xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38 
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47 
48 struct vmbus_dynid {
49 	struct list_head node;
50 	struct hv_vmbus_device_id id;
51 };
52 
53 static struct acpi_device  *hv_acpi_dev;
54 
55 static struct completion probe_event;
56 
57 static int hyperv_cpuhp_online;
58 
59 static void *hv_panic_page;
60 
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 			      void *args)
63 {
64 	struct pt_regs *regs;
65 
66 	regs = current_pt_regs();
67 
68 	hyperv_report_panic(regs, val);
69 	return NOTIFY_DONE;
70 }
71 
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 			    void *args)
74 {
75 	struct die_args *die = (struct die_args *)args;
76 	struct pt_regs *regs = die->regs;
77 
78 	hyperv_report_panic(regs, val);
79 	return NOTIFY_DONE;
80 }
81 
82 static struct notifier_block hyperv_die_block = {
83 	.notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 	.notifier_call = hyperv_panic_event,
87 };
88 
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93 
94 static int vmbus_exists(void)
95 {
96 	if (hv_acpi_dev == NULL)
97 		return -ENODEV;
98 
99 	return 0;
100 }
101 
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 	int i;
106 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109 
110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 {
112 	return (u8)channel->offermsg.monitorid / 32;
113 }
114 
115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 {
117 	return (u8)channel->offermsg.monitorid % 32;
118 }
119 
120 static u32 channel_pending(const struct vmbus_channel *channel,
121 			   const struct hv_monitor_page *monitor_page)
122 {
123 	u8 monitor_group = channel_monitor_group(channel);
124 
125 	return monitor_page->trigger_group[monitor_group].pending;
126 }
127 
128 static u32 channel_latency(const struct vmbus_channel *channel,
129 			   const struct hv_monitor_page *monitor_page)
130 {
131 	u8 monitor_group = channel_monitor_group(channel);
132 	u8 monitor_offset = channel_monitor_offset(channel);
133 
134 	return monitor_page->latency[monitor_group][monitor_offset];
135 }
136 
137 static u32 channel_conn_id(struct vmbus_channel *channel,
138 			   struct hv_monitor_page *monitor_page)
139 {
140 	u8 monitor_group = channel_monitor_group(channel);
141 	u8 monitor_offset = channel_monitor_offset(channel);
142 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 }
144 
145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146 		       char *buf)
147 {
148 	struct hv_device *hv_dev = device_to_hv_device(dev);
149 
150 	if (!hv_dev->channel)
151 		return -ENODEV;
152 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 }
154 static DEVICE_ATTR_RO(id);
155 
156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157 			  char *buf)
158 {
159 	struct hv_device *hv_dev = device_to_hv_device(dev);
160 
161 	if (!hv_dev->channel)
162 		return -ENODEV;
163 	return sprintf(buf, "%d\n", hv_dev->channel->state);
164 }
165 static DEVICE_ATTR_RO(state);
166 
167 static ssize_t monitor_id_show(struct device *dev,
168 			       struct device_attribute *dev_attr, char *buf)
169 {
170 	struct hv_device *hv_dev = device_to_hv_device(dev);
171 
172 	if (!hv_dev->channel)
173 		return -ENODEV;
174 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 }
176 static DEVICE_ATTR_RO(monitor_id);
177 
178 static ssize_t class_id_show(struct device *dev,
179 			       struct device_attribute *dev_attr, char *buf)
180 {
181 	struct hv_device *hv_dev = device_to_hv_device(dev);
182 
183 	if (!hv_dev->channel)
184 		return -ENODEV;
185 	return sprintf(buf, "{%pUl}\n",
186 		       hv_dev->channel->offermsg.offer.if_type.b);
187 }
188 static DEVICE_ATTR_RO(class_id);
189 
190 static ssize_t device_id_show(struct device *dev,
191 			      struct device_attribute *dev_attr, char *buf)
192 {
193 	struct hv_device *hv_dev = device_to_hv_device(dev);
194 
195 	if (!hv_dev->channel)
196 		return -ENODEV;
197 	return sprintf(buf, "{%pUl}\n",
198 		       hv_dev->channel->offermsg.offer.if_instance.b);
199 }
200 static DEVICE_ATTR_RO(device_id);
201 
202 static ssize_t modalias_show(struct device *dev,
203 			     struct device_attribute *dev_attr, char *buf)
204 {
205 	struct hv_device *hv_dev = device_to_hv_device(dev);
206 	char alias_name[VMBUS_ALIAS_LEN + 1];
207 
208 	print_alias_name(hv_dev, alias_name);
209 	return sprintf(buf, "vmbus:%s\n", alias_name);
210 }
211 static DEVICE_ATTR_RO(modalias);
212 
213 #ifdef CONFIG_NUMA
214 static ssize_t numa_node_show(struct device *dev,
215 			      struct device_attribute *attr, char *buf)
216 {
217 	struct hv_device *hv_dev = device_to_hv_device(dev);
218 
219 	if (!hv_dev->channel)
220 		return -ENODEV;
221 
222 	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
223 }
224 static DEVICE_ATTR_RO(numa_node);
225 #endif
226 
227 static ssize_t server_monitor_pending_show(struct device *dev,
228 					   struct device_attribute *dev_attr,
229 					   char *buf)
230 {
231 	struct hv_device *hv_dev = device_to_hv_device(dev);
232 
233 	if (!hv_dev->channel)
234 		return -ENODEV;
235 	return sprintf(buf, "%d\n",
236 		       channel_pending(hv_dev->channel,
237 				       vmbus_connection.monitor_pages[1]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240 
241 static ssize_t client_monitor_pending_show(struct device *dev,
242 					   struct device_attribute *dev_attr,
243 					   char *buf)
244 {
245 	struct hv_device *hv_dev = device_to_hv_device(dev);
246 
247 	if (!hv_dev->channel)
248 		return -ENODEV;
249 	return sprintf(buf, "%d\n",
250 		       channel_pending(hv_dev->channel,
251 				       vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254 
255 static ssize_t server_monitor_latency_show(struct device *dev,
256 					   struct device_attribute *dev_attr,
257 					   char *buf)
258 {
259 	struct hv_device *hv_dev = device_to_hv_device(dev);
260 
261 	if (!hv_dev->channel)
262 		return -ENODEV;
263 	return sprintf(buf, "%d\n",
264 		       channel_latency(hv_dev->channel,
265 				       vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268 
269 static ssize_t client_monitor_latency_show(struct device *dev,
270 					   struct device_attribute *dev_attr,
271 					   char *buf)
272 {
273 	struct hv_device *hv_dev = device_to_hv_device(dev);
274 
275 	if (!hv_dev->channel)
276 		return -ENODEV;
277 	return sprintf(buf, "%d\n",
278 		       channel_latency(hv_dev->channel,
279 				       vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282 
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284 					   struct device_attribute *dev_attr,
285 					   char *buf)
286 {
287 	struct hv_device *hv_dev = device_to_hv_device(dev);
288 
289 	if (!hv_dev->channel)
290 		return -ENODEV;
