1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/task_stack.h> 25 26 #include <asm/mshyperv.h> 27 #include <linux/delay.h> 28 #include <linux/notifier.h> 29 #include <linux/ptrace.h> 30 #include <linux/screen_info.h> 31 #include <linux/kdebug.h> 32 #include <linux/efi.h> 33 #include <linux/random.h> 34 #include <linux/syscore_ops.h> 35 #include <clocksource/hyperv_timer.h> 36 #include "hyperv_vmbus.h" 37 38 struct vmbus_dynid { 39 struct list_head node; 40 struct hv_vmbus_device_id id; 41 }; 42 43 static struct acpi_device *hv_acpi_dev; 44 45 static struct completion probe_event; 46 47 static int hyperv_cpuhp_online; 48 49 static void *hv_panic_page; 50 51 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 52 void *args) 53 { 54 struct pt_regs *regs; 55 56 regs = current_pt_regs(); 57 58 hyperv_report_panic(regs, val); 59 return NOTIFY_DONE; 60 } 61 62 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 63 void *args) 64 { 65 struct die_args *die = (struct die_args *)args; 66 struct pt_regs *regs = die->regs; 67 68 hyperv_report_panic(regs, val); 69 return NOTIFY_DONE; 70 } 71 72 static struct notifier_block hyperv_die_block = { 73 .notifier_call = hyperv_die_event, 74 }; 75 static struct notifier_block hyperv_panic_block = { 76 .notifier_call = hyperv_panic_event, 77 }; 78 79 static const char *fb_mmio_name = "fb_range"; 80 static struct resource *fb_mmio; 81 static struct resource *hyperv_mmio; 82 static DEFINE_MUTEX(hyperv_mmio_lock); 83 84 static int vmbus_exists(void) 85 { 86 if (hv_acpi_dev == NULL) 87 return -ENODEV; 88 89 return 0; 90 } 91 92 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 93 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 94 { 95 int i; 96 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 97 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 98 } 99 100 static u8 channel_monitor_group(const struct vmbus_channel *channel) 101 { 102 return (u8)channel->offermsg.monitorid / 32; 103 } 104 105 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 106 { 107 return (u8)channel->offermsg.monitorid % 32; 108 } 109 110 static u32 channel_pending(const struct vmbus_channel *channel, 111 const struct hv_monitor_page *monitor_page) 112 { 113 u8 monitor_group = channel_monitor_group(channel); 114 115 return monitor_page->trigger_group[monitor_group].pending; 116 } 117 118 static u32 channel_latency(const struct vmbus_channel *channel, 119 const struct hv_monitor_page *monitor_page) 120 { 121 u8 monitor_group = channel_monitor_group(channel); 122 u8 monitor_offset = channel_monitor_offset(channel); 123 124 return monitor_page->latency[monitor_group][monitor_offset]; 125 } 126 127 static u32 channel_conn_id(struct vmbus_channel *channel, 128 struct hv_monitor_page *monitor_page) 129 { 130 u8 monitor_group = channel_monitor_group(channel); 131 u8 monitor_offset = channel_monitor_offset(channel); 132 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 133 } 134 135 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 136 char *buf) 137 { 138 struct hv_device *hv_dev = device_to_hv_device(dev); 139 140 if (!hv_dev->channel) 141 return -ENODEV; 142 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 143 } 144 static DEVICE_ATTR_RO(id); 145 146 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 147 char *buf) 148 { 149 struct hv_device *hv_dev = device_to_hv_device(dev); 150 151 if (!hv_dev->channel) 152 return -ENODEV; 153 return sprintf(buf, "%d\n", hv_dev->channel->state); 154 } 155 static DEVICE_ATTR_RO(state); 156 157 static ssize_t monitor_id_show(struct device *dev, 158 struct device_attribute *dev_attr, char *buf) 159 { 160 struct hv_device *hv_dev = device_to_hv_device(dev); 161 162 if (!hv_dev->channel) 163 return -ENODEV; 164 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 165 } 166 static DEVICE_ATTR_RO(monitor_id); 167 168 static ssize_t class_id_show(struct device *dev, 169 struct device_attribute *dev_attr, char *buf) 170 { 171 struct hv_device *hv_dev = device_to_hv_device(dev); 172 173 if (!hv_dev->channel) 174 return -ENODEV; 175 return sprintf(buf, "{%pUl}\n", 176 hv_dev->channel->offermsg.offer.if_type.b); 177 } 178 static DEVICE_ATTR_RO(class_id); 179 180 static ssize_t device_id_show(struct device *dev, 181 struct device_attribute *dev_attr, char *buf) 182 { 183 struct hv_device *hv_dev = device_to_hv_device(dev); 184 185 if (!hv_dev->channel) 186 return -ENODEV; 187 return sprintf(buf, "{%pUl}\n", 188 hv_dev->channel->offermsg.offer.if_instance.b); 189 } 190 static DEVICE_ATTR_RO(device_id); 191 192 static ssize_t modalias_show(struct device *dev, 193 struct device_attribute *dev_attr, char *buf) 194 { 195 struct hv_device *hv_dev = device_to_hv_device(dev); 196 char alias_name[VMBUS_ALIAS_LEN + 1]; 197 198 print_alias_name(hv_dev, alias_name); 199 return sprintf(buf, "vmbus:%s\n", alias_name); 200 } 201 static DEVICE_ATTR_RO(modalias); 202 203 #ifdef CONFIG_NUMA 204 static ssize_t numa_node_show(struct device *dev, 205 struct device_attribute *attr, char *buf) 206 { 207 struct hv_device *hv_dev = device_to_hv_device(dev); 208 209 if (!hv_dev->channel) 210 return -ENODEV; 211 212 return sprintf(buf, "%d\n", hv_dev->channel->numa_node); 213 } 214 static DEVICE_ATTR_RO(numa_node); 215 #endif 216 217 static ssize_t server_monitor_pending_show(struct device *dev, 218 struct device_attribute *dev_attr, 219 char *buf) 220 { 221 struct hv_device *hv_dev = device_to_hv_device(dev); 222 223 if (!hv_dev->channel) 224 return -ENODEV; 225 return sprintf(buf, "%d\n", 226 channel_pending(hv_dev->channel, 227 vmbus_connection.monitor_pages[0])); 228 } 229 static DEVICE_ATTR_RO(server_monitor_pending); 230 231 static ssize_t client_monitor_pending_show(struct device *dev, 232 struct device_attribute *dev_attr, 233 char *buf) 234 { 235 struct hv_device *hv_dev = device_to_hv_device(dev); 236 237 if (!hv_dev->channel) 238 return -ENODEV; 239 return sprintf(buf, "%d\n", 240 channel_pending(hv_dev->channel, 241 vmbus_connection.monitor_pages[1])); 242 } 243 static DEVICE_ATTR_RO(client_monitor_pending); 244 245 static ssize_t server_monitor_latency_show(struct device *dev, 246 struct device_attribute *dev_attr, 247 char *buf) 248 { 249 struct hv_device *hv_dev = device_to_hv_device(dev); 250 251 if (!hv_dev->channel) 252 return -ENODEV; 253 return sprintf(buf, "%d\n", 254 channel_latency(hv_dev->channel, 255 vmbus_connection.monitor_pages[0])); 256 } 257 static DEVICE_ATTR_RO(server_monitor_latency); 258 259 static ssize_t client_monitor_latency_show(struct device *dev, 260 struct device_attribute *dev_attr, 261 char *buf) 262 { 263 struct hv_device *hv_dev = device_to_hv_device(dev); 264 265 if (!hv_dev->channel) 266 return -ENODEV; 267 return sprintf(buf, "%d\n", 268 channel_latency(hv_dev->channel, 269 vmbus_connection.monitor_pages[1])); 270 } 271 static DEVICE_ATTR_RO(client_monitor_latency); 272 273 static ssize_t server_monitor_conn_id_show(struct device *dev, 274 struct device_attribute *dev_attr, 275 char *buf) 276 { 277 struct hv_device *hv_dev = device_to_hv_device(dev); 278 279 if (!hv_dev->channel) 280 return -ENODEV; 281 return sprintf(buf, "%d\n", 282 channel_conn_id(hv_dev->channel, 283 vmbus_connection.monitor_pages[0])); 284 } 285 static DEVICE_ATTR_RO(server_monitor_conn_id); 286 287 static ssize_t client_monitor_conn_id_show(struct device *dev, 288 struct device_attribute *dev_attr, 289 char *buf) 290 { 291 struct hv_device *hv_dev = device_to_hv_device(dev); 292 293 if (!hv_dev->channel) 294 return -ENODEV; 295 return sprintf(buf, "%d\n", 296 channel_conn_id(hv_dev->channel, 297 vmbus_connection.monitor_pages[1])); 298 } 299 static DEVICE_ATTR_RO(client_monitor_conn_id); 300 301 static ssize_t out_intr_mask_show(struct device *dev, 302 struct device_attribute *dev_attr, char *buf) 303 { 304 struct hv_device *hv_dev = device_to_hv_device(dev); 305 struct hv_ring_buffer_debug_info outbound; 306 int ret; 307 308 if (!hv_dev->channel) 309 return -ENODEV; 310 311 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 312 &outbound); 313 if (ret < 0) 314 return ret; 315 316 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 317 } 318 static DEVICE_ATTR_RO(out_intr_mask); 319 320 static ssize_t out_read_index_show(struct device *dev, 321 struct device_attribute *dev_attr, char *buf) 322 { 323 struct hv_device *hv_dev = device_to_hv_device(dev); 324 struct hv_ring_buffer_debug_info outbound; 325 int ret; 326 327 if (!hv_dev->channel) 328 return -ENODEV; 329 330 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 