *hv_dev = device_to_hv_device(dev); 480 struct hv_ring_buffer_debug_info inbound; 481 int ret; 482 483 if (!hv_dev->channel) 484 return -ENODEV; 485 486 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 487 if (ret < 0) 488 return ret; 489 490 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 491 } 492 static DEVICE_ATTR_RO(in_read_bytes_avail); 493 494 static ssize_t in_write_bytes_avail_show(struct device *dev, 495 struct device_attribute *dev_attr, 496 char *buf) 497 { 498 struct hv_device *hv_dev = device_to_hv_device(dev); 499 struct hv_ring_buffer_debug_info inbound; 500 int ret; 501 502 if (!hv_dev->channel) 503 return -ENODEV; 504 505 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 506 if (ret < 0) 507 return ret; 508 509 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 510 } 511 static DEVICE_ATTR_RO(in_write_bytes_avail); 512 513 static ssize_t channel_vp_mapping_show(struct device *dev, 514 struct device_attribute *dev_attr, 515 char *buf) 516 { 517 struct hv_device *hv_dev = device_to_hv_device(dev); 518 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 519 int buf_size = PAGE_SIZE, n_written, tot_written; 520 struct list_head *cur; 521 522 if (!channel) 523 return -ENODEV; 524 525 mutex_lock(&vmbus_connection.channel_mutex); 526 527 tot_written = snprintf(buf, buf_size, "%u:%u\n", 528 channel->offermsg.child_relid, channel->target_cpu); 529 530 list_for_each(cur, &channel->sc_list) { 531 if (tot_written >= buf_size - 1) 532 break; 533 534 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 535 n_written = scnprintf(buf + tot_written, 536 buf_size - tot_written, 537 "%u:%u\n", 538 cur_sc->offermsg.child_relid, 539 cur_sc->target_cpu); 540 tot_written += n_written; 541 } 542 543 mutex_unlock(&vmbus_connection.channel_mutex); 544 545 return tot_written; 546 } 547 static DEVICE_ATTR_RO(channel_vp_mapping); 548 549 static ssize_t vendor_show(struct device *dev, 550 struct device_attribute *dev_attr, 551 char *buf) 552 { 553 struct hv_device *hv_dev = device_to_hv_device(dev); 554 555 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 556 } 557 static DEVICE_ATTR_RO(vendor); 558 559 static ssize_t device_show(struct device *dev, 560 struct device_attribute *dev_attr, 561 char *buf) 562 { 563 struct hv_device *hv_dev = device_to_hv_device(dev); 564 565 return sprintf(buf, "0x%x\n", hv_dev->device_id); 566 } 567 static DEVICE_ATTR_RO(device); 568 569 static ssize_t driver_override_store(struct device *dev, 570 struct device_attribute *attr, 571 const char *buf, size_t count) 572 { 573 struct hv_device *hv_dev = device_to_hv_device(dev); 574 char *driver_override, *old, *cp; 575 576 /* We need to keep extra room for a newline */ 577 if (count >= (PAGE_SIZE - 1)) 578 return -EINVAL; 579 580 driver_override = kstrndup(buf, count, GFP_KERNEL); 581 if (!driver_override) 582 return -ENOMEM; 583 584 cp = strchr(driver_override, '\n'); 585 if (cp) 586 *cp = '\0'; 587 588 device_lock(dev); 589 old = hv_dev->driver_override; 590 if (strlen(driver_override)) { 591 hv_dev->driver_override = driver_override; 592 } else { 593 kfree(driver_override); 594 hv_dev->driver_override = NULL; 595 } 596 device_unlock(dev); 597 598 kfree(old); 599 600 return count; 601 } 602 603 static ssize_t driver_override_show(struct device *dev, 604 struct device_attribute *attr, char *buf) 605 { 606 struct hv_device *hv_dev = device_to_hv_device(dev); 607 ssize_t len; 608 609 device_lock(dev); 610 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 611 device_unlock(dev); 612 613 return len; 614 } 615 static DEVICE_ATTR_RW(driver_override); 616 617 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 618 static struct attribute *vmbus_dev_attrs[] = { 619 &dev_attr_id.attr, 620 &dev_attr_state.attr, 621 &dev_attr_monitor_id.attr, 622 &dev_attr_class_id.attr, 623 &dev_attr_device_id.attr, 624 &dev_attr_modalias.attr, 625 #ifdef CONFIG_NUMA 626 &dev_attr_numa_node.attr, 627 #endif 628 &dev_attr_server_monitor_pending.attr, 629 &dev_attr_client_monitor_pending.attr, 630 &dev_attr_server_monitor_latency.attr, 631 &dev_attr_client_monitor_latency.attr, 632 &dev_attr_server_monitor_conn_id.attr, 633 &dev_attr_client_monitor_conn_id.attr, 634 &dev_attr_out_intr_mask.attr, 635 &dev_attr_out_read_index.attr, 636 &dev_attr_out_write_index.attr, 637 &dev_attr_out_read_bytes_avail.attr, 638 &dev_attr_out_write_bytes_avail.attr, 639 &dev_attr_in_intr_mask.attr, 640 &dev_attr_in_read_index.attr, 641 &dev_attr_in_write_index.attr, 642 &dev_attr_in_read_bytes_avail.attr, 643 &dev_attr_in_write_bytes_avail.attr, 644 &dev_attr_channel_vp_mapping.attr, 645 &dev_attr_vendor.attr, 646 &dev_attr_device.attr, 647 &dev_attr_driver_override.attr, 648 NULL, 649 }; 650 651 /* 652 * Device-level attribute_group callback function. Returns the permission for 653 * each attribute, and returns 0 if an attribute is not visible. 654 */ 655 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 656 struct attribute *attr, int idx) 657 { 658 struct device *dev = kobj_to_dev(kobj); 659 const struct hv_device *hv_dev = device_to_hv_device(dev); 660 661 /* Hide the monitor attributes if the monitor mechanism is not used. */ 662 if (!hv_dev->channel->offermsg.monitor_allocated && 663 (attr == &dev_attr_monitor_id.attr || 664 attr == &dev_attr_server_monitor_pending.attr || 665 attr == &dev_attr_client_monitor_pending.attr || 666 attr == &dev_attr_server_monitor_latency.attr || 667 attr == &dev_attr_client_monitor_latency.attr || 668 attr == &dev_attr_server_monitor_conn_id.attr || 669 attr == &dev_attr_client_monitor_conn_id.attr)) 670 return 0; 671 672 return attr->mode; 673 } 674 675 static const struct attribute_group vmbus_dev_group = { 676 .attrs = vmbus_dev_attrs, 677 .is_visible = vmbus_dev_attr_is_visible 678 }; 679 __ATTRIBUTE_GROUPS(vmbus_dev); 680 681 /* Set up the attribute for /sys/bus/vmbus/hibernation */ 682 static ssize_t hibernation_show(struct bus_type *bus, char *buf) 683 { 684 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported()); 685 } 686 687 static BUS_ATTR_RO(hibernation); 688 689 static struct attribute *vmbus_bus_attrs[] = { 690 &bus_attr_hibernation.attr, 691 NULL, 692 }; 693 static const struct attribute_group vmbus_bus_group = { 694 .attrs = vmbus_bus_attrs, 695 }; 696 __ATTRIBUTE_GROUPS(vmbus_bus); 697 698 /* 699 * vmbus_uevent - add uevent for our device 700 * 701 * This routine is invoked when a device is added or removed on the vmbus to 702 * generate a uevent to udev in the userspace. The udev will then look at its 703 * rule and the uevent generated here to load the appropriate driver 704 * 705 * The alias string will be of the form vmbus:guid where guid is the string 706 * representation of the device guid (each byte of the guid will be 707 * represented with two hex characters. 708 */ 709 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 710 { 711 struct hv_device *dev = device_to_hv_device(device); 712 const char *format = "MODALIAS=vmbus:%*phN"; 713 714 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type); 715 } 716 717 static const struct hv_vmbus_device_id * 718 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 719 { 720 if (id == NULL) 721 return NULL; /* empty device table */ 722 723 for (; !guid_is_null(&id->guid); id++) 724 if (guid_equal(&id->guid, guid)) 725 return id; 726 727 return NULL; 728 } 729 730 static const struct hv_vmbus_device_id * 731 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 732 { 733 const struct hv_vmbus_device_id *id = NULL; 734 struct vmbus_dynid *dynid; 735 736 spin_lock(&drv->dynids.lock); 737 list_for_each_entry(dynid, &drv->dynids.list, node) { 738 if (guid_equal(&dynid->id.guid, guid)) { 739 id = &dynid->id; 740 break; 741 } 742 } 743 spin_unlock(&drv->dynids.lock); 744 745 return id; 746 } 747 748 static const struct hv_vmbus_device_id vmbus_device_null; 749 750 /* 751 * Return a matching hv_vmbus_device_id pointer. 