xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision 8571e645)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include "hyperv_vmbus.h"
45 
46 static struct acpi_device  *hv_acpi_dev;
47 
48 static struct completion probe_event;
49 
50 
51 static void hyperv_report_panic(struct pt_regs *regs)
52 {
53 	static bool panic_reported;
54 
55 	/*
56 	 * We prefer to report panic on 'die' chain as we have proper
57 	 * registers to report, but if we miss it (e.g. on BUG()) we need
58 	 * to report it on 'panic'.
59 	 */
60 	if (panic_reported)
61 		return;
62 	panic_reported = true;
63 
64 	wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
65 	wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
66 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
67 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
68 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
69 
70 	/*
71 	 * Let Hyper-V know there is crash data available
72 	 */
73 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
74 }
75 
76 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
77 			      void *args)
78 {
79 	struct pt_regs *regs;
80 
81 	regs = current_pt_regs();
82 
83 	hyperv_report_panic(regs);
84 	return NOTIFY_DONE;
85 }
86 
87 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
88 			    void *args)
89 {
90 	struct die_args *die = (struct die_args *)args;
91 	struct pt_regs *regs = die->regs;
92 
93 	hyperv_report_panic(regs);
94 	return NOTIFY_DONE;
95 }
96 
97 static struct notifier_block hyperv_die_block = {
98 	.notifier_call = hyperv_die_event,
99 };
100 static struct notifier_block hyperv_panic_block = {
101 	.notifier_call = hyperv_panic_event,
102 };
103 
104 struct resource *hyperv_mmio;
105 
106 static int vmbus_exists(void)
107 {
108 	if (hv_acpi_dev == NULL)
109 		return -ENODEV;
110 
111 	return 0;
112 }
113 
114 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
115 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
116 {
117 	int i;
118 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
119 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
120 }
121 
122 static u8 channel_monitor_group(struct vmbus_channel *channel)
123 {
124 	return (u8)channel->offermsg.monitorid / 32;
125 }
126 
127 static u8 channel_monitor_offset(struct vmbus_channel *channel)
128 {
129 	return (u8)channel->offermsg.monitorid % 32;
130 }
131 
132 static u32 channel_pending(struct vmbus_channel *channel,
133 			   struct hv_monitor_page *monitor_page)
134 {
135 	u8 monitor_group = channel_monitor_group(channel);
136 	return monitor_page->trigger_group[monitor_group].pending;
137 }
138 
139 static u32 channel_latency(struct vmbus_channel *channel,
140 			   struct hv_monitor_page *monitor_page)
141 {
142 	u8 monitor_group = channel_monitor_group(channel);
143 	u8 monitor_offset = channel_monitor_offset(channel);
144 	return monitor_page->latency[monitor_group][monitor_offset];
145 }
146 
147 static u32 channel_conn_id(struct vmbus_channel *channel,
148 			   struct hv_monitor_page *monitor_page)
149 {
150 	u8 monitor_group = channel_monitor_group(channel);
151 	u8 monitor_offset = channel_monitor_offset(channel);
152 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
153 }
154 
155 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
156 		       char *buf)
157 {
158 	struct hv_device *hv_dev = device_to_hv_device(dev);
159 
160 	if (!hv_dev->channel)
161 		return -ENODEV;
162 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
163 }
164 static DEVICE_ATTR_RO(id);
165 
166 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
167 			  char *buf)
168 {
169 	struct hv_device *hv_dev = device_to_hv_device(dev);
170 
171 	if (!hv_dev->channel)
172 		return -ENODEV;
173 	return sprintf(buf, "%d\n", hv_dev->channel->state);
174 }
175 static DEVICE_ATTR_RO(state);
176 
177 static ssize_t monitor_id_show(struct device *dev,
178 			       struct device_attribute *dev_attr, char *buf)
179 {
180 	struct hv_device *hv_dev = device_to_hv_device(dev);
181 
182 	if (!hv_dev->channel)
183 		return -ENODEV;
184 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
185 }
186 static DEVICE_ATTR_RO(monitor_id);
187 
188 static ssize_t class_id_show(struct device *dev,
189 			       struct device_attribute *dev_attr, char *buf)
190 {
191 	struct hv_device *hv_dev = device_to_hv_device(dev);
192 
193 	if (!hv_dev->channel)
194 		return -ENODEV;
195 	return sprintf(buf, "{%pUl}\n",
196 		       hv_dev->channel->offermsg.offer.if_type.b);
197 }
198 static DEVICE_ATTR_RO(class_id);
199 
200 static ssize_t device_id_show(struct device *dev,
201 			      struct device_attribute *dev_attr, char *buf)
202 {
203 	struct hv_device *hv_dev = device_to_hv_device(dev);
204 
205 	if (!hv_dev->channel)
206 		return -ENODEV;
