xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision a8fe58ce)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include "hyperv_vmbus.h"
45 
46 static struct acpi_device  *hv_acpi_dev;
47 
48 static struct tasklet_struct msg_dpc;
49 static struct completion probe_event;
50 
51 
52 static void hyperv_report_panic(struct pt_regs *regs)
53 {
54 	static bool panic_reported;
55 
56 	/*
57 	 * We prefer to report panic on 'die' chain as we have proper
58 	 * registers to report, but if we miss it (e.g. on BUG()) we need
59 	 * to report it on 'panic'.
60 	 */
61 	if (panic_reported)
62 		return;
63 	panic_reported = true;
64 
65 	wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
66 	wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
67 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
68 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
69 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
70 
71 	/*
72 	 * Let Hyper-V know there is crash data available
73 	 */
74 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
75 }
76 
77 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
78 			      void *args)
79 {
80 	struct pt_regs *regs;
81 
82 	regs = current_pt_regs();
83 
84 	hyperv_report_panic(regs);
85 	return NOTIFY_DONE;
86 }
87 
88 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
89 			    void *args)
90 {
91 	struct die_args *die = (struct die_args *)args;
92 	struct pt_regs *regs = die->regs;
93 
94 	hyperv_report_panic(regs);
95 	return NOTIFY_DONE;
96 }
97 
98 static struct notifier_block hyperv_die_block = {
99 	.notifier_call = hyperv_die_event,
100 };
101 static struct notifier_block hyperv_panic_block = {
102 	.notifier_call = hyperv_panic_event,
103 };
104 
105 struct resource *hyperv_mmio;
106 
107 static int vmbus_exists(void)
108 {
109 	if (hv_acpi_dev == NULL)
110 		return -ENODEV;
111 
112 	return 0;
113 }
114 
115 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
116 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
117 {
118 	int i;
119 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
120 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
121 }
122 
123 static u8 channel_monitor_group(struct vmbus_channel *channel)
124 {
125 	return (u8)channel->offermsg.monitorid / 32;
126 }
127 
128 static u8 channel_monitor_offset(struct vmbus_channel *channel)
129 {
130 	return (u8)channel->offermsg.monitorid % 32;
131 }
132 
133 static u32 channel_pending(struct vmbus_channel *channel,
134 			   struct hv_monitor_page *monitor_page)
135 {
136 	u8 monitor_group = channel_monitor_group(channel);
137 	return monitor_page->trigger_group[monitor_group].pending;
138 }
139 
140 static u32 channel_latency(struct vmbus_channel *channel,
141 			   struct hv_monitor_page *monitor_page)
142 {
143 	u8 monitor_group = channel_monitor_group(channel);
144 	u8 monitor_offset = channel_monitor_offset(channel);
145 	return monitor_page->latency[monitor_group][monitor_offset];
146 }
147 
148 static u32 channel_conn_id(struct vmbus_channel *channel,
149 			   struct hv_monitor_page *monitor_page)
150 {
151 	u8 monitor_group = channel_monitor_group(channel);
152 	u8 monitor_offset = channel_monitor_offset(channel);
153 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
154 }
155 
156 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
157 		       char *buf)
158 {
159 	struct hv_device *hv_dev = device_to_hv_device(dev);
160 
161 	if (!hv_dev->channel)
162 		return -ENODEV;
163 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
164 }
165 static DEVICE_ATTR_RO(id);
166 
167 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
168 			  char *buf)
169 {
170 	struct hv_device *hv_dev = device_to_hv_device(dev);
171 
172 	if (!hv_dev->channel)
173 		return -ENODEV;
174 	return sprintf(buf, "%d\n", hv_dev->channel->state);
175 }
176 static DEVICE_ATTR_RO(state);
177 
178 static ssize_t monitor_id_show(struct device *dev,
179 			       struct device_attribute *dev_attr, char *buf)
180 {
181 	struct hv_device *hv_dev = device_to_hv_device(dev);
182 
183 	if (!hv_dev->channel)
184 		return -ENODEV;
185 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
186 }
187 static DEVICE_ATTR_RO(monitor_id);
188 
189 static ssize_t class_id_show(struct device *dev,
190 			       struct device_attribute *dev_attr, char *buf)
191 {
192 	struct hv_device *hv_dev = device_to_hv_device(dev);
193 
194 	if (!hv_dev->channel)
195 		return -ENODEV;
196 	return sprintf(buf, "{%pUl}\n",
197 		       hv_dev->channel->offermsg.offer.if_type.b);
198 }
199 static DEVICE_ATTR_RO(class_id);
200 
201 static ssize_t device_id_show(struct device *dev,
202 			      struct device_attribute *dev_attr, char *buf)
203 {
204 	struct hv_device *hv_dev = device_to_hv_device(dev);
205 
206 	if (!hv_dev->channel)
207 		return -ENODEV;
208 	return sprintf(buf, "{%pUl}\n",
209 		       hv_dev->channel->offermsg.offer.if_instance.b);
210 }
211 static DEVICE_ATTR_RO(device_id);
212 
213 static ssize_t modalias_show(struct device *dev,
214 			     struct device_attribute *dev_attr, char *buf)