752 * If there is no match, return NULL. 753 */ 754 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 755 struct hv_device *dev) 756 { 757 const guid_t *guid = &dev->dev_type; 758 const struct hv_vmbus_device_id *id; 759 760 /* When driver_override is set, only bind to the matching driver */ 761 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 762 return NULL; 763 764 /* Look at the dynamic ids first, before the static ones */ 765 id = hv_vmbus_dynid_match(drv, guid); 766 if (!id) 767 id = hv_vmbus_dev_match(drv->id_table, guid); 768 769 /* driver_override will always match, send a dummy id */ 770 if (!id && dev->driver_override) 771 id = &vmbus_device_null; 772 773 return id; 774 } 775 776 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 777 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 778 { 779 struct vmbus_dynid *dynid; 780 781 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 782 if (!dynid) 783 return -ENOMEM; 784 785 dynid->id.guid = *guid; 786 787 spin_lock(&drv->dynids.lock); 788 list_add_tail(&dynid->node, &drv->dynids.list); 789 spin_unlock(&drv->dynids.lock); 790 791 return driver_attach(&drv->driver); 792 } 793 794 static void vmbus_free_dynids(struct hv_driver *drv) 795 { 796 struct vmbus_dynid *dynid, *n; 797 798 spin_lock(&drv->dynids.lock); 799 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 800 list_del(&dynid->node); 801 kfree(dynid); 802 } 803 spin_unlock(&drv->dynids.lock); 804 } 805 806 /* 807 * store_new_id - sysfs frontend to vmbus_add_dynid() 808 * 809 * Allow GUIDs to be added to an existing driver via sysfs. 810 */ 811 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 812 size_t count) 813 { 814 struct hv_driver *drv = drv_to_hv_drv(driver); 815 guid_t guid; 816 ssize_t retval; 817 818 retval = guid_parse(buf, &guid); 819 if (retval) 820 return retval; 821 822 if (hv_vmbus_dynid_match(drv, &guid)) 823 return -EEXIST; 824 825 retval = vmbus_add_dynid(drv, &guid); 826 if (retval) 827 return retval; 828 return count; 829 } 830 static DRIVER_ATTR_WO(new_id); 831 832 /* 833 * store_remove_id - remove a PCI device ID from this driver 834 * 835 * Removes a dynamic pci device ID to this driver. 836 */ 837 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 838 size_t count) 839 { 840 struct hv_driver *drv = drv_to_hv_drv(driver); 841 struct vmbus_dynid *dynid, *n; 842 guid_t guid; 843 ssize_t retval; 844 845 retval = guid_parse(buf, &guid); 846 if (retval) 847 return retval; 848 849 retval = -ENODEV; 850 spin_lock(&drv->dynids.lock); 851 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 852 struct hv_vmbus_device_id *id = &dynid->id; 853 854 if (guid_equal(&id->guid, &guid)) { 855 list_del(&dynid->node); 856 kfree(dynid); 857 retval = count; 858 break; 859 } 860 } 861 spin_unlock(&drv->dynids.lock); 862 863 return retval; 864 } 865 static DRIVER_ATTR_WO(remove_id); 866 867 static struct attribute *vmbus_drv_attrs[] = { 868 &driver_attr_new_id.attr, 869 &driver_attr_remove_id.attr, 870 NULL, 871 }; 872 ATTRIBUTE_GROUPS(vmbus_drv); 873 874 875 /* 876 * vmbus_match - Attempt to match the specified device to the specified driver 877 */ 878 static int vmbus_match(struct device *device, struct device_driver *driver) 879 { 880 struct hv_driver *drv = drv_to_hv_drv(driver); 881 struct hv_device *hv_dev = device_to_hv_device(device); 882 883 /* The hv_sock driver handles all hv_sock offers. */ 884 if (is_hvsock_channel(hv_dev->channel)) 885 return drv->hvsock; 886 887 if (hv_vmbus_get_id(drv, hv_dev)) 888 return 1; 889 890 return 0; 891 } 892 893 /* 894 * vmbus_probe - Add the new vmbus's child device 895 */ 896 static int vmbus_probe(struct device *child_device) 897 { 898 int ret = 0; 899 struct hv_driver *drv = 900 drv_to_hv_drv(child_device->driver); 901 struct hv_device *dev = device_to_hv_device(child_device); 902 const struct hv_vmbus_device_id *dev_id; 903 904 dev_id = hv_vmbus_get_id(drv, dev); 905 if (drv->probe) { 906 ret = drv->probe(dev, dev_id); 907 if (ret != 0) 908 pr_err("probe failed for device %s (%d)\n", 909 dev_name(child_device), ret); 910 911 } else { 912 pr_err("probe not set for driver %s\n", 913 dev_name(child_device)); 914 ret = -ENODEV; 915 } 916 return ret; 917 } 918 919 /* 920 * vmbus_remove - Remove a vmbus device 921 */ 922 static int vmbus_remove(struct device *child_device) 923 { 924 struct hv_driver *drv; 925 struct hv_device *dev = device_to_hv_device(child_device); 926 927 if (child_device->driver) { 928 drv = drv_to_hv_drv(child_device->driver); 929 if (drv->remove) 930 drv->remove(dev); 931 } 932 933 return 0; 934 } 935 936 937 /* 938 * vmbus_shutdown - Shutdown a vmbus device 939 */ 940 static void vmbus_shutdown(struct device *child_device) 941 { 942 struct hv_driver *drv; 943 struct hv_device *dev = device_to_hv_device(child_device); 944 945 946 /* The device may not be attached yet */ 947 if (!child_device->driver) 948 return; 949 950 drv = drv_to_hv_drv(child_device->driver); 951 952 if (drv->shutdown) 953 drv->shutdown(dev); 954 } 955 956 #ifdef CONFIG_PM_SLEEP 957 /* 958 * vmbus_suspend - Suspend a vmbus device 959 */ 960 static int vmbus_suspend(struct device *child_device) 961 { 962 struct hv_driver *drv; 963 struct hv_device *dev = device_to_hv_device(child_device); 964 965 /* The device may not be attached yet */ 966 if (!child_device->driver) 967 return 0; 968 969 drv = drv_to_hv_drv(child_device->driver); 970 if (!drv->suspend) 971 return -EOPNOTSUPP; 972 973 return drv->suspend(dev); 974 } 975 976 /* 977 * vmbus_resume - Resume a vmbus device 978 */ 979 static int vmbus_resume(struct device *child_device) 980 { 981 struct hv_driver *drv; 982 struct hv_device *dev = device_to_hv_device(child_device); 983 984 /* The device may not be attached yet */ 985 if (!child_device->driver) 986 return 0; 987 988 drv = drv_to_hv_drv(child_device->driver); 989 if (!drv->resume) 990 return -EOPNOTSUPP; 991 992 return drv->resume(dev); 993 } 994 #else 995 #define vmbus_suspend NULL 996 #define vmbus_resume NULL 997 #endif /* CONFIG_PM_SLEEP */ 998 999 /* 1000 * vmbus_device_release - Final callback release of the vmbus child device 1001 */ 1002 static void vmbus_device_release(struct device *device) 1003 { 1004 struct hv_device *hv_dev = device_to_hv_device(device); 1005 struct vmbus_channel *channel = hv_dev->channel; 1006 1007 hv_debug_rm_dev_dir(hv_dev); 1008 1009 mutex_lock(&vmbus_connection.channel_mutex); 1010 hv_process_channel_removal(channel); 1011 mutex_unlock(&vmbus_connection.channel_mutex); 1012 kfree(hv_dev); 1013 } 1014 1015 /* 1016 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm. 1017 * 1018 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we 1019 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there 1020 * is no way to wake up a Generation-2 VM. 1021 * 1022 * The other 4 ops are for hibernation. 1023 */ 1024 1025 static const struct dev_pm_ops vmbus_pm = { 1026 .suspend_noirq = NULL, 1027 .resume_noirq = NULL, 1028 .freeze_noirq = vmbus_suspend, 1029 .thaw_noirq = vmbus_resume, 1030 .poweroff_noirq = vmbus_suspend, 1031 .restore_noirq = vmbus_resume, 1032 }; 1033 1034 /* The one and only one */ 1035 static struct bus_type hv_bus = { 1036 .name = "vmbus", 1037 .match = vmbus_match, 1038 .shutdown = vmbus_shutdown, 1039 .remove = vmbus_remove, 1040 .probe = vmbus_probe, 1041 .uevent = vmbus_uevent, 1042 .dev_groups = vmbus_dev_groups, 1043 .drv_groups = vmbus_drv_groups, 1044 .bus_groups = vmbus_bus_groups, 1045 .pm = &vmbus_pm, 1046 }; 1047 1048 struct onmessage_work_context { 1049 struct work_struct work; 1050 struct { 1051 struct hv_message_header header; 1052 u8 payload[]; 1053 } msg; 1054 }; 1055 1056 static void vmbus_onmessage_work(struct work_struct *work) 1057 { 1058 struct onmessage_work_context *ctx; 1059 1060 /* Do not process messages if we're in DISCONNECTED state */ 1061 if (vmbus_connection.conn_state == DISCONNECTED) 1062 return; 1063 1064 ctx = container_of(work, struct onmessage_work_context, 1065 work); 1066 vmbus_onmessage((struct vmbus_channel_message_header *) 1067 &ctx->msg.payload); 1068 kfree(ctx); 1069 } 1070 1071 void vmbus_on_msg_dpc(unsigned long data) 1072 { 1073 struct hv_per_cpu_context *hv_cpu = (void *)data; 1074 void *page_addr = hv_cpu->synic_message_page; 1075 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr + 1076 VMBUS_MESSAGE_SINT; 1077 struct vmbus_channel_message_header *hdr; 1078 enum vmbus_channel_message_type msgtype; 1079 const struct vmbus_channel_message_table_entry *entry; 1080 struct onmessage_work_context *ctx; 1081 __u8 payload_size; 1082 u32 message_type; 1083 1084 /* 1085 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as 1086 * it is being used in 'struct vmbus_channel_message_header' definition 1087 * which is supposed to match hypervisor ABI. 1088 */ 1089 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32)); 1090 1091 /* 1092 * Since the message is in memory shared with the host, an erroneous or 1093 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc() 1094 * or individual message handlers are executing; to prevent this, copy 1095 * the message into private memory. 