207 	return sprintf(buf, "{%pUl}\n",
208 		       hv_dev->channel->offermsg.offer.if_instance.b);
209 }
210 static DEVICE_ATTR_RO(device_id);
211 
212 static ssize_t modalias_show(struct device *dev,
213 			     struct device_attribute *dev_attr, char *buf)
214 {
215 	struct hv_device *hv_dev = device_to_hv_device(dev);
216 	char alias_name[VMBUS_ALIAS_LEN + 1];
217 
218 	print_alias_name(hv_dev, alias_name);
219 	return sprintf(buf, "vmbus:%s\n", alias_name);
220 }
221 static DEVICE_ATTR_RO(modalias);
222 
223 static ssize_t server_monitor_pending_show(struct device *dev,
224 					   struct device_attribute *dev_attr,
225 					   char *buf)
226 {
227 	struct hv_device *hv_dev = device_to_hv_device(dev);
228 
229 	if (!hv_dev->channel)
230 		return -ENODEV;
231 	return sprintf(buf, "%d\n",
232 		       channel_pending(hv_dev->channel,
233 				       vmbus_connection.monitor_pages[1]));
234 }
235 static DEVICE_ATTR_RO(server_monitor_pending);
236 
237 static ssize_t client_monitor_pending_show(struct device *dev,
238 					   struct device_attribute *dev_attr,
239 					   char *buf)
240 {
241 	struct hv_device *hv_dev = device_to_hv_device(dev);
242 
243 	if (!hv_dev->channel)
244 		return -ENODEV;
245 	return sprintf(buf, "%d\n",
246 		       channel_pending(hv_dev->channel,
247 				       vmbus_connection.monitor_pages[1]));
248 }
249 static DEVICE_ATTR_RO(client_monitor_pending);
250 
251 static ssize_t server_monitor_latency_show(struct device *dev,
252 					   struct device_attribute *dev_attr,
253 					   char *buf)
254 {
255 	struct hv_device *hv_dev = device_to_hv_device(dev);
256 
257 	if (!hv_dev->channel)
258 		return -ENODEV;
259 	return sprintf(buf, "%d\n",
260 		       channel_latency(hv_dev->channel,
261 				       vmbus_connection.monitor_pages[0]));
262 }
263 static DEVICE_ATTR_RO(server_monitor_latency);
264 
265 static ssize_t client_monitor_latency_show(struct device *dev,
266 					   struct device_attribute *dev_attr,
267 					   char *buf)
268 {
269 	struct hv_device *hv_dev = device_to_hv_device(dev);
270 
271 	if (!hv_dev->channel)
272 		return -ENODEV;
273 	return sprintf(buf, "%d\n",
274 		       channel_latency(hv_dev->channel,
275 				       vmbus_connection.monitor_pages[1]));
276 }
277 static DEVICE_ATTR_RO(client_monitor_latency);
278 
279 static ssize_t server_monitor_conn_id_show(struct device *dev,
280 					   struct device_attribute *dev_attr,
281 					   char *buf)
282 {
283 	struct hv_device *hv_dev = device_to_hv_device(dev);
284 
285 	if (!hv_dev->channel)
286 		return -ENODEV;
287 	return sprintf(buf, "%d\n",
288 		       channel_conn_id(hv_dev->channel,
289 				       vmbus_connection.monitor_pages[0]));
290 }
291 static DEVICE_ATTR_RO(server_monitor_conn_id);
292 
293 static ssize_t client_monitor_conn_id_show(struct device *dev,
294 					   struct device_attribute *dev_attr,
295 					   char *buf)
296 {
297 	struct hv_device *hv_dev = device_to_hv_device(dev);
298 
299 	if (!hv_dev->channel)
300 		return -ENODEV;
301 	return sprintf(buf, "%d\n",
302 		       channel_conn_id(hv_dev->channel,
303 				       vmbus_connection.monitor_pages[1]));
304 }
305 static DEVICE_ATTR_RO(client_monitor_conn_id);
306 
307 static ssize_t out_intr_mask_show(struct device *dev,
308 				  struct device_attribute *dev_attr, char *buf)
309 {
310 	struct hv_device *hv_dev = device_to_hv_device(dev);
311 	struct hv_ring_buffer_debug_info outbound;
312 
313 	if (!hv_dev->channel)
314 		return -ENODEV;
315 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
316 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
317 }
318 static DEVICE_ATTR_RO(out_intr_mask);
319 
320 static ssize_t out_read_index_show(struct device *dev,
321 				   struct device_attribute *dev_attr, char *buf)
322 {
323 	struct hv_device *hv_dev = device_to_hv_device(dev);
324 	struct hv_ring_buffer_debug_info outbound;
325 
326 	if (!hv_dev->channel)
327 		return -ENODEV;
328 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
329 	return sprintf(buf, "%d\n", outbound.current_read_index);
330 }
331 static DEVICE_ATTR_RO(out_read_index);
332 
333 static ssize_t out_write_index_show(struct device *dev,
334 				    struct device_attribute *dev_attr,
335 				    char *buf)
336 {
337 	struct hv_device *hv_dev = device_to_hv_device(dev);
338 	struct hv_ring_buffer_debug_info outbound;
339 
340 	if (!hv_dev->channel)
341 		return -ENODEV;
342 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
343 	return sprintf(buf, "%d\n", outbound.current_write_index);
344 }
345 static DEVICE_ATTR_RO(out_write_index);
346 
347 static ssize_t out_read_bytes_avail_show(struct device *dev,
348 					 struct device_attribute *dev_attr,
349 					 char *buf)
350 {
351 	struct hv_device *hv_dev = device_to_hv_device(dev);
