xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision 801543b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/isolation.h>
25 #include <linux/sched/task_stack.h>
26 
27 #include <linux/delay.h>
28 #include <linux/notifier.h>
29 #include <linux/panic_notifier.h>
30 #include <linux/ptrace.h>
31 #include <linux/screen_info.h>
32 #include <linux/kdebug.h>
33 #include <linux/efi.h>
34 #include <linux/random.h>
35 #include <linux/kernel.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/dma-map-ops.h>
38 #include <clocksource/hyperv_timer.h>
39 #include "hyperv_vmbus.h"
40 
41 struct vmbus_dynid {
42 	struct list_head node;
43 	struct hv_vmbus_device_id id;
44 };
45 
46 static struct acpi_device  *hv_acpi_dev;
47 
48 static struct completion probe_event;
49 
50 static int hyperv_cpuhp_online;
51 
52 static void *hv_panic_page;
53 
54 static long __percpu *vmbus_evt;
55 
56 /* Values parsed from ACPI DSDT */
57 int vmbus_irq;
58 int vmbus_interrupt;
59 
60 /*
61  * Boolean to control whether to report panic messages over Hyper-V.
62  *
63  * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
64  */
65 static int sysctl_record_panic_msg = 1;
66 
67 static int hyperv_report_reg(void)
68 {
69 	return !sysctl_record_panic_msg || !hv_panic_page;
70 }
71 
72 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
73 			      void *args)
74 {
75 	struct pt_regs *regs;
76 
77 	vmbus_initiate_unload(true);
78 
79 	/*
80 	 * Hyper-V should be notified only once about a panic.  If we will be
81 	 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
82 	 * here.
83 	 */
84 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
85 	    && hyperv_report_reg()) {
86 		regs = current_pt_regs();
87 		hyperv_report_panic(regs, val, false);
88 	}
89 	return NOTIFY_DONE;
90 }
91 
92 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
93 			    void *args)
94 {
95 	struct die_args *die = args;
96 	struct pt_regs *regs = die->regs;
97 
98 	/* Don't notify Hyper-V if the die event is other than oops */
99 	if (val != DIE_OOPS)
100 		return NOTIFY_DONE;
101 
102 	/*
103 	 * Hyper-V should be notified only once about a panic.  If we will be
104 	 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
105 	 * here.
106 	 */
107 	if (hyperv_report_reg())
108 		hyperv_report_panic(regs, val, true);
109 	return NOTIFY_DONE;
110 }
111 
112 static struct notifier_block hyperv_die_block = {
113 	.notifier_call = hyperv_die_event,
114 };
115 static struct notifier_block hyperv_panic_block = {
116 	.notifier_call = hyperv_panic_event,
117 };
118 
119 static const char *fb_mmio_name = "fb_range";
120 static struct resource *fb_mmio;
121 static struct resource *hyperv_mmio;
122 static DEFINE_MUTEX(hyperv_mmio_lock);
123 
124 static int vmbus_exists(void)
125 {
126 	if (hv_acpi_dev == NULL)
127 		return -ENODEV;
128 
129 	return 0;
130 }
131 
132 static u8 channel_monitor_group(const struct vmbus_channel *channel)
133 {
134 	return (u8)channel->offermsg.monitorid / 32;
135 }
136 
137 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
138 {
139 	return (u8)channel->offermsg.monitorid % 32;
140 }
141 
142 static u32 channel_pending(const struct vmbus_channel *channel,
143 			   const struct hv_monitor_page *monitor_page)
144 {
145 	u8 monitor_group = channel_monitor_group(channel);
146 
147 	return monitor_page->trigger_group[monitor_group].pending;
148 }
149 
150 static u32 channel_latency(const struct vmbus_channel *channel,
151 			   const struct hv_monitor_page *monitor_page)
152 {
153 	u8 monitor_group = channel_monitor_group(channel);
154 	u8 monitor_offset = channel_monitor_offset(channel);
155 
156 	return monitor_page->latency[monitor_group][monitor_offset];
157 }
158 
159 static u32 channel_conn_id(struct vmbus_channel *channel,
160 			   struct hv_monitor_page *monitor_page)
161 {
162 	u8 monitor_group = channel_monitor_group(channel);
163 	u8 monitor_offset = channel_monitor_offset(channel);
164 
165 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
166 }
167 
168 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
169 		       char *buf)
170 {
171 	struct hv_device *hv_dev = device_to_hv_device(dev);
172 
173 	if (!hv_dev->channel)
174 		return -ENODEV;
175 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
176 }
177 static DEVICE_ATTR_RO(id);
178 
179 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
180 			  char *buf)
181 {
182 	struct hv_device *hv_dev = device_to_hv_device(dev);
183 
184 	if (!hv_dev->channel)
185 		return -ENODEV;
186 	return sprintf(buf, "%d\n", hv_dev->channel->state);
187 }
188 static DEVICE_ATTR_RO(state);
189 
190 static ssize_t monitor_id_show(struct device *dev,
191 			       struct device_attribute *dev_attr, char *buf)
192 {
193 	struct hv_device *hv_dev = device_to_hv_device(dev);
194 
195 	if (!hv_dev->channel)
196 		return -ENODEV;
197 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
198 }
199 static DEVICE_ATTR_RO(monitor_id);
200 
201 static ssize_t class_id_show(struct device *dev,
202 			       struct device_attribute *dev_attr, char *buf)
203 {
204 	struct hv_device *hv_dev = device_to_hv_device(dev);
205 
206 	if (!hv_dev->channel)
207 		return -ENODEV;
208 	return sprintf(buf, "{%pUl}\n",
209 		       &hv_dev->channel->offermsg.offer.if_type);
210 }
211 static DEVICE_ATTR_RO(class_id);
212 
213 static ssize_t device_id_show(struct device *dev,
214 			      struct device_attribute *dev_attr, char *buf)
215 {
216 	struct hv_device *hv_dev = device_to_hv_device(dev);
217 
218 	if (!hv_dev->channel)
219 		return -ENODEV;
220 	return sprintf(buf, "{%pUl}\n",
221 		       &hv_dev->channel->offermsg.offer.if_instance);
222 }
223 static DEVICE_ATTR_RO(device_id);
224 
225 static ssize_t modalias_show(struct device *dev,
226 			     struct device_attribute *dev_attr, char *buf)
227 {
228 	struct hv_device *hv_dev = device_to_hv_device(dev);
229 
230 	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
231 }
232 static DEVICE_ATTR_RO(modalias);
233 
234 #ifdef CONFIG_NUMA
235 static ssize_t numa_node_show(struct device *dev,
236 			      struct device_attribute *attr, char *buf)
237 {
238 	struct hv_device *hv_dev = device_to_hv_device(dev);
239 
240 	if (!hv_dev->channel)
241 		return -ENODEV;
242 
243 	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
244 }
245 static DEVICE_ATTR_RO(numa_node);
246 #endif
247 
248 static ssize_t server_monitor_pending_show(struct device *dev,
249 					   struct device_attribute *dev_attr,
250 					   char *buf)
251 {
252 	struct hv_device *hv_dev = device_to_hv_device(dev);
253 
254 	if (!hv_dev->channel)
255 		return -ENODEV;
256 	return sprintf(buf, "%d\n",
257 		       channel_pending(hv_dev->channel,
258 				       vmbus_connection.monitor_pages[0]));
259 }
260 static DEVICE_ATTR_RO(server_monitor_pending);
261 
262 static ssize_t client_monitor_pending_show(struct device *dev,
263 					   struct device_attribute *dev_attr,
264 					   char *buf)
265 {
266 	struct hv_device *hv_dev = device_to_hv_device(dev);
267 
268 	if (!hv_dev->channel)
269 		return -ENODEV;
270 	return sprintf(buf, "%d\n",
271 		       channel_pending(hv_dev->channel,
272 				       vmbus_connection.monitor_pages[1]));
273 }
274 static DEVICE_ATTR_RO(client_monitor_pending);
275 
276 static ssize_t server_monitor_latency_show(struct device *dev,
277 					   struct device_attribute *dev_attr,
278 					   char *buf)
279 {
280 	struct hv_device *hv_dev = device_to_hv_device(dev);
281 
282 	if (!hv_dev->channel)
283 		return -ENODEV;
284 	return sprintf(buf, "%d\n",
285 		       channel_latency(hv_dev->channel,
286 				       vmbus_connection.monitor_pages[0]));
287 }
288 static DEVICE_ATTR_RO(server_monitor_latency);
289 
290 static ssize_t client_monitor_latency_show(struct device *dev,
291 					   struct device_attribute *dev_attr,
292 					   char *buf)
293 {
294 	struct hv_device *hv_dev = device_to_hv_device(dev);
295 
296 	if (!hv_dev->channel)
297 		return -ENODEV;
298 	return sprintf(buf, "%d\n",
299 		       channel_latency(hv_dev->channel,
300 				       vmbus_connection.monitor_pages[1]));
301 }
302 static DEVICE_ATTR_RO(client_monitor_latency);
303 
304 static ssize_t server_monitor_conn_id_show(struct device *dev,
305 					   struct device_attribute *dev_attr,
306 					   char *buf)
307 {
308 	struct hv_device *hv_dev = device_to_hv_device(dev);
309 
310 	if (!hv_dev->channel)
311 		return -ENODEV;
312 	return sprintf(buf, "%d\n",
313 		       channel_conn_id(hv_dev->channel,
314 				       vmbus_connection.monitor_pages[0]));
315 }
316 static DEVICE_ATTR_RO(server_monitor_conn_id);
317 
318 static ssize_t client_monitor_conn_id_show(struct device *dev,
319 					   struct device_attribute *dev_attr,
320 					   char *buf)
321 {
322 	struct hv_device *hv_dev = device_to_hv_device(dev);
323 
324 	if (!hv_dev->channel)
325 		return -ENODEV;
326 	return sprintf(buf, "%d\n",
327 		       channel_conn_id(hv_dev->channel,
328 				       vmbus_connection.monitor_pages[1]));
329 }
330 static DEVICE_ATTR_RO(client_monitor_conn_id);
331 
332 static ssize_t out_intr_mask_show(struct device *dev,
333 				  struct device_attribute *dev_attr, char *buf)
334 {
335 	struct hv_device *hv_dev = device_to_hv_device(dev);
336 	struct hv_ring_buffer_debug_info outbound;
337 	int ret;
338 
339 	if (!hv_dev->channel)
340 		return -ENODEV;
341 
342 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
343 					  &outbound);
344 	if (ret < 0)
345 		return ret;
346 
347 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
348 }
349 static DEVICE_ATTR_RO(out_intr_mask);
350 
351 static ssize_t out_read_index_show(struct device *dev,
352 				   struct device_attribute *dev_attr, char *buf)
353 {
354 	struct hv_device *hv_dev = device_to_hv_device(dev);
355 	struct hv_ring_buffer_debug_info outbound;
356 	int ret;
357 
358 	if (!hv_dev->channel)
359 		return -ENODEV;
360 
361 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
362 					  &outbound);
363 	if (ret < 0)
364 		return ret;
365 	return sprintf(buf, "%d\n", outbound.current_read_index);