1096 */ 1097 memcpy(&msg_copy, msg, sizeof(struct hv_message)); 1098 1099 message_type = msg_copy.header.message_type; 1100 if (message_type == HVMSG_NONE) 1101 /* no msg */ 1102 return; 1103 1104 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload; 1105 msgtype = hdr->msgtype; 1106 1107 trace_vmbus_on_msg_dpc(hdr); 1108 1109 if (msgtype >= CHANNELMSG_COUNT) { 1110 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype); 1111 goto msg_handled; 1112 } 1113 1114 payload_size = msg_copy.header.payload_size; 1115 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) { 1116 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size); 1117 goto msg_handled; 1118 } 1119 1120 entry = &channel_message_table[msgtype]; 1121 1122 if (!entry->message_handler) 1123 goto msg_handled; 1124 1125 if (payload_size < entry->min_payload_len) { 1126 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size); 1127 goto msg_handled; 1128 } 1129 1130 if (entry->handler_type == VMHT_BLOCKING) { 1131 ctx = kmalloc(sizeof(*ctx) + payload_size, GFP_ATOMIC); 1132 if (ctx == NULL) 1133 return; 1134 1135 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1136 memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size); 1137 1138 /* 1139 * The host can generate a rescind message while we 1140 * may still be handling the original offer. We deal with 1141 * this condition by relying on the synchronization provided 1142 * by offer_in_progress and by channel_mutex. See also the 1143 * inline comments in vmbus_onoffer_rescind(). 1144 */ 1145 switch (msgtype) { 1146 case CHANNELMSG_RESCIND_CHANNELOFFER: 1147 /* 1148 * If we are handling the rescind message; 1149 * schedule the work on the global work queue. 1150 * 1151 * The OFFER message and the RESCIND message should 1152 * not be handled by the same serialized work queue, 1153 * because the OFFER handler may call vmbus_open(), 1154 * which tries to open the channel by sending an 1155 * OPEN_CHANNEL message to the host and waits for 1156 * the host's response; however, if the host has 1157 * rescinded the channel before it receives the 1158 * OPEN_CHANNEL message, the host just silently 1159 * ignores the OPEN_CHANNEL message; as a result, 1160 * the guest's OFFER handler hangs for ever, if we 1161 * handle the RESCIND message in the same serialized 1162 * work queue: the RESCIND handler can not start to 1163 * run before the OFFER handler finishes. 1164 */ 1165 schedule_work(&ctx->work); 1166 break; 1167 1168 case CHANNELMSG_OFFERCHANNEL: 1169 /* 1170 * The host sends the offer message of a given channel 1171 * before sending the rescind message of the same 1172 * channel. These messages are sent to the guest's 1173 * connect CPU; the guest then starts processing them 1174 * in the tasklet handler on this CPU: 1175 * 1176 * VMBUS_CONNECT_CPU 1177 * 1178 * [vmbus_on_msg_dpc()] 1179 * atomic_inc() // CHANNELMSG_OFFERCHANNEL 1180 * queue_work() 1181 * ... 1182 * [vmbus_on_msg_dpc()] 1183 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER 1184 * 1185 * We rely on the memory-ordering properties of the 1186 * queue_work() and schedule_work() primitives, which 1187 * guarantee that the atomic increment will be visible 1188 * to the CPUs which will execute the offer & rescind 1189 * works by the time these works will start execution. 1190 */ 1191 atomic_inc(&vmbus_connection.offer_in_progress); 1192 fallthrough; 1193 1194 default: 1195 queue_work(vmbus_connection.work_queue, &ctx->work); 1196 } 1197 } else 1198 entry->message_handler(hdr); 1199 1200 msg_handled: 1201 vmbus_signal_eom(msg, message_type); 1202 } 1203 1204 #ifdef CONFIG_PM_SLEEP 1205 /* 1206 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for 1207 * hibernation, because hv_sock connections can not persist across hibernation. 1208 */ 1209 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) 1210 { 1211 struct onmessage_work_context *ctx; 1212 struct vmbus_channel_rescind_offer *rescind; 1213 1214 WARN_ON(!is_hvsock_channel(channel)); 1215 1216 /* 1217 * Allocation size is small and the allocation should really not fail, 1218 * otherwise the state of the hv_sock connections ends up in limbo. 1219 */ 1220 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind), 1221 GFP_KERNEL | __GFP_NOFAIL); 1222 1223 /* 1224 * So far, these are not really used by Linux. Just set them to the 1225 * reasonable values conforming to the definitions of the fields. 1226 */ 1227 ctx->msg.header.message_type = 1; 1228 ctx->msg.header.payload_size = sizeof(*rescind); 1229 1230 /* These values are actually used by Linux. */ 1231 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload; 1232 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; 1233 rescind->child_relid = channel->offermsg.child_relid; 1234 1235 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1236 1237 queue_work(vmbus_connection.work_queue, &ctx->work); 1238 } 1239 #endif /* CONFIG_PM_SLEEP */ 1240 1241 /* 1242 * Schedule all channels with events pending 1243 */ 1244 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1245 { 1246 unsigned long *recv_int_page; 1247 u32 maxbits, relid; 1248 1249 if (vmbus_proto_version < VERSION_WIN8) { 1250 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1251 recv_int_page = vmbus_connection.recv_int_page; 1252 } else { 1253 /* 1254 * When the host is win8 and beyond, the event page 1255 * can be directly checked to get the id of the channel 1256 * that has the interrupt pending. 1257 */ 1258 void *page_addr = hv_cpu->synic_event_page; 1259 union hv_synic_event_flags *event 1260 = (union hv_synic_event_flags *)page_addr + 1261 VMBUS_MESSAGE_SINT; 1262 1263 maxbits = HV_EVENT_FLAGS_COUNT; 1264 recv_int_page = event->flags; 1265 } 1266 1267 if (unlikely(!recv_int_page)) 1268 return; 1269 1270 for_each_set_bit(relid, recv_int_page, maxbits) { 1271 void (*callback_fn)(void *context); 1272 struct vmbus_channel *channel; 1273 1274 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1275 continue; 1276 1277 /* Special case - vmbus channel protocol msg */ 1278 if (relid == 0) 1279 continue; 1280 1281 /* 1282 * Pairs with the kfree_rcu() in vmbus_chan_release(). 1283 * Guarantees that the channel data structure doesn't 1284 * get freed while the channel pointer below is being 1285 * dereferenced. 1286 */ 1287 rcu_read_lock(); 1288 1289 /* Find channel based on relid */ 1290 channel = relid2channel(relid); 1291 if (channel == NULL) 1292 goto sched_unlock_rcu; 1293 1294 if (channel->rescind) 1295 goto sched_unlock_rcu; 1296 1297 /* 1298 * Make sure that the ring buffer data structure doesn't get 1299 * freed while we dereference the ring buffer pointer. Test 1300 * for the channel's onchannel_callback being NULL within a 1301 * sched_lock critical section. See also the inline comments 1302 * in vmbus_reset_channel_cb(). 