352 	struct hv_ring_buffer_debug_info outbound;
353 
354 	if (!hv_dev->channel)
355 		return -ENODEV;
356 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
357 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
358 }
359 static DEVICE_ATTR_RO(out_read_bytes_avail);
360 
361 static ssize_t out_write_bytes_avail_show(struct device *dev,
362 					  struct device_attribute *dev_attr,
363 					  char *buf)
364 {
365 	struct hv_device *hv_dev = device_to_hv_device(dev);
366 	struct hv_ring_buffer_debug_info outbound;
367 
368 	if (!hv_dev->channel)
369 		return -ENODEV;
370 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
371 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
372 }
373 static DEVICE_ATTR_RO(out_write_bytes_avail);
374 
375 static ssize_t in_intr_mask_show(struct device *dev,
376 				 struct device_attribute *dev_attr, char *buf)
377 {
378 	struct hv_device *hv_dev = device_to_hv_device(dev);
379 	struct hv_ring_buffer_debug_info inbound;
380 
381 	if (!hv_dev->channel)
382 		return -ENODEV;
383 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
384 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
385 }
386 static DEVICE_ATTR_RO(in_intr_mask);
387 
388 static ssize_t in_read_index_show(struct device *dev,
389 				  struct device_attribute *dev_attr, char *buf)
390 {
391 	struct hv_device *hv_dev = device_to_hv_device(dev);
392 	struct hv_ring_buffer_debug_info inbound;
393 
394 	if (!hv_dev->channel)
395 		return -ENODEV;
396 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
397 	return sprintf(buf, "%d\n", inbound.current_read_index);
398 }
399 static DEVICE_ATTR_RO(in_read_index);
400 
401 static ssize_t in_write_index_show(struct device *dev,
402 				   struct device_attribute *dev_attr, char *buf)
403 {
404 	struct hv_device *hv_dev = device_to_hv_device(dev);
405 	struct hv_ring_buffer_debug_info inbound;
406 
407 	if (!hv_dev->channel)
408 		return -ENODEV;
409 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
410 	return sprintf(buf, "%d\n", inbound.current_write_index);
411 }
412 static DEVICE_ATTR_RO(in_write_index);
413 
414 static ssize_t in_read_bytes_avail_show(struct device *dev,
415 					struct device_attribute *dev_attr,
416 					char *buf)
417 {
418 	struct hv_device *hv_dev = device_to_hv_device(dev);
419 	struct hv_ring_buffer_debug_info inbound;
420 
421 	if (!hv_dev->channel)
422 		return -ENODEV;
423 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
424 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
425 }
426 static DEVICE_ATTR_RO(in_read_bytes_avail);
427 
428 static ssize_t in_write_bytes_avail_show(struct device *dev,
429 					 struct device_attribute *dev_attr,
430 					 char *buf)
431 {
432 	struct hv_device *hv_dev = device_to_hv_device(dev);
433 	struct hv_ring_buffer_debug_info inbound;
434 
435 	if (!hv_dev->channel)
436 		return -ENODEV;
437 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
438 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
439 }
440 static DEVICE_ATTR_RO(in_write_bytes_avail);
441 
442 static ssize_t channel_vp_mapping_show(struct device *dev,
443 				       struct device_attribute *dev_attr,
444 				       char *buf)
445 {
446 	struct hv_device *hv_dev = device_to_hv_device(dev);
447 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
448 	unsigned long flags;
449 	int buf_size = PAGE_SIZE, n_written, tot_written;
450 	struct list_head *cur;
451 
452 	if (!channel)
453 		return -ENODEV;
454 
455 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
456 		channel->offermsg.child_relid, channel->target_cpu);
457 
458 	spin_lock_irqsave(&channel->lock, flags);
459 
460 	list_for_each(cur, &channel->sc_list) {
461 		if (tot_written >= buf_size - 1)
462 			break;
463 
464 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
465 		n_written = scnprintf(buf + tot_written,
466 				     buf_size - tot_written,
467 				     "%u:%u\n",
468 				     cur_sc->offermsg.child_relid,
469 				     cur_sc->target_cpu);
470 		tot_written += n_written;
471 	}
472 
473 	spin_unlock_irqrestore(&channel->lock, flags);
474 
475 	return tot_written;
476 }
477 static DEVICE_ATTR_RO(channel_vp_mapping);
478 
479 static ssize_t vendor_show(struct device *dev,
480 			   struct device_attribute *dev_attr,
481 			   char *buf)
482 {
483 	struct hv_device *hv_dev = device_to_hv_device(dev);
484 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
485 }
486 static DEVICE_ATTR_RO(vendor);
487 
488 static ssize_t device_show(struct device *dev,
489 			   struct device_attribute *dev_attr,
490 			   char *buf)
491 {
492 	struct hv_device *hv_dev = device_to_hv_device(dev);
493 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
494 }
495 static DEVICE_ATTR_RO(device);
496 
497 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
