1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/task_stack.h> 25 26 #include <asm/mshyperv.h> 27 #include <linux/notifier.h> 28 #include <linux/ptrace.h> 29 #include <linux/screen_info.h> 30 #include <linux/kdebug.h> 31 #include <linux/efi.h> 32 #include <linux/random.h> 33 #include "hyperv_vmbus.h" 34 35 struct vmbus_dynid { 36 struct list_head node; 37 struct hv_vmbus_device_id id; 38 }; 39 40 static struct acpi_device *hv_acpi_dev; 41 42 static struct completion probe_event; 43 44 static int hyperv_cpuhp_online; 45 46 static void *hv_panic_page; 47 48 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 49 void *args) 50 { 51 struct pt_regs *regs; 52 53 regs = current_pt_regs(); 54 55 hyperv_report_panic(regs, val); 56 return NOTIFY_DONE; 57 } 58 59 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 60 void *args) 61 { 62 struct die_args *die = (struct die_args *)args; 63 struct pt_regs *regs = die->regs; 64 65 hyperv_report_panic(regs, val); 66 return NOTIFY_DONE; 67 } 68 69 static struct notifier_block hyperv_die_block = { 70 .notifier_call = hyperv_die_event, 71 }; 72 static struct notifier_block hyperv_panic_block = { 73 .notifier_call = hyperv_panic_event, 74 }; 75 76 static const char *fb_mmio_name = "fb_range"; 77 static struct resource *fb_mmio; 78 static struct resource *hyperv_mmio; 79 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 80 81 static int vmbus_exists(void) 82 { 83 if (hv_acpi_dev == NULL) 84 return -ENODEV; 85 86 return 0; 87 } 88 89 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 90 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 91 { 92 int i; 93 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 94 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 95 } 96 97 static u8 channel_monitor_group(const struct vmbus_channel *channel) 98 { 99 return (u8)channel->offermsg.monitorid / 32; 100 } 101 102 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 103 { 104 return (u8)channel->offermsg.monitorid % 32; 105 } 106 107 static u32 channel_pending(const struct vmbus_channel *channel, 108 const struct hv_monitor_page *monitor_page) 109 { 110 u8 monitor_group = channel_monitor_group(channel); 111 112 return monitor_page->trigger_group[monitor_group].pending; 113 } 114 115 static u32 channel_latency(const struct vmbus_channel *channel, 116 const struct hv_monitor_page *monitor_page) 117 { 118 u8 monitor_group = channel_monitor_group(channel); 119 u8 monitor_offset = channel_monitor_offset(channel); 120 121 return monitor_page->latency[monitor_group][monitor_offset]; 122 } 123 124 static u32 channel_conn_id(struct vmbus_channel *channel, 125 struct hv_monitor_page *monitor_page) 126 { 127 u8 monitor_group = channel_monitor_group(channel); 128 u8 monitor_offset = channel_monitor_offset(channel); 129 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 130 } 131 132 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 133 char *buf) 134 { 135 struct hv_device *hv_dev = device_to_hv_device(dev); 136 137 if (!hv_dev->channel) 138 return -ENODEV; 139 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 140 } 141 static DEVICE_ATTR_RO(id); 142 143 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 144 char *buf) 145 { 146 struct hv_device *hv_dev = device_to_hv_device(dev); 147 148 if (!hv_dev->channel) 149 return -ENODEV; 150 return sprintf(buf, "%d\n", hv_dev->channel->state); 151 } 152 static DEVICE_ATTR_RO(state); 153 154 static ssize_t monitor_id_show(struct device *dev, 155 struct device_attribute *dev_attr, char *buf) 156 { 157 struct hv_device *hv_dev = device_to_hv_device(dev); 158 159 if (!hv_dev->channel) 160 return -ENODEV; 161 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 162 } 163 static DEVICE_ATTR_RO(monitor_id); 164 165 static ssize_t class_id_show(struct device *dev, 166 struct device_attribute *dev_attr, char *buf) 167 { 168 struct hv_device *hv_dev = device_to_hv_device(dev); 169 170 if (!hv_dev->channel) 171 return -ENODEV; 172 return sprintf(buf, "{%pUl}\n", 173 hv_dev->channel->offermsg.offer.if_type.b); 174 } 175 static DEVICE_ATTR_RO(class_id); 176 177 static ssize_t device_id_show(struct device *dev, 178 struct device_attribute *dev_attr, char *buf) 179 { 180 struct hv_device *hv_dev = device_to_hv_device(dev); 181 182 if (!hv_dev->channel) 183 return -ENODEV; 184 return sprintf(buf, "{%pUl}\n", 185 hv_dev->channel->offermsg.offer.if_instance.b); 