1303 */ 1304 spin_lock(&channel->sched_lock); 1305 1306 callback_fn = channel->onchannel_callback; 1307 if (unlikely(callback_fn == NULL)) 1308 goto sched_unlock; 1309 1310 trace_vmbus_chan_sched(channel); 1311 1312 ++channel->interrupts; 1313 1314 switch (channel->callback_mode) { 1315 case HV_CALL_ISR: 1316 (*callback_fn)(channel->channel_callback_context); 1317 break; 1318 1319 case HV_CALL_BATCHED: 1320 hv_begin_read(&channel->inbound); 1321 fallthrough; 1322 case HV_CALL_DIRECT: 1323 tasklet_schedule(&channel->callback_event); 1324 } 1325 1326 sched_unlock: 1327 spin_unlock(&channel->sched_lock); 1328 sched_unlock_rcu: 1329 rcu_read_unlock(); 1330 } 1331 } 1332 1333 static void vmbus_isr(void) 1334 { 1335 struct hv_per_cpu_context *hv_cpu 1336 = this_cpu_ptr(hv_context.cpu_context); 1337 void *page_addr = hv_cpu->synic_event_page; 1338 struct hv_message *msg; 1339 union hv_synic_event_flags *event; 1340 bool handled = false; 1341 1342 if (unlikely(page_addr == NULL)) 1343 return; 1344 1345 event = (union hv_synic_event_flags *)page_addr + 1346 VMBUS_MESSAGE_SINT; 1347 /* 1348 * Check for events before checking for messages. This is the order 1349 * in which events and messages are checked in Windows guests on 1350 * Hyper-V, and the Windows team suggested we do the same. 1351 */ 1352 1353 if ((vmbus_proto_version == VERSION_WS2008) || 1354 (vmbus_proto_version == VERSION_WIN7)) { 1355 1356 /* Since we are a child, we only need to check bit 0 */ 1357 if (sync_test_and_clear_bit(0, event->flags)) 1358 handled = true; 1359 } else { 1360 /* 1361 * Our host is win8 or above. The signaling mechanism 1362 * has changed and we can directly look at the event page. 1363 * If bit n is set then we have an interrup on the channel 1364 * whose id is n. 1365 */ 1366 handled = true; 1367 } 1368 1369 if (handled) 1370 vmbus_chan_sched(hv_cpu); 1371 1372 page_addr = hv_cpu->synic_message_page; 1373 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1374 1375 /* Check if there are actual msgs to be processed */ 1376 if (msg->header.message_type != HVMSG_NONE) { 1377 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1378 hv_stimer0_isr(); 1379 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1380 } else 1381 tasklet_schedule(&hv_cpu->msg_dpc); 1382 } 1383 1384 add_interrupt_randomness(hv_get_vector(), 0); 1385 } 1386 1387 /* 1388 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1389 * buffer and call into Hyper-V to transfer the data. 1390 */ 1391 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1392 enum kmsg_dump_reason reason) 1393 { 1394 size_t bytes_written; 1395 1396 /* We are only interested in panics. */ 1397 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1398 return; 1399 1400 /* 1401 * Write dump contents to the page. No need to synchronize; panic should 1402 * be single-threaded. 1403 */ 1404 kmsg_dump_get_buffer(dumper, false, hv_panic_page, HV_HYP_PAGE_SIZE, 1405 &bytes_written); 1406 if (!bytes_written) 1407 return; 1408 /* 1409 * P3 to contain the physical address of the panic page & P4 to 1410 * contain the size of the panic data in that page. Rest of the 1411 * registers are no-op when the NOTIFY_MSG flag is set. 1412 */ 1413 hv_set_register(HV_REGISTER_CRASH_P0, 0); 1414 hv_set_register(HV_REGISTER_CRASH_P1, 0); 1415 hv_set_register(HV_REGISTER_CRASH_P2, 0); 1416 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page)); 1417 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written); 1418 1419 /* 1420 * Let Hyper-V know there is crash data available along with 1421 * the panic message. 1422 */ 1423 hv_set_register(HV_REGISTER_CRASH_CTL, 1424 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG)); 1425 } 1426 1427 static struct kmsg_dumper hv_kmsg_dumper = { 1428 .dump = hv_kmsg_dump, 1429 }; 1430 1431 static void hv_kmsg_dump_register(void) 1432 { 1433 int ret; 1434 1435 hv_panic_page = hv_alloc_hyperv_zeroed_page(); 1436 if (!hv_panic_page) { 1437 pr_err("Hyper-V: panic message page memory allocation failed\n"); 1438 return; 1439 } 1440 1441 ret = kmsg_dump_register(&hv_kmsg_dumper); 1442 if (ret) { 1443 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret); 1444 hv_free_hyperv_page((unsigned long)hv_panic_page); 1445 hv_panic_page = NULL; 1446 } 1447 } 1448 1449 static struct ctl_table_header *hv_ctl_table_hdr; 1450 1451 /* 1452 * sysctl option to allow the user to control whether kmsg data should be 1453 * reported to Hyper-V on panic. 1454 */ 1455 static struct ctl_table hv_ctl_table[] = { 1456 { 1457 .procname = "hyperv_record_panic_msg", 1458 .data = &sysctl_record_panic_msg, 1459 .maxlen = sizeof(int), 1460 .mode = 0644, 1461 .proc_handler = proc_dointvec_minmax, 1462 .extra1 = SYSCTL_ZERO, 1463 .extra2 = SYSCTL_ONE 1464 }, 1465 {} 1466 }; 1467 1468 static struct ctl_table hv_root_table[] = { 1469 { 1470 .procname = "kernel", 1471 .mode = 0555, 1472 .child = hv_ctl_table 1473 }, 1474 {} 1475 }; 1476 1477 /* 1478 * vmbus_bus_init -Main vmbus driver initialization routine. 1479 * 1480 * Here, we 1481 * - initialize the vmbus driver context 1482 * - invoke the vmbus hv main init routine 1483 * - retrieve the channel offers 1484 */ 1485 static int vmbus_bus_init(void) 1486 { 1487 int ret; 1488 1489 ret = hv_init(); 1490 if (ret != 0) { 1491 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1492 return ret; 1493 } 1494 1495 ret = bus_register(&hv_bus); 1496 if (ret) 1497 return ret; 1498 1499 ret = hv_setup_vmbus_irq(vmbus_irq, vmbus_isr); 1500 if (ret) 1501 goto err_setup; 1502 1503 ret = hv_synic_alloc(); 1504 if (ret) 1505 goto err_alloc; 1506 1507 /* 1508 * Initialize the per-cpu interrupt state and stimer state. 1509 * Then connect to the host. 1510 */ 1511 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1512 hv_synic_init, hv_synic_cleanup); 1513 if (ret < 0) 1514 goto err_cpuhp; 1515 hyperv_cpuhp_online = ret; 1516 1517 ret = vmbus_connect(); 1518 if (ret) 1519 goto err_connect; 1520 1521 /* 1522 * Only register if the crash MSRs are available 1523 */ 1524 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1525 u64 hyperv_crash_ctl; 1526 /* 1527 * Sysctl registration is not fatal, since by default 1528 * reporting is enabled. 1529 */ 1530 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1531 if (!hv_ctl_table_hdr) 1532 pr_err("Hyper-V: sysctl table register error"); 1533 1534 /* 1535 * Register for panic kmsg callback only if the right 1536 * capability is supported by the hypervisor. 1537 */ 1538 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL); 1539 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) 1540 hv_kmsg_dump_register(); 1541 1542 register_die_notifier(&hyperv_die_block); 1543 } 1544 1545 /* 1546 * Always register the panic notifier because we need to unload 1547 * the VMbus channel connection to prevent any VMbus 1548 * activity after the VM panics. 1549 */ 1550 atomic_notifier_chain_register(&panic_notifier_list, 1551 &hyperv_panic_block); 1552 1553 vmbus_request_offers(); 1554 1555 return 0; 1556 1557 err_connect: 1558 cpuhp_remove_state(hyperv_cpuhp_online); 1559 err_cpuhp: 1560 hv_synic_free(); 1561 err_alloc: 1562 hv_remove_vmbus_irq(); 1563 err_setup: 1564 bus_unregister(&hv_bus); 1565 unregister_sysctl_table(hv_ctl_table_hdr); 1566 hv_ctl_table_hdr = NULL; 1567 return ret; 1568 } 1569 1570 /** 1571 * __vmbus_child_driver_register() - Register a vmbus's driver 1572 * @hv_driver: Pointer to driver structure you want to register 1573 * @owner: owner module of the drv 1574 * @mod_name: module name string 1575 * 1576 * Registers the given driver with Linux through the 'driver_register()' call 1577 * and sets up the hyper-v vmbus handling for this driver. 1578 * It will return the state of the 'driver_register()' call. 1579 * 1580 */ 1581 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1582 { 1583 int ret; 1584 1585 pr_info("registering driver %s\n", hv_driver->name); 1586 1587 ret = vmbus_exists(); 1588 if (ret < 0) 1589 return ret; 1590 1591 hv_driver->driver.name = hv_driver->name; 1592 hv_driver->driver.owner = owner; 1593 hv_driver->driver.mod_name = mod_name; 1594 hv_driver->driver.bus = &hv_bus; 1595 1596 spin_lock_init(&hv_driver->dynids.lock); 1597 INIT_LIST_HEAD(&hv_driver->dynids.list); 1598 1599 ret = driver_register(&hv_driver->driver); 1600 1601 return ret; 1602 } 1603 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1604 1605 /** 1606 * vmbus_driver_unregister() - Unregister a vmbus's driver 1607 * @hv_driver: Pointer to driver structure you want to 1608 * un-register 1609 * 1610 * Un-register the given driver that was previous registered with a call to 1611 * vmbus_driver_register() 1612 */ 1613 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1614 { 1615 pr_info("unregistering driver %s\n", hv_driver->name); 1616 1617 if (!vmbus_exists()) { 1618 driver_unregister(&hv_driver->driver); 1619 vmbus_free_dynids(hv_driver); 1620 } 1621 } 1622 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1623 1624 1625 /* 1626 * Called when last reference to channel is gone. 1627 */ 1628 static void vmbus_chan_release(struct