498 static struct attribute *vmbus_attrs[] = {
499 	&dev_attr_id.attr,
500 	&dev_attr_state.attr,
501 	&dev_attr_monitor_id.attr,
502 	&dev_attr_class_id.attr,
503 	&dev_attr_device_id.attr,
504 	&dev_attr_modalias.attr,
505 	&dev_attr_server_monitor_pending.attr,
506 	&dev_attr_client_monitor_pending.attr,
507 	&dev_attr_server_monitor_latency.attr,
508 	&dev_attr_client_monitor_latency.attr,
509 	&dev_attr_server_monitor_conn_id.attr,
510 	&dev_attr_client_monitor_conn_id.attr,
511 	&dev_attr_out_intr_mask.attr,
512 	&dev_attr_out_read_index.attr,
513 	&dev_attr_out_write_index.attr,
514 	&dev_attr_out_read_bytes_avail.attr,
515 	&dev_attr_out_write_bytes_avail.attr,
516 	&dev_attr_in_intr_mask.attr,
517 	&dev_attr_in_read_index.attr,
518 	&dev_attr_in_write_index.attr,
519 	&dev_attr_in_read_bytes_avail.attr,
520 	&dev_attr_in_write_bytes_avail.attr,
521 	&dev_attr_channel_vp_mapping.attr,
522 	&dev_attr_vendor.attr,
523 	&dev_attr_device.attr,
524 	NULL,
525 };
526 ATTRIBUTE_GROUPS(vmbus);
527 
528 /*
529  * vmbus_uevent - add uevent for our device
530  *
531  * This routine is invoked when a device is added or removed on the vmbus to
532  * generate a uevent to udev in the userspace. The udev will then look at its
533  * rule and the uevent generated here to load the appropriate driver
534  *
535  * The alias string will be of the form vmbus:guid where guid is the string
536  * representation of the device guid (each byte of the guid will be
537  * represented with two hex characters.
538  */
539 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
540 {
541 	struct hv_device *dev = device_to_hv_device(device);
542 	int ret;
543 	char alias_name[VMBUS_ALIAS_LEN + 1];
544 
545 	print_alias_name(dev, alias_name);
546 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
547 	return ret;
548 }
549 
550 static const uuid_le null_guid;
551 
552 static inline bool is_null_guid(const uuid_le *guid)
553 {
554 	if (uuid_le_cmp(*guid, null_guid))
555 		return false;
556 	return true;
557 }
558 
559 /*
560  * Return a matching hv_vmbus_device_id pointer.
561  * If there is no match, return NULL.
562  */
563 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
564 					const struct hv_vmbus_device_id *id,
565 					const uuid_le *guid)
566 {
567 	for (; !is_null_guid(&id->guid); id++)
568 		if (!uuid_le_cmp(id->guid, *guid))
569 			return id;
570 
571 	return NULL;
572 }
573 
574 
575 
576 /*
577  * vmbus_match - Attempt to match the specified device to the specified driver
578  */
579 static int vmbus_match(struct device *device, struct device_driver *driver)
580 {
581 	struct hv_driver *drv = drv_to_hv_drv(driver);
582 	struct hv_device *hv_dev = device_to_hv_device(device);
583 
584 	/* The hv_sock driver handles all hv_sock offers. */
585 	if (is_hvsock_channel(hv_dev->channel))
586 		return drv->hvsock;
587 
588 	if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
589 		return 1;
590 
591 	return 0;
592 }
593 
594 /*
595  * vmbus_probe - Add the new vmbus's child device
596  */
597 static int vmbus_probe(struct device *child_device)
598 {
599 	int ret = 0;
600 	struct hv_driver *drv =
601 			drv_to_hv_drv(child_device->driver);
602 	struct hv_device *dev = device_to_hv_device(child_device);
603 	const struct hv_vmbus_device_id *dev_id;
604 
605 	dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
606 	if (drv->probe) {
607 		ret = drv->probe(dev, dev_id);
608 		if (ret != 0)
609 			pr_err("probe failed for device %s (%d)\n",
610 			       dev_name(child_device), ret);
611 
612 	} else {
613 		pr_err("probe not set for driver %s\n",
614 		       dev_name(child_device));
615 		ret = -ENODEV;
616 	}
617 	return ret;
618 }
619 
620 /*
621  * vmbus_remove - Remove a vmbus device
622  */
623 static int vmbus_remove(struct device *child_device)
624 {
625 	struct hv_driver *drv;
626 	struct hv_device *dev = device_to_hv_device(child_device);
627 
628 	if (child_device->driver) {
629 		drv = drv_to_hv_drv(child_device->driver);
630 		if (drv->remove)
631 			drv->remove(dev);
632 	}
633 
634 	return 0;
635 }
636 
637 
638 /*
639  * vmbus_shutdown - Shutdown a vmbus device
640  */
641 static void vmbus_shutdown(struct device *child_device)
642 {
643 	struct hv_driver *drv;
644 	struct hv_device *dev = device_to_hv_device(child_device);
645 
646 
647 	/* The device may not be attached yet */
648 	if (!child_device->driver)
649 		return;
650 
651 	drv = drv_to_hv_drv(child_device->driver);
652 
653 	if (drv->shutdown)
654 		drv->shutdown(dev);
655 
656 	return;
657 }
658 
659 
660 /*
661  * vmbus_device_release - Final callback release of the vmbus child device
662  */
663 static void vmbus_device_release(struct device *device)
664 {
665 	struct hv_device *hv_dev = device_to_hv_device(device);