215 {
216 	struct hv_device *hv_dev = device_to_hv_device(dev);
217 	char alias_name[VMBUS_ALIAS_LEN + 1];
218 
219 	print_alias_name(hv_dev, alias_name);
220 	return sprintf(buf, "vmbus:%s\n", alias_name);
221 }
222 static DEVICE_ATTR_RO(modalias);
223 
224 static ssize_t server_monitor_pending_show(struct device *dev,
225 					   struct device_attribute *dev_attr,
226 					   char *buf)
227 {
228 	struct hv_device *hv_dev = device_to_hv_device(dev);
229 
230 	if (!hv_dev->channel)
231 		return -ENODEV;
232 	return sprintf(buf, "%d\n",
233 		       channel_pending(hv_dev->channel,
234 				       vmbus_connection.monitor_pages[1]));
235 }
236 static DEVICE_ATTR_RO(server_monitor_pending);
237 
238 static ssize_t client_monitor_pending_show(struct device *dev,
239 					   struct device_attribute *dev_attr,
240 					   char *buf)
241 {
242 	struct hv_device *hv_dev = device_to_hv_device(dev);
243 
244 	if (!hv_dev->channel)
245 		return -ENODEV;
246 	return sprintf(buf, "%d\n",
247 		       channel_pending(hv_dev->channel,
248 				       vmbus_connection.monitor_pages[1]));
249 }
250 static DEVICE_ATTR_RO(client_monitor_pending);
251 
252 static ssize_t server_monitor_latency_show(struct device *dev,
253 					   struct device_attribute *dev_attr,
254 					   char *buf)
255 {
256 	struct hv_device *hv_dev = device_to_hv_device(dev);
257 
258 	if (!hv_dev->channel)
259 		return -ENODEV;
260 	return sprintf(buf, "%d\n",
261 		       channel_latency(hv_dev->channel,
262 				       vmbus_connection.monitor_pages[0]));
263 }
264 static DEVICE_ATTR_RO(server_monitor_latency);
265 
266 static ssize_t client_monitor_latency_show(struct device *dev,
267 					   struct device_attribute *dev_attr,
268 					   char *buf)
269 {
270 	struct hv_device *hv_dev = device_to_hv_device(dev);
271 
272 	if (!hv_dev->channel)
273 		return -ENODEV;
274 	return sprintf(buf, "%d\n",
275 		       channel_latency(hv_dev->channel,
276 				       vmbus_connection.monitor_pages[1]));
277 }
278 static DEVICE_ATTR_RO(client_monitor_latency);
279 
280 static ssize_t server_monitor_conn_id_show(struct device *dev,
281 					   struct device_attribute *dev_attr,
282 					   char *buf)
283 {
284 	struct hv_device *hv_dev = device_to_hv_device(dev);
285 
286 	if (!hv_dev->channel)
287 		return -ENODEV;
288 	return sprintf(buf, "%d\n",
289 		       channel_conn_id(hv_dev->channel,
290 				       vmbus_connection.monitor_pages[0]));
291 }
292 static DEVICE_ATTR_RO(server_monitor_conn_id);
293 
294 static ssize_t client_monitor_conn_id_show(struct device *dev,
295 					   struct device_attribute *dev_attr,
296 					   char *buf)
297 {
298 	struct hv_device *hv_dev = device_to_hv_device(dev);
299 
300 	if (!hv_dev->channel)
301 		return -ENODEV;
302 	return sprintf(buf, "%d\n",
303 		       channel_conn_id(hv_dev->channel,
304 				       vmbus_connection.monitor_pages[1]));
305 }
306 static DEVICE_ATTR_RO(client_monitor_conn_id);
307 
308 static ssize_t out_intr_mask_show(struct device *dev,
309 				  struct device_attribute *dev_attr, char *buf)
310 {
311 	struct hv_device *hv_dev = device_to_hv_device(dev);
312 	struct hv_ring_buffer_debug_info outbound;
313 
314 	if (!hv_dev->channel)
315 		return -ENODEV;
316 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
318 }
319 static DEVICE_ATTR_RO(out_intr_mask);
320 
321 static ssize_t out_read_index_show(struct device *dev,
322 				   struct device_attribute *dev_attr, char *buf)
323 {
324 	struct hv_device *hv_dev = device_to_hv_device(dev);
325 	struct hv_ring_buffer_debug_info outbound;
326 
327 	if (!hv_dev->channel)
328 		return -ENODEV;
329 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
330 	return sprintf(buf, "%d\n", outbound.current_read_index);
331 }
332 static DEVICE_ATTR_RO(out_read_index);
333 
334 static ssize_t out_write_index_show(struct device *dev,
335 				    struct device_attribute *dev_attr,
336 				    char *buf)
337 {
338 	struct hv_device *hv_dev = device_to_hv_device(dev);
339 	struct hv_ring_buffer_debug_info outbound;
340 
341 	if (!hv_dev->channel)
342 		return -ENODEV;
343 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
344 	return sprintf(buf, "%d\n", outbound.current_write_index);
345 }
346 static DEVICE_ATTR_RO(out_write_index);
347 
348 static ssize_t out_read_bytes_avail_show(struct device *dev,
349 					 struct device_attribute *dev_attr,
350 					 char *buf)
351 {
352 	struct hv_device *hv_dev = device_to_hv_device(dev);
353 	struct hv_ring_buffer_debug_info outbound;
354 
355 	if (!hv_dev->channel)
356 		return -ENODEV;
357 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
358 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
359 }
360 static DEVICE_ATTR_RO(out_read_bytes_avail);
361 
362 static ssize_t out_write_bytes_avail_show(struct device *dev,
363 					  struct device_attribute *dev_attr,
364 					  char *buf)
365 {
366 	struct hv_device *hv_dev = device_to_hv_device(dev);
367 	struct hv_ring_buffer_debug_info outbound;
368 
369 	if (!hv_dev->channel)
370 		return -ENODEV;