kobject *kobj) 1629 { 1630 struct vmbus_channel *channel 1631 = container_of(kobj, struct vmbus_channel, kobj); 1632 1633 kfree_rcu(channel, rcu); 1634 } 1635 1636 struct vmbus_chan_attribute { 1637 struct attribute attr; 1638 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1639 ssize_t (*store)(struct vmbus_channel *chan, 1640 const char *buf, size_t count); 1641 }; 1642 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1643 struct vmbus_chan_attribute chan_attr_##_name \ 1644 = __ATTR(_name, _mode, _show, _store) 1645 #define VMBUS_CHAN_ATTR_RW(_name) \ 1646 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1647 #define VMBUS_CHAN_ATTR_RO(_name) \ 1648 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1649 #define VMBUS_CHAN_ATTR_WO(_name) \ 1650 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1651 1652 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1653 struct attribute *attr, char *buf) 1654 { 1655 const struct vmbus_chan_attribute *attribute 1656 = container_of(attr, struct vmbus_chan_attribute, attr); 1657 struct vmbus_channel *chan 1658 = container_of(kobj, struct vmbus_channel, kobj); 1659 1660 if (!attribute->show) 1661 return -EIO; 1662 1663 return attribute->show(chan, buf); 1664 } 1665 1666 static ssize_t vmbus_chan_attr_store(struct kobject *kobj, 1667 struct attribute *attr, const char *buf, 1668 size_t count) 1669 { 1670 const struct vmbus_chan_attribute *attribute 1671 = container_of(attr, struct vmbus_chan_attribute, attr); 1672 struct vmbus_channel *chan 1673 = container_of(kobj, struct vmbus_channel, kobj); 1674 1675 if (!attribute->store) 1676 return -EIO; 1677 1678 return attribute->store(chan, buf, count); 1679 } 1680 1681 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1682 .show = vmbus_chan_attr_show, 1683 .store = vmbus_chan_attr_store, 1684 }; 1685 1686 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1687 { 1688 struct hv_ring_buffer_info *rbi = &channel->outbound; 1689 ssize_t ret; 1690 1691 mutex_lock(&rbi->ring_buffer_mutex); 1692 if (!rbi->ring_buffer) { 1693 mutex_unlock(&rbi->ring_buffer_mutex); 1694 return -EINVAL; 1695 } 1696 1697 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1698 mutex_unlock(&rbi->ring_buffer_mutex); 1699 return ret; 1700 } 1701 static VMBUS_CHAN_ATTR_RO(out_mask); 1702 1703 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1704 { 1705 struct hv_ring_buffer_info *rbi = &channel->inbound; 1706 ssize_t ret; 1707 1708 mutex_lock(&rbi->ring_buffer_mutex); 1709 if (!rbi->ring_buffer) { 1710 mutex_unlock(&rbi->ring_buffer_mutex); 1711 return -EINVAL; 1712 } 1713 1714 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1715 mutex_unlock(&rbi->ring_buffer_mutex); 1716 return ret; 1717 } 1718 static VMBUS_CHAN_ATTR_RO(in_mask); 1719 1720 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1721 { 1722 struct hv_ring_buffer_info *rbi = &channel->inbound; 1723 ssize_t ret; 1724 1725 mutex_lock(&rbi->ring_buffer_mutex); 1726 if (!rbi->ring_buffer) { 1727 mutex_unlock(&rbi->ring_buffer_mutex); 1728 return -EINVAL; 1729 } 1730 1731 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1732 mutex_unlock(&rbi->ring_buffer_mutex); 1733 return ret; 1734 } 1735 static VMBUS_CHAN_ATTR_RO(read_avail); 1736 1737 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1738 { 1739 struct hv_ring_buffer_info *rbi = &channel->outbound; 1740 ssize_t ret; 1741 1742 mutex_lock(&rbi->ring_buffer_mutex); 1743 if (!rbi->ring_buffer) { 1744 mutex_unlock(&rbi->ring_buffer_mutex); 1745 return -EINVAL; 1746 } 1747 1748 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1749 mutex_unlock(&rbi->ring_buffer_mutex); 1750 return ret; 1751 } 1752 static VMBUS_CHAN_ATTR_RO(write_avail); 1753 1754 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf) 1755 { 1756 return sprintf(buf, "%u\n", channel->target_cpu); 1757 } 1758 static ssize_t target_cpu_store(struct vmbus_channel *channel, 1759 const char *buf, size_t count) 1760 { 1761 u32 target_cpu, origin_cpu; 1762 ssize_t ret = count; 1763 1764 if (vmbus_proto_version < VERSION_WIN10_V4_1) 1765 return -EIO; 1766 1767 if (sscanf(buf, "%uu", &target_cpu) != 1) 1768 return -EIO; 1769 1770 /* Validate target_cpu for the cpumask_test_cpu() operation below. */ 1771 if (target_cpu >= nr_cpumask_bits) 1772 return -EINVAL; 1773 1774 /* No CPUs should come up or down during this. */ 1775 cpus_read_lock(); 1776 1777 if (!cpu_online(target_cpu)) { 1778 cpus_read_unlock(); 1779 return -EINVAL; 1780 } 1781 1782 /* 1783 * Synchronizes target_cpu_store() and channel closure: 1784 * 1785 * { Initially: state = CHANNEL_OPENED } 1786 * 1787 * CPU1 CPU2 1788 * 1789 * [target_cpu_store()] [vmbus_disconnect_ring()] 1790 * 1791 * LOCK channel_mutex LOCK channel_mutex 1792 * LOAD r1 = state LOAD r2 = state 1793 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED) 1794 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN 1795 * [...] SEND CLOSECHANNEL 1796 * UNLOCK channel_mutex UNLOCK channel_mutex 1797 * 1798 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes 1799 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND 1800 * 1801 * Note. The host processes the channel messages "sequentially", in 1802 * the order in which they are received on a per-partition basis. 1803 */ 1804 mutex_lock(&vmbus_connection.channel_mutex); 1805 1806 /* 1807 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels; 1808 * avoid sending the message and fail here for such channels. 1809 */ 1810 if (channel->state != CHANNEL_OPENED_STATE) { 1811 ret = -EIO; 1812 goto cpu_store_unlock; 1813 } 1814 1815 origin_cpu = channel->target_cpu; 1816 if (target_cpu == origin_cpu) 1817 goto cpu_store_unlock; 1818 1819 if (vmbus_send_modifychannel(channel->offermsg.child_relid, 1820 hv_cpu_number_to_vp_number(target_cpu))) { 1821 ret = -EIO; 1822 goto cpu_store_unlock; 1823 } 1824 1825 /* 1826 * Warning. At this point, there is *no* guarantee that the host will 1827 * have successfully processed the vmbus_send_modifychannel() request. 1828 * See the header comment of vmbus_send_modifychannel() for more info. 1829 * 1830 * Lags in the processing of the above vmbus_send_modifychannel() can 1831 * result in missed interrupts if the "old" target CPU is taken offline 1832 * before Hyper-V starts sending interrupts to the "new" target CPU. 1833 * But apart from this offlining scenario, the code tolerates such 1834 * lags. It will function correctly even if a channel interrupt comes 1835 * in on a CPU that is different from the channel target_cpu value. 1836 */ 1837 1838 channel->target_cpu = target_cpu; 1839 1840 /* See init_vp_index(). */ 1841 if (hv_is_perf_channel(channel)) 1842 hv_update_alloced_cpus(origin_cpu, target_cpu); 1843 1844 /* Currently set only for storvsc channels. */ 1845 if (channel->change_target_cpu_callback) { 1846 (*channel->change_target_cpu_callback)(channel, 1847 origin_cpu, target_cpu); 1848 } 1849 1850 cpu_store_unlock: 1851 mutex_unlock(&vmbus_connection.channel_mutex); 1852 cpus_read_unlock(); 1853 return ret; 1854 } 1855 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store); 1856 1857 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1858 char *buf) 1859 { 1860 return sprintf(buf, "%d\n", 1861 channel_pending(channel, 1862 vmbus_connection.monitor_pages[1])); 1863 } 1864 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL); 1865 1866 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1867 char *buf) 1868 { 1869 return sprintf(buf, "%d\n", 1870 channel_latency(channel, 1871 vmbus_connection.monitor_pages[1])); 1872 } 1873 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL); 1874 1875 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1876 { 1877 return sprintf(buf, "%llu\n", channel->interrupts); 1878 } 1879 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL); 1880 1881 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1882 { 1883 return sprintf(buf, "%llu\n", channel->sig_events); 1884 } 1885 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL); 1886 1887 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1888 char *buf) 1889 { 1890 return sprintf(buf, "%llu\n", 1891 (unsigned long long)channel->intr_in_full); 1892 } 1893 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1894 