291 	return sprintf(buf, "%d\n",
292 		       channel_conn_id(hv_dev->channel,
293 				       vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296 
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298 					   struct device_attribute *dev_attr,
299 					   char *buf)
300 {
301 	struct hv_device *hv_dev = device_to_hv_device(dev);
302 
303 	if (!hv_dev->channel)
304 		return -ENODEV;
305 	return sprintf(buf, "%d\n",
306 		       channel_conn_id(hv_dev->channel,
307 				       vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310 
311 static ssize_t out_intr_mask_show(struct device *dev,
312 				  struct device_attribute *dev_attr, char *buf)
313 {
314 	struct hv_device *hv_dev = device_to_hv_device(dev);
315 	struct hv_ring_buffer_debug_info outbound;
316 
317 	if (!hv_dev->channel)
318 		return -ENODEV;
319 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
320 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
321 }
322 static DEVICE_ATTR_RO(out_intr_mask);
323 
324 static ssize_t out_read_index_show(struct device *dev,
325 				   struct device_attribute *dev_attr, char *buf)
326 {
327 	struct hv_device *hv_dev = device_to_hv_device(dev);
328 	struct hv_ring_buffer_debug_info outbound;
329 
330 	if (!hv_dev->channel)
331 		return -ENODEV;
332 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
333 	return sprintf(buf, "%d\n", outbound.current_read_index);
334 }
335 static DEVICE_ATTR_RO(out_read_index);
336 
337 static ssize_t out_write_index_show(struct device *dev,
338 				    struct device_attribute *dev_attr,
339 				    char *buf)
340 {
341 	struct hv_device *hv_dev = device_to_hv_device(dev);
342 	struct hv_ring_buffer_debug_info outbound;
343 
344 	if (!hv_dev->channel)
345 		return -ENODEV;
346 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
347 	return sprintf(buf, "%d\n", outbound.current_write_index);
348 }
349 static DEVICE_ATTR_RO(out_write_index);
350 
351 static ssize_t out_read_bytes_avail_show(struct device *dev,
352 					 struct device_attribute *dev_attr,
353 					 char *buf)
354 {
355 	struct hv_device *hv_dev = device_to_hv_device(dev);
356 	struct hv_ring_buffer_debug_info outbound;
357 
358 	if (!hv_dev->channel)
359 		return -ENODEV;
360 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
361 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
362 }
363 static DEVICE_ATTR_RO(out_read_bytes_avail);
364 
365 static ssize_t out_write_bytes_avail_show(struct device *dev,
366 					  struct device_attribute *dev_attr,
367 					  char *buf)
368 {
369 	struct hv_device *hv_dev = device_to_hv_device(dev);
370 	struct hv_ring_buffer_debug_info outbound;
371 
372 	if (!hv_dev->channel)
373 		return -ENODEV;
374 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
375 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
376 }
377 static DEVICE_ATTR_RO(out_write_bytes_avail);
378 
379 static ssize_t in_intr_mask_show(struct device *dev,
380 				 struct device_attribute *dev_attr, char *buf)
381 {
382 	struct hv_device *hv_dev = device_to_hv_device(dev);
383 	struct hv_ring_buffer_debug_info inbound;
384 
385 	if (!hv_dev->channel)
386 		return -ENODEV;
387 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
388 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
389 }
390 static DEVICE_ATTR_RO(in_intr_mask);
391 
392 static ssize_t in_read_index_show(struct device *dev,
393 				  struct device_attribute *dev_attr, char *buf)
394 {
395 	struct hv_device *hv_dev = device_to_hv_device(dev);
396 	struct hv_ring_buffer_debug_info inbound;
397 
398 	if (!hv_dev->channel)
399 		return -ENODEV;
400 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
401 	return sprintf(buf, "%d\n", inbound.current_read_index);
402 }
403 static DEVICE_ATTR_RO(in_read_index);
404 
405 static ssize_t in_write_index_show(struct device *dev,
406 				   struct device_attribute *dev_attr, char *buf)
407 {
408 	struct hv_device *hv_dev = device_to_hv_device(dev);
409 	struct hv_ring_buffer_debug_info inbound;
410 
411 	if (!hv_dev->channel)
412 		return -ENODEV;
413 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414 	return sprintf(buf, "%d\n", inbound.current_write_index);
415 }
416 static DEVICE_ATTR_RO(in_write_index);
417 
418 static ssize_t in_read_bytes_avail_show(struct device *dev,
419 					struct device_attribute *dev_attr,
420 					char *buf)
421 {
422 	struct hv_device *hv_dev = device_to_hv_device(dev);
423 	struct hv_ring_buffer_debug_info inbound;
424 
425 	if (!hv_dev->channel)
426 		return -ENODEV;
427 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
428 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
429 }
430 static DEVICE_ATTR_RO(in_read_bytes_avail);
431 
432 static ssize_t in_write_bytes_avail_show(struct device *dev,
433 					 struct device_attribute *dev_attr,
434 					 char *buf)
435 {
436 	struct hv_device *hv_dev = device_to_hv_device(dev);
437 	struct hv_ring_buffer_debug_info inbound;
438 
439 	if (!hv_dev->channel)
440 		return -ENODEV;
441 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
443 }
444 static DEVICE_ATTR_RO(in_write_bytes_avail);
445 
446 static ssize_t channel_vp_mapping_show(struct device *dev,
447 				       struct device_attribute *dev_attr,
448 				       char *buf)
449 {
450 	struct hv_device *hv_dev = device_to_hv_device(dev);
451 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
452 	unsigned long flags;
453 	int buf_size = PAGE_SIZE, n_written, tot_written;
454 	struct list_head *cur;
455 
456 	if (!channel)
457 		return -ENODEV;
458 
459 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
460 		channel->offermsg.child_relid, channel->target_cpu);
461 
462 	spin_lock_irqsave(&channel->lock, flags);
463 
464 	list_for_each(cur, &channel->sc_list) {
465 		if (tot_written >= buf_size - 1)
466 			break;
467 
468 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
469 		n_written = scnprintf(buf + tot_written,
470 				     buf_size - tot_written,
471 				     "%u:%u\n",
472 				     cur_sc->offermsg.child_relid,
473 				     cur_sc->target_cpu);
474 		tot_written += n_written;
475 	}
476 
477 	spin_unlock_irqrestore(&channel->lock, flags);
478 
479 	return tot_written;
480 }
481 static DEVICE_ATTR_RO(channel_vp_mapping);
482 
483 static ssize_t vendor_show(struct device *dev,
484 			   struct device_attribute *dev_attr,
485 			   char *buf)
486 {
487 	struct hv_device *hv_dev = device_to_hv_device(dev);
488 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
489 }
490 static DEVICE_ATTR_RO(vendor);
491 
492 static ssize_t device_show(struct device *dev,
493 			   struct device_attribute *dev_attr,
494 			   char *buf)
495 {
496 	struct hv_device *hv_dev = device_to_hv_device(dev);
497 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
498 }