331 &outbound); 332 if (ret < 0) 333 return ret; 334 return sprintf(buf, "%d\n", outbound.current_read_index); 335 } 336 static DEVICE_ATTR_RO(out_read_index); 337 338 static ssize_t out_write_index_show(struct device *dev, 339 struct device_attribute *dev_attr, 340 char *buf) 341 { 342 struct hv_device *hv_dev = device_to_hv_device(dev); 343 struct hv_ring_buffer_debug_info outbound; 344 int ret; 345 346 if (!hv_dev->channel) 347 return -ENODEV; 348 349 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 350 &outbound); 351 if (ret < 0) 352 return ret; 353 return sprintf(buf, "%d\n", outbound.current_write_index); 354 } 355 static DEVICE_ATTR_RO(out_write_index); 356 357 static ssize_t out_read_bytes_avail_show(struct device *dev, 358 struct device_attribute *dev_attr, 359 char *buf) 360 { 361 struct hv_device *hv_dev = device_to_hv_device(dev); 362 struct hv_ring_buffer_debug_info outbound; 363 int ret; 364 365 if (!hv_dev->channel) 366 return -ENODEV; 367 368 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 369 &outbound); 370 if (ret < 0) 371 return ret; 372 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 373 } 374 static DEVICE_ATTR_RO(out_read_bytes_avail); 375 376 static ssize_t out_write_bytes_avail_show(struct device *dev, 377 struct device_attribute *dev_attr, 378 char *buf) 379 { 380 struct hv_device *hv_dev = device_to_hv_device(dev); 381 struct hv_ring_buffer_debug_info outbound; 382 int ret; 383 384 if (!hv_dev->channel) 385 return -ENODEV; 386 387 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 388 &outbound); 389 if (ret < 0) 390 return ret; 391 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 392 } 393 static DEVICE_ATTR_RO(out_write_bytes_avail); 394 395 static ssize_t in_intr_mask_show(struct device *dev, 396 struct device_attribute *dev_attr, char *buf) 397 { 398 struct hv_device *hv_dev = device_to_hv_device(dev); 399 struct hv_ring_buffer_debug_info inbound; 400 int ret; 401 402 if (!hv_dev->channel) 403 return -ENODEV; 404 405 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 406 if (ret < 0) 407 return ret; 408 409 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 410 } 411 static DEVICE_ATTR_RO(in_intr_mask); 412 413 static ssize_t in_read_index_show(struct device *dev, 414 struct device_attribute *dev_attr, char *buf) 415 { 416 struct hv_device *hv_dev = device_to_hv_device(dev); 417 struct hv_ring_buffer_debug_info inbound; 418 int ret; 419 420 if (!hv_dev->channel) 421 return -ENODEV; 422 423 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 424 if (ret < 0) 425 return ret; 426 427 return sprintf(buf, "%d\n", inbound.current_read_index); 428 } 429 static DEVICE_ATTR_RO(in_read_index); 430 431 static ssize_t in_write_index_show(struct device *dev, 432 struct device_attribute *dev_attr, char *buf) 433 { 434 struct hv_device *hv_dev = device_to_hv_device(dev); 435 struct hv_ring_buffer_debug_info inbound; 436 int ret; 437 438 if (!hv_dev->channel) 439 return -ENODEV; 440 441 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 442 if (ret < 0) 443 return ret; 444 445 return sprintf(buf, "%d\n", inbound.current_write_index); 446 } 447 static DEVICE_ATTR_RO(in_write_index); 448 449 static ssize_t in_read_bytes_avail_show(struct device *dev, 450 struct device_attribute *dev_attr, 451 char *buf) 452 { 453 struct hv_device *hv_dev = device_to_hv_device(dev); 454 struct hv_ring_buffer_debug_info inbound; 455 int ret; 456 457 if (!hv_dev->channel) 458 return -ENODEV; 459 460 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 461 if (ret < 0) 462 return ret; 463 464 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 465 } 466 static DEVICE_ATTR_RO(in_read_bytes_avail); 467 468 static ssize_t in_write_bytes_avail_show(struct device *dev, 469 struct device_attribute *dev_attr, 470 char *buf) 471 { 472 struct hv_device *hv_dev = device_to_hv_device(dev); 473 struct hv_ring_buffer_debug_info inbound; 474 int ret; 475 476 if (!hv_dev->channel) 477 return -ENODEV; 478 479 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 480 if (ret < 0) 481 return ret; 482 483 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 484 } 485 static DEVICE_ATTR_RO(in_write_bytes_avail); 486 487 static ssize_t channel_vp_mapping_show(struct device *dev, 488 struct device_attribute *dev_attr, 489 char *buf) 490 { 491 struct hv_device *hv_dev = device_to_hv_device(dev); 492 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 493 unsigned long flags; 494 int buf_size = PAGE_SIZE, n_written, tot_written; 495 struct list_head *cur; 496 497 if (!channel) 498 return -ENODEV; 499 500 tot_written = snprintf(buf, buf_size, "%u:%u\n", 501 channel->offermsg.child_relid, channel->target_cpu); 502 503 spin_lock_irqsave(&channel->lock, flags); 504 505 list_for_each(cur, &channel->sc_list) { 506 if (tot_written >= buf_size - 1) 507 break; 508 509 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 510 n_written = scnprintf(buf + tot_written, 511 buf_size - tot_written, 512 "%u:%u\n", 513 cur_sc->offermsg.child_relid, 514 cur_sc->target_cpu); 515 tot_written += n_written; 516 } 517 518 spin_unlock_irqrestore(&channel->lock, flags); 519 520 return tot_written; 521 } 522 static DEVICE_ATTR_RO(channel_vp_mapping); 523 524 static ssize_t vendor_show(struct device *dev, 525 struct device_attribute *dev_attr, 526 char *buf) 527 { 528 struct hv_device *hv_dev = device_to_hv_device(dev); 529 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 530 } 531 static DEVICE_ATTR_RO(vendor); 532 533 static ssize_t device_show(struct device *dev, 534 struct device_attribute *dev_attr, 535 char *buf) 536 { 537 struct hv_device *hv_dev = device_to_hv_device(dev); 538 return sprintf(buf, "0x%x\n", hv_dev->device_id); 539 } 540 static DEVICE_ATTR_RO(device); 541 542 static ssize_t driver_override_store(struct device *dev, 543 struct device_attribute *attr, 544 const char *buf, size_t count) 545 { 546 struct hv_device *hv_dev = device_to_hv_device(dev); 547 char *driver_override, *old, *cp; 548 549 /* We need to keep extra room for a newline */ 550 if (count >= (PAGE_SIZE - 1)) 551 return -EINVAL; 552 553 driver_override = kstrndup(buf, count, GFP_KERNEL); 554 if (!driver_override) 555 return -ENOMEM; 556 557 cp = strchr(driver_override, '\n'); 558 if (cp) 559 *cp = '\0'; 560 561 device_lock(dev); 562 old = hv_dev->driver_override; 563 if (strlen(driver_override)) { 564 hv_dev->driver_override = driver_override; 565 } else { 566 kfree(driver_override); 567 hv_dev->driver_override = NULL; 568 } 569 device_unlock(dev); 570 571 kfree(old); 572 573 return count; 574 } 575 576 static ssize_t driver_override_show(struct device *dev, 577 struct device_attribute *attr, char *buf) 578 { 579 struct hv_device *hv_dev = device_to_hv_device(dev); 580 ssize_t len; 581 582 device_lock(dev); 583 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 584 device_unlock(dev); 585 586 return len; 587 } 588 static DEVICE_ATTR_RW(driver_override); 589 590 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 591 static struct attribute *vmbus_dev_attrs[] = { 592 &dev_attr_id.attr, 593 &dev_attr_state.attr, 594 &dev_attr_monitor_id.attr, 595 &dev_attr_class_id.attr, 596 &dev_attr_device_id.attr, 597 &dev_attr_modalias.attr, 598 #ifdef CONFIG_NUMA 599 &dev_attr_numa_node.attr, 600 #endif 601 &dev_attr_server_monitor_pending.attr, 602 &dev_attr_client_monitor_pending.attr, 603 &dev_attr_server_monitor_latency.attr, 604 &dev_attr_client_monitor_latency.attr, 605 &dev_attr_server_monitor_conn_id.attr, 606 &dev_attr_client_monitor_conn_id.attr, 607 &dev_attr_out_intr_mask.attr, 608 &dev_attr_out_read_index.attr, 609 &dev_attr_out_write_index.attr, 610 &dev_attr_out_read_bytes_avail.attr, 611 &dev_attr_out_write_bytes_avail.attr, 612 &dev_attr_in_intr_mask.attr, 613 &dev_attr_in_read_index.attr, 614 &dev_attr_in_write_index.attr, 615 &dev_attr_in_read_bytes_avail.attr, 616 &dev_attr_in_write_bytes_avail.attr, 617 &dev_attr_channel_vp_mapping.attr, 618 &dev_attr_vendor.attr, 619 &dev_attr_device.attr, 620 &dev_attr_driver_override.attr, 621 NULL, 622 }; 623 624 /* 625 * Device-level attribute_group callback function. Returns the permission for 626 * each attribute, and returns 0 if an attribute is not visible. 