186 } 187 static DEVICE_ATTR_RO(device_id); 188 189 static ssize_t modalias_show(struct device *dev, 190 struct device_attribute *dev_attr, char *buf) 191 { 192 struct hv_device *hv_dev = device_to_hv_device(dev); 193 char alias_name[VMBUS_ALIAS_LEN + 1]; 194 195 print_alias_name(hv_dev, alias_name); 196 return sprintf(buf, "vmbus:%s\n", alias_name); 197 } 198 static DEVICE_ATTR_RO(modalias); 199 200 #ifdef CONFIG_NUMA 201 static ssize_t numa_node_show(struct device *dev, 202 struct device_attribute *attr, char *buf) 203 { 204 struct hv_device *hv_dev = device_to_hv_device(dev); 205 206 if (!hv_dev->channel) 207 return -ENODEV; 208 209 return sprintf(buf, "%d\n", hv_dev->channel->numa_node); 210 } 211 static DEVICE_ATTR_RO(numa_node); 212 #endif 213 214 static ssize_t server_monitor_pending_show(struct device *dev, 215 struct device_attribute *dev_attr, 216 char *buf) 217 { 218 struct hv_device *hv_dev = device_to_hv_device(dev); 219 220 if (!hv_dev->channel) 221 return -ENODEV; 222 return sprintf(buf, "%d\n", 223 channel_pending(hv_dev->channel, 224 vmbus_connection.monitor_pages[0])); 225 } 226 static DEVICE_ATTR_RO(server_monitor_pending); 227 228 static ssize_t client_monitor_pending_show(struct device *dev, 229 struct device_attribute *dev_attr, 230 char *buf) 231 { 232 struct hv_device *hv_dev = device_to_hv_device(dev); 233 234 if (!hv_dev->channel) 235 return -ENODEV; 236 return sprintf(buf, "%d\n", 237 channel_pending(hv_dev->channel, 238 vmbus_connection.monitor_pages[1])); 239 } 240 static DEVICE_ATTR_RO(client_monitor_pending); 241 242 static ssize_t server_monitor_latency_show(struct device *dev, 243 struct device_attribute *dev_attr, 244 char *buf) 245 { 246 struct hv_device *hv_dev = device_to_hv_device(dev); 247 248 if (!hv_dev->channel) 249 return -ENODEV; 250 return sprintf(buf, "%d\n", 251 channel_latency(hv_dev->channel, 252 vmbus_connection.monitor_pages[0])); 253 } 254 static DEVICE_ATTR_RO(server_monitor_latency); 255 256 static ssize_t client_monitor_latency_show(struct device *dev, 257 struct device_attribute *dev_attr, 258 char *buf) 259 { 260 struct hv_device *hv_dev = device_to_hv_device(dev); 261 262 if (!hv_dev->channel) 263 return -ENODEV; 264 return sprintf(buf, "%d\n", 265 channel_latency(hv_dev->channel, 266 vmbus_connection.monitor_pages[1])); 267 } 268 static DEVICE_ATTR_RO(client_monitor_latency); 269 270 static ssize_t server_monitor_conn_id_show(struct device *dev, 271 struct device_attribute *dev_attr, 272 char *buf) 273 { 274 struct hv_device *hv_dev = device_to_hv_device(dev); 275 276 if (!hv_dev->channel) 277 return -ENODEV; 278 return sprintf(buf, "%d\n", 279 channel_conn_id(hv_dev->channel, 280 vmbus_connection.monitor_pages[0])); 281 } 282 static DEVICE_ATTR_RO(server_monitor_conn_id); 283 284 static ssize_t client_monitor_conn_id_show(struct device *dev, 285 struct device_attribute *dev_attr, 286 char *buf) 287 { 288 struct hv_device *hv_dev = device_to_hv_device(dev); 289 290 if (!hv_dev->channel) 291 return -ENODEV; 292 return sprintf(buf, "%d\n", 293 channel_conn_id(hv_dev->channel, 294 vmbus_connection.monitor_pages[1])); 295 } 296 static DEVICE_ATTR_RO(client_monitor_conn_id); 297 298 static ssize_t out_intr_mask_show(struct device *dev, 299 struct device_attribute *dev_attr, char *buf) 300 { 301 struct hv_device *hv_dev = device_to_hv_device(dev); 302 struct hv_ring_buffer_debug_info outbound; 303 int ret; 304 305 if (!hv_dev->channel) 306 return -ENODEV; 307 308 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 309 &outbound); 310 if (ret < 0) 311 return ret; 312 313 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 314 } 315 static DEVICE_ATTR_RO(out_intr_mask); 316 317 static ssize_t out_read_index_show(struct device *dev, 318 struct device_attribute *dev_attr, char *buf) 319 { 320 struct hv_device *hv_dev = device_to_hv_device(dev); 321 struct hv_ring_buffer_debug_info outbound; 322 int ret; 323 324 if (!hv_dev->channel) 325 return -ENODEV; 326 327 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 328 &outbound); 329 if (ret < 0) 330 return ret; 331 return sprintf(buf, "%d\n", outbound.current_read_index); 332 } 333 static DEVICE_ATTR_RO(out_read_index); 334 335 static ssize_t out_write_index_show(struct device *dev, 336 struct device_attribute *dev_attr, 337 char *buf) 338 { 339 struct hv_device *hv_dev = device_to_hv_device(dev); 