499 static DEVICE_ATTR_RO(device);
500 
501 static ssize_t driver_override_store(struct device *dev,
502 				     struct device_attribute *attr,
503 				     const char *buf, size_t count)
504 {
505 	struct hv_device *hv_dev = device_to_hv_device(dev);
506 	char *driver_override, *old, *cp;
507 
508 	/* We need to keep extra room for a newline */
509 	if (count >= (PAGE_SIZE - 1))
510 		return -EINVAL;
511 
512 	driver_override = kstrndup(buf, count, GFP_KERNEL);
513 	if (!driver_override)
514 		return -ENOMEM;
515 
516 	cp = strchr(driver_override, '\n');
517 	if (cp)
518 		*cp = '\0';
519 
520 	device_lock(dev);
521 	old = hv_dev->driver_override;
522 	if (strlen(driver_override)) {
523 		hv_dev->driver_override = driver_override;
524 	} else {
525 		kfree(driver_override);
526 		hv_dev->driver_override = NULL;
527 	}
528 	device_unlock(dev);
529 
530 	kfree(old);
531 
532 	return count;
533 }
534 
535 static ssize_t driver_override_show(struct device *dev,
536 				    struct device_attribute *attr, char *buf)
537 {
538 	struct hv_device *hv_dev = device_to_hv_device(dev);
539 	ssize_t len;
540 
541 	device_lock(dev);
542 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
543 	device_unlock(dev);
544 
545 	return len;
546 }
547 static DEVICE_ATTR_RW(driver_override);
548 
549 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
550 static struct attribute *vmbus_dev_attrs[] = {
551 	&dev_attr_id.attr,
552 	&dev_attr_state.attr,
553 	&dev_attr_monitor_id.attr,
554 	&dev_attr_class_id.attr,
555 	&dev_attr_device_id.attr,
556 	&dev_attr_modalias.attr,
557 #ifdef CONFIG_NUMA
558 	&dev_attr_numa_node.attr,
559 #endif
560 	&dev_attr_server_monitor_pending.attr,
561 	&dev_attr_client_monitor_pending.attr,
562 	&dev_attr_server_monitor_latency.attr,
563 	&dev_attr_client_monitor_latency.attr,
564 	&dev_attr_server_monitor_conn_id.attr,
565 	&dev_attr_client_monitor_conn_id.attr,
566 	&dev_attr_out_intr_mask.attr,
567 	&dev_attr_out_read_index.attr,
568 	&dev_attr_out_write_index.attr,
569 	&dev_attr_out_read_bytes_avail.attr,
570 	&dev_attr_out_write_bytes_avail.attr,
571 	&dev_attr_in_intr_mask.attr,
572 	&dev_attr_in_read_index.attr,
573 	&dev_attr_in_write_index.attr,
574 	&dev_attr_in_read_bytes_avail.attr,
575 	&dev_attr_in_write_bytes_avail.attr,
576 	&dev_attr_channel_vp_mapping.attr,
577 	&dev_attr_vendor.attr,
578 	&dev_attr_device.attr,
579 	&dev_attr_driver_override.attr,
580 	NULL,
581 };
582 ATTRIBUTE_GROUPS(vmbus_dev);
583 
584 /*
585  * vmbus_uevent - add uevent for our device
586  *
587  * This routine is invoked when a device is added or removed on the vmbus to
588  * generate a uevent to udev in the userspace. The udev will then look at its
589  * rule and the uevent generated here to load the appropriate driver
590  *
591  * The alias string will be of the form vmbus:guid where guid is the string
592  * representation of the device guid (each byte of the guid will be
593  * represented with two hex characters.
594  */
595 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
596 {
597 	struct hv_device *dev = device_to_hv_device(device);
598 	int ret;
599 	char alias_name[VMBUS_ALIAS_LEN + 1];
600 
601 	print_alias_name(dev, alias_name);
602 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
603 	return ret;
604 }
605 
606 static const uuid_le null_guid;
607 
608 static inline bool is_null_guid(const uuid_le *guid)
609 {
610 	if (uuid_le_cmp(*guid, null_guid))
611 		return false;
612 	return true;
613 }
614 
615 static const struct hv_vmbus_device_id *
616 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const uuid_le *guid)
617 
618 {
619 	if (id == NULL)
620 		return NULL; /* empty device table */
621 
622 	for (; !is_null_guid(&id->guid); id++)
623 		if (!uuid_le_cmp(id->guid, *guid))
624 			return id;
625 
626 	return NULL;
627 }
628 
629 static const struct hv_vmbus_device_id *
630 hv_vmbus_dynid_match(struct hv_driver *drv, const uuid_le *guid)
631 {
632 	const struct hv_vmbus_device_id *id = NULL;
633 	struct vmbus_dynid *dynid;
634 
635 	spin_lock(&drv->dynids.lock);
636 	list_for_each_entry(dynid, &drv->dynids.list, node) {
637 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
638 			id = &dynid->id;
639 			break;
640 		}
641 	}
642 	spin_unlock(&drv->dynids.lock);
643 
644 	return id;
645 }
646 
647 static const struct hv_vmbus_device_id vmbus_device_null = {
648 	.guid = NULL_UUID_LE,
649 };
650 
651 /*
652  * Return a matching hv_vmbus_device_id pointer.
653  * If there is no match, return NULL.
654  */
655 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
656 							struct hv_device *dev)
657 {
658 	const uuid_le *guid = &dev->dev_type;
659 	const struct hv_vmbus_device_id *id;
660 
661 	/* When driver_override is set, only bind to the matching driver */
662 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
663 		return NULL;
664 
665 	/* Look at the dynamic ids first, before the static ones */
666 	id = hv_vmbus_dynid_match(drv, guid);
667 	if (!id)
668 		id = hv_vmbus_dev_match(drv->id_table, guid);
669 
670 	/* driver_override will always match, send a dummy id */
671 	if (!id && dev->driver_override)
672 		id = &vmbus_device_null;
673 
674 	return id;
675 }
676 
677 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
678 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
679 {
680 	struct vmbus_dynid *dynid;
681 
682 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
683 	if (!dynid)
684 		return -ENOMEM;
685 
686 	dynid->id.guid = *guid;
687 
688 	spin_lock(&drv->dynids.lock);
689 	list_add_tail(&dynid->node, &drv->dynids.list);
690 	spin_unlock(&drv->dynids.lock);
691 
692 	return driver_attach(&drv->driver);
693 }
694 
695 static void vmbus_free_dynids(struct hv_driver *drv)
696 {
697 	struct vmbus_dynid *dynid, *n;
698 
699 	spin_lock(&drv->dynids.lock);
700 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
701 		list_del(&dynid->node);
702 		kfree(dynid);
703 	}
704 	spin_unlock(&drv->dynids.lock);
705 }
706 
707 /*
708  * store_new_id - sysfs frontend to vmbus_add_dynid()
709  *
710  * Allow GUIDs to be added to an existing driver via sysfs.
711  */
712 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
713 			    size_t count)
714 {
715 	struct hv_driver *drv = drv_to_hv_drv(driver);
716 	uuid_le guid;
717 	ssize_t retval;
718 
719 	retval = uuid_le_to_bin(buf, &guid);
720 	if (retval)
721 		return retval;
722 
723 	if (hv_vmbus_dynid_match(drv, &guid))
724 		return -EEXIST;
725 
726 	retval = vmbus_add_dynid(drv, &guid);
727 	if (retval)
728 		return retval;
729 	return count;
730 }
731 static DRIVER_ATTR_WO(new_id);
732 
733 /*
734  * store_remove_id - remove a PCI device ID from this driver
735  *
736  * Removes a dynamic pci device ID to this driver.