371 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
372 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
373 }
374 static DEVICE_ATTR_RO(out_write_bytes_avail);
375 
376 static ssize_t in_intr_mask_show(struct device *dev,
377 				 struct device_attribute *dev_attr, char *buf)
378 {
379 	struct hv_device *hv_dev = device_to_hv_device(dev);
380 	struct hv_ring_buffer_debug_info inbound;
381 
382 	if (!hv_dev->channel)
383 		return -ENODEV;
384 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
386 }
387 static DEVICE_ATTR_RO(in_intr_mask);
388 
389 static ssize_t in_read_index_show(struct device *dev,
390 				  struct device_attribute *dev_attr, char *buf)
391 {
392 	struct hv_device *hv_dev = device_to_hv_device(dev);
393 	struct hv_ring_buffer_debug_info inbound;
394 
395 	if (!hv_dev->channel)
396 		return -ENODEV;
397 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398 	return sprintf(buf, "%d\n", inbound.current_read_index);
399 }
400 static DEVICE_ATTR_RO(in_read_index);
401 
402 static ssize_t in_write_index_show(struct device *dev,
403 				   struct device_attribute *dev_attr, char *buf)
404 {
405 	struct hv_device *hv_dev = device_to_hv_device(dev);
406 	struct hv_ring_buffer_debug_info inbound;
407 
408 	if (!hv_dev->channel)
409 		return -ENODEV;
410 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
411 	return sprintf(buf, "%d\n", inbound.current_write_index);
412 }
413 static DEVICE_ATTR_RO(in_write_index);
414 
415 static ssize_t in_read_bytes_avail_show(struct device *dev,
416 					struct device_attribute *dev_attr,
417 					char *buf)
418 {
419 	struct hv_device *hv_dev = device_to_hv_device(dev);
420 	struct hv_ring_buffer_debug_info inbound;
421 
422 	if (!hv_dev->channel)
423 		return -ENODEV;
424 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
425 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
426 }
427 static DEVICE_ATTR_RO(in_read_bytes_avail);
428 
429 static ssize_t in_write_bytes_avail_show(struct device *dev,
430 					 struct device_attribute *dev_attr,
431 					 char *buf)
432 {
433 	struct hv_device *hv_dev = device_to_hv_device(dev);
434 	struct hv_ring_buffer_debug_info inbound;
435 
436 	if (!hv_dev->channel)
437 		return -ENODEV;
438 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
439 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
440 }
441 static DEVICE_ATTR_RO(in_write_bytes_avail);
442 
443 static ssize_t channel_vp_mapping_show(struct device *dev,
444 				       struct device_attribute *dev_attr,
445 				       char *buf)
446 {
447 	struct hv_device *hv_dev = device_to_hv_device(dev);
448 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
449 	unsigned long flags;
450 	int buf_size = PAGE_SIZE, n_written, tot_written;
451 	struct list_head *cur;
452 
453 	if (!channel)
454 		return -ENODEV;
455 
456 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
457 		channel->offermsg.child_relid, channel->target_cpu);
458 
459 	spin_lock_irqsave(&channel->lock, flags);
460 
461 	list_for_each(cur, &channel->sc_list) {
462 		if (tot_written >= buf_size - 1)
463 			break;
464 
465 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
466 		n_written = scnprintf(buf + tot_written,
467 				     buf_size - tot_written,
468 				     "%u:%u\n",
469 				     cur_sc->offermsg.child_relid,
470 				     cur_sc->target_cpu);
471 		tot_written += n_written;
472 	}
473 
474 	spin_unlock_irqrestore(&channel->lock, flags);
475 
476 	return tot_written;
477 }
478 static DEVICE_ATTR_RO(channel_vp_mapping);
479 
480 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
481 static struct attribute *vmbus_attrs[] = {
482 	&dev_attr_id.attr,
483 	&dev_attr_state.attr,
484 	&dev_attr_monitor_id.attr,
485 	&dev_attr_class_id.attr,
486 	&dev_attr_device_id.attr,
487 	&dev_attr_modalias.attr,
488 	&dev_attr_server_monitor_pending.attr,
489 	&dev_attr_client_monitor_pending.attr,
490 	&dev_attr_server_monitor_latency.attr,
491 	&dev_attr_client_monitor_latency.attr,
492 	&dev_attr_server_monitor_conn_id.attr,
493 	&dev_attr_client_monitor_conn_id.attr,
494 	&dev_attr_out_intr_mask.attr,
495 	&dev_attr_out_read_index.attr,
496 	&dev_attr_out_write_index.attr,
497 	&dev_attr_out_read_bytes_avail.attr,
498 	&dev_attr_out_write_bytes_avail.attr,
499 	&dev_attr_in_intr_mask.attr,
500 	&dev_attr_in_read_index.attr,
501 	&dev_attr_in_write_index.attr,
502 	&dev_attr_in_read_bytes_avail.attr,
503 	&dev_attr_in_write_bytes_avail.attr,
504 	&dev_attr_channel_vp_mapping.attr,
505 	NULL,
506 };
507 ATTRIBUTE_GROUPS(vmbus);
508 
509 /*
510  * vmbus_uevent - add uevent for our device
511  *
512  * This routine is invoked when a device is added or removed on the vmbus to
513  * generate a uevent to udev in the userspace. The udev will then look at its
514  * rule and the uevent generated here to load the appropriate driver
515  *
516  * The alias string will be of the form vmbus:guid where guid is the string
517  * representation of the device guid (each byte of the guid will be
518  * represented with two hex characters.