1895 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1896 char *buf) 1897 { 1898 return sprintf(buf, "%llu\n", 1899 (unsigned long long)channel->intr_out_empty); 1900 } 1901 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1902 1903 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1904 char *buf) 1905 { 1906 return sprintf(buf, "%llu\n", 1907 (unsigned long long)channel->out_full_first); 1908 } 1909 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1910 1911 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1912 char *buf) 1913 { 1914 return sprintf(buf, "%llu\n", 1915 (unsigned long long)channel->out_full_total); 1916 } 1917 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1918 1919 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1920 char *buf) 1921 { 1922 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1923 } 1924 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL); 1925 1926 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1927 char *buf) 1928 { 1929 return sprintf(buf, "%u\n", 1930 channel->offermsg.offer.sub_channel_index); 1931 } 1932 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1933 1934 static struct attribute *vmbus_chan_attrs[] = { 1935 &chan_attr_out_mask.attr, 1936 &chan_attr_in_mask.attr, 1937 &chan_attr_read_avail.attr, 1938 &chan_attr_write_avail.attr, 1939 &chan_attr_cpu.attr, 1940 &chan_attr_pending.attr, 1941 &chan_attr_latency.attr, 1942 &chan_attr_interrupts.attr, 1943 &chan_attr_events.attr, 1944 &chan_attr_intr_in_full.attr, 1945 &chan_attr_intr_out_empty.attr, 1946 &chan_attr_out_full_first.attr, 1947 &chan_attr_out_full_total.attr, 1948 &chan_attr_monitor_id.attr, 1949 &chan_attr_subchannel_id.attr, 1950 NULL 1951 }; 1952 1953 /* 1954 * Channel-level attribute_group callback function. Returns the permission for 1955 * each attribute, and returns 0 if an attribute is not visible. 1956 */ 1957 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1958 struct attribute *attr, int idx) 1959 { 1960 const struct vmbus_channel *channel = 1961 container_of(kobj, struct vmbus_channel, kobj); 1962 1963 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1964 if (!channel->offermsg.monitor_allocated && 1965 (attr == &chan_attr_pending.attr || 1966 attr == &chan_attr_latency.attr || 1967 attr == &chan_attr_monitor_id.attr)) 1968 return 0; 1969 1970 return attr->mode; 1971 } 1972 1973 static struct attribute_group vmbus_chan_group = { 1974 .attrs = vmbus_chan_attrs, 1975 .is_visible = vmbus_chan_attr_is_visible 1976 }; 1977 1978 static struct kobj_type vmbus_chan_ktype = { 1979 .sysfs_ops = &vmbus_chan_sysfs_ops, 1980 .release = vmbus_chan_release, 1981 }; 1982 1983 /* 1984 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1985 */ 1986 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1987 { 1988 const struct device *device = &dev->device; 1989 struct kobject *kobj = &channel->kobj; 1990 u32 relid = channel->offermsg.child_relid; 1991 int ret; 1992 1993 kobj->kset = dev->channels_kset; 1994 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1995 "%u", relid); 1996 if (ret) 1997 return ret; 1998 1999 ret = sysfs_create_group(kobj, &vmbus_chan_group); 2000 2001 if (ret) { 2002 /* 2003 * The calling functions' error handling paths will cleanup the 2004 * empty channel directory. 2005 */ 2006 dev_err(device, "Unable to set up channel sysfs files\n"); 2007 return ret; 2008 } 2009 2010 kobject_uevent(kobj, KOBJ_ADD); 2011 2012 return 0; 2013 } 2014 2015 /* 2016 * vmbus_remove_channel_attr_group - remove the channel's attribute group 2017 */ 2018 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 2019 { 2020 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 2021 } 2022 2023 /* 2024 * vmbus_device_create - Creates and registers a new child device 2025 * on the vmbus. 2026 */ 2027 struct hv_device *vmbus_device_create(const guid_t *type, 2028 const guid_t *instance, 2029 struct vmbus_channel *channel) 2030 { 2031 struct hv_device *child_device_obj; 2032 2033 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 2034 if (!child_device_obj) { 2035 pr_err("Unable to allocate device object for child device\n"); 2036 return NULL; 2037 } 2038 2039 child_device_obj->channel = channel; 2040 guid_copy(&child_device_obj->dev_type, type); 2041 guid_copy(&child_device_obj->dev_instance, instance); 2042 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 2043 2044 return child_device_obj; 2045 } 2046 2047 /* 2048 * vmbus_device_register - Register the child device 2049 */ 2050 int vmbus_device_register(struct hv_device *child_device_obj) 2051 { 2052 struct kobject *kobj = &child_device_obj->device.kobj; 2053 int ret; 2054 2055 dev_set_name(&child_device_obj->device, "%pUl", 2056 &child_device_obj->channel->offermsg.offer.if_instance); 2057 2058 child_device_obj->device.bus = &hv_bus; 2059 child_device_obj->device.parent = &hv_acpi_dev->dev; 2060 child_device_obj->device.release = vmbus_device_release; 2061 2062 /* 2063 * Register with the LDM. This will kick off the driver/device 2064 * binding...which will eventually call vmbus_match() and vmbus_probe() 2065 */ 2066 ret = device_register(&child_device_obj->device); 2067 if (ret) { 2068 pr_err("Unable to register child device\n"); 2069 return ret; 2070 } 2071 2072 child_device_obj->channels_kset = kset_create_and_add("channels", 2073 NULL, kobj); 2074 if (!child_device_obj->channels_kset) { 2075 ret = -ENOMEM; 2076 goto err_dev_unregister; 2077 } 2078 2079 ret = vmbus_add_channel_kobj(child_device_obj, 2080 child_device_obj->channel); 2081 if (ret) { 2082 pr_err("Unable to register primary channeln"); 2083 goto err_kset_unregister; 2084 } 2085 hv_debug_add_dev_dir(child_device_obj); 2086 2087 return 0; 2088 2089 err_kset_unregister: 2090 kset_unregister(child_device_obj->channels_kset); 2091 2092 err_dev_unregister: 2093 device_unregister(&child_device_obj->device); 2094 return ret; 2095 } 2096 2097 /* 2098 * vmbus_device_unregister - Remove the specified child device 2099 * from the vmbus. 2100 */ 2101 void vmbus_device_unregister(struct hv_device *device_obj) 2102 { 2103 pr_debug("child device %s unregistered\n", 2104 dev_name(&device_obj->device)); 2105 2106 kset_unregister(device_obj->channels_kset); 2107 2108 /* 2109 * Kick off the process of unregistering the device. 2110 * This will call vmbus_remove() and eventually vmbus_device_release() 2111 */ 2112 device_unregister(&device_obj->device); 2113 } 2114 2115 2116 /* 2117 * VMBUS is an acpi enumerated device. Get the information we 2118 * need from DSDT. 2119 */ 2120 #define VTPM_BASE_ADDRESS 0xfed40000 2121 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 2122 { 2123 resource_size_t start = 0; 2124 resource_size_t end = 0; 2125 struct resource *new_res; 2126 struct resource **old_res = &hyperv_mmio; 2127 struct resource **prev_res = NULL; 2128 struct resource r; 2129 2130 switch (res->type) { 2131 2132 /* 2133 * "Address" descriptors are for bus windows. Ignore 2134 * "memory" descriptors, which are for registers on 2135 * devices. 2136 */ 2137 case ACPI_RESOURCE_TYPE_ADDRESS32: 2138 start = res->data.address32.address.minimum; 2139 end = res->data.address32.address.maximum; 2140 break; 2141 2142 case ACPI_RESOURCE_TYPE_ADDRESS64: 2143 start = res->data.address64.address.minimum; 2144 end = res->data.address64.address.maximum; 2145 break; 2146 2147 /* 2148 * The IRQ information is needed only on ARM64, which Hyper-V 2149 * sets up in the extended format. IRQ information is present 2150 * on x86/x64 in the non-extended format but it is not used by 2151 * Linux. So don't bother checking for the non-extended format. 2152 */ 2153 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 2154 if (!acpi_dev_resource_interrupt(res, 0, &r)) { 2155 pr_err("Unable to parse Hyper-V ACPI interrupt\n"); 2156 return AE_ERROR; 2157 } 2158 /* ARM64 INTID for VMbus */ 2159 vmbus_interrupt = res->data.extended_irq.interrupts[0]; 2160 /* Linux IRQ number */ 2161 vmbus_irq = r.start; 2162 return AE_OK; 2163 2164 default: 2165 /* Unused resource type */ 2166 return AE_OK; 2167 2168 } 2169 /* 2170 * Ignore ranges that are below 1MB, as they're not 2171 * necessary or useful here. 2172 */ 2173 if (end < 0x100000) 2174 return AE_OK; 2175 2176 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 2177 if (!new_res) 2178 return AE_NO_MEMORY; 2179 2180 /* If this range overlaps the virtual TPM, truncate it. */ 2181 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 2182 end = VTPM_BASE_ADDRESS; 2183 2184 new_res->name = "hyperv mmio"; 2185 new_res->flags = IORESOURCE_MEM; 2186 new_res->start = start; 2187 new_res->end = end; 2188 2189 /* 2190 * If two ranges are adjacent, merge them. 2191 */ 2192 do { 2193 if (!