737  */
738 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
739 			       size_t count)
740 {
741 	struct hv_driver *drv = drv_to_hv_drv(driver);
742 	struct vmbus_dynid *dynid, *n;
743 	uuid_le guid;
744 	ssize_t retval;
745 
746 	retval = uuid_le_to_bin(buf, &guid);
747 	if (retval)
748 		return retval;
749 
750 	retval = -ENODEV;
751 	spin_lock(&drv->dynids.lock);
752 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
753 		struct hv_vmbus_device_id *id = &dynid->id;
754 
755 		if (!uuid_le_cmp(id->guid, guid)) {
756 			list_del(&dynid->node);
757 			kfree(dynid);
758 			retval = count;
759 			break;
760 		}
761 	}
762 	spin_unlock(&drv->dynids.lock);
763 
764 	return retval;
765 }
766 static DRIVER_ATTR_WO(remove_id);
767 
768 static struct attribute *vmbus_drv_attrs[] = {
769 	&driver_attr_new_id.attr,
770 	&driver_attr_remove_id.attr,
771 	NULL,
772 };
773 ATTRIBUTE_GROUPS(vmbus_drv);
774 
775 
776 /*
777  * vmbus_match - Attempt to match the specified device to the specified driver
778  */
779 static int vmbus_match(struct device *device, struct device_driver *driver)
780 {
781 	struct hv_driver *drv = drv_to_hv_drv(driver);
782 	struct hv_device *hv_dev = device_to_hv_device(device);
783 
784 	/* The hv_sock driver handles all hv_sock offers. */
785 	if (is_hvsock_channel(hv_dev->channel))
786 		return drv->hvsock;
787 
788 	if (hv_vmbus_get_id(drv, hv_dev))
789 		return 1;
790 
791 	return 0;
792 }
793 
794 /*
795  * vmbus_probe - Add the new vmbus's child device
796  */
797 static int vmbus_probe(struct device *child_device)
798 {
799 	int ret = 0;
800 	struct hv_driver *drv =
801 			drv_to_hv_drv(child_device->driver);
802 	struct hv_device *dev = device_to_hv_device(child_device);
803 	const struct hv_vmbus_device_id *dev_id;
804 
805 	dev_id = hv_vmbus_get_id(drv, dev);
806 	if (drv->probe) {
807 		ret = drv->probe(dev, dev_id);
808 		if (ret != 0)
809 			pr_err("probe failed for device %s (%d)\n",
810 			       dev_name(child_device), ret);
811 
812 	} else {
813 		pr_err("probe not set for driver %s\n",
814 		       dev_name(child_device));
815 		ret = -ENODEV;
816 	}
817 	return ret;
818 }
819 
820 /*
821  * vmbus_remove - Remove a vmbus device
822  */
823 static int vmbus_remove(struct device *child_device)
824 {
825 	struct hv_driver *drv;
826 	struct hv_device *dev = device_to_hv_device(child_device);
827 
828 	if (child_device->driver) {
829 		drv = drv_to_hv_drv(child_device->driver);
830 		if (drv->remove)
831 			drv->remove(dev);
832 	}
833 
834 	return 0;
835 }
836 
837 
838 /*
839  * vmbus_shutdown - Shutdown a vmbus device
840  */
841 static void vmbus_shutdown(struct device *child_device)
842 {
843 	struct hv_driver *drv;
844 	struct hv_device *dev = device_to_hv_device(child_device);
845 
846 
847 	/* The device may not be attached yet */
848 	if (!child_device->driver)
849 		return;
850 
851 	drv = drv_to_hv_drv(child_device->driver);
852 
853 	if (drv->shutdown)
854 		drv->shutdown(dev);
855 }
856 
857 
858 /*
859  * vmbus_device_release - Final callback release of the vmbus child device
860  */
861 static void vmbus_device_release(struct device *device)
862 {
863 	struct hv_device *hv_dev = device_to_hv_device(device);
864 	struct vmbus_channel *channel = hv_dev->channel;
865 
866 	mutex_lock(&vmbus_connection.channel_mutex);
867 	hv_process_channel_removal(channel);
868 	mutex_unlock(&vmbus_connection.channel_mutex);
869 	kfree(hv_dev);
870 }
871 
872 /* The one and only one */
873 static struct bus_type  hv_bus = {
874 	.name =		"vmbus",
875 	.match =		vmbus_match,
876 	.shutdown =		vmbus_shutdown,
877 	.remove =		vmbus_remove,
878 	.probe =		vmbus_probe,
879 	.uevent =		vmbus_uevent,
880 	.dev_groups =		vmbus_dev_groups,
881 	.drv_groups =		vmbus_drv_groups,
882 };
883 
884 struct onmessage_work_context {
885 	struct work_struct work;
886 	struct hv_message msg;
887 };
888 
889 static void vmbus_onmessage_work(struct work_struct *work)
890 {
891 	struct onmessage_work_context *ctx;
892 
893 	/* Do not process messages if we're in DISCONNECTED state */
894 	if (vmbus_connection.conn_state == DISCONNECTED)
895 		return;
896 
897 	ctx = container_of(work, struct onmessage_work_context,
898 			   work);
899 	vmbus_onmessage(&ctx->msg);
900 	kfree(ctx);
901 }
902 
903 static void hv_process_timer_expiration(struct hv_message *msg,
904 					struct hv_per_cpu_context *hv_cpu)
905 {
906 	struct clock_event_device *dev = hv_cpu->clk_evt;
907 
908 	if (dev->event_handler)
909 		dev->event_handler(dev);
910 
911 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
912 }
913 
914 void vmbus_on_msg_dpc(unsigned long data)
915 {
916 	struct hv_per_cpu_context *hv_cpu = (void *)data;
917 	void *page_addr = hv_cpu->synic_message_page;
918 	struct hv_message *msg = (struct hv_message *)page_addr +
919 				  VMBUS_MESSAGE_SINT;
920 	struct vmbus_channel_message_header *hdr;
921 	const struct vmbus_channel_message_table_entry *entry;
922 	struct onmessage_work_context *ctx;
923 	u32 message_type = msg->header.message_type;
924 
925 	if (message_type == HVMSG_NONE)
926 		/* no msg */
927 		return;
928 
929 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
930 
931 	trace_vmbus_on_msg_dpc(hdr);
932 
933 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
934 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
935 		goto msg_handled;
936 	}
937 
938 	entry = &channel_message_table[hdr->msgtype];
939 	if (entry->handler_type	== VMHT_BLOCKING) {
940 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
941 		if (ctx == NULL)
942 			return;
943 
944 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
945 		memcpy(&ctx->msg, msg, sizeof(*msg));
946 
947 		/*
948 		 * The host can generate a rescind message while we
949 		 * may still be handling the original offer. We deal with
950 		 * this condition by ensuring the processing is done on the
951 		 * same CPU.
952 		 */
953 		switch (hdr->msgtype) {
954 		case CHANNELMSG_RESCIND_CHANNELOFFER:
955 			/*
956 			 * If we are handling the rescind message;
957 			 * schedule the work on the global work queue.
958 			 */
959 			schedule_work_on(vmbus_connection.connect_cpu,
960 					 &ctx->work);
961 			break;
962 
963 		case CHANNELMSG_OFFERCHANNEL:
964 			atomic_inc(&vmbus_connection.offer_in_progress);
965 			queue_work_on(vmbus_connection.connect_cpu,
966 				      vmbus_connection.work_queue,
967 				      &ctx->work);
968 			break;
969 
970 		default:
971 			queue_work(vmbus_connection.work_queue, &ctx->work);
972 		}
973 	} else
974 		entry->message_handler(hdr);
975 
976 msg_handled:
977 	vmbus_signal_eom(msg, message_type);
978 }
979 
980 
981 /*
982  * Direct callback for channels using other deferred processing
983  */
984 static void vmbus_channel_isr(struct vmbus_channel *channel)
985 {
986 	void (*callback_fn)(void *);
987 
988 	callback_fn = READ_ONCE(channel->onchannel_callback);
989 	if (likely(callback_fn != NULL))
990 		(*callback_fn)(channel->channel_callback_context);
991 }
992 
993 /*
994  * Schedule all channels with events pending
995  */
996 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
997 {
998 	unsigned long *recv_int_page;
999 	u32 maxbits, relid;
1000 
1001 	if (vmbus_proto_version < VERSION_WIN8) {
1002 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1003 		recv_int_page = vmbus_connection.recv_int_page;
1004 	} else {
1005 		/*
1006 		 * When the host is win8 and beyond, the event page
1007 		 * can be directly checked to get the id of the channel
1008 		 * that has the interrupt pending.