519  */
520 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
521 {
522 	struct hv_device *dev = device_to_hv_device(device);
523 	int ret;
524 	char alias_name[VMBUS_ALIAS_LEN + 1];
525 
526 	print_alias_name(dev, alias_name);
527 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
528 	return ret;
529 }
530 
531 static const uuid_le null_guid;
532 
533 static inline bool is_null_guid(const uuid_le *guid)
534 {
535 	if (uuid_le_cmp(*guid, null_guid))
536 		return false;
537 	return true;
538 }
539 
540 /*
541  * Return a matching hv_vmbus_device_id pointer.
542  * If there is no match, return NULL.
543  */
544 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
545 					const struct hv_vmbus_device_id *id,
546 					const uuid_le *guid)
547 {
548 	for (; !is_null_guid(&id->guid); id++)
549 		if (!uuid_le_cmp(id->guid, *guid))
550 			return id;
551 
552 	return NULL;
553 }
554 
555 
556 
557 /*
558  * vmbus_match - Attempt to match the specified device to the specified driver
559  */
560 static int vmbus_match(struct device *device, struct device_driver *driver)
561 {
562 	struct hv_driver *drv = drv_to_hv_drv(driver);
563 	struct hv_device *hv_dev = device_to_hv_device(device);
564 
565 	if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
566 		return 1;
567 
568 	return 0;
569 }
570 
571 /*
572  * vmbus_probe - Add the new vmbus's child device
573  */
574 static int vmbus_probe(struct device *child_device)
575 {
576 	int ret = 0;
577 	struct hv_driver *drv =
578 			drv_to_hv_drv(child_device->driver);
579 	struct hv_device *dev = device_to_hv_device(child_device);
580 	const struct hv_vmbus_device_id *dev_id;
581 
582 	dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
583 	if (drv->probe) {
584 		ret = drv->probe(dev, dev_id);
585 		if (ret != 0)
586 			pr_err("probe failed for device %s (%d)\n",
587 			       dev_name(child_device), ret);
588 
589 	} else {
590 		pr_err("probe not set for driver %s\n",
591 		       dev_name(child_device));
592 		ret = -ENODEV;
593 	}
594 	return ret;
595 }
596 
597 /*
598  * vmbus_remove - Remove a vmbus device
599  */
600 static int vmbus_remove(struct device *child_device)
601 {
602 	struct hv_driver *drv;
603 	struct hv_device *dev = device_to_hv_device(child_device);
604 
605 	if (child_device->driver) {
606 		drv = drv_to_hv_drv(child_device->driver);
607 		if (drv->remove)
608 			drv->remove(dev);
609 	}
610 
611 	return 0;
612 }
613 
614 
615 /*
616  * vmbus_shutdown - Shutdown a vmbus device
617  */
618 static void vmbus_shutdown(struct device *child_device)
619 {
620 	struct hv_driver *drv;
621 	struct hv_device *dev = device_to_hv_device(child_device);
622 
623 
624 	/* The device may not be attached yet */
625 	if (!child_device->driver)
626 		return;
627 
628 	drv = drv_to_hv_drv(child_device->driver);
629 
630 	if (drv->shutdown)
631 		drv->shutdown(dev);
632 
633 	return;
634 }
635 
636 
637 /*
638  * vmbus_device_release - Final callback release of the vmbus child device
639  */
640 static void vmbus_device_release(struct device *device)
641 {
642 	struct hv_device *hv_dev = device_to_hv_device(device);
643 	struct vmbus_channel *channel = hv_dev->channel;
644 
645 	hv_process_channel_removal(channel,
646 				   channel->offermsg.child_relid);
647 	kfree(hv_dev);
648 
649 }
650 
651 /* The one and only one */
652 static struct bus_type  hv_bus = {
653 	.name =		"vmbus",
654 	.match =		vmbus_match,
655 	.shutdown =		vmbus_shutdown,
656 	.remove =		vmbus_remove,
657 	.probe =		vmbus_probe,
658 	.uevent =		vmbus_uevent,
659 	.dev_groups =		vmbus_groups,
660 };
661 
662 struct onmessage_work_context {
663 	struct work_struct work;
664 	struct hv_message msg;
665 };
666 
667 static void vmbus_onmessage_work(struct work_struct *work)
668 {
669 	struct onmessage_work_context *ctx;
670 
671 	/* Do not process messages if we're in DISCONNECTED state */
672 	if (vmbus_connection.conn_state == DISCONNECTED)
673 		return;
674 
675 	ctx = container_of(work, struct onmessage_work_context,
676 			   work);
677 	vmbus_onmessage(&ctx->msg);
678 	kfree(ctx);
679 }
680 
681 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