366 }
367 static DEVICE_ATTR_RO(out_read_index);
368 
369 static ssize_t out_write_index_show(struct device *dev,
370 				    struct device_attribute *dev_attr,
371 				    char *buf)
372 {
373 	struct hv_device *hv_dev = device_to_hv_device(dev);
374 	struct hv_ring_buffer_debug_info outbound;
375 	int ret;
376 
377 	if (!hv_dev->channel)
378 		return -ENODEV;
379 
380 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
381 					  &outbound);
382 	if (ret < 0)
383 		return ret;
384 	return sprintf(buf, "%d\n", outbound.current_write_index);
385 }
386 static DEVICE_ATTR_RO(out_write_index);
387 
388 static ssize_t out_read_bytes_avail_show(struct device *dev,
389 					 struct device_attribute *dev_attr,
390 					 char *buf)
391 {
392 	struct hv_device *hv_dev = device_to_hv_device(dev);
393 	struct hv_ring_buffer_debug_info outbound;
394 	int ret;
395 
396 	if (!hv_dev->channel)
397 		return -ENODEV;
398 
399 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
400 					  &outbound);
401 	if (ret < 0)
402 		return ret;
403 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
404 }
405 static DEVICE_ATTR_RO(out_read_bytes_avail);
406 
407 static ssize_t out_write_bytes_avail_show(struct device *dev,
408 					  struct device_attribute *dev_attr,
409 					  char *buf)
410 {
411 	struct hv_device *hv_dev = device_to_hv_device(dev);
412 	struct hv_ring_buffer_debug_info outbound;
413 	int ret;
414 
415 	if (!hv_dev->channel)
416 		return -ENODEV;
417 
418 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
419 					  &outbound);
420 	if (ret < 0)
421 		return ret;
422 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
423 }
424 static DEVICE_ATTR_RO(out_write_bytes_avail);
425 
426 static ssize_t in_intr_mask_show(struct device *dev,
427 				 struct device_attribute *dev_attr, char *buf)
428 {
429 	struct hv_device *hv_dev = device_to_hv_device(dev);
430 	struct hv_ring_buffer_debug_info inbound;
431 	int ret;
432 
433 	if (!hv_dev->channel)
434 		return -ENODEV;
435 
436 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
437 	if (ret < 0)
438 		return ret;
439 
440 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
441 }
442 static DEVICE_ATTR_RO(in_intr_mask);
443 
444 static ssize_t in_read_index_show(struct device *dev,
445 				  struct device_attribute *dev_attr, char *buf)
446 {
447 	struct hv_device *hv_dev = device_to_hv_device(dev);
448 	struct hv_ring_buffer_debug_info inbound;
449 	int ret;
450 
451 	if (!hv_dev->channel)
452 		return -ENODEV;
453 
454 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
455 	if (ret < 0)
456 		return ret;
457 
458 	return sprintf(buf, "%d\n", inbound.current_read_index);
459 }
460 static DEVICE_ATTR_RO(in_read_index);
461 
462 static ssize_t in_write_index_show(struct device *dev,
463 				   struct device_attribute *dev_attr, char *buf)
464 {
465 	struct hv_device *hv_dev = device_to_hv_device(dev);
466 	struct hv_ring_buffer_debug_info inbound;
467 	int ret;
468 
469 	if (!hv_dev->channel)
470 		return -ENODEV;
471 
472 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
473 	if (ret < 0)
474 		return ret;
475 
476 	return sprintf(buf, "%d\n", inbound.current_write_index);
477 }
478 static DEVICE_ATTR_RO(in_write_index);
479 
480 static ssize_t in_read_bytes_avail_show(struct device *dev,
481 					struct device_attribute *dev_attr,
482 					char *buf)
483 {
484 	struct hv_device *hv_dev = device_to_hv_device(dev);
485 	struct hv_ring_buffer_debug_info inbound;
486 	int ret;
487 
488 	if (!hv_dev->channel)
489 		return -ENODEV;
490 
491 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
492 	if (ret < 0)
493 		return ret;
494 
495 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
496 }
497 static DEVICE_ATTR_RO(in_read_bytes_avail);
498 
499 static ssize_t in_write_bytes_avail_show(struct device *dev,
500 					 struct device_attribute *dev_attr,
501 					 char *buf)
502 {
503 	struct hv_device *hv_dev = device_to_hv_device(dev);
504 	struct hv_ring_buffer_debug_info inbound;
505 	int ret;
506 
507 	if (!hv_dev->channel)
508 		return -ENODEV;
509 
510 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
511 	if (ret < 0)
512 		return ret;
513 
514 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
515 }
516 static DEVICE_ATTR_RO(in_write_bytes_avail);
517 
518 static ssize_t channel_vp_mapping_show(struct device *dev,
519 				       struct device_attribute *dev_attr,
520 				       char *buf)
521 {
522 	struct hv_device *hv_dev = device_to_hv_device(dev);
523 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
524 	int buf_size = PAGE_SIZE, n_written, tot_written;
525 	struct list_head *cur;
526 
527 	if (!channel)
528 		return -ENODEV;
529 
530 	mutex_lock(&vmbus_connection.channel_mutex);
531 
532 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
533 		channel->offermsg.child_relid, channel->target_cpu);
534 
535 	list_for_each(cur, &channel->sc_list) {
536 		if (tot_written >= buf_size - 1)
537 			break;
538 
539 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
540 		n_written = scnprintf(buf + tot_written,
541 				     buf_size - tot_written,
542 				     "%u:%u\n",
543 				     cur_sc->offermsg.child_relid,
544 				     cur_sc->target_cpu);
545 		tot_written += n_written;
546 	}
547 
548 	mutex_unlock(&vmbus_connection.channel_mutex);
549 
550 	return tot_written;
551 }
552 static DEVICE_ATTR_RO(channel_vp_mapping);
553 
554 static ssize_t vendor_show(struct device *dev,
555 			   struct device_attribute *dev_attr,
556 			   char *buf)
557 {
558 	struct hv_device *hv_dev = device_to_hv_device(dev);
559 
560 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
561 }
562 static DEVICE_ATTR_RO(vendor);
563 
564 static ssize_t device_show(struct device *dev,
565 			   struct device_attribute *dev_attr,
566 			   char *buf)
567 {
568 	struct hv_device *hv_dev = device_to_hv_device(dev);
569 
570 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
571 }
572 static DEVICE_ATTR_RO(device);
573 
574 static ssize_t driver_override_store(struct device *dev,
575 				     struct device_attribute *attr,
576 				     const char *buf, size_t count)
577 {
578 	struct hv_device *hv_dev = device_to_hv_device(dev);
579 	int ret;
580 
581 	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
582 	if (ret)
583 		return ret;
584 
585 	return count;
586 }
587 
588 static ssize_t driver_override_show(struct device *dev,
589 				    struct device_attribute *attr, char *buf)
590 {
591 	struct hv_device *hv_dev = device_to_hv_device(dev);
592 	ssize_t len;
593 
594 	device_lock(dev);
595 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
596 	device_unlock(dev);
597 
598 	return len;
599 }
600 static DEVICE_ATTR_RW(driver_override);
601 
602 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
603 static struct attribute *vmbus_dev_attrs[] = {
604 	&dev_attr_id.attr,
605 	&dev_attr_state.attr,
606 	&dev_attr_monitor_id.attr,
607 	&dev_attr_class_id.attr,
608 	&dev_attr_device_id.attr,
609 	&dev_attr_modalias.attr,
610 #ifdef CONFIG_NUMA
611 	&dev_attr_numa_node.attr,
612 #endif
613 	&dev_attr_server_monitor_pending.attr,
614 	&dev_attr_client_monitor_pending.attr,
615 	&dev_attr_server_monitor_latency.attr,
616 	&dev_attr_client_monitor_latency.attr,
617 	&dev_attr_server_monitor_conn_id.attr,
618 	&dev_attr_client_monitor_conn_id.attr,
619 	&dev_attr_out_intr_mask.attr,
620 	&dev_attr_out_read_index.attr,
621 	&dev_attr_out_write_index.attr,
622 	&dev_attr_out_read_bytes_avail.attr,
623 	&dev_attr_out_write_bytes_avail.attr,
624 	&dev_attr_in_intr_mask.attr,
625 	&dev_attr_in_read_index.attr,
626 	&dev_attr_in_write_index.attr,
627 	&dev_attr_in_read_bytes_avail.attr,
628 	&dev_attr_in_write_bytes_avail.attr,
629 	&dev_attr_channel_vp_mapping.attr,
630 	&dev_attr_vendor.attr,
631 	&dev_attr_device.attr,
632 	&dev_attr_driver_override.attr,
633 	NULL,
634 };
635 
636 /*
637  * Device-level attribute_group callback function. Returns the permission for
638  * each attribute, and returns 0 if an attribute is not visible.
639  */
640 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
641 					 struct attribute *attr, int idx)
642 {
643 	struct device *dev = kobj_to_dev(kobj);
644 	const struct hv_device *hv_dev = device_to_hv_device(dev);
645 
646 	/* Hide the monitor attributes if the monitor mechanism is not used. */
647 	if (!hv_dev->channel->offermsg.monitor_allocated &&
648 	    (attr == &dev_attr_monitor_id.attr ||
649 	     attr == &dev_attr_server_monitor_pending.attr ||
650 	     attr == &dev_attr_client_monitor_pending.attr ||
651 	     attr == &dev_attr_server_monitor_latency.attr ||
652 	     attr == &dev_attr_client_monitor_latency.attr ||
653 	     attr == &dev_attr_server_monitor_conn_id.attr ||
654 	     attr == &dev_attr_client_monitor_conn_id.attr))
655 		return 0;
656 
657 	return attr->mode;
658 }
659 
660 static const struct attribute_group vmbus_dev_group = {
661 	.attrs = vmbus_dev_attrs,
662 	.is_visible = vmbus_dev_attr_is_visible
663 };
664 __ATTRIBUTE_GROUPS(vmbus_dev);
665 
666 /* Set up the attribute for /sys/bus/vmbus/hibernation */
667 static ssize_t hibernation_show(struct bus_type *bus, char *buf)
668 {
669 	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
670 }
671 
672 static BUS_ATTR_RO(hibernation);
673 
674 static struct attribute *vmbus_bus_attrs[] = {
675 	&bus_attr_hibernation.attr,
676 	NULL,
677 };
678 static const struct attribute_group vmbus_bus_group = {
679 	.attrs = vmbus_bus_attrs,
680 };
681 __ATTRIBUTE_GROUPS(vmbus_bus);
682 
683 /*
684  * vmbus_uevent - add uevent for our device
685  *
686  * This routine is invoked when a device is added or removed on the vmbus to
687  * generate a uevent to udev in the userspace. The udev will then look at its
688  * rule and the uevent generated here to load the appropriate driver
689  *
690  * The alias string will be of the form vmbus:guid where guid is the string
691  * representation of the device guid (each byte of the guid will be
692  * represented with two hex characters.