1009 		 */
1010 		void *page_addr = hv_cpu->synic_event_page;
1011 		union hv_synic_event_flags *event
1012 			= (union hv_synic_event_flags *)page_addr +
1013 						 VMBUS_MESSAGE_SINT;
1014 
1015 		maxbits = HV_EVENT_FLAGS_COUNT;
1016 		recv_int_page = event->flags;
1017 	}
1018 
1019 	if (unlikely(!recv_int_page))
1020 		return;
1021 
1022 	for_each_set_bit(relid, recv_int_page, maxbits) {
1023 		struct vmbus_channel *channel;
1024 
1025 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1026 			continue;
1027 
1028 		/* Special case - vmbus channel protocol msg */
1029 		if (relid == 0)
1030 			continue;
1031 
1032 		rcu_read_lock();
1033 
1034 		/* Find channel based on relid */
1035 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1036 			if (channel->offermsg.child_relid != relid)
1037 				continue;
1038 
1039 			if (channel->rescind)
1040 				continue;
1041 
1042 			trace_vmbus_chan_sched(channel);
1043 
1044 			++channel->interrupts;
1045 
1046 			switch (channel->callback_mode) {
1047 			case HV_CALL_ISR:
1048 				vmbus_channel_isr(channel);
1049 				break;
1050 
1051 			case HV_CALL_BATCHED:
1052 				hv_begin_read(&channel->inbound);
1053 				/* fallthrough */
1054 			case HV_CALL_DIRECT:
1055 				tasklet_schedule(&channel->callback_event);
1056 			}
1057 		}
1058 
1059 		rcu_read_unlock();
1060 	}
1061 }
1062 
1063 static void vmbus_isr(void)
1064 {
1065 	struct hv_per_cpu_context *hv_cpu
1066 		= this_cpu_ptr(hv_context.cpu_context);
1067 	void *page_addr = hv_cpu->synic_event_page;
1068 	struct hv_message *msg;
1069 	union hv_synic_event_flags *event;
1070 	bool handled = false;
1071 
1072 	if (unlikely(page_addr == NULL))
1073 		return;
1074 
1075 	event = (union hv_synic_event_flags *)page_addr +
1076 					 VMBUS_MESSAGE_SINT;
1077 	/*
1078 	 * Check for events before checking for messages. This is the order
1079 	 * in which events and messages are checked in Windows guests on
1080 	 * Hyper-V, and the Windows team suggested we do the same.
1081 	 */
1082 
1083 	if ((vmbus_proto_version == VERSION_WS2008) ||
1084 		(vmbus_proto_version == VERSION_WIN7)) {
1085 
1086 		/* Since we are a child, we only need to check bit 0 */
1087 		if (sync_test_and_clear_bit(0, event->flags))
1088 			handled = true;
1089 	} else {
1090 		/*
1091 		 * Our host is win8 or above. The signaling mechanism
1092 		 * has changed and we can directly look at the event page.
1093 		 * If bit n is set then we have an interrup on the channel
1094 		 * whose id is n.
1095 		 */
1096 		handled = true;
1097 	}
1098 
1099 	if (handled)
1100 		vmbus_chan_sched(hv_cpu);
1101 
1102 	page_addr = hv_cpu->synic_message_page;
1103 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1104 
1105 	/* Check if there are actual msgs to be processed */
1106 	if (msg->header.message_type != HVMSG_NONE) {
1107 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1108 			hv_process_timer_expiration(msg, hv_cpu);
1109 		else
1110 			tasklet_schedule(&hv_cpu->msg_dpc);
1111 	}
1112 
1113 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1114 }
1115 
1116 /*
1117  * Boolean to control whether to report panic messages over Hyper-V.
1118  *
1119  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1120  */
1121 static int sysctl_record_panic_msg = 1;
1122 
1123 /*
1124  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1125  * buffer and call into Hyper-V to transfer the data.
1126  */
1127 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1128 			 enum kmsg_dump_reason reason)
1129 {
1130 	size_t bytes_written;
1131 	phys_addr_t panic_pa;
1132 
1133 	/* We are only interested in panics. */
1134 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1135 		return;
1136 
1137 	panic_pa = virt_to_phys(hv_panic_page);
1138 
1139 	/*
1140 	 * Write dump contents to the page. No need to synchronize; panic should
1141 	 * be single-threaded.
1142 	 */
1143 	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1144 			     &bytes_written);
1145 	if (bytes_written)
1146 		hyperv_report_panic_msg(panic_pa, bytes_written);
1147 }
1148 
1149 static struct kmsg_dumper hv_kmsg_dumper = {
1150 	.dump = hv_kmsg_dump,
1151 };
1152 
1153 static struct ctl_table_header *hv_ctl_table_hdr;
1154 static int zero;
1155 static int one = 1;
1156 
1157 /*
1158  * sysctl option to allow the user to control whether kmsg data should be
1159  * reported to Hyper-V on panic.
1160  */
1161 static struct ctl_table hv_ctl_table[] = {
1162 	{
1163 		.procname       = "hyperv_record_panic_msg",
1164 		.data           = &sysctl_record_panic_msg,
1165 		.maxlen         = sizeof(int),
1166 		.mode           = 0644,
1167 		.proc_handler   = proc_dointvec_minmax,
1168 		.extra1		= &zero,
1169 		.extra2		= &one
1170 	},
1171 	{}
1172 };
1173 
1174 static struct ctl_table hv_root_table[] = {
1175 	{
1176 		.procname	= "kernel",
1177 		.mode		= 0555,
1178 		.child		= hv_ctl_table
1179 	},
1180 	{}
1181 };
1182 
1183 /*
1184  * vmbus_bus_init -Main vmbus driver initialization routine.
1185  *
1186  * Here, we
1187  *	- initialize the vmbus driver context
1188  *	- invoke the vmbus hv main init routine
1189  *	- retrieve the channel offers
1190  */
1191 static int vmbus_bus_init(void)
1192 {
1193 	int ret;
1194 
1195 	/* Hypervisor initialization...setup hypercall page..etc */
1196 	ret = hv_init();
1197 	if (ret != 0) {
1198 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1199 		return ret;
1200 	}
1201 
1202 	ret = bus_register(&hv_bus);
1203 	if (ret)
1204 		return ret;
1205 
1206 	hv_setup_vmbus_irq(vmbus_isr);
1207 
1208 	ret = hv_synic_alloc();
1209 	if (ret)
1210 		goto err_alloc;
1211 	/*
1212 	 * Initialize the per-cpu interrupt state and
1213 	 * connect to the host.
1214 	 */
1215 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1216 				hv_synic_init, hv_synic_cleanup);
1217 	if (ret < 0)
1218 		goto err_alloc;
1219 	hyperv_cpuhp_online = ret;
1220 
1221 	ret = vmbus_connect();
1222 	if (ret)
1223 		goto err_connect;
1224 
1225 	/*
1226 	 * Only register if the crash MSRs are available
1227 	 */
1228 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1229 		u64 hyperv_crash_ctl;
1230 		/*
1231 		 * Sysctl registration is not fatal, since by default
1232 		 * reporting is enabled.
1233 		 */
1234 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1235 		if (!hv_ctl_table_hdr)
1236 			pr_err("Hyper-V: sysctl table register error");
1237 
1238 		/*
1239 		 * Register for panic kmsg callback only if the right
1240 		 * capability is supported by the hypervisor.