340 struct hv_ring_buffer_debug_info outbound; 341 int ret; 342 343 if (!hv_dev->channel) 344 return -ENODEV; 345 346 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 347 &outbound); 348 if (ret < 0) 349 return ret; 350 return sprintf(buf, "%d\n", outbound.current_write_index); 351 } 352 static DEVICE_ATTR_RO(out_write_index); 353 354 static ssize_t out_read_bytes_avail_show(struct device *dev, 355 struct device_attribute *dev_attr, 356 char *buf) 357 { 358 struct hv_device *hv_dev = device_to_hv_device(dev); 359 struct hv_ring_buffer_debug_info outbound; 360 int ret; 361 362 if (!hv_dev->channel) 363 return -ENODEV; 364 365 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 366 &outbound); 367 if (ret < 0) 368 return ret; 369 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 370 } 371 static DEVICE_ATTR_RO(out_read_bytes_avail); 372 373 static ssize_t out_write_bytes_avail_show(struct device *dev, 374 struct device_attribute *dev_attr, 375 char *buf) 376 { 377 struct hv_device *hv_dev = device_to_hv_device(dev); 378 struct hv_ring_buffer_debug_info outbound; 379 int ret; 380 381 if (!hv_dev->channel) 382 return -ENODEV; 383 384 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 385 &outbound); 386 if (ret < 0) 387 return ret; 388 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 389 } 390 static DEVICE_ATTR_RO(out_write_bytes_avail); 391 392 static ssize_t in_intr_mask_show(struct device *dev, 393 struct device_attribute *dev_attr, char *buf) 394 { 395 struct hv_device *hv_dev = device_to_hv_device(dev); 396 struct hv_ring_buffer_debug_info inbound; 397 int ret; 398 399 if (!hv_dev->channel) 400 return -ENODEV; 401 402 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 403 if (ret < 0) 404 return ret; 405 406 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 407 } 408 static DEVICE_ATTR_RO(in_intr_mask); 409 410 static ssize_t in_read_index_show(struct device *dev, 411 struct device_attribute *dev_attr, char *buf) 412 { 413 struct hv_device *hv_dev = device_to_hv_device(dev); 414 struct hv_ring_buffer_debug_info inbound; 415 int ret; 416 417 if (!hv_dev->channel) 418 return -ENODEV; 419 420 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 421 if (ret < 0) 422 return ret; 423 424 return sprintf(buf, "%d\n", inbound.current_read_index); 425 } 426 static DEVICE_ATTR_RO(in_read_index); 427 428 static ssize_t in_write_index_show(struct device *dev, 429 struct device_attribute *dev_attr, char *buf) 430 { 431 struct hv_device *hv_dev = device_to_hv_device(dev); 432 struct hv_ring_buffer_debug_info inbound; 433 int ret; 434 435 if (!hv_dev->channel) 436 return -ENODEV; 437 438 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 439 if (ret < 0) 440 return ret; 441 442 return sprintf(buf, "%d\n", inbound.current_write_index); 443 } 444 static DEVICE_ATTR_RO(in_write_index); 445 446 static ssize_t in_read_bytes_avail_show(struct device *dev, 447 struct device_attribute *dev_attr, 448 char *buf) 449 { 450 struct hv_device *hv_dev = device_to_hv_device(dev); 451 struct hv_ring_buffer_debug_info inbound; 452 int ret; 453 454 if (!hv_dev->channel) 455 return -ENODEV; 456 457 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 458 if (ret < 0) 459 return ret; 460 461 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 462 } 463 static DEVICE_ATTR_RO(in_read_bytes_avail); 464 465 static ssize_t in_write_bytes_avail_show(struct device *dev, 466 struct device_attribute *dev_attr, 467 char *buf) 468 { 469 struct hv_device *hv_dev = device_to_hv_device(dev); 470 struct hv_ring_buffer_debug_info inbound; 471 int ret; 472 473 if (!hv_dev->channel) 474 return -ENODEV; 475 476 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 477 if (ret < 0) 478 return ret; 479 480 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 481 } 482 static DEVICE_ATTR_RO(in_write_bytes_avail); 483 484 static ssize_t channel_vp_mapping_show(struct device *dev, 485 struct device_attribute *dev_attr, 486 char *buf) 487 { 488 struct hv_device *hv_dev = device_to_hv_device(dev); 489 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 490 unsigned long flags; 491 int buf_size = PAGE_SIZE, n_written, tot_written; 492 struct list_head *cur; 493 494 if (!channel) 495 return -ENODEV; 496 497 tot_written = snprintf(buf, buf_size, "%u:%u\n", 498 channel->offermsg.child_relid, channel->target_cpu); 499 500 