693  */
694 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
695 {
696 	struct hv_device *dev = device_to_hv_device(device);
697 	const char *format = "MODALIAS=vmbus:%*phN";
698 
699 	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
700 }
701 
702 static const struct hv_vmbus_device_id *
703 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
704 {
705 	if (id == NULL)
706 		return NULL; /* empty device table */
707 
708 	for (; !guid_is_null(&id->guid); id++)
709 		if (guid_equal(&id->guid, guid))
710 			return id;
711 
712 	return NULL;
713 }
714 
715 static const struct hv_vmbus_device_id *
716 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
717 {
718 	const struct hv_vmbus_device_id *id = NULL;
719 	struct vmbus_dynid *dynid;
720 
721 	spin_lock(&drv->dynids.lock);
722 	list_for_each_entry(dynid, &drv->dynids.list, node) {
723 		if (guid_equal(&dynid->id.guid, guid)) {
724 			id = &dynid->id;
725 			break;
726 		}
727 	}
728 	spin_unlock(&drv->dynids.lock);
729 
730 	return id;
731 }
732 
733 static const struct hv_vmbus_device_id vmbus_device_null;
734 
735 /*
736  * Return a matching hv_vmbus_device_id pointer.
737  * If there is no match, return NULL.
738  */
739 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
740 							struct hv_device *dev)
741 {
742 	const guid_t *guid = &dev->dev_type;
743 	const struct hv_vmbus_device_id *id;
744 
745 	/* When driver_override is set, only bind to the matching driver */
746 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
747 		return NULL;
748 
749 	/* Look at the dynamic ids first, before the static ones */
750 	id = hv_vmbus_dynid_match(drv, guid);
751 	if (!id)
752 		id = hv_vmbus_dev_match(drv->id_table, guid);
753 
754 	/* driver_override will always match, send a dummy id */
755 	if (!id && dev->driver_override)
756 		id = &vmbus_device_null;
757 
758 	return id;
759 }
760 
761 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
762 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
763 {
764 	struct vmbus_dynid *dynid;
765 
766 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
767 	if (!dynid)
768 		return -ENOMEM;
769 
770 	dynid->id.guid = *guid;
771 
772 	spin_lock(&drv->dynids.lock);
773 	list_add_tail(&dynid->node, &drv->dynids.list);
774 	spin_unlock(&drv->dynids.lock);
775 
776 	return driver_attach(&drv->driver);
777 }
778 
779 static void vmbus_free_dynids(struct hv_driver *drv)
780 {
781 	struct vmbus_dynid *dynid, *n;
782 
783 	spin_lock(&drv->dynids.lock);
784 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
785 		list_del(&dynid->node);
786 		kfree(dynid);
787 	}
788 	spin_unlock(&drv->dynids.lock);
789 }
790 
791 /*
792  * store_new_id - sysfs frontend to vmbus_add_dynid()
793  *
794  * Allow GUIDs to be added to an existing driver via sysfs.
795  */
796 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
797 			    size_t count)
798 {
799 	struct hv_driver *drv = drv_to_hv_drv(driver);
800 	guid_t guid;
801 	ssize_t retval;
802 
803 	retval = guid_parse(buf, &guid);
804 	if (retval)
805 		return retval;
806 
807 	if (hv_vmbus_dynid_match(drv, &guid))
808 		return -EEXIST;
809 
810 	retval = vmbus_add_dynid(drv, &guid);
811 	if (retval)
812 		return retval;
813 	return count;
814 }
815 static DRIVER_ATTR_WO(new_id);
816 
817 /*
818  * store_remove_id - remove a PCI device ID from this driver
819  *
820  * Removes a dynamic pci device ID to this driver.
821  */
822 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
823 			       size_t count)
824 {
825 	struct hv_driver *drv = drv_to_hv_drv(driver);
826 	struct vmbus_dynid *dynid, *n;
827 	guid_t guid;
828 	ssize_t retval;
829 
830 	retval = guid_parse(buf, &guid);
831 	if (retval)
832 		return retval;
833 
834 	retval = -ENODEV;
835 	spin_lock(&drv->dynids.lock);
836 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
837 		struct hv_vmbus_device_id *id = &dynid->id;
838 
839 		if (guid_equal(&id->guid, &guid)) {
840 			list_del(&dynid->node);
841 			kfree(dynid);
842 			retval = count;
843 			break;
844 		}
845 	}
846 	spin_unlock(&drv->dynids.lock);
847 
848 	return retval;
849 }
850 static DRIVER_ATTR_WO(remove_id);
851 
852 static struct attribute *vmbus_drv_attrs[] = {
853 	&driver_attr_new_id.attr,
854 	&driver_attr_remove_id.attr,
855 	NULL,
856 };
857 ATTRIBUTE_GROUPS(vmbus_drv);
858 
859 
860 /*
861  * vmbus_match - Attempt to match the specified device to the specified driver
862  */
863 static int vmbus_match(struct device *device, struct device_driver *driver)
864 {
865 	struct hv_driver *drv = drv_to_hv_drv(driver);
866 	struct hv_device *hv_dev = device_to_hv_device(device);
867 
868 	/* The hv_sock driver handles all hv_sock offers. */
869 	if (is_hvsock_channel(hv_dev->channel))
870 		return drv->hvsock;
871 
872 	if (hv_vmbus_get_id(drv, hv_dev))
873 		return 1;
874 
875 	return 0;
876 }
877 
878 /*
879  * vmbus_probe - Add the new vmbus's child device
880  */
881 static int vmbus_probe(struct device *child_device)
882 {
883 	int ret = 0;
884 	struct hv_driver *drv =
885 			drv_to_hv_drv(child_device->driver);
886 	struct hv_device *dev = device_to_hv_device(child_device);
887 	const struct hv_vmbus_device_id *dev_id;
888 
889 	dev_id = hv_vmbus_get_id(drv, dev);
890 	if (drv->probe) {
891 		ret = drv->probe(dev, dev_id);
892 		if (ret != 0)
893 			pr_err("probe failed for device %s (%d)\n",
894 			       dev_name(child_device), ret);
895 
896 	} else {
897 		pr_err("probe not set for driver %s\n",
898 		       dev_name(child_device));
899 		ret = -ENODEV;
900 	}
901 	return ret;
902 }
903 
904 /*
905  * vmbus_dma_configure -- Configure DMA coherence for VMbus device
906  */
907 static int vmbus_dma_configure(struct device *child_device)
908 {
909 	/*
910 	 * On ARM64, propagate the DMA coherence setting from the top level
911 	 * VMbus ACPI device to the child VMbus device being added here.
912 	 * On x86/x64 coherence is assumed and these calls have no effect.
913 	 */
914 	hv_setup_dma_ops(child_device,
915 		device_get_dma_attr(&hv_acpi_dev->dev) == DEV_DMA_COHERENT);
916 	return 0;
917 }
918 
919 /*
920  * vmbus_remove - Remove a vmbus device
921  */
922 static void vmbus_remove(struct device *child_device)
923 {
924 	struct hv_driver *drv;
925 	struct hv_device *dev = device_to_hv_device(child_device);
926 
927 	if (child_device->driver) {
928 		drv = drv_to_hv_drv(child_device->driver);
929 		if (drv->remove)
930 			drv->remove(dev);
931 	}
932 }
933 
934 /*
935  * vmbus_shutdown - Shutdown a vmbus device
936  */
937 static void vmbus_shutdown(struct device *child_device)
938 {
939 	struct hv_driver *drv;
940 	struct hv_device *dev = device_to_hv_device(child_device);
941 
942 
943 	/* The device may not be attached yet */
944 	if (!child_device->driver)
945 		return;
946 
947 	drv = drv_to_hv_drv(child_device->driver);
948 
949 	if (drv->shutdown)
950 		drv->shutdown(dev);
951 }
952 
953 #ifdef CONFIG_PM_SLEEP
954 /*
955  * vmbus_suspend - Suspend a vmbus device
956  */
957 static int vmbus_suspend(struct device *child_device)
958 {
959 	struct hv_driver *drv;
960 	struct hv_device *dev = device_to_hv_device(child_device);
961 
962 	/* The device may not be attached yet */
963 	if (!child_device->driver)
964 		return 0;
965 
966 	drv = drv_to_hv_drv(child_device->driver);
967 	if (!drv->suspend)
968 		return -EOPNOTSUPP;
969 
970 	return drv->suspend(dev);
971 }
972 
973 /*
974  * vmbus_resume - Resume a vmbus device
975  */
976 static int vmbus_resume(struct device *child_device)
977 {
978 	struct hv_driver *drv;
979 	struct hv_device *dev = device_to_hv_device(child_device);
980 
981 	/* The device may not be attached yet */
982 	if (!child_device->driver)
983 		return 0;
984 
985 	drv = drv_to_hv_drv(child_device->driver);
986 	if (!drv->resume)
987 		return -EOPNOTSUPP;
988 
989 	return drv->resume(dev);
990 }
991 #else
992 #define vmbus_suspend NULL
993 #define vmbus_resume NULL
994 #endif /* CONFIG_PM_SLEEP */
995 
996 /*
997  * vmbus_device_release - Final callback release of the vmbus child device
998  */
999 static void vmbus_device_release(struct device *device)
1000 {
1001 	struct hv_device *hv_dev = device_to_hv_device(device);
1002 	struct vmbus_channel *channel = hv_dev->channel;
1003 
1004 	hv_debug_rm_dev_dir(hv_dev);
1005 
1006 	mutex_lock(&vmbus_connection.channel_mutex);
1007 	hv_process_channel_removal(channel);
1008 	mutex_unlock(&vmbus_connection.channel_mutex);
1009 	kfree(hv_dev);
1010 }
1011 
1012 /*
1013  * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1014  *
1015  * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1016  * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1017  * is no way to wake up a Generation-2 VM.
1018  *
1019  * The other 4 ops are for hibernation.
1020  */
1021 
1022 static const struct dev_pm_ops vmbus_pm = {
1023 	.suspend_noirq	= NULL,
1024 	.resume_noirq	= NULL,
1025 	.freeze_noirq	= vmbus_suspend,
1026 	.thaw_noirq	= vmbus_resume,
1027 	.poweroff_noirq	= vmbus_suspend,
1028 	.restore_noirq	= vmbus_resume,
1029 };
1030 
1031 /* The one and only one */
1032 static struct bus_type  hv_bus = {
1033 	.name =		"vmbus",
1034 	.match =		vmbus_match,
1035 	.shutdown =		vmbus_shutdown,
1036 	.remove =		vmbus_remove,
1037 	.probe =		vmbus_probe,
1038 	.uevent =		vmbus_uevent,
1039 	.dma_configure =	vmbus_dma_configure,
1040 	.dev_groups =		vmbus_dev_groups,
1041 	.drv_groups =		vmbus_drv_groups,
1042 	.bus_groups =		vmbus_bus_groups,
1043 	.pm =			&vmbus_pm,
1044 };
1045 
1046 struct onmessage_work_context {
1047 	struct work_struct work;
1048 	struct {
1049 		struct hv_message_header header;
1050 		u8 payload[];
1051 	} msg;
1052 };
1053 
1054 static void vmbus_onmessage_work(struct work_struct *work)
1055 {
1056 	struct onmessage_work_context *ctx;
1057 
1058 	/* Do not process messages if we're in DISCONNECTED state */
1059 	if (vmbus_connection.conn_state == DISCONNECTED)
1060 		return;
1061 
1062 	ctx = container_of(work, struct onmessage_work_context,
1063 			   work);
1064 	vmbus_onmessage((struct vmbus_channel_message_header *)
1065 			&ctx->msg.payload);
1066 	kfree(ctx);
1067 }
1068 
1069 void vmbus_on_msg_dpc(unsigned long data)
1070 {
1071 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1072 	void *page_addr = hv_cpu->synic_message_page;
1073 	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1074 				  VMBUS_MESSAGE_SINT;
1075 	struct vmbus_channel_message_header *hdr;
1076 	enum vmbus_channel_message_type msgtype;
1077 	const struct vmbus_channel_message_table_entry *entry;
1078 	struct onmessage_work_context *ctx;
1079 	__u8 payload_size;
1080 	u32 message_type;
1081 
1082 	/*
1083 	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1084 	 * it is being used in 'struct vmbus_channel_message_header' definition
1085 	 * which is supposed to match hypervisor ABI.