682 {
683 	struct clock_event_device *dev = hv_context.clk_evt[cpu];
684 
685 	if (dev->event_handler)
686 		dev->event_handler(dev);
687 
688 	msg->header.message_type = HVMSG_NONE;
689 
690 	/*
691 	 * Make sure the write to MessageType (ie set to
692 	 * HVMSG_NONE) happens before we read the
693 	 * MessagePending and EOMing. Otherwise, the EOMing
694 	 * will not deliver any more messages since there is
695 	 * no empty slot
696 	 */
697 	mb();
698 
699 	if (msg->header.message_flags.msg_pending) {
700 		/*
701 		 * This will cause message queue rescan to
702 		 * possibly deliver another msg from the
703 		 * hypervisor
704 		 */
705 		wrmsrl(HV_X64_MSR_EOM, 0);
706 	}
707 }
708 
709 static void vmbus_on_msg_dpc(unsigned long data)
710 {
711 	int cpu = smp_processor_id();
712 	void *page_addr = hv_context.synic_message_page[cpu];
713 	struct hv_message *msg = (struct hv_message *)page_addr +
714 				  VMBUS_MESSAGE_SINT;
715 	struct vmbus_channel_message_header *hdr;
716 	struct vmbus_channel_message_table_entry *entry;
717 	struct onmessage_work_context *ctx;
718 
719 	while (1) {
720 		if (msg->header.message_type == HVMSG_NONE)
721 			/* no msg */
722 			break;
723 
724 		hdr = (struct vmbus_channel_message_header *)msg->u.payload;
725 
726 		if (hdr->msgtype >= CHANNELMSG_COUNT) {
727 			WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
728 			goto msg_handled;
729 		}
730 
731 		entry = &channel_message_table[hdr->msgtype];
732 		if (entry->handler_type	== VMHT_BLOCKING) {
733 			ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
734 			if (ctx == NULL)
735 				continue;
736 
737 			INIT_WORK(&ctx->work, vmbus_onmessage_work);
738 			memcpy(&ctx->msg, msg, sizeof(*msg));
739 
740 			queue_work(vmbus_connection.work_queue, &ctx->work);
741 		} else
742 			entry->message_handler(hdr);
743 
744 msg_handled:
745 		msg->header.message_type = HVMSG_NONE;
746 
747 		/*
748 		 * Make sure the write to MessageType (ie set to
749 		 * HVMSG_NONE) happens before we read the
750 		 * MessagePending and EOMing. Otherwise, the EOMing
751 		 * will not deliver any more messages since there is
752 		 * no empty slot
753 		 */
754 		mb();
755 
756 		if (msg->header.message_flags.msg_pending) {
757 			/*
758 			 * This will cause message queue rescan to
759 			 * possibly deliver another msg from the
760 			 * hypervisor
761 			 */
762 			wrmsrl(HV_X64_MSR_EOM, 0);
763 		}
764 	}
765 }
766 
767 static void vmbus_isr(void)
768 {
769 	int cpu = smp_processor_id();
770 	void *page_addr;
771 	struct hv_message *msg;
772 	union hv_synic_event_flags *event;
773 	bool handled = false;
774 
775 	page_addr = hv_context.synic_event_page[cpu];
776 	if (page_addr == NULL)
777 		return;
778 
779 	event = (union hv_synic_event_flags *)page_addr +
780 					 VMBUS_MESSAGE_SINT;
781 	/*
782 	 * Check for events before checking for messages. This is the order
783 	 * in which events and messages are checked in Windows guests on
784 	 * Hyper-V, and the Windows team suggested we do the same.
785 	 */
786 
787 	if ((vmbus_proto_version == VERSION_WS2008) ||
788 		(vmbus_proto_version == VERSION_WIN7)) {
789 
790 		/* Since we are a child, we only need to check bit 0 */
791 		if (sync_test_and_clear_bit(0,
792 			(unsigned long *) &event->flags32[0])) {
793 			handled = true;
794 		}
795 	} else {
796 		/*
797 		 * Our host is win8 or above. The signaling mechanism
798 		 * has changed and we can directly look at the event page.
799 		 * If bit n is set then we have an interrup on the channel
800 		 * whose id is n.
801 		 */
802 		handled = true;
803 	}
804 
805 	if (handled)
806 		tasklet_schedule(hv_context.event_dpc[cpu]);
807 
808 
809 	page_addr = hv_context.synic_message_page[cpu];
810 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
811 
812 	/* Check if there are actual msgs to be processed */
813 	if (msg->header.message_type != HVMSG_NONE) {
814 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
815 			hv_process_timer_expiration(msg, cpu);
816 		else
817 			tasklet_schedule(&msg_dpc);
818 	}
819 }
820 
821 
822 /*
823  * vmbus_bus_init -Main vmbus driver initialization routine.