*old_res) { 2194 *old_res = new_res; 2195 break; 2196 } 2197 2198 if (((*old_res)->end + 1) == new_res->start) { 2199 (*old_res)->end = new_res->end; 2200 kfree(new_res); 2201 break; 2202 } 2203 2204 if ((*old_res)->start == new_res->end + 1) { 2205 (*old_res)->start = new_res->start; 2206 kfree(new_res); 2207 break; 2208 } 2209 2210 if ((*old_res)->start > new_res->end) { 2211 new_res->sibling = *old_res; 2212 if (prev_res) 2213 (*prev_res)->sibling = new_res; 2214 *old_res = new_res; 2215 break; 2216 } 2217 2218 prev_res = old_res; 2219 old_res = &(*old_res)->sibling; 2220 2221 } while (1); 2222 2223 return AE_OK; 2224 } 2225 2226 static int vmbus_acpi_remove(struct acpi_device *device) 2227 { 2228 struct resource *cur_res; 2229 struct resource *next_res; 2230 2231 if (hyperv_mmio) { 2232 if (fb_mmio) { 2233 __release_region(hyperv_mmio, fb_mmio->start, 2234 resource_size(fb_mmio)); 2235 fb_mmio = NULL; 2236 } 2237 2238 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 2239 next_res = cur_res->sibling; 2240 kfree(cur_res); 2241 } 2242 } 2243 2244 return 0; 2245 } 2246 2247 static void vmbus_reserve_fb(void) 2248 { 2249 int size; 2250 /* 2251 * Make a claim for the frame buffer in the resource tree under the 2252 * first node, which will be the one below 4GB. The length seems to 2253 * be underreported, particularly in a Generation 1 VM. So start out 2254 * reserving a larger area and make it smaller until it succeeds. 2255 */ 2256 2257 if (screen_info.lfb_base) { 2258 if (efi_enabled(EFI_BOOT)) 2259 size = max_t(__u32, screen_info.lfb_size, 0x800000); 2260 else 2261 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 2262 2263 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 2264 fb_mmio = __request_region(hyperv_mmio, 2265 screen_info.lfb_base, size, 2266 fb_mmio_name, 0); 2267 } 2268 } 2269 } 2270 2271 /** 2272 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 2273 * @new: If successful, supplied a pointer to the 2274 * allocated MMIO space. 2275 * @device_obj: Identifies the caller 2276 * @min: Minimum guest physical address of the 2277 * allocation 2278 * @max: Maximum guest physical address 2279 * @size: Size of the range to be allocated 2280 * @align: Alignment of the range to be allocated 2281 * @fb_overlap_ok: Whether this allocation can be allowed 2282 * to overlap the video frame buffer. 2283 * 2284 * This function walks the resources granted to VMBus by the 2285 * _CRS object in the ACPI namespace underneath the parent 2286 * "bridge" whether that's a root PCI bus in the Generation 1 2287 * case or a Module Device in the Generation 2 case. It then 2288 * attempts to allocate from the global MMIO pool in a way that 2289 * matches the constraints supplied in these parameters and by 2290 * that _CRS. 2291 * 2292 * Return: 0 on success, -errno on failure 2293 */ 2294 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 2295 resource_size_t min, resource_size_t max, 2296 resource_size_t size, resource_size_t align, 2297 bool fb_overlap_ok) 2298 { 2299 struct resource *iter, *shadow; 2300 resource_size_t range_min, range_max, start; 2301 const char *dev_n = dev_name(&device_obj->device); 2302 int retval; 2303 2304 retval = -ENXIO; 2305 mutex_lock(&hyperv_mmio_lock); 2306 2307 /* 2308 * If overlaps with frame buffers are allowed, then first attempt to 2309 * make the allocation from within the reserved region. Because it 2310 * is already reserved, no shadow allocation is necessary. 2311 */ 2312 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 2313 !(max < fb_mmio->start)) { 2314 2315 range_min = fb_mmio->start; 2316 range_max = fb_mmio->end; 2317 start = (range_min + align - 1) & ~(align - 1); 2318 for (; start + size - 1 <= range_max; start += align) { 2319 *new = request_mem_region_exclusive(start, size, dev_n); 2320 if (*new) { 2321 retval = 0; 2322 goto exit; 2323 } 2324 } 2325 } 2326 2327 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2328 if ((iter->start >= max) || (iter->end <= min)) 2329 continue; 2330 2331 range_min = iter->start; 2332 range_max = iter->end; 2333 start = (range_min + align - 1) & ~(align - 1); 2334 for (; start + size - 1 <= range_max; start += align) { 2335 shadow = __request_region(iter, start, size, NULL, 2336 IORESOURCE_BUSY); 2337 if (!shadow) 2338 continue; 2339 2340 *new = request_mem_region_exclusive(start, size, dev_n); 2341 if (*new) { 2342 shadow->name = (char *)*new; 2343 retval = 0; 2344 goto exit; 2345 } 2346 2347 __release_region(iter, start, size); 2348 } 2349 } 2350 2351 exit: 2352 mutex_unlock(&hyperv_mmio_lock); 2353 return retval; 2354 } 2355 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 2356 2357 /** 2358 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2359 * @start: Base address of region to release. 2360 * @size: Size of the range to be allocated 2361 * 2362 * This function releases anything requested by 2363 * vmbus_mmio_allocate(). 2364 */ 2365 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2366 { 2367 struct resource *iter; 2368 2369 mutex_lock(&hyperv_mmio_lock); 2370 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2371 if ((iter->start >= start + size) || (iter->end <= start)) 2372 continue; 2373 2374 __release_region(iter, start, size); 2375 } 2376 release_mem_region(start, size); 2377 mutex_unlock(&hyperv_mmio_lock); 2378 2379 } 2380 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2381 2382 static int vmbus_acpi_add(struct acpi_device *device) 2383 { 2384 acpi_status result; 2385 int ret_val = -ENODEV; 2386 struct acpi_device *ancestor; 2387 2388 hv_acpi_dev = device; 2389 2390 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2391 vmbus_walk_resources, NULL); 2392 2393 if (ACPI_FAILURE(result)) 2394 goto acpi_walk_err; 2395 /* 2396 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2397 * firmware) is the VMOD that has the mmio ranges. Get that. 2398 */ 2399 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2400 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2401 vmbus_walk_resources, NULL); 2402 2403 if (ACPI_FAILURE(result)) 2404 continue; 2405 if (hyperv_mmio) { 2406 vmbus_reserve_fb(); 2407 break; 2408 } 2409 } 2410 ret_val = 0; 2411 2412 acpi_walk_err: 2413 complete(&probe_event); 2414 if (ret_val) 2415 vmbus_acpi_remove(device); 2416 return ret_val; 2417 } 2418 2419 #ifdef CONFIG_PM_SLEEP 2420 static int vmbus_bus_suspend(struct device *dev) 2421 { 2422 struct vmbus_channel *channel, *sc; 2423 2424 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 2425 /* 2426 * We wait here until the completion of any channel 2427 * offers that are currently in progress. 2428 */ 2429 usleep_range(1000, 2000); 2430 } 2431 2432 mutex_lock(&vmbus_connection.channel_mutex); 2433 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2434 if (!is_hvsock_channel(channel)) 2435 continue; 2436 2437 vmbus_force_channel_rescinded(channel); 2438 } 2439 mutex_unlock(&vmbus_connection.channel_mutex); 2440 2441 /* 2442 * Wait until all the sub-channels and hv_sock channels have been 2443 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise 2444 * they would conflict with the new sub-channels that will be created 2445 * in the resume path. hv_sock channels should also be destroyed, but 2446 * a hv_sock channel of an established hv_sock connection can not be 2447 * really destroyed since it may still be referenced by the userspace 2448 * application, so we just force the hv_sock channel to be rescinded 2449 * by vmbus_force_channel_rescinded(), and the userspace application 2450 * will thoroughly destroy the channel after hibernation. 2451 * 2452 * Note: the counter nr_chan_close_on_suspend may never go above 0 if 2453 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. 