1086 	 */
1087 	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1088 
1089 	/*
1090 	 * Since the message is in memory shared with the host, an erroneous or
1091 	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1092 	 * or individual message handlers are executing; to prevent this, copy
1093 	 * the message into private memory.
1094 	 */
1095 	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1096 
1097 	message_type = msg_copy.header.message_type;
1098 	if (message_type == HVMSG_NONE)
1099 		/* no msg */
1100 		return;
1101 
1102 	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1103 	msgtype = hdr->msgtype;
1104 
1105 	trace_vmbus_on_msg_dpc(hdr);
1106 
1107 	if (msgtype >= CHANNELMSG_COUNT) {
1108 		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1109 		goto msg_handled;
1110 	}
1111 
1112 	payload_size = msg_copy.header.payload_size;
1113 	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1114 		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1115 		goto msg_handled;
1116 	}
1117 
1118 	entry = &channel_message_table[msgtype];
1119 
1120 	if (!entry->message_handler)
1121 		goto msg_handled;
1122 
1123 	if (payload_size < entry->min_payload_len) {
1124 		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1125 		goto msg_handled;
1126 	}
1127 
1128 	if (entry->handler_type	== VMHT_BLOCKING) {
1129 		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1130 		if (ctx == NULL)
1131 			return;
1132 
1133 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1134 		memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size);
1135 
1136 		/*
1137 		 * The host can generate a rescind message while we
1138 		 * may still be handling the original offer. We deal with
1139 		 * this condition by relying on the synchronization provided
1140 		 * by offer_in_progress and by channel_mutex.  See also the
1141 		 * inline comments in vmbus_onoffer_rescind().
1142 		 */
1143 		switch (msgtype) {
1144 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1145 			/*
1146 			 * If we are handling the rescind message;
1147 			 * schedule the work on the global work queue.
1148 			 *
1149 			 * The OFFER message and the RESCIND message should
1150 			 * not be handled by the same serialized work queue,
1151 			 * because the OFFER handler may call vmbus_open(),
1152 			 * which tries to open the channel by sending an
1153 			 * OPEN_CHANNEL message to the host and waits for
1154 			 * the host's response; however, if the host has
1155 			 * rescinded the channel before it receives the
1156 			 * OPEN_CHANNEL message, the host just silently
1157 			 * ignores the OPEN_CHANNEL message; as a result,
1158 			 * the guest's OFFER handler hangs for ever, if we
1159 			 * handle the RESCIND message in the same serialized
1160 			 * work queue: the RESCIND handler can not start to
1161 			 * run before the OFFER handler finishes.
1162 			 */
1163 			if (vmbus_connection.ignore_any_offer_msg)
1164 				break;
1165 			queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1166 			break;
1167 
1168 		case CHANNELMSG_OFFERCHANNEL:
1169 			/*
1170 			 * The host sends the offer message of a given channel
1171 			 * before sending the rescind message of the same
1172 			 * channel.  These messages are sent to the guest's
1173 			 * connect CPU; the guest then starts processing them
1174 			 * in the tasklet handler on this CPU:
1175 			 *
1176 			 * VMBUS_CONNECT_CPU
1177 			 *
1178 			 * [vmbus_on_msg_dpc()]
1179 			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1180 			 * queue_work()
1181 			 * ...
1182 			 * [vmbus_on_msg_dpc()]
1183 			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1184 			 *
1185 			 * We rely on the memory-ordering properties of the
1186 			 * queue_work() and schedule_work() primitives, which
1187 			 * guarantee that the atomic increment will be visible
1188 			 * to the CPUs which will execute the offer & rescind
1189 			 * works by the time these works will start execution.
1190 			 */
1191 			if (vmbus_connection.ignore_any_offer_msg)
1192 				break;
1193 			atomic_inc(&vmbus_connection.offer_in_progress);
1194 			fallthrough;
1195 
1196 		default:
1197 			queue_work(vmbus_connection.work_queue, &ctx->work);
1198 		}
1199 	} else
1200 		entry->message_handler(hdr);
1201 
1202 msg_handled:
1203 	vmbus_signal_eom(msg, message_type);
1204 }
1205 
1206 #ifdef CONFIG_PM_SLEEP
1207 /*
1208  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1209  * hibernation, because hv_sock connections can not persist across hibernation.
1210  */
1211 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1212 {
1213 	struct onmessage_work_context *ctx;
1214 	struct vmbus_channel_rescind_offer *rescind;
1215 
1216 	WARN_ON(!is_hvsock_channel(channel));
1217 
1218 	/*
1219 	 * Allocation size is small and the allocation should really not fail,
1220 	 * otherwise the state of the hv_sock connections ends up in limbo.
1221 	 */
1222 	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1223 		      GFP_KERNEL | __GFP_NOFAIL);
1224 
1225 	/*
1226 	 * So far, these are not really used by Linux. Just set them to the
1227 	 * reasonable values conforming to the definitions of the fields.
1228 	 */
1229 	ctx->msg.header.message_type = 1;
1230 	ctx->msg.header.payload_size = sizeof(*rescind);
1231 
1232 	/* These values are actually used by Linux. */
1233 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1234 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1235 	rescind->child_relid = channel->offermsg.child_relid;
1236 
1237 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1238 
1239 	queue_work(vmbus_connection.work_queue, &ctx->work);
1240 }
1241 #endif /* CONFIG_PM_SLEEP */
1242 
1243 /*
1244  * Schedule all channels with events pending
1245  */
1246 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1247 {
1248 	unsigned long *recv_int_page;
1249 	u32 maxbits, relid;
1250 
1251 	/*
1252 	 * The event page can be directly checked to get the id of
1253 	 * the channel that has the interrupt pending.
1254 	 */
1255 	void *page_addr = hv_cpu->synic_event_page;
1256 	union hv_synic_event_flags *event
1257 		= (union hv_synic_event_flags *)page_addr +
1258 					 VMBUS_MESSAGE_SINT;
1259 
1260 	maxbits = HV_EVENT_FLAGS_COUNT;
1261 	recv_int_page = event->flags;
1262 
1263 	if (unlikely(!recv_int_page))
1264 		return;
1265 
1266 	for_each_set_bit(relid, recv_int_page, maxbits) {
1267 		void (*callback_fn)(void *context);
1268 		struct vmbus_channel *channel;
1269 
1270 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1271 			continue;
1272 
1273 		/* Special case - vmbus channel protocol msg */
1274 		if (relid == 0)
1275 			continue;
1276 
1277 		/*
1278 		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1279 		 * Guarantees that the channel data structure doesn't
1280 		 * get freed while the channel pointer below is being
1281 		 * dereferenced.
1282 		 */
1283 		rcu_read_lock();
1284 
1285 		/* Find channel based on relid */
1286 		channel = relid2channel(relid);
1287 		if (channel == NULL)
1288 			goto sched_unlock_rcu;
1289 
1290 		if (channel->rescind)
1291 			goto sched_unlock_rcu;
1292 
1293 		/*
1294 		 * Make sure that the ring buffer data structure doesn't get
1295 		 * freed while we dereference the ring buffer pointer.  Test
1296 		 * for the channel's onchannel_callback being NULL within a
1297 		 * sched_lock critical section.  See also the inline comments
1298 		 * in vmbus_reset_channel_cb().
1299 		 */
1300 		spin_lock(&channel->sched_lock);
1301 
1302 		callback_fn = channel->onchannel_callback;
1303 		if (unlikely(callback_fn == NULL))
1304 			goto sched_unlock;
1305 
1306 		trace_vmbus_chan_sched(channel);
1307 
1308 		++channel->interrupts;
1309 
1310 		switch (channel->callback_mode) {
1311 		case HV_CALL_ISR:
1312 			(*callback_fn)(channel->channel_callback_context);
1313 			break;
1314 
1315 		case HV_CALL_BATCHED:
1316 			hv_begin_read(&channel->inbound);
1317 			fallthrough;
1318 		case HV_CALL_DIRECT:
1319 			tasklet_schedule(&channel->callback_event);
1320 		}
1321 
1322 sched_unlock:
1323 		spin_unlock(&channel->sched_lock);
1324 sched_unlock_rcu:
1325 		rcu_read_unlock();
1326 	}
1327 }
1328 
1329 static void vmbus_isr(void)
1330 {
1331 	struct hv_per_cpu_context *hv_cpu
1332 		= this_cpu_ptr(hv_context.cpu_context);
1333 	void *page_addr;
1334 	struct hv_message *msg;
1335 
1336 	vmbus_chan_sched(hv_cpu);
1337 
1338 	page_addr = hv_cpu->synic_message_page;
1339 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1340 
1341 	/* Check if there are actual msgs to be processed */
1342 	if (msg->header.message_type != HVMSG_NONE) {
1343 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1344 			hv_stimer0_isr();
1345 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1346 		} else
1347 			tasklet_schedule(&hv_cpu->msg_dpc);
1348 	}
1349 
1350 	add_interrupt_randomness(vmbus_interrupt);
1351 }
1352 
1353 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1354 {
1355 	vmbus_isr();
1356 	return IRQ_HANDLED;
1357 }
1358 
1359 /*
1360  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1361  * buffer and call into Hyper-V to transfer the data.
1362  */
1363 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1364 			 enum kmsg_dump_reason reason)
1365 {
1366 	struct kmsg_dump_iter iter;
1367 	size_t bytes_written;
1368 
1369 	/* We are only interested in panics. */
1370 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1371 		return;
1372 
1373 	/*
1374 	 * Write dump contents to the page. No need to synchronize; panic should
1375 	 * be single-threaded.
1376 	 */
1377 	kmsg_dump_rewind(&iter);
1378 	kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1379 			     &bytes_written);
1380 	if (!bytes_written)
1381 		return;
1382 	/*
1383 	 * P3 to contain the physical address of the panic page & P4 to
1384 	 * contain the size of the panic data in that page. Rest of the
1385 	 * registers are no-op when the NOTIFY_MSG flag is set.