spin_lock_irqsave(&channel->lock, flags); 501 502 list_for_each(cur, &channel->sc_list) { 503 if (tot_written >= buf_size - 1) 504 break; 505 506 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 507 n_written = scnprintf(buf + tot_written, 508 buf_size - tot_written, 509 "%u:%u\n", 510 cur_sc->offermsg.child_relid, 511 cur_sc->target_cpu); 512 tot_written += n_written; 513 } 514 515 spin_unlock_irqrestore(&channel->lock, flags); 516 517 return tot_written; 518 } 519 static DEVICE_ATTR_RO(channel_vp_mapping); 520 521 static ssize_t vendor_show(struct device *dev, 522 struct device_attribute *dev_attr, 523 char *buf) 524 { 525 struct hv_device *hv_dev = device_to_hv_device(dev); 526 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 527 } 528 static DEVICE_ATTR_RO(vendor); 529 530 static ssize_t device_show(struct device *dev, 531 struct device_attribute *dev_attr, 532 char *buf) 533 { 534 struct hv_device *hv_dev = device_to_hv_device(dev); 535 return sprintf(buf, "0x%x\n", hv_dev->device_id); 536 } 537 static DEVICE_ATTR_RO(device); 538 539 static ssize_t driver_override_store(struct device *dev, 540 struct device_attribute *attr, 541 const char *buf, size_t count) 542 { 543 struct hv_device *hv_dev = device_to_hv_device(dev); 544 char *driver_override, *old, *cp; 545 546 /* We need to keep extra room for a newline */ 547 if (count >= (PAGE_SIZE - 1)) 548 return -EINVAL; 549 550 driver_override = kstrndup(buf, count, GFP_KERNEL); 551 if (!driver_override) 552 return -ENOMEM; 553 554 cp = strchr(driver_override, '\n'); 555 if (cp) 556 *cp = '\0'; 557 558 device_lock(dev); 559 old = hv_dev->driver_override; 560 if (strlen(driver_override)) { 561 hv_dev->driver_override = driver_override; 562 } else { 563 kfree(driver_override); 564 hv_dev->driver_override = NULL; 565 } 566 device_unlock(dev); 567 568 kfree(old); 569 570 return count; 571 } 572 573 static ssize_t driver_override_show(struct device *dev, 574 struct device_attribute *attr, char *buf) 575 { 576 struct hv_device *hv_dev = device_to_hv_device(dev); 577 ssize_t len; 578 579 device_lock(dev); 580 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 581 device_unlock(dev); 582 583 return len; 584 } 585 static DEVICE_ATTR_RW(driver_override); 586 587 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 588 static struct attribute *vmbus_dev_attrs[] = { 589 &dev_attr_id.attr, 590 &dev_attr_state.attr, 591 &dev_attr_monitor_id.attr, 592 &dev_attr_class_id.attr, 593 &dev_attr_device_id.attr, 594 &dev_attr_modalias.attr, 595 #ifdef CONFIG_NUMA 596 &dev_attr_numa_node.attr, 597 #endif 598 &dev_attr_server_monitor_pending.attr, 599 &dev_attr_client_monitor_pending.attr, 600 &dev_attr_server_monitor_latency.attr, 601 &dev_attr_client_monitor_latency.attr, 602 &dev_attr_server_monitor_conn_id.attr, 603 &dev_attr_client_monitor_conn_id.attr, 604 &dev_attr_out_intr_mask.attr, 605 &dev_attr_out_read_index.attr, 606 &dev_attr_out_write_index.attr, 607 &dev_attr_out_read_bytes_avail.attr, 608 &dev_attr_out_write_bytes_avail.attr, 609 &dev_attr_in_intr_mask.attr, 610 &dev_attr_in_read_index.attr, 611 &dev_attr_in_write_index.attr, 612 &dev_attr_in_read_bytes_avail.attr, 613 &dev_attr_in_write_bytes_avail.attr, 614 &dev_attr_channel_vp_mapping.attr, 615 &dev_attr_vendor.attr, 616 &dev_attr_device.attr, 617 &dev_attr_driver_override.attr, 618 NULL, 619 }; 620 621 /* 622 * Device-level attribute_group callback function. Returns the permission for 623 * each attribute, and returns 0 if an attribute is not visible. 624 */ 625 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 626 struct attribute *attr, int idx) 627 { 628 struct device *dev = kobj_to_dev(kobj); 629 const struct hv_device *hv_dev = device_to_hv_device(dev); 630 631 /* Hide the monitor attributes if the monitor mechanism is not used. */ 632 if (!hv_dev->channel->offermsg.monitor_allocated && 633 (attr == &dev_attr_monitor_id.attr || 634 attr == &dev_attr_server_monitor_pending.attr || 635 attr == &dev_attr_client_monitor_pending.attr || 636 attr == &dev_attr_server_monitor_latency.attr || 637 attr == &dev_attr_client_monitor_latency.attr || 638 attr == &dev_attr_server_monitor_conn_id.attr || 639 attr == &dev_attr_client_monitor_conn_id.attr)) 640 return 0; 641 642 return attr->mode; 643 } 644 645 static const struct attribute_group vmbus_dev_group = { 646 .attrs = vmbus_dev_attrs, 647 .is_visible = vmbus_dev_attr_is_visible 648 }; 649 __ATTRIBUTE_GROUPS(vmbus_dev); 650 651 /* 652 * vmbus_uevent - add uevent for our device 653 * 654 * This routine is invoked when a device is added or removed on the vmbus to 655 * generate a uevent to udev in the userspace. The udev will then look at its 656 * rule and the uevent generated here to load the appropriate driver 657 * 658 * The alias string will be of the form vmbus:guid where guid is the string 659 * representation of the device guid (each byte of the guid will be 660 * represented with two hex characters. 