666 	struct vmbus_channel *channel = hv_dev->channel;
667 
668 	hv_process_channel_removal(channel,
669 				   channel->offermsg.child_relid);
670 	kfree(hv_dev);
671 
672 }
673 
674 /* The one and only one */
675 static struct bus_type  hv_bus = {
676 	.name =		"vmbus",
677 	.match =		vmbus_match,
678 	.shutdown =		vmbus_shutdown,
679 	.remove =		vmbus_remove,
680 	.probe =		vmbus_probe,
681 	.uevent =		vmbus_uevent,
682 	.dev_groups =		vmbus_groups,
683 };
684 
685 struct onmessage_work_context {
686 	struct work_struct work;
687 	struct hv_message msg;
688 };
689 
690 static void vmbus_onmessage_work(struct work_struct *work)
691 {
692 	struct onmessage_work_context *ctx;
693 
694 	/* Do not process messages if we're in DISCONNECTED state */
695 	if (vmbus_connection.conn_state == DISCONNECTED)
696 		return;
697 
698 	ctx = container_of(work, struct onmessage_work_context,
699 			   work);
700 	vmbus_onmessage(&ctx->msg);
701 	kfree(ctx);
702 }
703 
704 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
705 {
706 	struct clock_event_device *dev = hv_context.clk_evt[cpu];
707 
708 	if (dev->event_handler)
709 		dev->event_handler(dev);
710 
711 	vmbus_signal_eom(msg);
712 }
713 
714 void vmbus_on_msg_dpc(unsigned long data)
715 {
716 	int cpu = smp_processor_id();
717 	void *page_addr = hv_context.synic_message_page[cpu];
718 	struct hv_message *msg = (struct hv_message *)page_addr +
719 				  VMBUS_MESSAGE_SINT;
720 	struct vmbus_channel_message_header *hdr;
721 	struct vmbus_channel_message_table_entry *entry;
722 	struct onmessage_work_context *ctx;
723 
724 	if (msg->header.message_type == HVMSG_NONE)
725 		/* no msg */
726 		return;
727 
728 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
729 
730 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
731 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
732 		goto msg_handled;
733 	}
734 
735 	entry = &channel_message_table[hdr->msgtype];
736 	if (entry->handler_type	== VMHT_BLOCKING) {
737 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
738 		if (ctx == NULL)
739 			return;
740 
741 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
742 		memcpy(&ctx->msg, msg, sizeof(*msg));
743 
744 		queue_work(vmbus_connection.work_queue, &ctx->work);
745 	} else
746 		entry->message_handler(hdr);
747 
748 msg_handled:
749 	vmbus_signal_eom(msg);
750 }
751 
752 static void vmbus_isr(void)
753 {
754 	int cpu = smp_processor_id();
755 	void *page_addr;
756 	struct hv_message *msg;
757 	union hv_synic_event_flags *event;
758 	bool handled = false;
759 
760 	page_addr = hv_context.synic_event_page[cpu];
761 	if (page_addr == NULL)
762 		return;
763 
764 	event = (union hv_synic_event_flags *)page_addr +
765 					 VMBUS_MESSAGE_SINT;
766 	/*
767 	 * Check for events before checking for messages. This is the order
768 	 * in which events and messages are checked in Windows guests on
769 	 * Hyper-V, and the Windows team suggested we do the same.
770 	 */
771 
772 	if ((vmbus_proto_version == VERSION_WS2008) ||
773 		(vmbus_proto_version == VERSION_WIN7)) {
774 
775 		/* Since we are a child, we only need to check bit 0 */
776 		if (sync_test_and_clear_bit(0,
777 			(unsigned long *) &event->flags32[0])) {
778 			handled = true;
779 		}
780 	} else {
781 		/*
782 		 * Our host is win8 or above. The signaling mechanism
783 		 * has changed and we can directly look at the event page.
784 		 * If bit n is set then we have an interrup on the channel
785 		 * whose id is n.
786 		 */
787 		handled = true;
788 	}
789 
790 	if (handled)
791 		tasklet_schedule(hv_context.event_dpc[cpu]);
792 
793 
794 	page_addr = hv_context.synic_message_page[cpu];
795 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
796 
797 	/* Check if there are actual msgs to be processed */
798 	if (msg->header.message_type != HVMSG_NONE) {
799 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
800 			hv_process_timer_expiration(msg, cpu);
801 		else
802 			tasklet_schedule(hv_context.msg_dpc[cpu]);
803 	}
804 }
805 
806 
807 /*
808  * vmbus_bus_init -Main vmbus driver initialization routine.
809  *
810  * Here, we
811  *	- initialize the vmbus driver context
812  *	- invoke the vmbus hv main init routine
813  *	- retrieve the channel offers
814  */
815 static int vmbus_bus_init(void)
816 {
817 	int ret;
818 
819 	/* Hypervisor initialization...setup hypercall page..etc */
820 	ret = hv_init();
821 	if (ret != 0) {
822 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
823 		return ret;
824 	}
825 
826 	ret = bus_register(&hv_bus);
827 	if (ret)
828 		goto err_cleanup;
829 
830 	hv_setup_vmbus_irq(vmbus_isr);
831 
832 	ret = hv_synic_alloc();
833 	if (ret)
834 		goto err_alloc;
835 	/*
836 	 * Initialize the per-cpu interrupt state and
837 	 * connect to the host.