1386 	 */
1387 	hv_set_register(HV_REGISTER_CRASH_P0, 0);
1388 	hv_set_register(HV_REGISTER_CRASH_P1, 0);
1389 	hv_set_register(HV_REGISTER_CRASH_P2, 0);
1390 	hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
1391 	hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
1392 
1393 	/*
1394 	 * Let Hyper-V know there is crash data available along with
1395 	 * the panic message.
1396 	 */
1397 	hv_set_register(HV_REGISTER_CRASH_CTL,
1398 	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
1399 }
1400 
1401 static struct kmsg_dumper hv_kmsg_dumper = {
1402 	.dump = hv_kmsg_dump,
1403 };
1404 
1405 static void hv_kmsg_dump_register(void)
1406 {
1407 	int ret;
1408 
1409 	hv_panic_page = hv_alloc_hyperv_zeroed_page();
1410 	if (!hv_panic_page) {
1411 		pr_err("Hyper-V: panic message page memory allocation failed\n");
1412 		return;
1413 	}
1414 
1415 	ret = kmsg_dump_register(&hv_kmsg_dumper);
1416 	if (ret) {
1417 		pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1418 		hv_free_hyperv_page((unsigned long)hv_panic_page);
1419 		hv_panic_page = NULL;
1420 	}
1421 }
1422 
1423 static struct ctl_table_header *hv_ctl_table_hdr;
1424 
1425 /*
1426  * sysctl option to allow the user to control whether kmsg data should be
1427  * reported to Hyper-V on panic.
1428  */
1429 static struct ctl_table hv_ctl_table[] = {
1430 	{
1431 		.procname       = "hyperv_record_panic_msg",
1432 		.data           = &sysctl_record_panic_msg,
1433 		.maxlen         = sizeof(int),
1434 		.mode           = 0644,
1435 		.proc_handler   = proc_dointvec_minmax,
1436 		.extra1		= SYSCTL_ZERO,
1437 		.extra2		= SYSCTL_ONE
1438 	},
1439 	{}
1440 };
1441 
1442 static struct ctl_table hv_root_table[] = {
1443 	{
1444 		.procname	= "kernel",
1445 		.mode		= 0555,
1446 		.child		= hv_ctl_table
1447 	},
1448 	{}
1449 };
1450 
1451 /*
1452  * vmbus_bus_init -Main vmbus driver initialization routine.
1453  *
1454  * Here, we
1455  *	- initialize the vmbus driver context
1456  *	- invoke the vmbus hv main init routine
1457  *	- retrieve the channel offers
1458  */
1459 static int vmbus_bus_init(void)
1460 {
1461 	int ret;
1462 
1463 	ret = hv_init();
1464 	if (ret != 0) {
1465 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1466 		return ret;
1467 	}
1468 
1469 	ret = bus_register(&hv_bus);
1470 	if (ret)
1471 		return ret;
1472 
1473 	/*
1474 	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1475 	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1476 	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1477 	 * If not on such an architecture (e.g., x86/x64), then rely on
1478 	 * code in the arch-specific portion of the code tree to connect
1479 	 * the VMbus interrupt handler.
1480 	 */
1481 
1482 	if (vmbus_irq == -1) {
1483 		hv_setup_vmbus_handler(vmbus_isr);
1484 	} else {
1485 		vmbus_evt = alloc_percpu(long);
1486 		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1487 				"Hyper-V VMbus", vmbus_evt);
1488 		if (ret) {
1489 			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1490 					vmbus_irq, ret);
1491 			free_percpu(vmbus_evt);
1492 			goto err_setup;
1493 		}
1494 	}
1495 
1496 	ret = hv_synic_alloc();
1497 	if (ret)
1498 		goto err_alloc;
1499 
1500 	/*
1501 	 * Initialize the per-cpu interrupt state and stimer state.
1502 	 * Then connect to the host.
1503 	 */
1504 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1505 				hv_synic_init, hv_synic_cleanup);
1506 	if (ret < 0)
1507 		goto err_cpuhp;
1508 	hyperv_cpuhp_online = ret;
1509 
1510 	ret = vmbus_connect();
1511 	if (ret)
1512 		goto err_connect;
1513 
1514 	if (hv_is_isolation_supported())
1515 		sysctl_record_panic_msg = 0;
1516 
1517 	/*
1518 	 * Only register if the crash MSRs are available
1519 	 */
1520 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1521 		u64 hyperv_crash_ctl;
1522 		/*
1523 		 * Panic message recording (sysctl_record_panic_msg)
1524 		 * is enabled by default in non-isolated guests and
1525 		 * disabled by default in isolated guests; the panic
1526 		 * message recording won't be available in isolated
1527 		 * guests should the following registration fail.
1528 		 */
1529 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1530 		if (!hv_ctl_table_hdr)
1531 			pr_err("Hyper-V: sysctl table register error");
1532 
1533 		/*
1534 		 * Register for panic kmsg callback only if the right
1535 		 * capability is supported by the hypervisor.
1536 		 */
1537 		hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
1538 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1539 			hv_kmsg_dump_register();
1540 
1541 		register_die_notifier(&hyperv_die_block);
1542 	}
1543 
1544 	/*
1545 	 * Always register the panic notifier because we need to unload
1546 	 * the VMbus channel connection to prevent any VMbus
1547 	 * activity after the VM panics.
1548 	 */
1549 	atomic_notifier_chain_register(&panic_notifier_list,
1550 			       &hyperv_panic_block);
1551 
1552 	vmbus_request_offers();
1553 
1554 	return 0;
1555 
1556 err_connect:
1557 	cpuhp_remove_state(hyperv_cpuhp_online);
1558 err_cpuhp:
1559 	hv_synic_free();
1560 err_alloc:
1561 	if (vmbus_irq == -1) {
1562 		hv_remove_vmbus_handler();
1563 	} else {
1564 		free_percpu_irq(vmbus_irq, vmbus_evt);
1565 		free_percpu(vmbus_evt);
1566 	}
1567 err_setup:
1568 	bus_unregister(&hv_bus);
1569 	unregister_sysctl_table(hv_ctl_table_hdr);
1570 	hv_ctl_table_hdr = NULL;
1571 	return ret;
1572 }
1573 
1574 /**
1575  * __vmbus_child_driver_register() - Register a vmbus's driver
1576  * @hv_driver: Pointer to driver structure you want to register
1577  * @owner: owner module of the drv
1578  * @mod_name: module name string
1579  *
1580  * Registers the given driver with Linux through the 'driver_register()' call
1581  * and sets up the hyper-v vmbus handling for this driver.
1582  * It will return the state of the 'driver_register()' call.
1583  *
1584  */
1585 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1586 {
1587 	int ret;
1588 
1589 	pr_info("registering driver %s\n", hv_driver->name);
1590 
1591 	ret = vmbus_exists();
1592 	if (ret < 0)
1593 		return ret;
1594 
1595 	hv_driver->driver.name = hv_driver->name;
1596 	hv_driver->driver.owner = owner;
1597 	hv_driver->driver.mod_name = mod_name;
1598 	hv_driver->driver.bus = &hv_bus;
1599 
1600 	spin_lock_init(&hv_driver->dynids.lock);
1601 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1602 
1603 	ret = driver_register(&hv_driver->driver);
1604 
1605 	return ret;
1606 }
1607 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1608 
1609 /**
1610  * vmbus_driver_unregister() - Unregister a vmbus's driver
1611  * @hv_driver: Pointer to driver structure you want to
1612  *             un-register
1613  *
1614  * Un-register the given driver that was previous registered with a call to
1615  * vmbus_driver_register()
1616  */
1617 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1618 {
1619 	pr_info("unregistering driver %s\n", hv_driver->name);
1620 
1621 	if (!vmbus_exists()) {
1622 		driver_unregister(&hv_driver->driver);
1623 		vmbus_free_dynids(hv_driver);
1624 	}
1625 }
1626 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1627 
1628 
1629 /*
1630  * Called when last reference to channel is gone.
1631  */
1632 static void vmbus_chan_release(struct kobject *kobj)
1633 {
1634 	struct vmbus_channel *channel
1635 		= container_of(kobj, struct vmbus_channel, kobj);
1636 
1637 	kfree_rcu(channel, rcu);
1638 }
1639 
1640 struct vmbus_chan_attribute {
1641 	struct attribute attr;
1642 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1643 	ssize_t (*store)(struct vmbus_channel *chan,
1644 			 const char *buf, size_t count);
1645 };
1646 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1647 	struct vmbus_chan_attribute chan_attr_##_name \
1648 		= __ATTR(_name, _mode, _show, _store)
1649 #define VMBUS_CHAN_ATTR_RW(_name) \
1650 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1651 #define VMBUS_CHAN_ATTR_RO(_name) \
1652 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1653 #define VMBUS_CHAN_ATTR_WO(_name) \
1654 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1655 
1656 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1657 				    struct attribute *attr, char *buf)
1658 {
1659 	const struct vmbus_chan_attribute *attribute
1660 		= container_of(attr, struct vmbus_chan_attribute, attr);
1661 	struct vmbus_channel *chan
1662 		= container_of(kobj, struct vmbus_channel, kobj);
1663 
1664 	if (!attribute->show)
1665 		return -EIO;
1666 
1667 	return attribute->show(chan, buf);
1668 }
1669 
1670 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1671 				     struct attribute *attr, const char *buf,
1672 				     size_t count)
1673 {
1674 	const struct vmbus_chan_attribute *attribute
1675 		= container_of(attr, struct vmbus_chan_attribute, attr);
1676 	struct vmbus_channel *chan
1677 		= container_of(kobj, struct vmbus_channel, kobj);
1678 
1679 	if (!attribute->store)
1680 		return -EIO;
1681 
1682 	return attribute->store(chan, buf, count);
1683 }
1684 
1685 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1686 	.show = vmbus_chan_attr_show,
1687 	.store = vmbus_chan_attr_store,
1688 };
1689 
1690 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1691 {
1692 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1693 	ssize_t ret;
1694 
1695 	mutex_lock(&rbi->ring_buffer_mutex);
1696 	if (!rbi->ring_buffer) {
1697 		mutex_unlock(&rbi->ring_buffer_mutex);
1698 		return -EINVAL;
1699 	}
1700 
1701 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1702 	mutex_unlock(&rbi->ring_buffer_mutex);
1703 	return ret;
1704 }
1705 static VMBUS_CHAN_ATTR_RO(out_mask);
1706 
1707 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1708 {
1709 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1710 	ssize_t ret;
1711 
1712 	mutex_lock(&rbi->ring_buffer_mutex);
1713 	if (!rbi->ring_buffer) {
1714 		mutex_unlock(&rbi->ring_buffer_mutex);
1715 		return -EINVAL;
1716 	}
1717 
1718 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1719 	mutex_unlock(&rbi->ring_buffer_mutex);
1720 	return ret;
1721 }
1722 static VMBUS_CHAN_ATTR_RO(in_mask);
1723 
1724 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1725 {
1726 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1727 	ssize_t ret;
1728 
1729 	mutex_lock(&rbi->ring_buffer_mutex);
1730 	if (!rbi->ring_buffer) {
1731 		mutex_unlock(&rbi->ring_buffer_mutex);
1732 		return -EINVAL;
1733 	}
1734 
1735 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1736 	mutex_unlock(&rbi->ring_buffer_mutex);
1737 	return ret;
1738 }
1739 static VMBUS_CHAN_ATTR_RO(read_avail);
1740 
1741 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1742 {
1743 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1744 	ssize_t ret;
1745 
1746 	mutex_lock(&rbi->ring_buffer_mutex);
1747 	if (!rbi->ring_buffer) {
1748 		mutex_unlock(&rbi->ring_buffer_mutex);
1749 		return -EINVAL;
1750 	}
1751 
1752 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1753 	mutex_unlock(&rbi->ring_buffer_mutex);
1754 	return ret;
1755 }
1756 static VMBUS_CHAN_ATTR_RO(write_avail);
1757 
1758 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1759 {
1760 	return sprintf(buf, "%u\n", channel->target_cpu);
1761 }
1762 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1763 				const char *buf, size_t count)
1764 {
1765 	u32 target_cpu, origin_cpu;
1766 	ssize_t ret = count;
1767 
1768 	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1769 		return -EIO;
1770 
1771 	if (sscanf(buf, "%uu", &target_cpu) != 1)
1772 		return -EIO;
1773 
1774 	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1775 	if (target_cpu >= nr_cpumask_bits)
1776 		return -EINVAL;
1777 
1778 	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1779 		return -EINVAL;
1780 
1781 	/* No CPUs should come up or down during this. */
1782 	cpus_read_lock();
1783 
1784 	if (!cpu_online(target_cpu)) {
1785 		cpus_read_unlock();
1786 		return -EINVAL;
1787 	}
1788 
1789 	/*
1790 	 * Synchronizes target_cpu_store() and channel closure:
1791 	 *
1792 	 * { Initially: state = CHANNEL_OPENED }
1793 	 *
1794 	 * CPU1				CPU2
1795 	 *
1796 	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1797 	 *
1798 	 * LOCK channel_mutex		LOCK channel_mutex
1799 	 * LOAD r1 = state		LOAD r2 = state
1800 	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1801 	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1802 	 *   [...]			  SEND CLOSECHANNEL
1803 	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1804 	 *
1805 	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1806 	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1807 	 *
1808 	 * Note.  The host processes the channel messages "sequentially", in
1809 	 * the order in which they are received on a per-partition basis.