2454 */ 2455 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) 2456 wait_for_completion(&vmbus_connection.ready_for_suspend_event); 2457 2458 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) { 2459 pr_err("Can not suspend due to a previous failed resuming\n"); 2460 return -EBUSY; 2461 } 2462 2463 mutex_lock(&vmbus_connection.channel_mutex); 2464 2465 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2466 /* 2467 * Remove the channel from the array of channels and invalidate 2468 * the channel's relid. Upon resume, vmbus_onoffer() will fix 2469 * up the relid (and other fields, if necessary) and add the 2470 * channel back to the array. 2471 */ 2472 vmbus_channel_unmap_relid(channel); 2473 channel->offermsg.child_relid = INVALID_RELID; 2474 2475 if (is_hvsock_channel(channel)) { 2476 if (!channel->rescind) { 2477 pr_err("hv_sock channel not rescinded!\n"); 2478 WARN_ON_ONCE(1); 2479 } 2480 continue; 2481 } 2482 2483 list_for_each_entry(sc, &channel->sc_list, sc_list) { 2484 pr_err("Sub-channel not deleted!\n"); 2485 WARN_ON_ONCE(1); 2486 } 2487 2488 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); 2489 } 2490 2491 mutex_unlock(&vmbus_connection.channel_mutex); 2492 2493 vmbus_initiate_unload(false); 2494 2495 /* Reset the event for the next resume. */ 2496 reinit_completion(&vmbus_connection.ready_for_resume_event); 2497 2498 return 0; 2499 } 2500 2501 static int vmbus_bus_resume(struct device *dev) 2502 { 2503 struct vmbus_channel_msginfo *msginfo; 2504 size_t msgsize; 2505 int ret; 2506 2507 /* 2508 * We only use the 'vmbus_proto_version', which was in use before 2509 * hibernation, to re-negotiate with the host. 2510 */ 2511 if (!vmbus_proto_version) { 2512 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); 2513 return -EINVAL; 2514 } 2515 2516 msgsize = sizeof(*msginfo) + 2517 sizeof(struct vmbus_channel_initiate_contact); 2518 2519 msginfo = kzalloc(msgsize, GFP_KERNEL); 2520 2521 if (msginfo == NULL) 2522 return -ENOMEM; 2523 2524 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); 2525 2526 kfree(msginfo); 2527 2528 if (ret != 0) 2529 return ret; 2530 2531 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); 2532 2533 vmbus_request_offers(); 2534 2535 if (wait_for_completion_timeout( 2536 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0) 2537 pr_err("Some vmbus device is missing after suspending?\n"); 2538 2539 /* Reset the event for the next suspend. */ 2540 reinit_completion(&vmbus_connection.ready_for_suspend_event); 2541 2542 return 0; 2543 } 2544 #else 2545 #define vmbus_bus_suspend NULL 2546 #define vmbus_bus_resume NULL 2547 #endif /* CONFIG_PM_SLEEP */ 2548 2549 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2550 {"VMBUS", 0}, 2551 {"VMBus", 0}, 2552 {"", 0}, 2553 }; 2554 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2555 2556 /* 2557 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with 2558 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in 2559 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see 2560 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> 2561 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's 2562 * resume callback must also run via the "noirq" ops. 2563 * 2564 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment 2565 * earlier in this file before vmbus_pm. 2566 */ 2567 2568 static const struct dev_pm_ops vmbus_bus_pm = { 2569 .suspend_noirq = NULL, 2570 .resume_noirq = NULL, 2571 .freeze_noirq = vmbus_bus_suspend, 2572 .thaw_noirq = vmbus_bus_resume, 2573 .poweroff_noirq = vmbus_bus_suspend, 2574 .restore_noirq = vmbus_bus_resume 2575 }; 2576 2577 static struct acpi_driver vmbus_acpi_driver = { 2578 .name = "vmbus", 2579 .ids = vmbus_acpi_device_ids, 2580 .ops = { 2581 .add = vmbus_acpi_add, 2582 .remove = vmbus_acpi_remove, 2583 }, 2584 .drv.pm = &vmbus_bus_pm, 2585 }; 2586 2587 static void hv_kexec_handler(void) 2588 { 2589 hv_stimer_global_cleanup(); 2590 vmbus_initiate_unload(false); 2591 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2592 mb(); 2593 cpuhp_remove_state(hyperv_cpuhp_online); 2594 }; 2595 2596 static void hv_crash_handler(struct pt_regs *regs) 2597 { 2598 int cpu; 2599 2600 vmbus_initiate_unload(true); 2601 /* 2602 * In crash handler we can't schedule synic cleanup for all CPUs, 2603 * doing the cleanup for current CPU only. This should be sufficient 2604 * for kdump. 2605 */ 2606 cpu = smp_processor_id(); 2607 hv_stimer_cleanup(cpu); 2608 hv_synic_disable_regs(cpu); 2609 }; 2610 2611 static int hv_synic_suspend(void) 2612 { 2613 /* 2614 * When we reach here, all the non-boot CPUs have been offlined. 2615 * If we're in a legacy configuration where stimer Direct Mode is 2616 * not enabled, the stimers on the non-boot CPUs have been unbound 2617 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> 2618 * hv_stimer_cleanup() -> clockevents_unbind_device(). 2619 * 2620 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. 2621 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: 2622 * 1) it's unnecessary as interrupts remain disabled between 2623 * syscore_suspend() and syscore_resume(): see create_image() and 2624 * resume_target_kernel() 2625 * 2) the stimer on CPU0 is automatically disabled later by 2626 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... 2627 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() 2628 * 3) a warning would be triggered if we call 2629 * clockevents_unbind_device(), which may sleep, in an 2630 * interrupts-disabled context. 2631 */ 2632 2633 hv_synic_disable_regs(0); 2634 2635 return 0; 2636 } 2637 2638 static void hv_synic_resume(void) 2639 { 2640 hv_synic_enable_regs(0); 2641 2642 /* 2643 * Note: we don't need to call hv_stimer_init(0), because the timer 2644 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is 2645 * automatically re-enabled in timekeeping_resume(). 2646 */ 2647 } 2648 2649 /* The callbacks run only on CPU0, with irqs_disabled. */ 2650 static struct syscore_ops hv_synic_syscore_ops = { 2651 .suspend = hv_synic_suspend, 2652 .resume = hv_synic_resume, 2653 }; 2654 2655 static int __init hv_acpi_init(void) 2656 { 2657 int ret, t; 2658 2659 if (!hv_is_hyperv_initialized()) 2660 return -ENODEV; 2661 2662 if (hv_root_partition) 2663 return 0; 2664 2665 init_completion(&probe_event); 2666 2667 /* 2668 * Get ACPI resources first. 2669 */ 2670 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2671 2672 if (ret) 2673 return ret; 2674 2675 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2676 if (t == 0) { 2677 ret = -ETIMEDOUT; 2678 goto cleanup; 2679 } 2680 hv_debug_init(); 2681 2682 ret = vmbus_bus_init(); 2683 if (ret) 2684 goto cleanup; 2685 2686 hv_setup_kexec_handler(hv_kexec_handler); 2687 hv_setup_crash_handler(hv_crash_handler); 2688 2689 register_syscore_ops(&hv_synic_syscore_ops); 2690 2691 return 0; 2692 2693 cleanup: 2694 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2695 hv_acpi_dev = NULL; 2696 return ret; 2697 } 2698 2699 static void __exit vmbus_exit(void) 2700 { 2701 int cpu; 2702 2703 unregister_syscore_ops(&hv_synic_syscore_ops); 2704 2705 hv_remove_kexec_handler(); 2706 hv_remove_crash_handler(); 2707 vmbus_connection.conn_state = DISCONNECTED; 2708 hv_stimer_global_cleanup(); 2709 vmbus_disconnect(); 2710 hv_remove_vmbus_irq(); 2711 for_each_online_cpu(cpu) { 2712 struct hv_per_cpu_context *hv_cpu 2713 = per_cpu_ptr(hv_context.cpu_context, cpu); 2714 2715 tasklet_kill(&hv_cpu->msg_dpc); 2716 } 2717 hv_debug_rm_all_dir(); 2718 2719 vmbus_free_channels(); 2720 kfree(vmbus_connection.channels); 2721 2722 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2723 kmsg_dump_unregister(&hv_kmsg_dumper); 2724 unregister_die_notifier(&hyperv_die_block); 2725 atomic_notifier_chain_unregister(&panic_notifier_list, 2726 &hyperv_panic_block); 2727 } 2728 2729 free_page((unsigned long)hv_panic_page); 2730 unregister_sysctl_table(hv_ctl_table_hdr); 2731 hv_ctl_table_hdr = NULL; 2732 bus_unregister(&hv_bus); 2733 2734 cpuhp_remove_state(hyperv_cpuhp_online); 2735 hv_synic_free(); 2736 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2737 } 2738 2739 2740 MODULE_LICENSE("GPL"); 2741 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2742 2743 subsys_initcall(hv_acpi_init); 2744 module_exit(vmbus_exit); 2745