661 */ 662 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 663 { 664 struct hv_device *dev = device_to_hv_device(device); 665 int ret; 666 char alias_name[VMBUS_ALIAS_LEN + 1]; 667 668 print_alias_name(dev, alias_name); 669 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 670 return ret; 671 } 672 673 static const struct hv_vmbus_device_id * 674 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 675 { 676 if (id == NULL) 677 return NULL; /* empty device table */ 678 679 for (; !guid_is_null(&id->guid); id++) 680 if (guid_equal(&id->guid, guid)) 681 return id; 682 683 return NULL; 684 } 685 686 static const struct hv_vmbus_device_id * 687 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 688 { 689 const struct hv_vmbus_device_id *id = NULL; 690 struct vmbus_dynid *dynid; 691 692 spin_lock(&drv->dynids.lock); 693 list_for_each_entry(dynid, &drv->dynids.list, node) { 694 if (guid_equal(&dynid->id.guid, guid)) { 695 id = &dynid->id; 696 break; 697 } 698 } 699 spin_unlock(&drv->dynids.lock); 700 701 return id; 702 } 703 704 static const struct hv_vmbus_device_id vmbus_device_null; 705 706 /* 707 * Return a matching hv_vmbus_device_id pointer. 708 * If there is no match, return NULL. 709 */ 710 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 711 struct hv_device *dev) 712 { 713 const guid_t *guid = &dev->dev_type; 714 const struct hv_vmbus_device_id *id; 715 716 /* When driver_override is set, only bind to the matching driver */ 717 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 718 return NULL; 719 720 /* Look at the dynamic ids first, before the static ones */ 721 id = hv_vmbus_dynid_match(drv, guid); 722 if (!id) 723 id = hv_vmbus_dev_match(drv->id_table, guid); 724 725 /* driver_override will always match, send a dummy id */ 726 if (!id && dev->driver_override) 727 id = &vmbus_device_null; 728 729 return id; 730 } 731 732 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 733 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 734 { 735 struct vmbus_dynid *dynid; 736 737 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 738 if (!dynid) 739 return -ENOMEM; 740 741 dynid->id.guid = *guid; 742 743 spin_lock(&drv->dynids.lock); 744 list_add_tail(&dynid->node, &drv->dynids.list); 745 spin_unlock(&drv->dynids.lock); 746 747 return driver_attach(&drv->driver); 748 } 749 750 static void vmbus_free_dynids(struct hv_driver *drv) 751 { 752 struct vmbus_dynid *dynid, *n; 753 754 spin_lock(&drv->dynids.lock); 755 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 756 list_del(&dynid->node); 757 kfree(dynid); 758 } 759 spin_unlock(&drv->dynids.lock); 760 } 761 762 /* 763 * store_new_id - sysfs frontend to vmbus_add_dynid() 764 * 765 * Allow GUIDs to be added to an existing driver via sysfs. 766 */ 767 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 768 size_t count) 769 { 770 struct hv_driver *drv = drv_to_hv_drv(driver); 771 guid_t guid; 772 ssize_t retval; 773 774 retval = guid_parse(buf, &guid); 775 if (retval) 776 return retval; 777 778 if (hv_vmbus_dynid_match(drv, &guid)) 779 return -EEXIST; 780 781 retval = vmbus_add_dynid(drv, &guid); 782 if (retval) 783 return retval; 784 return count; 785 } 786 static DRIVER_ATTR_WO(new_id); 787 788 /* 789 * store_remove_id - remove a PCI device ID from this driver 790 * 791 * Removes a dynamic pci device ID to this driver. 