627 */ 628 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 629 struct attribute *attr, int idx) 630 { 631 struct device *dev = kobj_to_dev(kobj); 632 const struct hv_device *hv_dev = device_to_hv_device(dev); 633 634 /* Hide the monitor attributes if the monitor mechanism is not used. */ 635 if (!hv_dev->channel->offermsg.monitor_allocated && 636 (attr == &dev_attr_monitor_id.attr || 637 attr == &dev_attr_server_monitor_pending.attr || 638 attr == &dev_attr_client_monitor_pending.attr || 639 attr == &dev_attr_server_monitor_latency.attr || 640 attr == &dev_attr_client_monitor_latency.attr || 641 attr == &dev_attr_server_monitor_conn_id.attr || 642 attr == &dev_attr_client_monitor_conn_id.attr)) 643 return 0; 644 645 return attr->mode; 646 } 647 648 static const struct attribute_group vmbus_dev_group = { 649 .attrs = vmbus_dev_attrs, 650 .is_visible = vmbus_dev_attr_is_visible 651 }; 652 __ATTRIBUTE_GROUPS(vmbus_dev); 653 654 /* 655 * vmbus_uevent - add uevent for our device 656 * 657 * This routine is invoked when a device is added or removed on the vmbus to 658 * generate a uevent to udev in the userspace. The udev will then look at its 659 * rule and the uevent generated here to load the appropriate driver 660 * 661 * The alias string will be of the form vmbus:guid where guid is the string 662 * representation of the device guid (each byte of the guid will be 663 * represented with two hex characters. 664 */ 665 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 666 { 667 struct hv_device *dev = device_to_hv_device(device); 668 int ret; 669 char alias_name[VMBUS_ALIAS_LEN + 1]; 670 671 print_alias_name(dev, alias_name); 672 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 673 return ret; 674 } 675 676 static const struct hv_vmbus_device_id * 677 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 678 { 679 if (id == NULL) 680 return NULL; /* empty device table */ 681 682 for (; !guid_is_null(&id->guid); id++) 683 if (guid_equal(&id->guid, guid)) 684 return id; 685 686 return NULL; 687 } 688 689 static const struct hv_vmbus_device_id * 690 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 691 { 692 const struct hv_vmbus_device_id *id = NULL; 693 struct vmbus_dynid *dynid; 694 695 spin_lock(&drv->dynids.lock); 696 list_for_each_entry(dynid, &drv->dynids.list, node) { 697 if (guid_equal(&dynid->id.guid, guid)) { 698 id = &dynid->id; 699 break; 700 } 701 } 702 spin_unlock(&drv->dynids.lock); 703 704 return id; 705 } 706 707 static const struct hv_vmbus_device_id vmbus_device_null; 708 709 /* 710 * Return a matching hv_vmbus_device_id pointer. 711 * If there is no match, return NULL. 712 */ 713 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 714 struct hv_device *dev) 715 { 716 const guid_t *guid = &dev->dev_type; 717 const struct hv_vmbus_device_id *id; 718 719 /* When driver_override is set, only bind to the matching driver */ 720 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 721 return NULL; 722 723 /* Look at the dynamic ids first, before the static ones */ 724 id = hv_vmbus_dynid_match(drv, guid); 725 if (!id) 726 id = hv_vmbus_dev_match(drv->id_table, guid); 727 728 /* driver_override will always match, send a dummy id */ 729 if (!id && dev->driver_override) 730 id = &vmbus_device_null; 731 732 return id; 733 } 734 735 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 736 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 737 { 738 struct vmbus_dynid *dynid; 739 740 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 741 if (!dynid) 742 return -ENOMEM; 743 744 dynid->id.guid = *guid; 745 746 spin_lock(&drv->dynids.lock); 747 list_add_tail(&dynid->node, &drv->dynids.list); 748 spin_unlock(&drv->dynids.lock); 749 750 return driver_attach(&drv->driver); 751 } 752 753 static void vmbus_free_dynids(struct hv_driver *drv) 754 { 755 struct vmbus_dynid *dynid, *n; 756 757 spin_lock(&drv->dynids.lock); 758 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 759 list_del(&dynid->node); 760 kfree(dynid); 761 } 762 spin_unlock(&drv->dynids.lock); 763 } 764 765 /* 766 * store_new_id - sysfs frontend to vmbus_add_dynid() 767 * 768 * Allow GUIDs to be added to an existing driver via sysfs. 769 */ 770 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 771 size_t count) 772 { 773 struct hv_driver *drv = drv_to_hv_drv(driver); 774 guid_t guid; 775 ssize_t retval; 776 777 retval = guid_parse(buf, &guid); 778 if (retval) 779 return retval; 780 781 if (hv_vmbus_dynid_match(drv, &guid)) 782 return -EEXIST; 783 784 retval = vmbus_add_dynid(drv, &guid); 785 if (retval) 786 return retval; 787 return count; 788 } 789 static DRIVER_ATTR_WO(new_id); 790 791 /* 792 * store_remove_id - remove a PCI device ID from this driver 793 * 794 * Removes a dynamic pci device ID to this driver. 795 */ 796 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 797 size_t count) 798 { 799 struct hv_driver *drv = drv_to_hv_drv(driver); 800 struct vmbus_dynid *dynid, *n; 801 guid_t guid; 802 ssize_t retval; 803 804 retval = guid_parse(buf, &guid); 805 if (retval) 806 return retval; 807 808 retval = -ENODEV; 809 spin_lock(&drv->dynids.lock); 810 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 811 struct hv_vmbus_device_id *id = &dynid->id; 812 813 if (guid_equal(&id->guid, &guid)) { 814 list_del(&dynid->node); 815 kfree(dynid); 816 retval = count; 817 break; 818 } 819 } 820 spin_unlock(&drv->dynids.lock); 821 822 return retval; 823 } 824 static DRIVER_ATTR_WO(remove_id); 825 826 static struct attribute *vmbus_drv_attrs[] = { 827 &driver_attr_new_id.attr, 828 &driver_attr_remove_id.attr, 829 NULL, 830 }; 831 ATTRIBUTE_GROUPS(vmbus_drv); 832 833 834 /* 835 * vmbus_match - Attempt to match the specified device to the specified driver 836 */ 837 static int vmbus_match(struct device *device, struct device_driver *driver) 838 { 839 struct hv_driver *drv = drv_to_hv_drv(driver); 840 struct hv_device *hv_dev = device_to_hv_device(device); 841 842 /* The hv_sock driver handles all hv_sock offers. */ 843 if (is_hvsock_channel(hv_dev->channel)) 844 return drv->hvsock; 845 846 if (hv_vmbus_get_id(drv, hv_dev)) 847 return 1; 848 849 return 0; 850 } 851 852 /* 853 * vmbus_probe - Add the new vmbus's child device 854 */ 855 static int vmbus_probe(struct device *child_device) 856 { 857 int ret = 0; 858 struct hv_driver *drv = 859 drv_to_hv_drv(child_device->driver); 860 struct hv_device *dev = device_to_hv_device(child_device); 861 const struct hv_vmbus_device_id *dev_id; 862 863 dev_id = hv_vmbus_get_id(drv, dev); 864 if (drv->probe) { 865 ret = drv->probe(dev, dev_id); 866 if (ret != 0) 867 pr_err("probe failed for device %s (%d)\n", 868 dev_name(child_device), ret); 869 870 } else { 871 pr_err("probe not set for driver %s\n", 872 dev_name(child_device)); 873 ret = -ENODEV; 874 } 875 return ret; 876 } 877 878 /* 879 * vmbus_remove - Remove a vmbus device 880 */ 881 static int vmbus_remove(struct device *child_device) 882 { 883 struct hv_driver *drv; 884 struct hv_device *dev = device_to_hv_device(child_device); 885 886 if (child_device->driver) { 887 drv = drv_to_hv_drv(child_device->driver); 888 if (drv->remove) 889 drv->remove(dev); 890 } 891 892 return 0; 893 } 894 895 896 /* 897 * vmbus_shutdown - Shutdown a vmbus device 898 */ 899 static void vmbus_shutdown(struct device *child_device) 900 { 901 struct hv_driver *drv; 902 struct hv_device *dev = device_to_hv_device(child_device); 903 904 905 /* The device may not be attached yet */ 906 if (!child_device->driver) 907 return; 908 909 drv = drv_to_hv_drv(child_device->driver); 910 911 if (drv->shutdown) 912 drv->shutdown(dev); 913 } 914 915 #ifdef CONFIG_PM_SLEEP 916 /* 917 * vmbus_suspend - Suspend a vmbus device 918 */ 919 static int vmbus_suspend(struct device *child_device) 920 { 921 struct hv_driver *drv; 922 struct hv_device *dev = device_to_hv_device(child_device); 923 924 /* The device may not be attached yet */ 925 if (!child_device->driver) 926 return 0; 927 928 drv = drv_to_hv_drv(child_device->driver); 929 if (!drv->suspend) 930 return -EOPNOTSUPP; 931 932 return drv->suspend(dev); 933 } 934 935 /* 936 * vmbus_resume - Resume a vmbus device 937 */ 938 static int vmbus_resume(struct device *child_device) 939 { 940 struct hv_driver *drv; 941 struct hv_device *dev = device_to_hv_device(child_device); 942 943 /* The device may not be attached yet */ 944 if (!child_device->driver) 945 return 0; 946 947 drv = drv_to_hv_drv(child_device->driver); 948 if (!drv->resume) 949 return -EOPNOTSUPP; 950 951 return drv->resume(dev); 952 } 953 #endif /* CONFIG_PM_SLEEP */ 954 955 /* 956 * vmbus_device_release - Final callback release of the vmbus child device 957 */ 958 static void vmbus_device_release(struct device *device) 959 { 960 struct hv_device *hv_dev = device_to_hv_device(device); 961 struct vmbus_channel *channel = hv_dev->channel; 962 963 hv_debug_rm_dev_dir(hv_dev); 964 965 mutex_lock(&vmbus_connection.channel_mutex); 966 hv_process_channel_removal(channel); 967 mutex_unlock(&vmbus_connection.channel_mutex); 968 kfree(hv_dev); 969 } 970 971 /* 972 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than 973 * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm. 974 */ 975 static const struct dev_pm_ops vmbus_pm = { 976 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume) 977 }; 978 979 /* The one and only one */ 980 static struct bus_type hv_bus = { 981 .name = "vmbus", 982 .match = vmbus_match, 983 .shutdown = vmbus_shutdown, 984 .remove = vmbus_remove, 985 .probe = vmbus_probe, 986 .uevent = vmbus_uevent, 987 .dev_groups = vmbus_dev_groups, 988 .drv_groups = vmbus_drv_groups, 989 .pm = &vmbus_pm, 990 }; 991 992 struct onmessage_work_context { 993 struct work_struct work; 994 struct hv_message msg; 995 }; 996 997 static void vmbus_onmessage_work(struct work_struct *work) 998 { 999 struct onmessage_work_context *ctx; 1000 1001 /* Do not process messages if we're in DISCONNECTED state */ 1002 if (vmbus_connection.conn_state == DISCONNECTED) 1003 return; 1004 1005 ctx = container_of(work, struct onmessage_work_context, 1006 work); 1007 vmbus_onmessage(&ctx->msg); 1008 kfree(ctx); 1009 } 1010 1011 void vmbus_on_msg_dpc(unsigned long data) 1012 { 1013 struct hv_per_cpu_context *hv_cpu = (void *)data; 1014 void *page_addr = hv_cpu->synic_message_page; 1015 struct hv_message *msg = (struct hv_message *)page_addr + 1016 VMBUS_MESSAGE_SINT; 1017 struct vmbus_channel_message_header *hdr; 1018 const struct vmbus_channel_message_table_entry *entry; 1019 struct onmessage_work_context *ctx; 1020 u32 message_type = msg->header.message_type; 1021 1022 if (message_type == HVMSG_NONE) 1023 /* no msg */ 1024 return; 1025 1026 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 1027 1028 trace_vmbus_on_msg_dpc(hdr); 1029 1030 if (hdr->msgtype >= CHANNELMSG_COUNT) { 1031 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 1032 goto msg_handled; 1033 } 1034 1035 entry = &channel_message_table[hdr->msgtype]; 1036 if (entry->handler_type == VMHT_BLOCKING) { 1037 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 1038 if (ctx == NULL) 1039 return; 1040 1041 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1042 memcpy(&ctx->msg, msg, sizeof(*msg)); 1043 1044 /* 1045 * The host can generate a rescind message while we 1046 * may still be handling the original offer. We deal with 1047 * this condition by ensuring the processing is done on the 1048 * same CPU. 1049 */ 1050 switch (hdr->msgtype) { 1051 case CHANNELMSG_RESCIND_CHANNELOFFER: 1052 /* 1053 * If we are handling the rescind message; 1054 * schedule the work on the global work queue. 1055 */ 1056 schedule_work_on(vmbus_connection.connect_cpu, 1057 &ctx->work); 1058 break; 1059 1060 case CHANNELMSG_OFFERCHANNEL: 1061 atomic_inc(&vmbus_connection.offer_in_progress); 1062 queue_work_on(vmbus_connection.connect_cpu, 1063 vmbus_connection.work_queue, 1064 &ctx->work); 1065 break; 1066 1067 default: 1068 queue_work(vmbus_connection.work_queue, &ctx->work); 1069 } 1070 } else 1071 entry->message_handler(hdr); 1072 1073 msg_handled: 1074 vmbus_signal_eom(msg, message_type); 1075 } 1076 1077 #ifdef CONFIG_PM_SLEEP 1078 /* 1079 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for 1080 * hibernation, because hv_sock connections can not persist across hibernation. 1081 */ 1082 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) 1083 { 1084 struct onmessage_work_context *ctx; 1085 struct vmbus_channel_rescind_offer *rescind; 1086 1087 WARN_ON(!is_hvsock_channel(channel)); 1088 1089 /* 1090 * sizeof(*ctx) is small and the allocation should really not fail, 1091 * otherwise the state of the hv_sock connections ends up in limbo. 1092 */ 1093 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL); 1094 1095 /* 1096 * So far, these are not really used by Linux. Just set them to the 1097 * reasonable values conforming to the definitions of the fields. 1098 */ 1099 ctx->msg.header.message_type = 1; 1100 ctx->msg.header.payload_size = sizeof(*rescind); 1101 1102 /* These values are actually used by Linux. */ 1103 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.u.payload; 1104 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; 1105 rescind->child_relid = channel->offermsg.child_relid; 1106 1107 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1108 1109 queue_work_on(vmbus_connection.connect_cpu, 1110 vmbus_connection.work_queue, 1111 &ctx->work); 1112 } 1113 #endif /* CONFIG_PM_SLEEP */ 1114 1115 /* 1116 * Direct callback for channels using other deferred processing 1117 */ 1118 static void vmbus_channel_isr(struct vmbus_channel *channel) 1119 { 1120 void (*callback_fn)(void *); 1121 1122 callback_fn = READ_ONCE(channel->onchannel_callback); 1123 if (likely(callback_fn != NULL)) 1124 (*callback_fn)(channel->channel_callback_context); 1125 } 1126 1127 /* 1128 * Schedule all channels with events pending 1129 */ 1130 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1131 { 1132 unsigned long *recv_int_page; 1133 u32 maxbits, relid; 1134 1135 if (vmbus_proto_version < VERSION_WIN8) { 1136 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1137 recv_int_page = vmbus_connection.recv_int_page; 1138 } else { 1139 /* 1140 * When the host is win8 and beyond, the event page 1141 * can be directly checked to get the id of the channel 1142 * that has the interrupt pending. 1143 */ 1144 void *page_addr = hv_cpu->synic_event_page; 1145 union hv_synic_event_flags *event 1146 = (union hv_synic_event_flags *)page_addr + 1147 VMBUS_MESSAGE_SINT; 1148 1149 maxbits = HV_EVENT_FLAGS_COUNT; 1150 recv_int_page = event->flags; 1151 } 1152 1153 if (unlikely(!recv_int_page)) 1154 return; 1155 1156 for_each_set_bit(relid, recv_int_page, maxbits) { 1157 struct vmbus_channel *channel; 1158 1159 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1160 continue; 1161 1162 /* Special case - vmbus channel protocol msg */ 1163 if (relid == 0) 1164 continue; 1165 1166 rcu_read_lock(); 1167 1168 /* Find channel based on relid */ 1169 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 1170 if (channel->offermsg.child_relid != relid) 1171 continue; 1172 1173 if (channel->rescind) 1174 continue; 1175 1176 trace_vmbus_chan_sched(channel); 1177 1178 ++channel->interrupts; 1179 1180 switch (channel->callback_mode) { 1181 case HV_CALL_ISR: 1182 vmbus_channel_isr(channel); 1183 break; 1184 1185 case HV_CALL_BATCHED: 1186 hv_begin_read(&channel->inbound); 1187 /* fallthrough */ 1188 case HV_CALL_DIRECT: 1189 tasklet_schedule(&channel->callback_event); 1190 } 1191 } 1192 1193 rcu_read_unlock(); 1194 } 1195 } 1196 1197 static void vmbus_isr(void) 1198 { 1199 struct hv_per_cpu_context *hv_cpu 1200 = this_cpu_ptr(hv_context.cpu_context); 1201 void *page_addr = hv_cpu->synic_event_page; 1202 struct hv_message *msg; 1203 union hv_synic_event_flags *event; 1204 bool handled = false; 1205 1206 if (unlikely(page_addr == NULL)) 1207 return; 1208 1209 event = (union hv_synic_event_flags *)page_addr + 1210 VMBUS_MESSAGE_SINT; 1211 /* 1212 * Check for events before checking for messages. This is the order 1213 * in which events and messages are checked in Windows guests on 1214 * Hyper-V, and the Windows team suggested we do the same. 1215 */ 1216 1217 if ((vmbus_proto_version == VERSION_WS2008) || 1218 (vmbus_proto_version == VERSION_WIN7)) { 1219 1220 /* Since we are a child, we only need to check bit 0 */ 1221 if (sync_test_and_clear_bit(0, event->flags)) 1222 handled = true; 1223 } else { 1224 /* 1225 * Our host is win8 or above. The signaling mechanism 1226 * has changed and we can directly look at the event page. 1227 * If bit n is set then we have an interrup on the channel 1228 * whose id is n. 1229 */ 1230 handled = true; 1231 } 1232 1233 if (handled) 1234 vmbus_chan_sched(hv_cpu); 1235 1236 page_addr = hv_cpu->synic_message_page; 1237 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1238 1239 /* Check if there are actual msgs to be processed */ 1240 if (msg->header.message_type != HVMSG_NONE) { 1241 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1242 hv_stimer0_isr(); 1243 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1244 } else 1245 tasklet_schedule(&hv_cpu->msg_dpc); 1246 } 1247 1248 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1249 } 1250 1251 /* 1252 * Boolean to control whether to report panic messages over Hyper-V. 1253 * 1254 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg 1255 */ 1256 static int sysctl_record_panic_msg = 1; 1257 1258 /* 1259 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1260 * buffer and call into Hyper-V to transfer the data. 1261 */ 1262 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1263 enum kmsg_dump_reason reason) 1264 { 1265 size_t bytes_written; 1266 phys_addr_t panic_pa; 1267 1268 /* We are only interested in panics. */ 1269 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1270 return; 1271 1272 panic_pa = virt_to_phys(hv_panic_page); 1273 1274 /* 1275 * Write dump contents to the page. No need to synchronize; panic should 1276 * be single-threaded. 