1810 	 */
1811 	mutex_lock(&vmbus_connection.channel_mutex);
1812 
1813 	/*
1814 	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1815 	 * avoid sending the message and fail here for such channels.
1816 	 */
1817 	if (channel->state != CHANNEL_OPENED_STATE) {
1818 		ret = -EIO;
1819 		goto cpu_store_unlock;
1820 	}
1821 
1822 	origin_cpu = channel->target_cpu;
1823 	if (target_cpu == origin_cpu)
1824 		goto cpu_store_unlock;
1825 
1826 	if (vmbus_send_modifychannel(channel,
1827 				     hv_cpu_number_to_vp_number(target_cpu))) {
1828 		ret = -EIO;
1829 		goto cpu_store_unlock;
1830 	}
1831 
1832 	/*
1833 	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1834 	 *
1835 	 * Warning.  At this point, there is *no* guarantee that the host will
1836 	 * have successfully processed the vmbus_send_modifychannel() request.
1837 	 * See the header comment of vmbus_send_modifychannel() for more info.
1838 	 *
1839 	 * Lags in the processing of the above vmbus_send_modifychannel() can
1840 	 * result in missed interrupts if the "old" target CPU is taken offline
1841 	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1842 	 * But apart from this offlining scenario, the code tolerates such
1843 	 * lags.  It will function correctly even if a channel interrupt comes
1844 	 * in on a CPU that is different from the channel target_cpu value.
1845 	 */
1846 
1847 	channel->target_cpu = target_cpu;
1848 
1849 	/* See init_vp_index(). */
1850 	if (hv_is_perf_channel(channel))
1851 		hv_update_allocated_cpus(origin_cpu, target_cpu);
1852 
1853 	/* Currently set only for storvsc channels. */
1854 	if (channel->change_target_cpu_callback) {
1855 		(*channel->change_target_cpu_callback)(channel,
1856 				origin_cpu, target_cpu);
1857 	}
1858 
1859 cpu_store_unlock:
1860 	mutex_unlock(&vmbus_connection.channel_mutex);
1861 	cpus_read_unlock();
1862 	return ret;
1863 }
1864 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1865 
1866 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1867 				    char *buf)
1868 {
1869 	return sprintf(buf, "%d\n",
1870 		       channel_pending(channel,
1871 				       vmbus_connection.monitor_pages[1]));
1872 }
1873 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1874 
1875 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1876 				    char *buf)
1877 {
1878 	return sprintf(buf, "%d\n",
1879 		       channel_latency(channel,
1880 				       vmbus_connection.monitor_pages[1]));
1881 }
1882 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1883 
1884 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1885 {
1886 	return sprintf(buf, "%llu\n", channel->interrupts);
1887 }
1888 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1889 
1890 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1891 {
1892 	return sprintf(buf, "%llu\n", channel->sig_events);
1893 }
1894 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1895 
1896 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1897 					 char *buf)
1898 {
1899 	return sprintf(buf, "%llu\n",
1900 		       (unsigned long long)channel->intr_in_full);
1901 }
1902 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1903 
1904 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1905 					   char *buf)
1906 {
1907 	return sprintf(buf, "%llu\n",
1908 		       (unsigned long long)channel->intr_out_empty);
1909 }
1910 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1911 
1912 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1913 					   char *buf)
1914 {
1915 	return sprintf(buf, "%llu\n",
1916 		       (unsigned long long)channel->out_full_first);
1917 }
1918 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1919 
1920 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1921 					   char *buf)
1922 {
1923 	return sprintf(buf, "%llu\n",
1924 		       (unsigned long long)channel->out_full_total);
1925 }
1926 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1927 
1928 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1929 					  char *buf)
1930 {
1931 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1932 }
1933 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1934 
1935 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1936 				  char *buf)
1937 {
1938 	return sprintf(buf, "%u\n",
1939 		       channel->offermsg.offer.sub_channel_index);
1940 }
1941 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1942 
1943 static struct attribute *vmbus_chan_attrs[] = {
1944 	&chan_attr_out_mask.attr,
1945 	&chan_attr_in_mask.attr,
1946 	&chan_attr_read_avail.attr,
1947 	&chan_attr_write_avail.attr,
1948 	&chan_attr_cpu.attr,
1949 	&chan_attr_pending.attr,
1950 	&chan_attr_latency.attr,
1951 	&chan_attr_interrupts.attr,
1952 	&chan_attr_events.attr,
1953 	&chan_attr_intr_in_full.attr,
1954 	&chan_attr_intr_out_empty.attr,
1955 	&chan_attr_out_full_first.attr,
1956 	&chan_attr_out_full_total.attr,
1957 	&chan_attr_monitor_id.attr,
1958 	&chan_attr_subchannel_id.attr,
1959 	NULL
1960 };
1961 
1962 /*
1963  * Channel-level attribute_group callback function. Returns the permission for
1964  * each attribute, and returns 0 if an attribute is not visible.
1965  */
1966 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1967 					  struct attribute *attr, int idx)
1968 {
1969 	const struct vmbus_channel *channel =
1970 		container_of(kobj, struct vmbus_channel, kobj);
1971 
1972 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1973 	if (!channel->offermsg.monitor_allocated &&
1974 	    (attr == &chan_attr_pending.attr ||
1975 	     attr == &chan_attr_latency.attr ||
1976 	     attr == &chan_attr_monitor_id.attr))
1977 		return 0;
1978 
1979 	return attr->mode;
1980 }
1981 
1982 static struct attribute_group vmbus_chan_group = {
1983 	.attrs = vmbus_chan_attrs,
1984 	.is_visible = vmbus_chan_attr_is_visible
1985 };
1986 
1987 static struct kobj_type vmbus_chan_ktype = {
1988 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1989 	.release = vmbus_chan_release,
1990 };
1991 
1992 /*
1993  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1994  */
1995 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1996 {
1997 	const struct device *device = &dev->device;
1998 	struct kobject *kobj = &channel->kobj;
1999 	u32 relid = channel->offermsg.child_relid;
2000 	int ret;
2001 
2002 	kobj->kset = dev->channels_kset;
2003 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2004 				   "%u", relid);
2005 	if (ret) {
2006 		kobject_put(kobj);
2007 		return ret;
2008 	}
2009 
2010 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
2011 
2012 	if (ret) {
2013 		/*
2014 		 * The calling functions' error handling paths will cleanup the
2015 		 * empty channel directory.
2016 		 */
2017 		kobject_put(kobj);
2018 		dev_err(device, "Unable to set up channel sysfs files\n");
2019 		return ret;
2020 	}
2021 
2022 	kobject_uevent(kobj, KOBJ_ADD);
2023 
2024 	return 0;
2025 }
2026 
2027 /*
2028  * vmbus_remove_channel_attr_group - remove the channel's attribute group
2029  */
2030 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2031 {
2032 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2033 }
2034 
2035 /*
2036  * vmbus_device_create - Creates and registers a new child device
2037  * on the vmbus.
2038  */
2039 struct hv_device *vmbus_device_create(const guid_t *type,
2040 				      const guid_t *instance,
2041 				      struct vmbus_channel *channel)
2042 {
2043 	struct hv_device *child_device_obj;
2044 
2045 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2046 	if (!child_device_obj) {
2047 		pr_err("Unable to allocate device object for child device\n");
2048 		return NULL;
2049 	}
2050 
2051 	child_device_obj->channel = channel;
2052 	guid_copy(&child_device_obj->dev_type, type);
2053 	guid_copy(&child_device_obj->dev_instance, instance);
2054 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
2055 
2056 	return child_device_obj;
2057 }
2058 
2059 /*
2060  * vmbus_device_register - Register the child device
2061  */
2062 int vmbus_device_register(struct hv_device *child_device_obj)
2063 {
2064 	struct kobject *kobj = &child_device_obj->device.kobj;
2065 	int ret;
2066 
2067 	dev_set_name(&child_device_obj->device, "%pUl",
2068 		     &child_device_obj->channel->offermsg.offer.if_instance);
2069 
2070 	child_device_obj->device.bus = &hv_bus;
2071 	child_device_obj->device.parent = &hv_acpi_dev->dev;
2072 	child_device_obj->device.release = vmbus_device_release;
2073 
2074 	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
2075 	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
2076 	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
2077 
2078 	/*
2079 	 * Register with the LDM. This will kick off the driver/device
2080 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
2081 	 */
2082 	ret = device_register(&child_device_obj->device);
2083 	if (ret) {
2084 		pr_err("Unable to register child device\n");
2085 		return ret;
2086 	}
2087 
2088 	child_device_obj->channels_kset = kset_create_and_add("channels",
2089 							      NULL, kobj);
2090 	if (!child_device_obj->channels_kset) {
2091 		ret = -ENOMEM;
2092 		goto err_dev_unregister;
2093 	}
2094 
2095 	ret = vmbus_add_channel_kobj(child_device_obj,
2096 				     child_device_obj->channel);
2097 	if (ret) {
2098 		pr_err("Unable to register primary channeln");
2099 		goto err_kset_unregister;
2100 	}
2101 	hv_debug_add_dev_dir(child_device_obj);
2102 
2103 	return 0;
2104 
2105 err_kset_unregister:
2106 	kset_unregister(child_device_obj->channels_kset);
2107 
2108 err_dev_unregister:
2109 	device_unregister(&child_device_obj->device);
2110 	return ret;
2111 }
2112 
2113 /*
2114  * vmbus_device_unregister - Remove the specified child device
2115  * from the vmbus.