838 	 */
839 	on_each_cpu(hv_synic_init, NULL, 1);
840 	ret = vmbus_connect();
841 	if (ret)
842 		goto err_connect;
843 
844 	if (vmbus_proto_version > VERSION_WIN7)
845 		cpu_hotplug_disable();
846 
847 	/*
848 	 * Only register if the crash MSRs are available
849 	 */
850 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
851 		register_die_notifier(&hyperv_die_block);
852 		atomic_notifier_chain_register(&panic_notifier_list,
853 					       &hyperv_panic_block);
854 	}
855 
856 	vmbus_request_offers();
857 
858 	return 0;
859 
860 err_connect:
861 	on_each_cpu(hv_synic_cleanup, NULL, 1);
862 err_alloc:
863 	hv_synic_free();
864 	hv_remove_vmbus_irq();
865 
866 	bus_unregister(&hv_bus);
867 
868 err_cleanup:
869 	hv_cleanup();
870 
871 	return ret;
872 }
873 
874 /**
875  * __vmbus_child_driver_register() - Register a vmbus's driver
876  * @hv_driver: Pointer to driver structure you want to register
877  * @owner: owner module of the drv
878  * @mod_name: module name string
879  *
880  * Registers the given driver with Linux through the 'driver_register()' call
881  * and sets up the hyper-v vmbus handling for this driver.
882  * It will return the state of the 'driver_register()' call.
883  *
884  */
885 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
886 {
887 	int ret;
888 
889 	pr_info("registering driver %s\n", hv_driver->name);
890 
891 	ret = vmbus_exists();
892 	if (ret < 0)
893 		return ret;
894 
895 	hv_driver->driver.name = hv_driver->name;
896 	hv_driver->driver.owner = owner;
897 	hv_driver->driver.mod_name = mod_name;
898 	hv_driver->driver.bus = &hv_bus;
899 
900 	ret = driver_register(&hv_driver->driver);
901 
902 	return ret;
903 }
904 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
905 
906 /**
907  * vmbus_driver_unregister() - Unregister a vmbus's driver
908  * @hv_driver: Pointer to driver structure you want to
909  *             un-register
910  *
911  * Un-register the given driver that was previous registered with a call to
912  * vmbus_driver_register()
913  */
914 void vmbus_driver_unregister(struct hv_driver *hv_driver)
915 {
916 	pr_info("unregistering driver %s\n", hv_driver->name);
917 
918 	if (!vmbus_exists())
919 		driver_unregister(&hv_driver->driver);
920 }
921 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
922 
923 /*
924  * vmbus_device_create - Creates and registers a new child device
925  * on the vmbus.
926  */
927 struct hv_device *vmbus_device_create(const uuid_le *type,
928 				      const uuid_le *instance,
929 				      struct vmbus_channel *channel)
930 {
931 	struct hv_device *child_device_obj;
932 
933 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
934 	if (!child_device_obj) {
935 		pr_err("Unable to allocate device object for child device\n");
936 		return NULL;
937 	}
938 
939 	child_device_obj->channel = channel;
940 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
941 	memcpy(&child_device_obj->dev_instance, instance,
942 	       sizeof(uuid_le));
943 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
944 
945 
946 	return child_device_obj;
947 }
948 
949 /*
950  * vmbus_device_register - Register the child device
951  */
952 int vmbus_device_register(struct hv_device *child_device_obj)
953 {
954 	int ret = 0;
955 
956 	dev_set_name(&child_device_obj->device, "vmbus_%d",
957 		     child_device_obj->channel->id);
958 
959 	child_device_obj->device.bus = &hv_bus;
960 	child_device_obj->device.parent = &hv_acpi_dev->dev;
961 	child_device_obj->device.release = vmbus_device_release;
962 
963 	/*
964 	 * Register with the LDM. This will kick off the driver/device
965 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
966 	 */
967 	ret = device_register(&child_device_obj->device);
968 
969 	if (ret)
970 		pr_err("Unable to register child device\n");
971 	else
972 		pr_debug("child device %s registered\n",
973 			dev_name(&child_device_obj->device));
974 
975 	return ret;
976 }
977 
978 /*
979  * vmbus_device_unregister - Remove the specified child device
980  * from the vmbus.
981  */
982 void vmbus_device_unregister(struct hv_device *device_obj)
983 {
984 	pr_debug("child device %s unregistered\n",
985 		dev_name(&device_obj->device));
986 
987 	/*
988 	 * Kick off the process of unregistering the device.
989 	 * This will call vmbus_remove() and eventually vmbus_device_release()
990 	 */
991 	device_unregister(&device_obj->device);
992 }
993 
994 
995 /*
996  * VMBUS is an acpi enumerated device. Get the information we
997  * need from DSDT.
998  */
999 #define VTPM_BASE_ADDRESS 0xfed40000
1000 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1001 {
1002 	resource_size_t start = 0;
1003 	resource_size_t end = 0;
1004 	struct resource *new_res;
1005 	struct resource **old_res = &hyperv_mmio;
1006 	struct resource **prev_res = NULL;
1007 
1008 	switch (res->type) {
1009 
1010 	/*
1011 	 * "Address" descriptors are for bus windows. Ignore
1012 	 * "memory" descriptors, which are for registers on
1013 	 * devices.