1241 		 */
1242 		hv_get_crash_ctl(hyperv_crash_ctl);
1243 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1244 			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1245 			if (hv_panic_page) {
1246 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1247 				if (ret)
1248 					pr_err("Hyper-V: kmsg dump register "
1249 						"error 0x%x\n", ret);
1250 			} else
1251 				pr_err("Hyper-V: panic message page memory "
1252 					"allocation failed");
1253 		}
1254 
1255 		register_die_notifier(&hyperv_die_block);
1256 		atomic_notifier_chain_register(&panic_notifier_list,
1257 					       &hyperv_panic_block);
1258 	}
1259 
1260 	vmbus_request_offers();
1261 
1262 	return 0;
1263 
1264 err_connect:
1265 	cpuhp_remove_state(hyperv_cpuhp_online);
1266 err_alloc:
1267 	hv_synic_free();
1268 	hv_remove_vmbus_irq();
1269 
1270 	bus_unregister(&hv_bus);
1271 	free_page((unsigned long)hv_panic_page);
1272 	unregister_sysctl_table(hv_ctl_table_hdr);
1273 	hv_ctl_table_hdr = NULL;
1274 	return ret;
1275 }
1276 
1277 /**
1278  * __vmbus_child_driver_register() - Register a vmbus's driver
1279  * @hv_driver: Pointer to driver structure you want to register
1280  * @owner: owner module of the drv
1281  * @mod_name: module name string
1282  *
1283  * Registers the given driver with Linux through the 'driver_register()' call
1284  * and sets up the hyper-v vmbus handling for this driver.
1285  * It will return the state of the 'driver_register()' call.
1286  *
1287  */
1288 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1289 {
1290 	int ret;
1291 
1292 	pr_info("registering driver %s\n", hv_driver->name);
1293 
1294 	ret = vmbus_exists();
1295 	if (ret < 0)
1296 		return ret;
1297 
1298 	hv_driver->driver.name = hv_driver->name;
1299 	hv_driver->driver.owner = owner;
1300 	hv_driver->driver.mod_name = mod_name;
1301 	hv_driver->driver.bus = &hv_bus;
1302 
1303 	spin_lock_init(&hv_driver->dynids.lock);
1304 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1305 
1306 	ret = driver_register(&hv_driver->driver);
1307 
1308 	return ret;
1309 }
1310 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1311 
1312 /**
1313  * vmbus_driver_unregister() - Unregister a vmbus's driver
1314  * @hv_driver: Pointer to driver structure you want to
1315  *             un-register
1316  *
1317  * Un-register the given driver that was previous registered with a call to
1318  * vmbus_driver_register()
1319  */
1320 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1321 {
1322 	pr_info("unregistering driver %s\n", hv_driver->name);
1323 
1324 	if (!vmbus_exists()) {
1325 		driver_unregister(&hv_driver->driver);
1326 		vmbus_free_dynids(hv_driver);
1327 	}
1328 }
1329 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1330 
1331 
1332 /*
1333  * Called when last reference to channel is gone.
1334  */
1335 static void vmbus_chan_release(struct kobject *kobj)
1336 {
1337 	struct vmbus_channel *channel
1338 		= container_of(kobj, struct vmbus_channel, kobj);
1339 
1340 	kfree_rcu(channel, rcu);
1341 }
1342 
1343 struct vmbus_chan_attribute {
1344 	struct attribute attr;
1345 	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1346 	ssize_t (*store)(struct vmbus_channel *chan,
1347 			 const char *buf, size_t count);
1348 };
1349 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1350 	struct vmbus_chan_attribute chan_attr_##_name \
1351 		= __ATTR(_name, _mode, _show, _store)
1352 #define VMBUS_CHAN_ATTR_RW(_name) \
1353 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1354 #define VMBUS_CHAN_ATTR_RO(_name) \
1355 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1356 #define VMBUS_CHAN_ATTR_WO(_name) \
1357 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1358 
1359 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1360 				    struct attribute *attr, char *buf)
1361 {
1362 	const struct vmbus_chan_attribute *attribute
1363 		= container_of(attr, struct vmbus_chan_attribute, attr);
1364 	const struct vmbus_channel *chan
1365 		= container_of(kobj, struct vmbus_channel, kobj);
1366 
1367 	if (!attribute->show)
1368 		return -EIO;
1369 
1370 	if (chan->state != CHANNEL_OPENED_STATE)
1371 		return -EINVAL;
1372 
1373 	return attribute->show(chan, buf);
1374 }
1375 
1376 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1377 	.show = vmbus_chan_attr_show,
1378 };
1379 
1380 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1381 {
1382 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1383 
1384 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1385 }
1386 static VMBUS_CHAN_ATTR_RO(out_mask);
1387 
1388 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1389 {
1390 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1391 
1392 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1393 }
1394 static VMBUS_CHAN_ATTR_RO(in_mask);
1395 
1396 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1397 {
1398 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1399 
1400 	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1401 }
1402 static VMBUS_CHAN_ATTR_RO(read_avail);
1403 
1404 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1405 {
1406 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1407 
1408 	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1409 }
1410 static VMBUS_CHAN_ATTR_RO(write_avail);
1411 
1412 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1413 {
1414 	return sprintf(buf, "%u\n", channel->target_cpu);
1415 }
1416 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1417 
1418 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1419 				    char *buf)
1420 {
1421 	return sprintf(buf, "%d\n",
1422 		       channel_pending(channel,
1423 				       vmbus_connection.monitor_pages[1]));
1424 }
1425 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1426 
1427 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1428 				    char *buf)
1429 {
1430 	return sprintf(buf, "%d\n",
1431 		       channel_latency(channel,
1432 				       vmbus_connection.monitor_pages[1]));
1433 }
1434 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1435 
1436 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1437 {
1438 	return sprintf(buf, "%llu\n", channel->interrupts);
1439 }
1440 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1441 
1442 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1443 {
1444 	return sprintf(buf, "%llu\n", channel->sig_events);
1445 }
1446 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1447 
1448 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1449 					  char *buf)
1450 {
1451 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1452 }
1453 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1454 
1455 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1456 				  char *buf)
1457 {
1458 	return sprintf(buf, "%u\n",
1459 		       channel->offermsg.offer.sub_channel_index);
1460 }
1461 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1462 
1463 static struct attribute *vmbus_chan_attrs[] = {
1464 	&chan_attr_out_mask.attr,
1465 	&chan_attr_in_mask.attr,
1466 	&chan_attr_read_avail.attr,
1467 	&chan_attr_write_avail.attr,
1468 	&chan_attr_cpu.attr,
1469 	&chan_attr_pending.attr,
1470 	&chan_attr_latency.attr,
1471 	&chan_attr_interrupts.attr,
1472 	&chan_attr_events.attr,
1473 	&chan_attr_monitor_id.attr,
1474 	&chan_attr_subchannel_id.attr,
1475 	NULL
1476 };
1477 
1478 static struct kobj_type vmbus_chan_ktype = {
1479 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1480 	.release = vmbus_chan_release,
1481 	.default_attrs = vmbus_chan_attrs,
1482 };
1483 
1484 /*
1485  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1486  */
1487 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1488 {
1489 	struct kobject *kobj = &channel->kobj;
1490 	u32 relid = channel->offermsg.child_relid;
1491 	int ret;
1492 
1493 	kobj->kset = dev->channels_kset;
1494 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1495 				   "%u", relid);
1496 	if (ret)
1497 		return ret;
1498 
1499 	kobject_uevent(kobj, KOBJ_ADD);
1500 
1501 	return 0;
1502 }
1503 
1504 /*
1505  * vmbus_device_create - Creates and registers a new child device
1506  * on the vmbus.