2116  */
2117 void vmbus_device_unregister(struct hv_device *device_obj)
2118 {
2119 	pr_debug("child device %s unregistered\n",
2120 		dev_name(&device_obj->device));
2121 
2122 	kset_unregister(device_obj->channels_kset);
2123 
2124 	/*
2125 	 * Kick off the process of unregistering the device.
2126 	 * This will call vmbus_remove() and eventually vmbus_device_release()
2127 	 */
2128 	device_unregister(&device_obj->device);
2129 }
2130 
2131 
2132 /*
2133  * VMBUS is an acpi enumerated device. Get the information we
2134  * need from DSDT.
2135  */
2136 #define VTPM_BASE_ADDRESS 0xfed40000
2137 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2138 {
2139 	resource_size_t start = 0;
2140 	resource_size_t end = 0;
2141 	struct resource *new_res;
2142 	struct resource **old_res = &hyperv_mmio;
2143 	struct resource **prev_res = NULL;
2144 	struct resource r;
2145 
2146 	switch (res->type) {
2147 
2148 	/*
2149 	 * "Address" descriptors are for bus windows. Ignore
2150 	 * "memory" descriptors, which are for registers on
2151 	 * devices.
2152 	 */
2153 	case ACPI_RESOURCE_TYPE_ADDRESS32:
2154 		start = res->data.address32.address.minimum;
2155 		end = res->data.address32.address.maximum;
2156 		break;
2157 
2158 	case ACPI_RESOURCE_TYPE_ADDRESS64:
2159 		start = res->data.address64.address.minimum;
2160 		end = res->data.address64.address.maximum;
2161 		break;
2162 
2163 	/*
2164 	 * The IRQ information is needed only on ARM64, which Hyper-V
2165 	 * sets up in the extended format. IRQ information is present
2166 	 * on x86/x64 in the non-extended format but it is not used by
2167 	 * Linux. So don't bother checking for the non-extended format.
2168 	 */
2169 	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2170 		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2171 			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2172 			return AE_ERROR;
2173 		}
2174 		/* ARM64 INTID for VMbus */
2175 		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2176 		/* Linux IRQ number */
2177 		vmbus_irq = r.start;
2178 		return AE_OK;
2179 
2180 	default:
2181 		/* Unused resource type */
2182 		return AE_OK;
2183 
2184 	}
2185 	/*
2186 	 * Ignore ranges that are below 1MB, as they're not
2187 	 * necessary or useful here.
2188 	 */
2189 	if (end < 0x100000)
2190 		return AE_OK;
2191 
2192 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2193 	if (!new_res)
2194 		return AE_NO_MEMORY;
2195 
2196 	/* If this range overlaps the virtual TPM, truncate it. */
2197 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2198 		end = VTPM_BASE_ADDRESS;
2199 
2200 	new_res->name = "hyperv mmio";
2201 	new_res->flags = IORESOURCE_MEM;
2202 	new_res->start = start;
2203 	new_res->end = end;
2204 
2205 	/*
2206 	 * If two ranges are adjacent, merge them.
2207 	 */
2208 	do {
2209 		if (!*old_res) {
2210 			*old_res = new_res;
2211 			break;
2212 		}
2213 
2214 		if (((*old_res)->end + 1) == new_res->start) {
2215 			(*old_res)->end = new_res->end;
2216 			kfree(new_res);
2217 			break;
2218 		}
2219 
2220 		if ((*old_res)->start == new_res->end + 1) {
2221 			(*old_res)->start = new_res->start;
2222 			kfree(new_res);
2223 			break;
2224 		}
2225 
2226 		if ((*old_res)->start > new_res->end) {
2227 			new_res->sibling = *old_res;
2228 			if (prev_res)
2229 				(*prev_res)->sibling = new_res;
2230 			*old_res = new_res;
2231 			break;
2232 		}
2233 
2234 		prev_res = old_res;
2235 		old_res = &(*old_res)->sibling;
2236 
2237 	} while (1);
2238 
2239 	return AE_OK;
2240 }
2241 
2242 static int vmbus_acpi_remove(struct acpi_device *device)
2243 {
2244 	struct resource *cur_res;
2245 	struct resource *next_res;
2246 
2247 	if (hyperv_mmio) {
2248 		if (fb_mmio) {
2249 			__release_region(hyperv_mmio, fb_mmio->start,
2250 					 resource_size(fb_mmio));
2251 			fb_mmio = NULL;
2252 		}
2253 
2254 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2255 			next_res = cur_res->sibling;
2256 			kfree(cur_res);
2257 		}
2258 	}
2259 
2260 	return 0;
2261 }
2262 
2263 static void vmbus_reserve_fb(void)
2264 {
2265 	int size;
2266 	/*
2267 	 * Make a claim for the frame buffer in the resource tree under the
2268 	 * first node, which will be the one below 4GB.  The length seems to
2269 	 * be underreported, particularly in a Generation 1 VM.  So start out
2270 	 * reserving a larger area and make it smaller until it succeeds.
2271 	 */
2272 
2273 	if (screen_info.lfb_base) {
2274 		if (efi_enabled(EFI_BOOT))
2275 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2276 		else
2277 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2278 
2279 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2280 			fb_mmio = __request_region(hyperv_mmio,
2281 						   screen_info.lfb_base, size,
2282 						   fb_mmio_name, 0);
2283 		}
2284 	}
2285 }
2286 
2287 /**
2288  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2289  * @new:		If successful, supplied a pointer to the
2290  *			allocated MMIO space.
2291  * @device_obj:		Identifies the caller
2292  * @min:		Minimum guest physical address of the
2293  *			allocation
2294  * @max:		Maximum guest physical address
2295  * @size:		Size of the range to be allocated
2296  * @align:		Alignment of the range to be allocated
2297  * @fb_overlap_ok:	Whether this allocation can be allowed
2298  *			to overlap the video frame buffer.
2299  *
2300  * This function walks the resources granted to VMBus by the
2301  * _CRS object in the ACPI namespace underneath the parent
2302  * "bridge" whether that's a root PCI bus in the Generation 1
2303  * case or a Module Device in the Generation 2 case.  It then
2304  * attempts to allocate from the global MMIO pool in a way that
2305  * matches the constraints supplied in these parameters and by
2306  * that _CRS.
2307  *
2308  * Return: 0 on success, -errno on failure
2309  */
2310 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2311 			resource_size_t min, resource_size_t max,
2312 			resource_size_t size, resource_size_t align,
2313 			bool fb_overlap_ok)
2314 {
2315 	struct resource *iter, *shadow;
2316 	resource_size_t range_min, range_max, start;
2317 	const char *dev_n = dev_name(&device_obj->device);
2318 	int retval;
2319 
2320 	retval = -ENXIO;
2321 	mutex_lock(&hyperv_mmio_lock);
2322 
2323 	/*
2324 	 * If overlaps with frame buffers are allowed, then first attempt to
2325 	 * make the allocation from within the reserved region.  Because it
2326 	 * is already reserved, no shadow allocation is necessary.
2327 	 */
2328 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2329 	    !(max < fb_mmio->start)) {
2330 
2331 		range_min = fb_mmio->start;
2332 		range_max = fb_mmio->end;
2333 		start = (range_min + align - 1) & ~(align - 1);
2334 		for (; start + size - 1 <= range_max; start += align) {
2335 			*new = request_mem_region_exclusive(start, size, dev_n);
2336 			if (*new) {
2337 				retval = 0;
2338 				goto exit;
2339 			}
2340 		}
2341 	}
2342 
2343 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2344 		if ((iter->start >= max) || (iter->end <= min))
2345 			continue;
2346 
2347 		range_min = iter->start;
2348 		range_max = iter->end;
2349 		start = (range_min + align - 1) & ~(align - 1);
2350 		for (; start + size - 1 <= range_max; start += align) {
2351 			shadow = __request_region(iter, start, size, NULL,
2352 						  IORESOURCE_BUSY);
2353 			if (!shadow)
2354 				continue;
2355 
2356 			*new = request_mem_region_exclusive(start, size, dev_n);
2357 			if (*new) {
2358 				shadow->name = (char *)*new;
2359 				retval = 0;
2360 				goto exit;
2361 			}
2362 
2363 			__release_region(iter, start, size);
2364 		}
2365 	}
2366 
2367 exit:
2368 	mutex_unlock(&hyperv_mmio_lock);
2369 	return retval;
2370 }
2371 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2372 
2373 /**
2374  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2375  * @start:		Base address of region to release.
2376  * @size:		Size of the range to be allocated
2377  *
2378  * This function releases anything requested by
2379  * vmbus_mmio_allocate().
2380  */
2381 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2382 {
2383 	struct resource *iter;
2384 
2385 	mutex_lock(&hyperv_mmio_lock);
2386 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2387 		if ((iter->start >= start + size) || (iter->end <= start))
2388 			continue;
2389 
2390 		__release_region(iter, start, size);
2391 	}
2392 	release_mem_region(start, size);
2393 	mutex_unlock(&hyperv_mmio_lock);
2394 
2395 }
2396 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2397 
2398 static int vmbus_acpi_add(struct acpi_device *device)
2399 {
2400 	acpi_status result;
2401 	int ret_val = -ENODEV;
2402 	struct acpi_device *ancestor;
2403 
2404 	hv_acpi_dev = device;
2405 
2406 	/*
2407 	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2408 	 * method on the top level VMbus device in the DSDT. But devices
2409 	 * are hardware coherent in all current Hyper-V use cases, so fix
2410 	 * up the ACPI device to behave as if _CCA is present and indicates
2411 	 * hardware coherence.