1014 	 */
1015 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1016 		start = res->data.address32.address.minimum;
1017 		end = res->data.address32.address.maximum;
1018 		break;
1019 
1020 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1021 		start = res->data.address64.address.minimum;
1022 		end = res->data.address64.address.maximum;
1023 		break;
1024 
1025 	default:
1026 		/* Unused resource type */
1027 		return AE_OK;
1028 
1029 	}
1030 	/*
1031 	 * Ignore ranges that are below 1MB, as they're not
1032 	 * necessary or useful here.
1033 	 */
1034 	if (end < 0x100000)
1035 		return AE_OK;
1036 
1037 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1038 	if (!new_res)
1039 		return AE_NO_MEMORY;
1040 
1041 	/* If this range overlaps the virtual TPM, truncate it. */
1042 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1043 		end = VTPM_BASE_ADDRESS;
1044 
1045 	new_res->name = "hyperv mmio";
1046 	new_res->flags = IORESOURCE_MEM;
1047 	new_res->start = start;
1048 	new_res->end = end;
1049 
1050 	/*
1051 	 * Stick ranges from higher in address space at the front of the list.
1052 	 * If two ranges are adjacent, merge them.
1053 	 */
1054 	do {
1055 		if (!*old_res) {
1056 			*old_res = new_res;
1057 			break;
1058 		}
1059 
1060 		if (((*old_res)->end + 1) == new_res->start) {
1061 			(*old_res)->end = new_res->end;
1062 			kfree(new_res);
1063 			break;
1064 		}
1065 
1066 		if ((*old_res)->start == new_res->end + 1) {
1067 			(*old_res)->start = new_res->start;
1068 			kfree(new_res);
1069 			break;
1070 		}
1071 
1072 		if ((*old_res)->end < new_res->start) {
1073 			new_res->sibling = *old_res;
1074 			if (prev_res)
1075 				(*prev_res)->sibling = new_res;
1076 			*old_res = new_res;
1077 			break;
1078 		}
1079 
1080 		prev_res = old_res;
1081 		old_res = &(*old_res)->sibling;
1082 
1083 	} while (1);
1084 
1085 	return AE_OK;
1086 }
1087 
1088 static int vmbus_acpi_remove(struct acpi_device *device)
1089 {
1090 	struct resource *cur_res;
1091 	struct resource *next_res;
1092 
1093 	if (hyperv_mmio) {
1094 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1095 			next_res = cur_res->sibling;
1096 			kfree(cur_res);
1097 		}
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 /**
1104  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1105  * @new:		If successful, supplied a pointer to the
1106  *			allocated MMIO space.
1107  * @device_obj:		Identifies the caller
1108  * @min:		Minimum guest physical address of the
1109  *			allocation
1110  * @max:		Maximum guest physical address
1111  * @size:		Size of the range to be allocated
1112  * @align:		Alignment of the range to be allocated
1113  * @fb_overlap_ok:	Whether this allocation can be allowed
1114  *			to overlap the video frame buffer.
1115  *
1116  * This function walks the resources granted to VMBus by the
1117  * _CRS object in the ACPI namespace underneath the parent
1118  * "bridge" whether that's a root PCI bus in the Generation 1
1119  * case or a Module Device in the Generation 2 case.  It then
1120  * attempts to allocate from the global MMIO pool in a way that
1121  * matches the constraints supplied in these parameters and by
1122  * that _CRS.
1123  *
1124  * Return: 0 on success, -errno on failure
1125  */
1126 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1127 			resource_size_t min, resource_size_t max,
1128 			resource_size_t size, resource_size_t align,
1129 			bool fb_overlap_ok)
1130 {
1131 	struct resource *iter;
1132 	resource_size_t range_min, range_max, start, local_min, local_max;
1133 	const char *dev_n = dev_name(&device_obj->device);
1134 	u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1135 	int i;
1136 
1137 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1138 		if ((iter->start >= max) || (iter->end <= min))
1139 			continue;
1140 
1141 		range_min = iter->start;
1142 		range_max = iter->end;
1143 
1144 		/* If this range overlaps the frame buffer, split it into
1145 		   two tries. */
1146 		for (i = 0; i < 2; i++) {
1147 			local_min = range_min;
1148 			local_max = range_max;
1149 			if (fb_overlap_ok || (range_min >= fb_end) ||
1150 			    (range_max <= screen_info.lfb_base)) {
1151 				i++;
1152 			} else {
1153 				if ((range_min <= screen_info.lfb_base) &&
1154 				    (range_max >= screen_info.lfb_base)) {
1155 					/*
1156 					 * The frame buffer is in this window,
1157 					 * so trim this into the part that
1158 					 * preceeds the frame buffer.