1277 */ 1278 kmsg_dump_get_buffer(dumper, true, hv_panic_page, HV_HYP_PAGE_SIZE, 1279 &bytes_written); 1280 if (bytes_written) 1281 hyperv_report_panic_msg(panic_pa, bytes_written); 1282 } 1283 1284 static struct kmsg_dumper hv_kmsg_dumper = { 1285 .dump = hv_kmsg_dump, 1286 }; 1287 1288 static struct ctl_table_header *hv_ctl_table_hdr; 1289 1290 /* 1291 * sysctl option to allow the user to control whether kmsg data should be 1292 * reported to Hyper-V on panic. 1293 */ 1294 static struct ctl_table hv_ctl_table[] = { 1295 { 1296 .procname = "hyperv_record_panic_msg", 1297 .data = &sysctl_record_panic_msg, 1298 .maxlen = sizeof(int), 1299 .mode = 0644, 1300 .proc_handler = proc_dointvec_minmax, 1301 .extra1 = SYSCTL_ZERO, 1302 .extra2 = SYSCTL_ONE 1303 }, 1304 {} 1305 }; 1306 1307 static struct ctl_table hv_root_table[] = { 1308 { 1309 .procname = "kernel", 1310 .mode = 0555, 1311 .child = hv_ctl_table 1312 }, 1313 {} 1314 }; 1315 1316 /* 1317 * vmbus_bus_init -Main vmbus driver initialization routine. 1318 * 1319 * Here, we 1320 * - initialize the vmbus driver context 1321 * - invoke the vmbus hv main init routine 1322 * - retrieve the channel offers 1323 */ 1324 static int vmbus_bus_init(void) 1325 { 1326 int ret; 1327 1328 /* Hypervisor initialization...setup hypercall page..etc */ 1329 ret = hv_init(); 1330 if (ret != 0) { 1331 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1332 return ret; 1333 } 1334 1335 ret = bus_register(&hv_bus); 1336 if (ret) 1337 return ret; 1338 1339 hv_setup_vmbus_irq(vmbus_isr); 1340 1341 ret = hv_synic_alloc(); 1342 if (ret) 1343 goto err_alloc; 1344 1345 /* 1346 * Initialize the per-cpu interrupt state and stimer state. 1347 * Then connect to the host. 1348 */ 1349 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1350 hv_synic_init, hv_synic_cleanup); 1351 if (ret < 0) 1352 goto err_cpuhp; 1353 hyperv_cpuhp_online = ret; 1354 1355 ret = vmbus_connect(); 1356 if (ret) 1357 goto err_connect; 1358 1359 /* 1360 * Only register if the crash MSRs are available 1361 */ 1362 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1363 u64 hyperv_crash_ctl; 1364 /* 1365 * Sysctl registration is not fatal, since by default 1366 * reporting is enabled. 1367 */ 1368 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1369 if (!hv_ctl_table_hdr) 1370 pr_err("Hyper-V: sysctl table register error"); 1371 1372 /* 1373 * Register for panic kmsg callback only if the right 1374 * capability is supported by the hypervisor. 1375 */ 1376 hv_get_crash_ctl(hyperv_crash_ctl); 1377 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) { 1378 hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page(); 1379 if (hv_panic_page) { 1380 ret = kmsg_dump_register(&hv_kmsg_dumper); 1381 if (ret) 1382 pr_err("Hyper-V: kmsg dump register " 1383 "error 0x%x\n", ret); 1384 } else 1385 pr_err("Hyper-V: panic message page memory " 1386 "allocation failed"); 1387 } 1388 1389 register_die_notifier(&hyperv_die_block); 1390 atomic_notifier_chain_register(&panic_notifier_list, 1391 &hyperv_panic_block); 1392 } 1393 1394 vmbus_request_offers(); 1395 1396 return 0; 1397 1398 err_connect: 1399 cpuhp_remove_state(hyperv_cpuhp_online); 1400 err_cpuhp: 1401 hv_synic_free(); 1402 err_alloc: 1403 hv_remove_vmbus_irq(); 1404 1405 bus_unregister(&hv_bus); 1406 hv_free_hyperv_page((unsigned long)hv_panic_page); 1407 unregister_sysctl_table(hv_ctl_table_hdr); 1408 hv_ctl_table_hdr = NULL; 1409 return ret; 1410 } 1411 1412 /** 1413 * __vmbus_child_driver_register() - Register a vmbus's driver 1414 * @hv_driver: Pointer to driver structure you want to register 1415 * @owner: owner module of the drv 1416 * @mod_name: module name string 1417 * 1418 * Registers the given driver with Linux through the 'driver_register()' call 1419 * and sets up the hyper-v vmbus handling for this driver. 1420 * It will return the state of the 'driver_register()' call. 1421 * 1422 */ 1423 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1424 { 1425 int ret; 1426 1427 pr_info("registering driver %s\n", hv_driver->name); 1428 1429 ret = vmbus_exists(); 1430 if (ret < 0) 1431 return ret; 1432 1433 hv_driver->driver.name = hv_driver->name; 1434 hv_driver->driver.owner = owner; 1435 hv_driver->driver.mod_name = mod_name; 1436 hv_driver->driver.bus = &hv_bus; 1437 1438 spin_lock_init(&hv_driver->dynids.lock); 1439 INIT_LIST_HEAD(&hv_driver->dynids.list); 1440 1441 ret = driver_register(&hv_driver->driver); 1442 1443 return ret; 1444 } 1445 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1446 1447 /** 1448 * vmbus_driver_unregister() - Unregister a vmbus's driver 1449 * @hv_driver: Pointer to driver structure you want to 1450 * un-register 1451 * 1452 * Un-register the given driver that was previous registered with a call to 1453 * vmbus_driver_register() 1454 */ 1455 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1456 { 1457 pr_info("unregistering driver %s\n", hv_driver->name); 1458 1459 if (!vmbus_exists()) { 1460 driver_unregister(&hv_driver->driver); 1461 vmbus_free_dynids(hv_driver); 1462 } 1463 } 1464 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1465 1466 1467 /* 1468 * Called when last reference to channel is gone. 1469 */ 1470 static void vmbus_chan_release(struct kobject *kobj) 1471 { 1472 struct vmbus_channel *channel 1473 = container_of(kobj, struct vmbus_channel, kobj); 1474 1475 kfree_rcu(channel, rcu); 1476 } 1477 1478 struct vmbus_chan_attribute { 1479 struct attribute attr; 1480 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1481 ssize_t (*store)(struct vmbus_channel *chan, 1482 const char *buf, size_t count); 1483 }; 1484 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1485 struct vmbus_chan_attribute chan_attr_##_name \ 1486 = __ATTR(_name, _mode, _show, _store) 1487 #define VMBUS_CHAN_ATTR_RW(_name) \ 1488 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1489 #define VMBUS_CHAN_ATTR_RO(_name) \ 1490 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1491 #define VMBUS_CHAN_ATTR_WO(_name) \ 1492 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1493 1494 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1495 struct attribute *attr, char *buf) 1496 { 1497 const struct vmbus_chan_attribute *attribute 1498 = container_of(attr, struct vmbus_chan_attribute, attr); 1499 struct vmbus_channel *chan 1500 = container_of(kobj, struct vmbus_channel, kobj); 1501 1502 if (!attribute->show) 1503 return -EIO; 1504 1505 return attribute->show(chan, buf); 1506 } 1507 1508 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1509 .show = vmbus_chan_attr_show, 1510 }; 1511 1512 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1513 { 1514 struct hv_ring_buffer_info *rbi = &channel->outbound; 1515 ssize_t ret; 1516 1517 mutex_lock(&rbi->ring_buffer_mutex); 1518 if (!rbi->ring_buffer) { 1519 mutex_unlock(&rbi->ring_buffer_mutex); 1520 return -EINVAL; 1521 } 1522 1523 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1524 mutex_unlock(&rbi->ring_buffer_mutex); 1525 return ret; 1526 } 1527 static VMBUS_CHAN_ATTR_RO(out_mask); 1528 1529 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1530 { 1531 struct hv_ring_buffer_info *rbi = &channel->inbound; 1532 ssize_t ret; 1533 1534 mutex_lock(&rbi->ring_buffer_mutex); 1535 if (!rbi->ring_buffer) { 1536 mutex_unlock(&rbi->ring_buffer_mutex); 1537 return -EINVAL; 1538 } 1539 1540 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1541 mutex_unlock(&rbi->ring_buffer_mutex); 1542 return ret; 1543 } 1544 static VMBUS_CHAN_ATTR_RO(in_mask); 1545 1546 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1547 { 1548 struct hv_ring_buffer_info *rbi = &channel->inbound; 1549 ssize_t ret; 1550 1551 mutex_lock(&rbi->ring_buffer_mutex); 1552 if (!rbi->ring_buffer) { 1553 mutex_unlock(&rbi->ring_buffer_mutex); 1554 return -EINVAL; 1555 } 1556 1557 