824  *
825  * Here, we
826  *	- initialize the vmbus driver context
827  *	- invoke the vmbus hv main init routine
828  *	- retrieve the channel offers
829  */
830 static int vmbus_bus_init(void)
831 {
832 	int ret;
833 
834 	/* Hypervisor initialization...setup hypercall page..etc */
835 	ret = hv_init();
836 	if (ret != 0) {
837 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
838 		return ret;
839 	}
840 
841 	tasklet_init(&msg_dpc, vmbus_on_msg_dpc, 0);
842 
843 	ret = bus_register(&hv_bus);
844 	if (ret)
845 		goto err_cleanup;
846 
847 	hv_setup_vmbus_irq(vmbus_isr);
848 
849 	ret = hv_synic_alloc();
850 	if (ret)
851 		goto err_alloc;
852 	/*
853 	 * Initialize the per-cpu interrupt state and
854 	 * connect to the host.
855 	 */
856 	on_each_cpu(hv_synic_init, NULL, 1);
857 	ret = vmbus_connect();
858 	if (ret)
859 		goto err_connect;
860 
861 	if (vmbus_proto_version > VERSION_WIN7)
862 		cpu_hotplug_disable();
863 
864 	/*
865 	 * Only register if the crash MSRs are available
866 	 */
867 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
868 		register_die_notifier(&hyperv_die_block);
869 		atomic_notifier_chain_register(&panic_notifier_list,
870 					       &hyperv_panic_block);
871 	}
872 
873 	vmbus_request_offers();
874 
875 	return 0;
876 
877 err_connect:
878 	on_each_cpu(hv_synic_cleanup, NULL, 1);
879 err_alloc:
880 	hv_synic_free();
881 	hv_remove_vmbus_irq();
882 
883 	bus_unregister(&hv_bus);
884 
885 err_cleanup:
886 	hv_cleanup();
887 
888 	return ret;
889 }
890 
891 /**
892  * __vmbus_child_driver_register() - Register a vmbus's driver
893  * @hv_driver: Pointer to driver structure you want to register
894  * @owner: owner module of the drv
895  * @mod_name: module name string
896  *
897  * Registers the given driver with Linux through the 'driver_register()' call
898  * and sets up the hyper-v vmbus handling for this driver.
899  * It will return the state of the 'driver_register()' call.
900  *
901  */
902 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
903 {
904 	int ret;
905 
906 	pr_info("registering driver %s\n", hv_driver->name);
907 
908 	ret = vmbus_exists();
909 	if (ret < 0)
910 		return ret;
911 
912 	hv_driver->driver.name = hv_driver->name;
913 	hv_driver->driver.owner = owner;
914 	hv_driver->driver.mod_name = mod_name;
915 	hv_driver->driver.bus = &hv_bus;
916 
917 	ret = driver_register(&hv_driver->driver);
918 
919 	return ret;
920 }
921 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
922 
923 /**
924  * vmbus_driver_unregister() - Unregister a vmbus's driver
925  * @hv_driver: Pointer to driver structure you want to
926  *             un-register
927  *
928  * Un-register the given driver that was previous registered with a call to
929  * vmbus_driver_register()
930  */
931 void vmbus_driver_unregister(struct hv_driver *hv_driver)
932 {
933 	pr_info("unregistering driver %s\n", hv_driver->name);
934 
935 	if (!vmbus_exists())
936 		driver_unregister(&hv_driver->driver);
937 }
938 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
939 
940 /*
941  * vmbus_device_create - Creates and registers a new child device
942  * on the vmbus.
943  */
944 struct hv_device *vmbus_device_create(const uuid_le *type,
945 				      const uuid_le *instance,
946 				      struct vmbus_channel *channel)
947 {
948 	struct hv_device *child_device_obj;
949 
950 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
951 	if (!child_device_obj) {
952 		pr_err("Unable to allocate device object for child device\n");
953 		return NULL;
954 	}
955 
956 	child_device_obj->channel = channel;
957 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
958 	memcpy(&child_device_obj->dev_instance, instance,
959 	       sizeof(uuid_le));
960 
961 
962 	return child_device_obj;
963 }
964 
965 /*
966  * vmbus_device_register - Register the child device
967  */
968 int vmbus_device_register(struct hv_device *child_device_obj)
969 {
970 	int ret = 0;
971 
972 	dev_set_name(&child_device_obj->device, "vmbus_%d",
973 		     child_device_obj->channel->id);
974 
975 	child_device_obj->device.bus = &hv_bus;
976 	child_device_obj->device.parent = &hv_acpi_dev->dev;
977 	child_device_obj->device.release = vmbus_device_release;
978 
979 	/*
980 	 * Register with the LDM. This will kick off the driver/device
981 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
982 	 */
983 	ret = device_register(&child_device_obj->device);
984 
985 	if (ret)
986 		pr_err("Unable to register child device\n");
987 	else
988 		pr_debug("child device %s registered\n",
989 			dev_name(&child_device_obj->device));
990 
991 	return ret;
992 }
993 
994 /*
995  * vmbus_device_unregister - Remove the specified child device
996  * from the vmbus.
997  */
998 void vmbus_device_unregister(struct hv_device *device_obj)
999 {
1000 	pr_debug("child device %s unregistered\n",
1001 		dev_name(&device_obj->device));
1002 
1003 	/*
1004 	 * Kick off the process of unregistering the device.
1005 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1006 	 */
1007 	device_unregister(&device_obj->device);
1008 }
1009 
1010 
1011 /*
1012  * VMBUS is an acpi enumerated device. Get the information we
1013  * need from DSDT.