1159 					 */
1160 					local_max = screen_info.lfb_base - 1;
1161 					range_min = fb_end;
1162 				} else {
1163 					range_min = fb_end;
1164 					continue;
1165 				}
1166 			}
1167 
1168 			start = (local_min + align - 1) & ~(align - 1);
1169 			for (; start + size - 1 <= local_max; start += align) {
1170 				*new = request_mem_region_exclusive(start, size,
1171 								    dev_n);
1172 				if (*new)
1173 					return 0;
1174 			}
1175 		}
1176 	}
1177 
1178 	return -ENXIO;
1179 }
1180 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1181 
1182 /**
1183  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1184  * @cpu_number: CPU number in Linux terms
1185  *
1186  * This function returns the mapping between the Linux processor
1187  * number and the hypervisor's virtual processor number, useful
1188  * in making hypercalls and such that talk about specific
1189  * processors.
1190  *
1191  * Return: Virtual processor number in Hyper-V terms
1192  */
1193 int vmbus_cpu_number_to_vp_number(int cpu_number)
1194 {
1195 	return hv_context.vp_index[cpu_number];
1196 }
1197 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1198 
1199 static int vmbus_acpi_add(struct acpi_device *device)
1200 {
1201 	acpi_status result;
1202 	int ret_val = -ENODEV;
1203 	struct acpi_device *ancestor;
1204 
1205 	hv_acpi_dev = device;
1206 
1207 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1208 					vmbus_walk_resources, NULL);
1209 
1210 	if (ACPI_FAILURE(result))
1211 		goto acpi_walk_err;
1212 	/*
1213 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1214 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1215 	 */
1216 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1217 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1218 					     vmbus_walk_resources, NULL);
1219 
1220 		if (ACPI_FAILURE(result))
1221 			continue;
1222 		if (hyperv_mmio)
1223 			break;
1224 	}
1225 	ret_val = 0;
1226 
1227 acpi_walk_err:
1228 	complete(&probe_event);
1229 	if (ret_val)
1230 		vmbus_acpi_remove(device);
1231 	return ret_val;
1232 }
1233 
1234 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1235 	{"VMBUS", 0},
1236 	{"VMBus", 0},
1237 	{"", 0},
1238 };
1239 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1240 
1241 static struct acpi_driver vmbus_acpi_driver = {
1242 	.name = "vmbus",
1243 	.ids = vmbus_acpi_device_ids,
1244 	.ops = {
1245 		.add = vmbus_acpi_add,
1246 		.remove = vmbus_acpi_remove,
1247 	},
1248 };
1249 
1250 static void hv_kexec_handler(void)
1251 {
1252 	int cpu;
1253 
1254 	hv_synic_clockevents_cleanup();
1255 	vmbus_initiate_unload(false);
1256 	for_each_online_cpu(cpu)
1257 		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1258 	hv_cleanup();
1259 };
1260 
1261 static void hv_crash_handler(struct pt_regs *regs)
1262 {
1263 	vmbus_initiate_unload(true);
1264 	/*
1265 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1266 	 * doing the cleanup for current CPU only. This should be sufficient
1267 	 * for kdump.
1268 	 */
1269 	hv_synic_cleanup(NULL);
1270 	hv_cleanup();
1271 };
1272 
1273 static int __init hv_acpi_init(void)
1274 {
1275 	int ret, t;
1276 
1277 	if (x86_hyper != &x86_hyper_ms_hyperv)
1278 		return -ENODEV;
1279 
1280 	init_completion(&probe_event);
1281 
1282 	/*
1283 	 * Get ACPI resources first.
1284 	 */
1285 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1286 
1287 	if (ret)
1288 		return ret;
1289 
1290 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1291 	if (t == 0) {
1292 		ret = -ETIMEDOUT;
1293 		goto cleanup;
1294 	}
1295 
1296 	ret = vmbus_bus_init();
1297 	if (ret)
1298 		goto cleanup;
1299 
1300 	hv_setup_kexec_handler(hv_kexec_handler);
1301 	hv_setup_crash_handler(hv_crash_handler);
1302 
1303 	return 0;
1304 
1305 cleanup:
1306 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1307 	hv_acpi_dev = NULL;
1308 	return ret;
1309 }
1310 
1311 static void __exit vmbus_exit(void)
1312 {
1313 	int cpu;
1314 
1315 	hv_remove_kexec_handler();
1316 	hv_remove_crash_handler();
1317 	vmbus_connection.conn_state = DISCONNECTED;
1318 	hv_synic_clockevents_cleanup();
1319 	vmbus_disconnect();
1320 	hv_remove_vmbus_irq();
1321 	for_each_online_cpu(cpu)
1322 		tasklet_kill(hv_context.msg_dpc[cpu]);
1323 	vmbus_free_channels();
1324 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1325 		unregister_die_notifier(&hyperv_die_block);
1326 		atomic_notifier_chain_unregister(&panic_notifier_list,
1327 						 &hyperv_panic_block);
1328 	}
1329 	bus_unregister(&hv_bus);
1330 	hv_cleanup();
1331 	for_each_online_cpu(cpu) {
1332 		tasklet_kill(hv_context.event_dpc[cpu]);
1333 		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1334 	}
1335 	hv_synic_free();
1336 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1337 	if (vmbus_proto_version > VERSION_WIN7)
1338 		cpu_hotplug_enable();
1339 }
1340 
1341 
1342 MODULE_LICENSE("GPL");
1343 
1344 subsys_initcall(hv_acpi_init);
1345 module_exit(vmbus_exit);
1346