1507  */
1508 struct hv_device *vmbus_device_create(const uuid_le *type,
1509 				      const uuid_le *instance,
1510 				      struct vmbus_channel *channel)
1511 {
1512 	struct hv_device *child_device_obj;
1513 
1514 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1515 	if (!child_device_obj) {
1516 		pr_err("Unable to allocate device object for child device\n");
1517 		return NULL;
1518 	}
1519 
1520 	child_device_obj->channel = channel;
1521 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1522 	memcpy(&child_device_obj->dev_instance, instance,
1523 	       sizeof(uuid_le));
1524 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1525 
1526 
1527 	return child_device_obj;
1528 }
1529 
1530 /*
1531  * vmbus_device_register - Register the child device
1532  */
1533 int vmbus_device_register(struct hv_device *child_device_obj)
1534 {
1535 	struct kobject *kobj = &child_device_obj->device.kobj;
1536 	int ret;
1537 
1538 	dev_set_name(&child_device_obj->device, "%pUl",
1539 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1540 
1541 	child_device_obj->device.bus = &hv_bus;
1542 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1543 	child_device_obj->device.release = vmbus_device_release;
1544 
1545 	/*
1546 	 * Register with the LDM. This will kick off the driver/device
1547 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1548 	 */
1549 	ret = device_register(&child_device_obj->device);
1550 	if (ret) {
1551 		pr_err("Unable to register child device\n");
1552 		return ret;
1553 	}
1554 
1555 	child_device_obj->channels_kset = kset_create_and_add("channels",
1556 							      NULL, kobj);
1557 	if (!child_device_obj->channels_kset) {
1558 		ret = -ENOMEM;
1559 		goto err_dev_unregister;
1560 	}
1561 
1562 	ret = vmbus_add_channel_kobj(child_device_obj,
1563 				     child_device_obj->channel);
1564 	if (ret) {
1565 		pr_err("Unable to register primary channeln");
1566 		goto err_kset_unregister;
1567 	}
1568 
1569 	return 0;
1570 
1571 err_kset_unregister:
1572 	kset_unregister(child_device_obj->channels_kset);
1573 
1574 err_dev_unregister:
1575 	device_unregister(&child_device_obj->device);
1576 	return ret;
1577 }
1578 
1579 /*
1580  * vmbus_device_unregister - Remove the specified child device
1581  * from the vmbus.
1582  */
1583 void vmbus_device_unregister(struct hv_device *device_obj)
1584 {
1585 	pr_debug("child device %s unregistered\n",
1586 		dev_name(&device_obj->device));
1587 
1588 	kset_unregister(device_obj->channels_kset);
1589 
1590 	/*
1591 	 * Kick off the process of unregistering the device.
1592 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1593 	 */
1594 	device_unregister(&device_obj->device);
1595 }
1596 
1597 
1598 /*
1599  * VMBUS is an acpi enumerated device. Get the information we
1600  * need from DSDT.
1601  */
1602 #define VTPM_BASE_ADDRESS 0xfed40000
1603 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1604 {
1605 	resource_size_t start = 0;
1606 	resource_size_t end = 0;
1607 	struct resource *new_res;
1608 	struct resource **old_res = &hyperv_mmio;
1609 	struct resource **prev_res = NULL;
1610 
1611 	switch (res->type) {
1612 
1613 	/*
1614 	 * "Address" descriptors are for bus windows. Ignore
1615 	 * "memory" descriptors, which are for registers on
1616 	 * devices.
1617 	 */
1618 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1619 		start = res->data.address32.address.minimum;
1620 		end = res->data.address32.address.maximum;
1621 		break;
1622 
1623 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1624 		start = res->data.address64.address.minimum;
1625 		end = res->data.address64.address.maximum;
1626 		break;
1627 
1628 	default:
1629 		/* Unused resource type */
1630 		return AE_OK;
1631 
1632 	}
1633 	/*
1634 	 * Ignore ranges that are below 1MB, as they're not
1635 	 * necessary or useful here.
1636 	 */
1637 	if (end < 0x100000)
1638 		return AE_OK;
1639 
1640 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1641 	if (!new_res)
1642 		return AE_NO_MEMORY;
1643 
1644 	/* If this range overlaps the virtual TPM, truncate it. */
1645 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1646 		end = VTPM_BASE_ADDRESS;
1647 
1648 	new_res->name = "hyperv mmio";
1649 	new_res->flags = IORESOURCE_MEM;
1650 	new_res->start = start;
1651 	new_res->end = end;
1652 
1653 	/*
1654 	 * If two ranges are adjacent, merge them.
1655 	 */
1656 	do {
1657 		if (!*old_res) {
1658 			*old_res = new_res;
1659 			break;
1660 		}
1661 
1662 		if (((*old_res)->end + 1) == new_res->start) {
1663 			(*old_res)->end = new_res->end;
1664 			kfree(new_res);
1665 			break;
1666 		}
1667 
1668 		if ((*old_res)->start == new_res->end + 1) {
1669 			(*old_res)->start = new_res->start;
1670 			kfree(new_res);
1671 			break;
1672 		}
1673 
1674 		if ((*old_res)->start > new_res->end) {
1675 			new_res->sibling = *old_res;
1676 			if (prev_res)
1677 				(*prev_res)->sibling = new_res;
1678 			*old_res = new_res;
1679 			break;
1680 		}
1681 
1682 		prev_res = old_res;
1683 		old_res = &(*old_res)->sibling;
1684 
1685 	} while (1);
1686 
1687 	return AE_OK;
1688 }
1689 
1690 static int vmbus_acpi_remove(struct acpi_device *device)
1691 {
1692 	struct resource *cur_res;
1693 	struct resource *next_res;
1694 
1695 	if (hyperv_mmio) {
1696 		if (fb_mmio) {
1697 			__release_region(hyperv_mmio, fb_mmio->start,
1698 					 resource_size(fb_mmio));
1699 			fb_mmio = NULL;
1700 		}
1701 
1702 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1703 			next_res = cur_res->sibling;
1704 			kfree(cur_res);
1705 		}
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 static void vmbus_reserve_fb(void)
1712 {
1713 	int size;
1714 	/*
1715 	 * Make a claim for the frame buffer in the resource tree under the
1716 	 * first node, which will be the one below 4GB.  The length seems to
1717 	 * be underreported, particularly in a Generation 1 VM.  So start out
1718 	 * reserving a larger area and make it smaller until it succeeds.
1719 	 */
1720 
1721 	if (screen_info.lfb_base) {
1722 		if (efi_enabled(EFI_BOOT))
1723 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1724 		else
1725 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1726 
1727 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1728 			fb_mmio = __request_region(hyperv_mmio,
1729 						   screen_info.lfb_base, size,
1730 						   fb_mmio_name, 0);
1731 		}
1732 	}
1733 }
1734 
1735 /**
1736  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1737  * @new:		If successful, supplied a pointer to the
1738  *			allocated MMIO space.
1739  * @device_obj:		Identifies the caller
1740  * @min:		Minimum guest physical address of the
1741  *			allocation
1742  * @max:		Maximum guest physical address
1743  * @size:		Size of the range to be allocated
1744  * @align:		Alignment of the range to be allocated
1745  * @fb_overlap_ok:	Whether this allocation can be allowed
1746  *			to overlap the video frame buffer.
1747  *
1748  * This function walks the resources granted to VMBus by the
1749  * _CRS object in the ACPI namespace underneath the parent
1750  * "bridge" whether that's a root PCI bus in the Generation 1
1751  * case or a Module Device in the Generation 2 case.  It then
1752  * attempts to allocate from the global MMIO pool in a way that
1753  * matches the constraints supplied in these parameters and by
1754  * that _CRS.