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1558 mutex_unlock(&rbi->ring_buffer_mutex); 1559 return ret; 1560 } 1561 static VMBUS_CHAN_ATTR_RO(read_avail); 1562 1563 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1564 { 1565 struct hv_ring_buffer_info *rbi = &channel->outbound; 1566 ssize_t ret; 1567 1568 mutex_lock(&rbi->ring_buffer_mutex); 1569 if (!rbi->ring_buffer) { 1570 mutex_unlock(&rbi->ring_buffer_mutex); 1571 return -EINVAL; 1572 } 1573 1574 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1575 mutex_unlock(&rbi->ring_buffer_mutex); 1576 return ret; 1577 } 1578 static VMBUS_CHAN_ATTR_RO(write_avail); 1579 1580 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf) 1581 { 1582 return sprintf(buf, "%u\n", channel->target_cpu); 1583 } 1584 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1585 1586 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1587 char *buf) 1588 { 1589 return sprintf(buf, "%d\n", 1590 channel_pending(channel, 1591 vmbus_connection.monitor_pages[1])); 1592 } 1593 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1594 1595 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1596 char *buf) 1597 { 1598 return sprintf(buf, "%d\n", 1599 channel_latency(channel, 1600 vmbus_connection.monitor_pages[1])); 1601 } 1602 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1603 1604 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1605 { 1606 return sprintf(buf, "%llu\n", channel->interrupts); 1607 } 1608 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1609 1610 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1611 { 1612 return sprintf(buf, "%llu\n", channel->sig_events); 1613 } 1614 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1615 1616 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1617 char *buf) 1618 { 1619 return sprintf(buf, "%llu\n", 1620 (unsigned long long)channel->intr_in_full); 1621 } 1622 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1623 1624 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1625 char *buf) 1626 { 1627 return sprintf(buf, "%llu\n", 1628 (unsigned long long)channel->intr_out_empty); 1629 } 1630 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1631 1632 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1633 char *buf) 1634 { 1635 return sprintf(buf, "%llu\n", 1636 (unsigned long long)channel->out_full_first); 1637 } 1638 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1639 1640 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1641 char *buf) 1642 { 1643 return sprintf(buf, "%llu\n", 1644 (unsigned long long)channel->out_full_total); 1645 } 1646 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1647 1648 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1649 char *buf) 1650 { 1651 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1652 } 1653 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1654 1655 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1656 char *buf) 1657 { 1658 return sprintf(buf, "%u\n", 1659 channel->offermsg.offer.sub_channel_index); 1660 } 1661 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1662 1663 static struct attribute *vmbus_chan_attrs[] = { 1664 &chan_attr_out_mask.attr, 1665 &chan_attr_in_mask.attr, 1666 &chan_attr_read_avail.attr, 1667 &chan_attr_write_avail.attr, 1668 &chan_attr_cpu.attr, 1669 &chan_attr_pending.attr, 1670 &chan_attr_latency.attr, 1671 &chan_attr_interrupts.attr, 1672 &chan_attr_events.attr, 1673 &chan_attr_intr_in_full.attr, 1674 &chan_attr_intr_out_empty.attr, 1675 &chan_attr_out_full_first.attr, 1676 &chan_attr_out_full_total.attr, 1677 &chan_attr_monitor_id.attr, 1678 &chan_attr_subchannel_id.attr, 1679 NULL 1680 }; 1681 1682 /* 1683 * Channel-level attribute_group callback function. Returns the permission for 1684 * each attribute, and returns 0 if an attribute is not visible. 1685 */ 1686 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1687 struct attribute *attr, int idx) 1688 { 1689 const struct vmbus_channel *channel = 1690 container_of(kobj, struct vmbus_channel, kobj); 1691 1692 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1693 if (!channel->offermsg.monitor_allocated && 1694 (attr == &chan_attr_pending.attr || 1695 attr == &chan_attr_latency.attr || 1696 attr == &chan_attr_monitor_id.attr)) 1697 return 0; 1698 1699 return attr->mode; 1700 } 1701 1702 static struct attribute_group vmbus_chan_group = { 1703 .attrs = vmbus_chan_attrs, 1704 .is_visible = vmbus_chan_attr_is_visible 1705 }; 1706 1707 static struct kobj_type vmbus_chan_ktype = { 1708 .sysfs_ops = &vmbus_chan_sysfs_ops, 1709 .release = vmbus_chan_release, 1710 }; 1711 1712 /* 1713 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1714 */ 1715 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1716 { 1717 const struct device *device = &dev->device; 1718 struct kobject *kobj = &channel->kobj; 1719 u32 relid = channel->offermsg.child_relid; 1720 int ret; 1721 1722 kobj->kset = dev->channels_kset; 1723 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1724 "%u", relid); 1725 if (ret) 1726 return ret; 1727 1728 ret = sysfs_create_group(kobj, &vmbus_chan_group); 1729 1730 if (ret) { 1731 /* 1732 * The calling functions' error handling paths will cleanup the 1733 * empty channel directory. 1734 */ 1735 dev_err(device, "Unable to set up channel sysfs files\n"); 1736 return ret; 1737 } 1738 1739 kobject_uevent(kobj, KOBJ_ADD); 1740 1741 return 0; 1742 } 1743 1744 /* 1745 * vmbus_remove_channel_attr_group - remove the channel's attribute group 1746 */ 1747 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 1748 { 1749 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 1750 } 1751 1752 /* 1753 * vmbus_device_create - Creates and registers a new child device 1754 * on the vmbus. 1755 */ 1756 struct hv_device *vmbus_device_create(const guid_t *type, 1757 const guid_t *instance, 1758 struct vmbus_channel *channel) 1759 { 1760 struct hv_device *child_device_obj; 1761 1762 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1763 if (!child_device_obj) { 1764 pr_err("Unable to allocate device object for child device\n"); 1765 return NULL; 1766 } 1767 1768 child_device_obj->channel = channel; 1769 guid_copy(&child_device_obj->dev_type, type); 1770 guid_copy(&child_device_obj->dev_instance, instance); 1771 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1772 1773 return child_device_obj; 1774 } 1775 1776 /* 1777 * vmbus_device_register - Register the child device 1778 */ 1779 int vmbus_device_register(struct hv_device *child_device_obj) 1780 { 1781 struct kobject *kobj = &child_device_obj->device.kobj; 1782 int ret; 1783 1784 dev_set_name(&child_device_obj->device, "%pUl", 1785 child_device_obj->channel->offermsg.offer.if_instance.b); 1786 1787 child_device_obj->device.bus = &hv_bus; 1788 child_device_obj->device.parent = &hv_acpi_dev->dev; 1789 child_device_obj->device.release = vmbus_device_release; 1790 1791 /* 1792 * Register with the LDM. This will kick off the driver/device 1793 * binding...which will eventually call vmbus_match() and vmbus_probe() 1794 */ 1795 ret = device_register(&child_device_obj->device); 1796 if (ret) { 1797 pr_err("Unable to register child device\n"); 1798 return ret; 1799 } 1800 1801 child_device_obj->channels_kset = kset_create_and_add("channels", 1802 NULL, kobj); 1803 if (!child_device_obj->channels_kset) { 1804 ret = -ENOMEM; 1805 goto err_dev_unregister; 1806 } 1807 1808 ret = vmbus_add_channel_kobj(child_device_obj, 1809 child_device_obj->channel); 1810 if (ret) { 1811 pr_err("Unable to register primary channeln"); 1812 goto err_kset_unregister; 1813 } 1814 hv_debug_add_dev_dir(child_device_obj); 1815 1816 return 0; 1817 1818 err_kset_unregister: 1819 kset_unregister(child_device_obj->channels_kset); 1820 1821 err_dev_unregister: 1822 device_unregister(&child_device_obj->device); 1823 return ret; 1824 } 1825 1826 /* 1827 * vmbus_device_unregister - Remove the specified child device 1828 * from the vmbus. 1829 */ 1830 void vmbus_device_unregister(struct hv_device *device_obj) 1831 { 1832 pr_debug("child device %s unregistered\n", 1833 dev_name(&device_obj->device)); 1834 1835 kset_unregister(device_obj->channels_kset); 1836 1837 /* 1838 * Kick off the process of unregistering the device. 