1014  */
1015 #define VTPM_BASE_ADDRESS 0xfed40000
1016 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1017 {
1018 	resource_size_t start = 0;
1019 	resource_size_t end = 0;
1020 	struct resource *new_res;
1021 	struct resource **old_res = &hyperv_mmio;
1022 	struct resource **prev_res = NULL;
1023 
1024 	switch (res->type) {
1025 
1026 	/*
1027 	 * "Address" descriptors are for bus windows. Ignore
1028 	 * "memory" descriptors, which are for registers on
1029 	 * devices.
1030 	 */
1031 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1032 		start = res->data.address32.address.minimum;
1033 		end = res->data.address32.address.maximum;
1034 		break;
1035 
1036 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1037 		start = res->data.address64.address.minimum;
1038 		end = res->data.address64.address.maximum;
1039 		break;
1040 
1041 	default:
1042 		/* Unused resource type */
1043 		return AE_OK;
1044 
1045 	}
1046 	/*
1047 	 * Ignore ranges that are below 1MB, as they're not
1048 	 * necessary or useful here.
1049 	 */
1050 	if (end < 0x100000)
1051 		return AE_OK;
1052 
1053 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1054 	if (!new_res)
1055 		return AE_NO_MEMORY;
1056 
1057 	/* If this range overlaps the virtual TPM, truncate it. */
1058 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1059 		end = VTPM_BASE_ADDRESS;
1060 
1061 	new_res->name = "hyperv mmio";
1062 	new_res->flags = IORESOURCE_MEM;
1063 	new_res->start = start;
1064 	new_res->end = end;
1065 
1066 	/*
1067 	 * Stick ranges from higher in address space at the front of the list.
1068 	 * If two ranges are adjacent, merge them.
1069 	 */
1070 	do {
1071 		if (!*old_res) {
1072 			*old_res = new_res;
1073 			break;
1074 		}
1075 
1076 		if (((*old_res)->end + 1) == new_res->start) {
1077 			(*old_res)->end = new_res->end;
1078 			kfree(new_res);
1079 			break;
1080 		}
1081 
1082 		if ((*old_res)->start == new_res->end + 1) {
1083 			(*old_res)->start = new_res->start;
1084 			kfree(new_res);
1085 			break;
1086 		}
1087 
1088 		if ((*old_res)->end < new_res->start) {
1089 			new_res->sibling = *old_res;
1090 			if (prev_res)
1091 				(*prev_res)->sibling = new_res;
1092 			*old_res = new_res;
1093 			break;
1094 		}
1095 
1096 		prev_res = old_res;
1097 		old_res = &(*old_res)->sibling;
1098 
1099 	} while (1);
1100 
1101 	return AE_OK;
1102 }
1103 
1104 static int vmbus_acpi_remove(struct acpi_device *device)
1105 {
1106 	struct resource *cur_res;
1107 	struct resource *next_res;
1108 
1109 	if (hyperv_mmio) {
1110 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1111 			next_res = cur_res->sibling;
1112 			kfree(cur_res);
1113 		}
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 /**
1120  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1121  * @new:		If successful, supplied a pointer to the
1122  *			allocated MMIO space.
1123  * @device_obj:		Identifies the caller
1124  * @min:		Minimum guest physical address of the
1125  *			allocation
1126  * @max:		Maximum guest physical address
1127  * @size:		Size of the range to be allocated
1128  * @align:		Alignment of the range to be allocated
1129  * @fb_overlap_ok:	Whether this allocation can be allowed
1130  *			to overlap the video frame buffer.
1131  *
1132  * This function walks the resources granted to VMBus by the
1133  * _CRS object in the ACPI namespace underneath the parent
1134  * "bridge" whether that's a root PCI bus in the Generation 1
1135  * case or a Module Device in the Generation 2 case.  It then
1136  * attempts to allocate from the global MMIO pool in a way that
1137  * matches the constraints supplied in these parameters and by
1138  * that _CRS.
1139  *
1140  * Return: 0 on success, -errno on failure
1141  */
1142 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1143 			resource_size_t min, resource_size_t max,
1144 			resource_size_t size, resource_size_t align,
1145 			bool fb_overlap_ok)
1146 {
1147 	struct resource *iter;
1148 	resource_size_t range_min, range_max, start, local_min, local_max;
1149 	const char *dev_n = dev_name(&device_obj->device);
1150 	u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1151 	int i;
1152 
1153 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1154 		if ((iter->start >= max) || (iter->end <= min))
1155 			continue;
1156 
1157 		range_min = iter->start;
1158 		range_max = iter->end;
1159 
1160 		/* If this range overlaps the frame buffer, split it into
1161 		   two tries. */
1162 		for (i = 0; i < 2; i++) {
1163 			local_min = range_min;
1164 			local_max = range_max;
1165 			if (fb_overlap_ok || (range_min >= fb_end) ||
1166 			    (range_max <= screen_info.lfb_base)) {
1167 				i++;
1168 			} else {
1169 				if ((range_min <= screen_info.lfb_base) &&
1170 				    (range_max >= screen_info.lfb_base)) {
1171 					/*
1172 					 * The frame buffer is in this window,
1173 					 * so trim this into the part that
1174 					 * preceeds the frame buffer.