1755  *
1756  * Return: 0 on success, -errno on failure
1757  */
1758 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1759 			resource_size_t min, resource_size_t max,
1760 			resource_size_t size, resource_size_t align,
1761 			bool fb_overlap_ok)
1762 {
1763 	struct resource *iter, *shadow;
1764 	resource_size_t range_min, range_max, start;
1765 	const char *dev_n = dev_name(&device_obj->device);
1766 	int retval;
1767 
1768 	retval = -ENXIO;
1769 	down(&hyperv_mmio_lock);
1770 
1771 	/*
1772 	 * If overlaps with frame buffers are allowed, then first attempt to
1773 	 * make the allocation from within the reserved region.  Because it
1774 	 * is already reserved, no shadow allocation is necessary.
1775 	 */
1776 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1777 	    !(max < fb_mmio->start)) {
1778 
1779 		range_min = fb_mmio->start;
1780 		range_max = fb_mmio->end;
1781 		start = (range_min + align - 1) & ~(align - 1);
1782 		for (; start + size - 1 <= range_max; start += align) {
1783 			*new = request_mem_region_exclusive(start, size, dev_n);
1784 			if (*new) {
1785 				retval = 0;
1786 				goto exit;
1787 			}
1788 		}
1789 	}
1790 
1791 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1792 		if ((iter->start >= max) || (iter->end <= min))
1793 			continue;
1794 
1795 		range_min = iter->start;
1796 		range_max = iter->end;
1797 		start = (range_min + align - 1) & ~(align - 1);
1798 		for (; start + size - 1 <= range_max; start += align) {
1799 			shadow = __request_region(iter, start, size, NULL,
1800 						  IORESOURCE_BUSY);
1801 			if (!shadow)
1802 				continue;
1803 
1804 			*new = request_mem_region_exclusive(start, size, dev_n);
1805 			if (*new) {
1806 				shadow->name = (char *)*new;
1807 				retval = 0;
1808 				goto exit;
1809 			}
1810 
1811 			__release_region(iter, start, size);
1812 		}
1813 	}
1814 
1815 exit:
1816 	up(&hyperv_mmio_lock);
1817 	return retval;
1818 }
1819 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1820 
1821 /**
1822  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1823  * @start:		Base address of region to release.
1824  * @size:		Size of the range to be allocated
1825  *
1826  * This function releases anything requested by
1827  * vmbus_mmio_allocate().
1828  */
1829 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1830 {
1831 	struct resource *iter;
1832 
1833 	down(&hyperv_mmio_lock);
1834 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1835 		if ((iter->start >= start + size) || (iter->end <= start))
1836 			continue;
1837 
1838 		__release_region(iter, start, size);
1839 	}
1840 	release_mem_region(start, size);
1841 	up(&hyperv_mmio_lock);
1842 
1843 }
1844 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1845 
1846 static int vmbus_acpi_add(struct acpi_device *device)
1847 {
1848 	acpi_status result;
1849 	int ret_val = -ENODEV;
1850 	struct acpi_device *ancestor;
1851 
1852 	hv_acpi_dev = device;
1853 
1854 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1855 					vmbus_walk_resources, NULL);
1856 
1857 	if (ACPI_FAILURE(result))
1858 		goto acpi_walk_err;
1859 	/*
1860 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1861 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1862 	 */
1863 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1864 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1865 					     vmbus_walk_resources, NULL);
1866 
1867 		if (ACPI_FAILURE(result))
1868 			continue;
1869 		if (hyperv_mmio) {
1870 			vmbus_reserve_fb();
1871 			break;
1872 		}
1873 	}
1874 	ret_val = 0;
1875 
1876 acpi_walk_err:
1877 	complete(&probe_event);
1878 	if (ret_val)
1879 		vmbus_acpi_remove(device);
1880 	return ret_val;
1881 }
1882 
1883 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1884 	{"VMBUS", 0},
1885 	{"VMBus", 0},
1886 	{"", 0},
1887 };
1888 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1889 
1890 static struct acpi_driver vmbus_acpi_driver = {
1891 	.name = "vmbus",
1892 	.ids = vmbus_acpi_device_ids,
1893 	.ops = {
1894 		.add = vmbus_acpi_add,
1895 		.remove = vmbus_acpi_remove,
1896 	},
1897 };
1898 
1899 static void hv_kexec_handler(void)
1900 {
1901 	hv_synic_clockevents_cleanup();
1902 	vmbus_initiate_unload(false);
1903 	vmbus_connection.conn_state = DISCONNECTED;
1904 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1905 	mb();
1906 	cpuhp_remove_state(hyperv_cpuhp_online);
1907 	hyperv_cleanup();
1908 };
1909 
1910 static void hv_crash_handler(struct pt_regs *regs)
1911 {
1912 	vmbus_initiate_unload(true);
1913 	/*
1914 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1915 	 * doing the cleanup for current CPU only. This should be sufficient
1916 	 * for kdump.
1917 	 */
1918 	vmbus_connection.conn_state = DISCONNECTED;
1919 	hv_synic_cleanup(smp_processor_id());
1920 	hyperv_cleanup();
1921 };
1922 
1923 static int __init hv_acpi_init(void)
1924 {
1925 	int ret, t;
1926 
1927 	if (!hv_is_hyperv_initialized())
1928 		return -ENODEV;
1929 
1930 	init_completion(&probe_event);
1931 
1932 	/*
1933 	 * Get ACPI resources first.
1934 	 */
1935 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1936 
1937 	if (ret)
1938 		return ret;
1939 
1940 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1941 	if (t == 0) {
1942 		ret = -ETIMEDOUT;
1943 		goto cleanup;
1944 	}
1945 
1946 	ret = vmbus_bus_init();
1947 	if (ret)
1948 		goto cleanup;
1949 
1950 	hv_setup_kexec_handler(hv_kexec_handler);
1951 	hv_setup_crash_handler(hv_crash_handler);
1952 
1953 	return 0;
1954 
1955 cleanup:
1956 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1957 	hv_acpi_dev = NULL;
1958 	return ret;
1959 }
1960 
1961 static void __exit vmbus_exit(void)
1962 {
1963 	int cpu;
1964 
1965 	hv_remove_kexec_handler();
1966 	hv_remove_crash_handler();
1967 	vmbus_connection.conn_state = DISCONNECTED;
1968 	hv_synic_clockevents_cleanup();
1969 	vmbus_disconnect();
1970 	hv_remove_vmbus_irq();
1971 	for_each_online_cpu(cpu) {
1972 		struct hv_per_cpu_context *hv_cpu
1973 			= per_cpu_ptr(hv_context.cpu_context, cpu);
1974 
1975 		tasklet_kill(&hv_cpu->msg_dpc);
1976 	}
1977 	vmbus_free_channels();
1978 
1979 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1980 		kmsg_dump_unregister(&hv_kmsg_dumper);
1981 		unregister_die_notifier(&hyperv_die_block);
1982 		atomic_notifier_chain_unregister(&panic_notifier_list,
1983 						 &hyperv_panic_block);
1984 	}
1985 
1986 	free_page((unsigned long)hv_panic_page);
1987 	unregister_sysctl_table(hv_ctl_table_hdr);
1988 	hv_ctl_table_hdr = NULL;
1989 	bus_unregister(&hv_bus);
1990 
1991 	cpuhp_remove_state(hyperv_cpuhp_online);
1992 	hv_synic_free();
1993 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1994 }
1995 
1996 
1997 MODULE_LICENSE("GPL");
1998 
1999 subsys_initcall(hv_acpi_init);
2000 module_exit(vmbus_exit);
2001