1839 * This will call vmbus_remove() and eventually vmbus_device_release() 1840 */ 1841 device_unregister(&device_obj->device); 1842 } 1843 1844 1845 /* 1846 * VMBUS is an acpi enumerated device. Get the information we 1847 * need from DSDT. 1848 */ 1849 #define VTPM_BASE_ADDRESS 0xfed40000 1850 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1851 { 1852 resource_size_t start = 0; 1853 resource_size_t end = 0; 1854 struct resource *new_res; 1855 struct resource **old_res = &hyperv_mmio; 1856 struct resource **prev_res = NULL; 1857 1858 switch (res->type) { 1859 1860 /* 1861 * "Address" descriptors are for bus windows. Ignore 1862 * "memory" descriptors, which are for registers on 1863 * devices. 1864 */ 1865 case ACPI_RESOURCE_TYPE_ADDRESS32: 1866 start = res->data.address32.address.minimum; 1867 end = res->data.address32.address.maximum; 1868 break; 1869 1870 case ACPI_RESOURCE_TYPE_ADDRESS64: 1871 start = res->data.address64.address.minimum; 1872 end = res->data.address64.address.maximum; 1873 break; 1874 1875 default: 1876 /* Unused resource type */ 1877 return AE_OK; 1878 1879 } 1880 /* 1881 * Ignore ranges that are below 1MB, as they're not 1882 * necessary or useful here. 1883 */ 1884 if (end < 0x100000) 1885 return AE_OK; 1886 1887 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1888 if (!new_res) 1889 return AE_NO_MEMORY; 1890 1891 /* If this range overlaps the virtual TPM, truncate it. */ 1892 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1893 end = VTPM_BASE_ADDRESS; 1894 1895 new_res->name = "hyperv mmio"; 1896 new_res->flags = IORESOURCE_MEM; 1897 new_res->start = start; 1898 new_res->end = end; 1899 1900 /* 1901 * If two ranges are adjacent, merge them. 1902 */ 1903 do { 1904 if (!*old_res) { 1905 *old_res = new_res; 1906 break; 1907 } 1908 1909 if (((*old_res)->end + 1) == new_res->start) { 1910 (*old_res)->end = new_res->end; 1911 kfree(new_res); 1912 break; 1913 } 1914 1915 if ((*old_res)->start == new_res->end + 1) { 1916 (*old_res)->start = new_res->start; 1917 kfree(new_res); 1918 break; 1919 } 1920 1921 if ((*old_res)->start > new_res->end) { 1922 new_res->sibling = *old_res; 1923 if (prev_res) 1924 (*prev_res)->sibling = new_res; 1925 *old_res = new_res; 1926 break; 1927 } 1928 1929 prev_res = old_res; 1930 old_res = &(*old_res)->sibling; 1931 1932 } while (1); 1933 1934 return AE_OK; 1935 } 1936 1937 static int vmbus_acpi_remove(struct acpi_device *device) 1938 { 1939 struct resource *cur_res; 1940 struct resource *next_res; 1941 1942 if (hyperv_mmio) { 1943 if (fb_mmio) { 1944 __release_region(hyperv_mmio, fb_mmio->start, 1945 resource_size(fb_mmio)); 1946 fb_mmio = NULL; 1947 } 1948 1949 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1950 next_res = cur_res->sibling; 1951 kfree(cur_res); 1952 } 1953 } 1954 1955 return 0; 1956 } 1957 1958 static void vmbus_reserve_fb(void) 1959 { 1960 int size; 1961 /* 1962 * Make a claim for the frame buffer in the resource tree under the 1963 * first node, which will be the one below 4GB. The length seems to 1964 * be underreported, particularly in a Generation 1 VM. So start out 1965 * reserving a larger area and make it smaller until it succeeds. 1966 */ 1967 1968 if (screen_info.lfb_base) { 1969 if (efi_enabled(EFI_BOOT)) 1970 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1971 else 1972 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1973 1974 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1975 fb_mmio = __request_region(hyperv_mmio, 1976 screen_info.lfb_base, size, 1977 fb_mmio_name, 0); 1978 } 1979 } 1980 } 1981 1982 /** 1983 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1984 * @new: If successful, supplied a pointer to the 1985 * allocated MMIO space. 1986 * @device_obj: Identifies the caller 1987 * @min: Minimum guest physical address of the 1988 * allocation 1989 * @max: Maximum guest physical address 1990 * @size: Size of the range to be allocated 1991 * @align: Alignment of the range to be allocated 1992 * @fb_overlap_ok: Whether this allocation can be allowed 1993 * to overlap the video frame buffer. 1994 * 1995 * This function walks the resources granted to VMBus by the 1996 * _CRS object in the ACPI namespace underneath the parent 1997 * "bridge" whether that's a root PCI bus in the Generation 1 1998 * case or a Module Device in the Generation 2 case. It then 1999 * attempts to allocate from the global MMIO pool in a way that 2000 * matches the constraints supplied in these parameters and by 2001 * that _CRS. 2002 * 2003 * Return: 0 on success, -errno on failure 2004 */ 2005 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 2006 resource_size_t min, resource_size_t max, 2007 resource_size_t size, resource_size_t align, 2008 bool fb_overlap_ok) 2009 { 2010 struct resource *iter, *shadow; 2011 resource_size_t range_min, range_max, start; 2012 const char *dev_n = dev_name(&device_obj->device); 2013 int retval; 2014 2015 retval = -ENXIO; 2016 mutex_lock(&hyperv_mmio_lock); 2017 2018 /* 2019 * If overlaps with frame buffers are allowed, then first attempt to 2020 * make the allocation from within the reserved region. Because it 2021 * is already reserved, no shadow allocation is necessary. 2022 */ 2023 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 2024 !(max < fb_mmio->start)) { 2025 2026 range_min = fb_mmio->start; 2027 range_max = fb_mmio->end; 2028 start = (range_min + align - 1) & ~(align - 1); 2029 for (; start + size - 1 <= range_max; start += align) { 2030 *new = request_mem_region_exclusive(start, size, dev_n); 2031 if (*new) { 2032 retval = 0; 2033 goto exit; 2034 } 2035 } 2036 } 2037 2038 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2039 if ((iter->start >= max) || (iter->end <= min)) 2040 continue; 2041 2042 range_min = iter->start; 2043 range_max = iter->end; 2044 start = (range_min + align - 1) & ~(align - 1); 2045 for (; start + size - 1 <= range_max; start += align) { 2046 shadow = __request_region(iter, start, size, NULL, 2047 IORESOURCE_BUSY); 2048 if (!shadow) 2049 continue; 2050 2051 *new = request_mem_region_exclusive(start, size, dev_n); 2052 if (*new) { 2053 shadow->name = (char *)*new; 2054 retval = 0; 2055 goto exit; 2056 } 2057 2058 __release_region(iter, start, size); 2059 } 2060 } 2061 2062 exit: 2063 mutex_unlock(&hyperv_mmio_lock); 2064 return retval; 2065 } 2066 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 2067 2068 /** 2069 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2070 * @start: Base address of region to release. 2071 * @size: Size of the range to be allocated 2072 * 2073 * This function releases anything requested by 2074 * vmbus_mmio_allocate(). 2075 */ 2076 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2077 { 2078 struct resource *iter; 2079 2080 mutex_lock(&hyperv_mmio_lock); 2081 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2082 if ((iter->start >= start + size) || (iter->end <= start)) 2083 continue; 2084 2085 __release_region(iter, start, size); 2086 } 2087 release_mem_region(start, size); 2088 mutex_unlock(&hyperv_mmio_lock); 2089 2090 } 2091 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2092 2093 static int vmbus_acpi_add(struct acpi_device *device) 2094 { 2095 acpi_status result; 2096 int ret_val = -ENODEV; 2097 struct acpi_device *ancestor; 2098 2099 hv_acpi_dev = device; 2100 2101 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2102 vmbus_walk_resources, NULL); 2103 2104 if (ACPI_FAILURE(result)) 2105 goto acpi_walk_err; 2106 /* 2107 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2108 * firmware) is the VMOD that has the mmio ranges. Get that. 2109 */ 2110 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2111 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2112 vmbus_walk_resources, NULL); 2113 2114 if (ACPI_FAILURE(result)) 2115 continue; 2116 if (hyperv_mmio) { 2117 vmbus_reserve_fb(); 2118 break; 2119 } 2120 } 2121 ret_val = 0; 2122 2123 acpi_walk_err: 2124 complete(&probe_event); 2125 if (ret_val) 2126 vmbus_acpi_remove(device); 2127 return ret_val; 2128 } 2129 2130 #ifdef CONFIG_PM_SLEEP 2131 static int vmbus_bus_suspend(struct device *dev) 2132 { 2133 struct vmbus_channel *channel, *sc; 2134 unsigned long flags; 2135 2136 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 2137 /* 2138 * We wait here until the completion of any channel 2139 * offers that are currently in progress. 