2412 	 */
2413 	ACPI_COMPANION_SET(&device->dev, device);
2414 	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2415 	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2416 		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2417 		device->flags.cca_seen = true;
2418 		device->flags.coherent_dma = true;
2419 	}
2420 
2421 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2422 					vmbus_walk_resources, NULL);
2423 
2424 	if (ACPI_FAILURE(result))
2425 		goto acpi_walk_err;
2426 	/*
2427 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2428 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2429 	 */
2430 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2431 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2432 					     vmbus_walk_resources, NULL);
2433 
2434 		if (ACPI_FAILURE(result))
2435 			continue;
2436 		if (hyperv_mmio) {
2437 			vmbus_reserve_fb();
2438 			break;
2439 		}
2440 	}
2441 	ret_val = 0;
2442 
2443 acpi_walk_err:
2444 	complete(&probe_event);
2445 	if (ret_val)
2446 		vmbus_acpi_remove(device);
2447 	return ret_val;
2448 }
2449 
2450 #ifdef CONFIG_PM_SLEEP
2451 static int vmbus_bus_suspend(struct device *dev)
2452 {
2453 	struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2454 			hv_context.cpu_context, VMBUS_CONNECT_CPU);
2455 	struct vmbus_channel *channel, *sc;
2456 
2457 	tasklet_disable(&hv_cpu->msg_dpc);
2458 	vmbus_connection.ignore_any_offer_msg = true;
2459 	/* The tasklet_enable() takes care of providing a memory barrier */
2460 	tasklet_enable(&hv_cpu->msg_dpc);
2461 
2462 	/* Drain all the workqueues as we are in suspend */
2463 	drain_workqueue(vmbus_connection.rescind_work_queue);
2464 	drain_workqueue(vmbus_connection.work_queue);
2465 	drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2466 	drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2467 
2468 	mutex_lock(&vmbus_connection.channel_mutex);
2469 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2470 		if (!is_hvsock_channel(channel))
2471 			continue;
2472 
2473 		vmbus_force_channel_rescinded(channel);
2474 	}
2475 	mutex_unlock(&vmbus_connection.channel_mutex);
2476 
2477 	/*
2478 	 * Wait until all the sub-channels and hv_sock channels have been
2479 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2480 	 * they would conflict with the new sub-channels that will be created
2481 	 * in the resume path. hv_sock channels should also be destroyed, but
2482 	 * a hv_sock channel of an established hv_sock connection can not be
2483 	 * really destroyed since it may still be referenced by the userspace
2484 	 * application, so we just force the hv_sock channel to be rescinded
2485 	 * by vmbus_force_channel_rescinded(), and the userspace application
2486 	 * will thoroughly destroy the channel after hibernation.
2487 	 *
2488 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2489 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2490 	 */
2491 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2492 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2493 
2494 	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2495 		pr_err("Can not suspend due to a previous failed resuming\n");
2496 		return -EBUSY;
2497 	}
2498 
2499 	mutex_lock(&vmbus_connection.channel_mutex);
2500 
2501 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2502 		/*
2503 		 * Remove the channel from the array of channels and invalidate
2504 		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2505 		 * up the relid (and other fields, if necessary) and add the
2506 		 * channel back to the array.
2507 		 */
2508 		vmbus_channel_unmap_relid(channel);
2509 		channel->offermsg.child_relid = INVALID_RELID;
2510 
2511 		if (is_hvsock_channel(channel)) {
2512 			if (!channel->rescind) {
2513 				pr_err("hv_sock channel not rescinded!\n");
2514 				WARN_ON_ONCE(1);
2515 			}
2516 			continue;
2517 		}
2518 
2519 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2520 			pr_err("Sub-channel not deleted!\n");
2521 			WARN_ON_ONCE(1);
2522 		}
2523 
2524 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2525 	}
2526 
2527 	mutex_unlock(&vmbus_connection.channel_mutex);
2528 
2529 	vmbus_initiate_unload(false);
2530 
2531 	/* Reset the event for the next resume. */
2532 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2533 
2534 	return 0;
2535 }
2536 
2537 static int vmbus_bus_resume(struct device *dev)
2538 {
2539 	struct vmbus_channel_msginfo *msginfo;
2540 	size_t msgsize;
2541 	int ret;
2542 
2543 	vmbus_connection.ignore_any_offer_msg = false;
2544 
2545 	/*
2546 	 * We only use the 'vmbus_proto_version', which was in use before
2547 	 * hibernation, to re-negotiate with the host.
2548 	 */
2549 	if (!vmbus_proto_version) {
2550 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2551 		return -EINVAL;
2552 	}
2553 
2554 	msgsize = sizeof(*msginfo) +
2555 		  sizeof(struct vmbus_channel_initiate_contact);
2556 
2557 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2558 
2559 	if (msginfo == NULL)
2560 		return -ENOMEM;
2561 
2562 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2563 
2564 	kfree(msginfo);
2565 
2566 	if (ret != 0)
2567 		return ret;
2568 
2569 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2570 
2571 	vmbus_request_offers();
2572 
2573 	if (wait_for_completion_timeout(
2574 		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2575 		pr_err("Some vmbus device is missing after suspending?\n");
2576 
2577 	/* Reset the event for the next suspend. */
2578 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2579 
2580 	return 0;
2581 }
2582 #else
2583 #define vmbus_bus_suspend NULL
2584 #define vmbus_bus_resume NULL
2585 #endif /* CONFIG_PM_SLEEP */
2586 
2587 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2588 	{"VMBUS", 0},
2589 	{"VMBus", 0},
2590 	{"", 0},
2591 };
2592 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2593 
2594 /*
2595  * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2596  * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2597  * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2598  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2599  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2600  * resume callback must also run via the "noirq" ops.
2601  *
2602  * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2603  * earlier in this file before vmbus_pm.
2604  */
2605 
2606 static const struct dev_pm_ops vmbus_bus_pm = {
2607 	.suspend_noirq	= NULL,
2608 	.resume_noirq	= NULL,
2609 	.freeze_noirq	= vmbus_bus_suspend,
2610 	.thaw_noirq	= vmbus_bus_resume,
2611 	.poweroff_noirq	= vmbus_bus_suspend,
2612 	.restore_noirq	= vmbus_bus_resume
2613 };
2614 
2615 static struct acpi_driver vmbus_acpi_driver = {
2616 	.name = "vmbus",
2617 	.ids = vmbus_acpi_device_ids,
2618 	.ops = {
2619 		.add = vmbus_acpi_add,
2620 		.remove = vmbus_acpi_remove,
2621 	},
2622 	.drv.pm = &vmbus_bus_pm,
2623 };
2624 
2625 static void hv_kexec_handler(void)
2626 {
2627 	hv_stimer_global_cleanup();
2628 	vmbus_initiate_unload(false);
2629 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2630 	mb();
2631 	cpuhp_remove_state(hyperv_cpuhp_online);
2632 };
2633 
2634 static void hv_crash_handler(struct pt_regs *regs)
2635 {
2636 	int cpu;
2637 
2638 	vmbus_initiate_unload(true);
2639 	/*
2640 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2641 	 * doing the cleanup for current CPU only. This should be sufficient
2642 	 * for kdump.
2643 	 */
2644 	cpu = smp_processor_id();
2645 	hv_stimer_cleanup(cpu);
2646 	hv_synic_disable_regs(cpu);
2647 };
2648 
2649 static int hv_synic_suspend(void)
2650 {
2651 	/*
2652 	 * When we reach here, all the non-boot CPUs have been offlined.
2653 	 * If we're in a legacy configuration where stimer Direct Mode is
2654 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2655 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2656 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2657 	 *
2658 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2659 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2660 	 * 1) it's unnecessary as interrupts remain disabled between
2661 	 * syscore_suspend() and syscore_resume(): see create_image() and
2662 	 * resume_target_kernel()
2663 	 * 2) the stimer on CPU0 is automatically disabled later by
2664 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2665 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2666 	 * 3) a warning would be triggered if we call
2667 	 * clockevents_unbind_device(), which may sleep, in an
2668 	 * interrupts-disabled context.
2669 	 */
2670 
2671 	hv_synic_disable_regs(0);
2672 
2673 	return 0;
2674 }
2675 
2676 static void hv_synic_resume(void)
2677 {
2678 	hv_synic_enable_regs(0);
2679 
2680 	/*
2681 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2682 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2683 	 * automatically re-enabled in timekeeping_resume().
2684 	 */
2685 }
2686 
2687 /* The callbacks run only on CPU0, with irqs_disabled. */
2688 static struct syscore_ops hv_synic_syscore_ops = {
2689 	.suspend = hv_synic_suspend,
2690 	.resume = hv_synic_resume,
2691 };
2692 
2693 static int __init hv_acpi_init(void)
2694 {
2695 	int ret, t;
2696 
2697 	if (!hv_is_hyperv_initialized())
2698 		return -ENODEV;
2699 
2700 	if (hv_root_partition)
2701 		return 0;
2702 
2703 	init_completion(&probe_event);
2704 
2705 	/*
2706 	 * Get ACPI resources first.
2707 	 */
2708 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2709 
2710 	if (ret)
2711 		return ret;
2712 
2713 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2714 	if (t == 0) {
2715 		ret = -ETIMEDOUT;
2716 		goto cleanup;
2717 	}
2718 
2719 	/*
2720 	 * If we're on an architecture with a hardcoded hypervisor
2721 	 * vector (i.e. x86/x64), override the VMbus interrupt found
2722 	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2723 	 * normal Linux IRQ mechanism is not used in this case.
2724 	 */
2725 #ifdef HYPERVISOR_CALLBACK_VECTOR
2726 	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2727 	vmbus_irq = -1;
2728 #endif
2729 
2730 	hv_debug_init();
2731 
2732 	ret = vmbus_bus_init();
2733 	if (ret)
2734 		goto cleanup;
2735 
2736 	hv_setup_kexec_handler(hv_kexec_handler);
2737 	hv_setup_crash_handler(hv_crash_handler);
2738 
2739 	register_syscore_ops(&hv_synic_syscore_ops);
2740 
2741 	return 0;
2742 
2743 cleanup:
2744 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2745 	hv_acpi_dev = NULL;
2746 	return ret;
2747 }
2748 
2749 static void __exit vmbus_exit(void)
2750 {
2751 	int cpu;
2752 
2753 	unregister_syscore_ops(&hv_synic_syscore_ops);
2754 
2755 	hv_remove_kexec_handler();
2756 	hv_remove_crash_handler();
2757 	vmbus_connection.conn_state = DISCONNECTED;
2758 	hv_stimer_global_cleanup();
2759 	vmbus_disconnect();
2760 	if (vmbus_irq == -1) {
2761 		hv_remove_vmbus_handler();
2762 	} else {
2763 		free_percpu_irq(vmbus_irq, vmbus_evt);
2764 		free_percpu(vmbus_evt);
2765 	}
2766 	for_each_online_cpu(cpu) {
2767 		struct hv_per_cpu_context *hv_cpu
2768 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2769 
2770 		tasklet_kill(&hv_cpu->msg_dpc);
2771 	}
2772 	hv_debug_rm_all_dir();
2773 
2774 	vmbus_free_channels();
2775 	kfree(vmbus_connection.channels);
2776 
2777 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2778 		kmsg_dump_unregister(&hv_kmsg_dumper);
2779 		unregister_die_notifier(&hyperv_die_block);
2780 	}
2781 
2782 	/*
2783 	 * The panic notifier is always registered, hence we should
2784 	 * also unconditionally unregister it here as well.
2785 	 */
2786 	atomic_notifier_chain_unregister(&panic_notifier_list,
2787 					 &hyperv_panic_block);
2788 
2789 	free_page((unsigned long)hv_panic_page);
2790 	unregister_sysctl_table(hv_ctl_table_hdr);
2791 	hv_ctl_table_hdr = NULL;
2792 	bus_unregister(&hv_bus);
2793 
2794 	cpuhp_remove_state(hyperv_cpuhp_online);
2795 	hv_synic_free();
2796 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2797 }
2798 
2799 
2800 MODULE_LICENSE("GPL");
2801 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2802 
2803 subsys_initcall(hv_acpi_init);
2804 module_exit(vmbus_exit);
2805