792 */ 793 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 794 size_t count) 795 { 796 struct hv_driver *drv = drv_to_hv_drv(driver); 797 struct vmbus_dynid *dynid, *n; 798 guid_t guid; 799 ssize_t retval; 800 801 retval = guid_parse(buf, &guid); 802 if (retval) 803 return retval; 804 805 retval = -ENODEV; 806 spin_lock(&drv->dynids.lock); 807 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 808 struct hv_vmbus_device_id *id = &dynid->id; 809 810 if (guid_equal(&id->guid, &guid)) { 811 list_del(&dynid->node); 812 kfree(dynid); 813 retval = count; 814 break; 815 } 816 } 817 spin_unlock(&drv->dynids.lock); 818 819 return retval; 820 } 821 static DRIVER_ATTR_WO(remove_id); 822 823 static struct attribute *vmbus_drv_attrs[] = { 824 &driver_attr_new_id.attr, 825 &driver_attr_remove_id.attr, 826 NULL, 827 }; 828 ATTRIBUTE_GROUPS(vmbus_drv); 829 830 831 /* 832 * vmbus_match - Attempt to match the specified device to the specified driver 833 */ 834 static int vmbus_match(struct device *device, struct device_driver *driver) 835 { 836 struct hv_driver *drv = drv_to_hv_drv(driver); 837 struct hv_device *hv_dev = device_to_hv_device(device); 838 839 /* The hv_sock driver handles all hv_sock offers. */ 840 if (is_hvsock_channel(hv_dev->channel)) 841 return drv->hvsock; 842 843 if (hv_vmbus_get_id(drv, hv_dev)) 844 return 1; 845 846 return 0; 847 } 848 849 /* 850 * vmbus_probe - Add the new vmbus's child device 851 */ 852 static int vmbus_probe(struct device *child_device) 853 { 854 int ret = 0; 855 struct hv_driver *drv = 856 drv_to_hv_drv(child_device->driver); 857 struct hv_device *dev = device_to_hv_device(child_device); 858 const struct hv_vmbus_device_id *dev_id; 859 860 dev_id = hv_vmbus_get_id(drv, dev); 861 if (drv->probe) { 862 ret = drv->probe(dev, dev_id); 863 if (ret != 0) 864 pr_err("probe failed for device %s (%d)\n", 865 dev_name(child_device), ret); 866 867 } else { 868 pr_err("probe not set for driver %s\n", 869 dev_name(child_device)); 870 ret = -ENODEV; 871 } 872 return ret; 873 } 874 875 /* 876 * vmbus_remove - Remove a vmbus device 877 */ 878 static int vmbus_remove(struct device *child_device) 879 { 880 struct hv_driver *drv; 881 struct hv_device *dev = device_to_hv_device(child_device); 882 883 if (child_device->driver) { 884 drv = drv_to_hv_drv(child_device->driver); 885 if (drv->remove) 886 drv->remove(dev); 887 } 888 889 return 0; 890 } 891 892 893 /* 894 * vmbus_shutdown - Shutdown a vmbus device 895 */ 896 static void vmbus_shutdown(struct device *child_device) 897 { 898 struct hv_driver *drv; 899 struct hv_device *dev = device_to_hv_device(child_device); 900 901 902 /* The device may not be attached yet */ 903 if (!child_device->driver) 904 return; 905 906 drv = drv_to_hv_drv(child_device->driver); 907 908 if (drv->shutdown) 909 drv->shutdown(dev); 910 } 911 912 913 /* 914 * vmbus_device_release - Final callback release of the vmbus child device 915 */ 916 static void vmbus_device_release(struct device *device) 917 { 918 struct hv_device *hv_dev = device_to_hv_device(device); 919 struct vmbus_channel *channel = hv_dev->channel; 920 921 mutex_lock(&vmbus_connection.channel_mutex); 922 hv_process_channel_removal(channel); 923 mutex_unlock(&vmbus_connection.channel_mutex); 924 kfree(hv_dev); 925 } 926 927 /* The one and only one */ 928 static struct bus_type hv_bus = { 929 .name = "vmbus", 930 .match = vmbus_match, 931 .shutdown = vmbus_shutdown, 932 .remove = vmbus_remove, 933 .probe = vmbus_probe, 934 .uevent = vmbus_uevent, 935 .dev_groups = vmbus_dev_groups, 936 .drv_groups = vmbus_drv_groups, 937 }; 938 939 struct onmessage_work_context { 940 struct work_struct work; 941 struct hv_message msg; 942 }; 943 944 static void vmbus_onmessage_work(struct work_struct *work) 945 { 946 struct onmessage_work_context *ctx; 947 948 /* Do not process messages if we're in DISCONNECTED state */ 949 if (vmbus_connection.conn_state == DISCONNECTED) 950 return; 951 952 ctx = container_of(work, struct onmessage_work_context, 953 work); 954 vmbus_onmessage(&ctx->msg); 955 kfree(ctx); 956 } 957 958 static void hv_process_timer_expiration(struct hv_message *msg, 959 struct hv_per_cpu_context *hv_cpu) 960 { 961 struct clock_event_device *dev = hv_cpu->clk_evt; 962 963 if (dev->event_handler) 964 dev->event_handler(dev); 965 966 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 967 } 968 969 void vmbus_on_msg_dpc(unsigned long data) 970 { 971 struct hv_per_cpu_context *hv_cpu = (void *)data; 972 void *page_addr = hv_cpu->synic_message_page; 973 struct hv_message *msg = (struct hv_message *)page_addr + 974 VMBUS_MESSAGE_SINT; 975 struct vmbus_channel_message_header *hdr; 976 const struct vmbus_channel_message_table_entry *entry; 977 struct onmessage_work_context *ctx; 978 u32 message_type = msg->header.message_type; 979 980 if (message_type == HVMSG_NONE) 981 /* no msg */ 982 return; 983 984 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 985 986 trace_vmbus_on_msg_dpc(hdr); 987 988 if (hdr->msgtype >= CHANNELMSG_COUNT) { 989 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 990 goto msg_handled; 991 } 992 993 entry = &channel_message_table[hdr->msgtype]; 994 if (entry->handler_type == VMHT_BLOCKING) { 995 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 996 if (ctx == NULL) 997 return; 998 999 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1000 memcpy(&ctx->msg, msg, sizeof(*msg)); 1001 1002 /* 1003 * The host can generate a rescind message while we 1004 * may still be handling the original offer. We deal with 1005 * this condition by ensuring the processing is done on the 1006 * same CPU. 1007 */ 1008 switch (hdr->msgtype) { 1009 case CHANNELMSG_RESCIND_CHANNELOFFER: 1010 /* 1011 * If we are handling the rescind message; 1012 * schedule the work on the global work queue. 1013 */ 1014 schedule_work_on(vmbus_connection.connect_cpu, 1015 &ctx->work); 1016 break; 1017 1018 case CHANNELMSG_OFFERCHANNEL: 1019 atomic_inc(&vmbus_connection.offer_in_progress); 1020 queue_work_on(vmbus_connection.connect_cpu, 1021 vmbus_connection.work_queue, 1022 &ctx->work); 1023 break; 1024 1025 default: 1026 queue_work(vmbus_connection.work_queue, &ctx->work); 1027 } 1028 } else 1029 entry->message_handler(hdr); 1030 1031 msg_handled: 1032 vmbus_signal_eom(msg, message_type); 1033 } 1034 1035 1036 /* 1037 * Direct callback for channels using other deferred processing 1038 */ 1039 static void vmbus_channel_isr(struct vmbus_channel *channel) 1040 { 1041 void (*callback_fn)(void *); 1042 1043 callback_fn = READ_ONCE(channel->onchannel_callback); 1044 if (likely(callback_fn != NULL)) 1045 (*callback_fn)(channel->channel_callback_context); 1046 } 1047 1048 /* 1049 * Schedule all channels with events pending 1050 */ 1051 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1052 { 1053 unsigned long *recv_int_page; 1054 u32 maxbits, relid; 1055 1056 if (vmbus_proto_version < VERSION_WIN8) { 1057 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1058 recv_int_page = vmbus_connection.recv_int_page; 1059 } else { 1060 /* 1061 * When the host is win8 and beyond, the event page 1062 * can be directly checked to get the id of the channel 1063 * that has the interrupt pending. 1064 */ 1065 void *page_addr = hv_cpu->synic_event_page; 1066 union hv_synic_event_flags *event 1067 = (union hv_synic_event_flags *)page_addr + 1068 VMBUS_MESSAGE_SINT; 1069 1070 maxbits = HV_EVENT_FLAGS_COUNT; 1071 recv_int_page = event->flags; 1072 } 1073 1074 if (unlikely(!recv_int_page)) 1075 return; 1076 1077 for_each_set_bit(relid, recv_int_page, maxbits) { 1078 struct vmbus_channel *channel; 1079 1080 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1081 continue; 1082 1083 /* Special case - vmbus channel protocol msg */ 1084 if (relid == 0) 1085 continue; 1086 1087 rcu_read_lock(); 1088 1089 /* Find channel based on relid */ 1090 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 1091 if (channel->offermsg.child_relid != relid) 1092 continue; 1093 1094 if (channel->rescind) 1095 continue; 1096 1097 trace_vmbus_chan_sched(channel); 1098 1099 ++channel->interrupts; 1100 1101 switch (channel->callback_mode) { 1102 case HV_CALL_ISR: 1103 vmbus_channel_isr(channel); 1104 break; 1105 1106 case HV_CALL_BATCHED: 1107 hv_begin_read(&channel->inbound); 1108 /* fallthrough */ 1109 case HV_CALL_DIRECT: 1110 tasklet_schedule(&channel->callback_event); 1111 } 1112 } 1113 1114 rcu_read_unlock(); 1115 } 1116 } 1117 1118 static void vmbus_isr(void) 1119 { 1120 struct hv_per_cpu_context *hv_cpu 1121 = this_cpu_ptr(hv_context.cpu_context); 1122 void *page_addr = hv_cpu->synic_event_page; 1123 struct hv_message *msg; 1124 union hv_synic_event_flags *event; 1125 bool handled = false; 1126 1127 if (unlikely(page_addr == NULL)) 1128 return; 1129 1130 event = (union hv_synic_event_flags *)page_addr + 1131 VMBUS_MESSAGE_SINT; 1132 /* 1133 * Check for events before checking for messages. This is the order 1134 * in which events and messages are checked in Windows guests on 1135 * Hyper-V, and the Windows team suggested we do the same. 1136 */ 1137 1138 if ((vmbus_proto_version == VERSION_WS2008) || 1139 (vmbus_proto_version == VERSION_WIN7)) { 1140 1141 /* Since we are a child, we only need to check bit 0 */ 