2140 */ 2141 msleep(1); 2142 } 2143 2144 mutex_lock(&vmbus_connection.channel_mutex); 2145 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2146 if (!is_hvsock_channel(channel)) 2147 continue; 2148 2149 vmbus_force_channel_rescinded(channel); 2150 } 2151 mutex_unlock(&vmbus_connection.channel_mutex); 2152 2153 /* 2154 * Wait until all the sub-channels and hv_sock channels have been 2155 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise 2156 * they would conflict with the new sub-channels that will be created 2157 * in the resume path. hv_sock channels should also be destroyed, but 2158 * a hv_sock channel of an established hv_sock connection can not be 2159 * really destroyed since it may still be referenced by the userspace 2160 * application, so we just force the hv_sock channel to be rescinded 2161 * by vmbus_force_channel_rescinded(), and the userspace application 2162 * will thoroughly destroy the channel after hibernation. 2163 * 2164 * Note: the counter nr_chan_close_on_suspend may never go above 0 if 2165 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. 2166 */ 2167 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) 2168 wait_for_completion(&vmbus_connection.ready_for_suspend_event); 2169 2170 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0); 2171 2172 mutex_lock(&vmbus_connection.channel_mutex); 2173 2174 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2175 /* 2176 * Invalidate the field. Upon resume, vmbus_onoffer() will fix 2177 * up the field, and the other fields (if necessary). 2178 */ 2179 channel->offermsg.child_relid = INVALID_RELID; 2180 2181 if (is_hvsock_channel(channel)) { 2182 if (!channel->rescind) { 2183 pr_err("hv_sock channel not rescinded!\n"); 2184 WARN_ON_ONCE(1); 2185 } 2186 continue; 2187 } 2188 2189 spin_lock_irqsave(&channel->lock, flags); 2190 list_for_each_entry(sc, &channel->sc_list, sc_list) { 2191 pr_err("Sub-channel not deleted!\n"); 2192 WARN_ON_ONCE(1); 2193 } 2194 spin_unlock_irqrestore(&channel->lock, flags); 2195 2196 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); 2197 } 2198 2199 mutex_unlock(&vmbus_connection.channel_mutex); 2200 2201 vmbus_initiate_unload(false); 2202 2203 vmbus_connection.conn_state = DISCONNECTED; 2204 2205 /* Reset the event for the next resume. */ 2206 reinit_completion(&vmbus_connection.ready_for_resume_event); 2207 2208 return 0; 2209 } 2210 2211 static int vmbus_bus_resume(struct device *dev) 2212 { 2213 struct vmbus_channel_msginfo *msginfo; 2214 size_t msgsize; 2215 int ret; 2216 2217 /* 2218 * We only use the 'vmbus_proto_version', which was in use before 2219 * hibernation, to re-negotiate with the host. 2220 */ 2221 if (!vmbus_proto_version) { 2222 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); 2223 return -EINVAL; 2224 } 2225 2226 msgsize = sizeof(*msginfo) + 2227 sizeof(struct vmbus_channel_initiate_contact); 2228 2229 msginfo = kzalloc(msgsize, GFP_KERNEL); 2230 2231 if (msginfo == NULL) 2232 return -ENOMEM; 2233 2234 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); 2235 2236 kfree(msginfo); 2237 2238 if (ret != 0) 2239 return ret; 2240 2241 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); 2242 2243 vmbus_request_offers(); 2244 2245 wait_for_completion(&vmbus_connection.ready_for_resume_event); 2246 2247 /* Reset the event for the next suspend. */ 2248 reinit_completion(&vmbus_connection.ready_for_suspend_event); 2249 2250 return 0; 2251 } 2252 #endif /* CONFIG_PM_SLEEP */ 2253 2254 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2255 {"VMBUS", 0}, 2256 {"VMBus", 0}, 2257 {"", 0}, 2258 }; 2259 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2260 2261 /* 2262 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than 2263 * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the 2264 * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the 2265 * pci "noirq" restore callback runs before "non-noirq" callbacks (see 2266 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> 2267 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's 2268 * resume callback must also run via the "noirq" callbacks. 2269 */ 2270 static const struct dev_pm_ops vmbus_bus_pm = { 2271 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume) 2272 }; 2273 2274 static struct acpi_driver vmbus_acpi_driver = { 2275 .name = "vmbus", 2276 .ids = vmbus_acpi_device_ids, 2277 .ops = { 2278 .add = vmbus_acpi_add, 2279 .remove = vmbus_acpi_remove, 2280 }, 2281 .drv.pm = &vmbus_bus_pm, 2282 }; 2283 2284 static void hv_kexec_handler(void) 2285 { 2286 hv_stimer_global_cleanup(); 2287 vmbus_initiate_unload(false); 2288 vmbus_connection.conn_state = DISCONNECTED; 2289 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2290 mb(); 2291 cpuhp_remove_state(hyperv_cpuhp_online); 2292 hyperv_cleanup(); 2293 }; 2294 2295 static void hv_crash_handler(struct pt_regs *regs) 2296 { 2297 int cpu; 2298 2299 vmbus_initiate_unload(true); 2300 /* 2301 * In crash handler we can't schedule synic cleanup for all CPUs, 2302 * doing the cleanup for current CPU only. This should be sufficient 2303 * for kdump. 2304 */ 2305 vmbus_connection.conn_state = DISCONNECTED; 2306 cpu = smp_processor_id(); 2307 hv_stimer_cleanup(cpu); 2308 hv_synic_disable_regs(cpu); 2309 hyperv_cleanup(); 2310 }; 2311 2312 static int hv_synic_suspend(void) 2313 { 2314 /* 2315 * When we reach here, all the non-boot CPUs have been offlined. 2316 * If we're in a legacy configuration where stimer Direct Mode is 2317 * not enabled, the stimers on the non-boot CPUs have been unbound 2318 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> 2319 * hv_stimer_cleanup() -> clockevents_unbind_device(). 2320 * 2321 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. 2322 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: 2323 * 1) it's unnecessary as interrupts remain disabled between 2324 * syscore_suspend() and syscore_resume(): see create_image() and 2325 * resume_target_kernel() 2326 * 2) the stimer on CPU0 is automatically disabled later by 2327 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... 2328 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() 2329 * 3) a warning would be triggered if we call 2330 * clockevents_unbind_device(), which may sleep, in an 2331 * interrupts-disabled context. 2332 */ 2333 2334 hv_synic_disable_regs(0); 2335 2336 return 0; 2337 } 2338 2339 static void hv_synic_resume(void) 2340 { 2341 hv_synic_enable_regs(0); 2342 2343 /* 2344 * Note: we don't need to call hv_stimer_init(0), because the timer 2345 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is 2346 * automatically re-enabled in timekeeping_resume(). 2347 */ 2348 } 2349 2350 /* The callbacks run only on CPU0, with irqs_disabled. */ 2351 static struct syscore_ops hv_synic_syscore_ops = { 2352 .suspend = hv_synic_suspend, 2353 .resume = hv_synic_resume, 2354 }; 2355 2356 static int __init hv_acpi_init(void) 2357 { 2358 int ret, t; 2359 2360 if (!hv_is_hyperv_initialized()) 2361 return -ENODEV; 2362 2363 init_completion(&probe_event); 2364 2365 /* 2366 * Get ACPI resources first. 2367 */ 2368 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2369 2370 if (ret) 2371 return ret; 2372 2373 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2374 if (t == 0) { 2375 ret = -ETIMEDOUT; 2376 goto cleanup; 2377 } 2378 hv_debug_init(); 2379 2380 ret = vmbus_bus_init(); 2381 if (ret) 2382 goto cleanup; 2383 2384 hv_setup_kexec_handler(hv_kexec_handler); 2385 hv_setup_crash_handler(hv_crash_handler); 2386 2387 register_syscore_ops(&hv_synic_syscore_ops); 2388 2389 return 0; 2390 2391 cleanup: 2392 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2393 hv_acpi_dev = NULL; 2394 return ret; 2395 } 2396 2397 static void __exit vmbus_exit(void) 2398 { 2399 int cpu; 2400 2401 unregister_syscore_ops(&hv_synic_syscore_ops); 2402 2403 hv_remove_kexec_handler(); 2404 hv_remove_crash_handler(); 2405 vmbus_connection.conn_state = DISCONNECTED; 2406 hv_stimer_global_cleanup(); 2407 vmbus_disconnect(); 2408 hv_remove_vmbus_irq(); 2409 for_each_online_cpu(cpu) { 2410 struct hv_per_cpu_context *hv_cpu 2411 = per_cpu_ptr(hv_context.cpu_context, cpu); 2412 2413 tasklet_kill(&hv_cpu->msg_dpc); 2414 } 2415 hv_debug_rm_all_dir(); 2416 2417 vmbus_free_channels(); 2418 2419 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2420 kmsg_dump_unregister(&hv_kmsg_dumper); 2421 unregister_die_notifier(&hyperv_die_block); 2422 atomic_notifier_chain_unregister(&panic_notifier_list, 2423 &hyperv_panic_block); 2424 } 2425 2426 free_page((unsigned long)hv_panic_page); 2427 unregister_sysctl_table(hv_ctl_table_hdr); 2428 hv_ctl_table_hdr = NULL; 2429 bus_unregister(&hv_bus); 2430 2431 cpuhp_remove_state(hyperv_cpuhp_online); 2432 hv_synic_free(); 2433 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2434 } 2435 2436 2437 MODULE_LICENSE("GPL"); 2438 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2439 2440 subsys_initcall(hv_acpi_init); 2441 module_exit(vmbus_exit); 2442