1175 					 */
1176 					local_max = screen_info.lfb_base - 1;
1177 					range_min = fb_end;
1178 				} else {
1179 					range_min = fb_end;
1180 					continue;
1181 				}
1182 			}
1183 
1184 			start = (local_min + align - 1) & ~(align - 1);
1185 			for (; start + size - 1 <= local_max; start += align) {
1186 				*new = request_mem_region_exclusive(start, size,
1187 								    dev_n);
1188 				if (*new)
1189 					return 0;
1190 			}
1191 		}
1192 	}
1193 
1194 	return -ENXIO;
1195 }
1196 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1197 
1198 /**
1199  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1200  * @cpu_number: CPU number in Linux terms
1201  *
1202  * This function returns the mapping between the Linux processor
1203  * number and the hypervisor's virtual processor number, useful
1204  * in making hypercalls and such that talk about specific
1205  * processors.
1206  *
1207  * Return: Virtual processor number in Hyper-V terms
1208  */
1209 int vmbus_cpu_number_to_vp_number(int cpu_number)
1210 {
1211 	return hv_context.vp_index[cpu_number];
1212 }
1213 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1214 
1215 static int vmbus_acpi_add(struct acpi_device *device)
1216 {
1217 	acpi_status result;
1218 	int ret_val = -ENODEV;
1219 	struct acpi_device *ancestor;
1220 
1221 	hv_acpi_dev = device;
1222 
1223 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1224 					vmbus_walk_resources, NULL);
1225 
1226 	if (ACPI_FAILURE(result))
1227 		goto acpi_walk_err;
1228 	/*
1229 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1230 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1231 	 */
1232 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1233 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1234 					     vmbus_walk_resources, NULL);
1235 
1236 		if (ACPI_FAILURE(result))
1237 			continue;
1238 		if (hyperv_mmio)
1239 			break;
1240 	}
1241 	ret_val = 0;
1242 
1243 acpi_walk_err:
1244 	complete(&probe_event);
1245 	if (ret_val)
1246 		vmbus_acpi_remove(device);
1247 	return ret_val;
1248 }
1249 
1250 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1251 	{"VMBUS", 0},
1252 	{"VMBus", 0},
1253 	{"", 0},
1254 };
1255 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1256 
1257 static struct acpi_driver vmbus_acpi_driver = {
1258 	.name = "vmbus",
1259 	.ids = vmbus_acpi_device_ids,
1260 	.ops = {
1261 		.add = vmbus_acpi_add,
1262 		.remove = vmbus_acpi_remove,
1263 	},
1264 };
1265 
1266 static void hv_kexec_handler(void)
1267 {
1268 	int cpu;
1269 
1270 	hv_synic_clockevents_cleanup();
1271 	vmbus_initiate_unload();
1272 	for_each_online_cpu(cpu)
1273 		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1274 	hv_cleanup();
1275 };
1276 
1277 static void hv_crash_handler(struct pt_regs *regs)
1278 {
1279 	vmbus_initiate_unload();
1280 	/*
1281 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1282 	 * doing the cleanup for current CPU only. This should be sufficient
1283 	 * for kdump.
1284 	 */
1285 	hv_synic_cleanup(NULL);
1286 	hv_cleanup();
1287 };
1288 
1289 static int __init hv_acpi_init(void)
1290 {
1291 	int ret, t;
1292 
1293 	if (x86_hyper != &x86_hyper_ms_hyperv)
1294 		return -ENODEV;
1295 
1296 	init_completion(&probe_event);
1297 
1298 	/*
1299 	 * Get ACPI resources first.
1300 	 */
1301 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1302 
1303 	if (ret)
1304 		return ret;
1305 
1306 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1307 	if (t == 0) {
1308 		ret = -ETIMEDOUT;
1309 		goto cleanup;
1310 	}
1311 
1312 	ret = vmbus_bus_init();
1313 	if (ret)
1314 		goto cleanup;
1315 
1316 	hv_setup_kexec_handler(hv_kexec_handler);
1317 	hv_setup_crash_handler(hv_crash_handler);
1318 
1319 	return 0;
1320 
1321 cleanup:
1322 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1323 	hv_acpi_dev = NULL;
1324 	return ret;
1325 }
1326 
1327 static void __exit vmbus_exit(void)
1328 {
1329 	int cpu;
1330 
1331 	hv_remove_kexec_handler();
1332 	hv_remove_crash_handler();
1333 	vmbus_connection.conn_state = DISCONNECTED;
1334 	hv_synic_clockevents_cleanup();
1335 	vmbus_disconnect();
1336 	hv_remove_vmbus_irq();
1337 	tasklet_kill(&msg_dpc);
1338 	vmbus_free_channels();
1339 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1340 		unregister_die_notifier(&hyperv_die_block);
1341 		atomic_notifier_chain_unregister(&panic_notifier_list,
1342 						 &hyperv_panic_block);
1343 	}
1344 	bus_unregister(&hv_bus);
1345 	hv_cleanup();
1346 	for_each_online_cpu(cpu) {
1347 		tasklet_kill(hv_context.event_dpc[cpu]);
1348 		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1349 	}
1350 	hv_synic_free();
1351 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1352 	if (vmbus_proto_version > VERSION_WIN7)
1353 		cpu_hotplug_enable();
1354 }
1355 
1356 
1357 MODULE_LICENSE("GPL");
1358 
1359 subsys_initcall(hv_acpi_init);
1360 module_exit(vmbus_exit);
1361