1142 if (sync_test_and_clear_bit(0, event->flags)) 1143 handled = true; 1144 } else { 1145 /* 1146 * Our host is win8 or above. The signaling mechanism 1147 * has changed and we can directly look at the event page. 1148 * If bit n is set then we have an interrup on the channel 1149 * whose id is n. 1150 */ 1151 handled = true; 1152 } 1153 1154 if (handled) 1155 vmbus_chan_sched(hv_cpu); 1156 1157 page_addr = hv_cpu->synic_message_page; 1158 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1159 1160 /* Check if there are actual msgs to be processed */ 1161 if (msg->header.message_type != HVMSG_NONE) { 1162 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 1163 hv_process_timer_expiration(msg, hv_cpu); 1164 else 1165 tasklet_schedule(&hv_cpu->msg_dpc); 1166 } 1167 1168 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1169 } 1170 1171 /* 1172 * Boolean to control whether to report panic messages over Hyper-V. 1173 * 1174 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg 1175 */ 1176 static int sysctl_record_panic_msg = 1; 1177 1178 /* 1179 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1180 * buffer and call into Hyper-V to transfer the data. 1181 */ 1182 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1183 enum kmsg_dump_reason reason) 1184 { 1185 size_t bytes_written; 1186 phys_addr_t panic_pa; 1187 1188 /* We are only interested in panics. */ 1189 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1190 return; 1191 1192 panic_pa = virt_to_phys(hv_panic_page); 1193 1194 /* 1195 * Write dump contents to the page. No need to synchronize; panic should 1196 * be single-threaded. 1197 */ 1198 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE, 1199 &bytes_written); 1200 if (bytes_written) 1201 hyperv_report_panic_msg(panic_pa, bytes_written); 1202 } 1203 1204 static struct kmsg_dumper hv_kmsg_dumper = { 1205 .dump = hv_kmsg_dump, 1206 }; 1207 1208 static struct ctl_table_header *hv_ctl_table_hdr; 1209 static int zero; 1210 static int one = 1; 1211 1212 /* 1213 * sysctl option to allow the user to control whether kmsg data should be 1214 * reported to Hyper-V on panic. 1215 */ 1216 static struct ctl_table hv_ctl_table[] = { 1217 { 1218 .procname = "hyperv_record_panic_msg", 1219 .data = &sysctl_record_panic_msg, 1220 .maxlen = sizeof(int), 1221 .mode = 0644, 1222 .proc_handler = proc_dointvec_minmax, 1223 .extra1 = &zero, 1224 .extra2 = &one 1225 }, 1226 {} 1227 }; 1228 1229 static struct ctl_table hv_root_table[] = { 1230 { 1231 .procname = "kernel", 1232 .mode = 0555, 1233 .child = hv_ctl_table 1234 }, 1235 {} 1236 }; 1237 1238 /* 1239 * vmbus_bus_init -Main vmbus driver initialization routine. 1240 * 1241 * Here, we 1242 * - initialize the vmbus driver context 1243 * - invoke the vmbus hv main init routine 1244 * - retrieve the channel offers 1245 */ 1246 static int vmbus_bus_init(void) 1247 { 1248 int ret; 1249 1250 /* Hypervisor initialization...setup hypercall page..etc */ 1251 ret = hv_init(); 1252 if (ret != 0) { 1253 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1254 return ret; 1255 } 1256 1257 ret = bus_register(&hv_bus); 1258 if (ret) 1259 return ret; 1260 1261 hv_setup_vmbus_irq(vmbus_isr); 1262 1263 ret = hv_synic_alloc(); 1264 if (ret) 1265 goto err_alloc; 1266 /* 1267 * Initialize the per-cpu interrupt state and 1268 * connect to the host. 1269 */ 1270 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1271 hv_synic_init, hv_synic_cleanup); 1272 if (ret < 0) 1273 goto err_alloc; 1274 hyperv_cpuhp_online = ret; 1275 1276 ret = vmbus_connect(); 1277 if (ret) 1278 goto err_connect; 1279 1280 /* 1281 * Only register if the crash MSRs are available 1282 */ 1283 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1284 u64 hyperv_crash_ctl; 1285 /* 1286 * Sysctl registration is not fatal, since by default 1287 * reporting is enabled. 1288 */ 1289 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1290 if (!hv_ctl_table_hdr) 1291 pr_err("Hyper-V: sysctl table register error"); 1292 1293 /* 1294 * Register for panic kmsg callback only if the right 1295 * capability is supported by the hypervisor. 1296 */ 1297 hv_get_crash_ctl(hyperv_crash_ctl); 1298 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) { 1299 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL); 1300 if (hv_panic_page) { 1301 ret = kmsg_dump_register(&hv_kmsg_dumper); 1302 if (ret) 1303 pr_err("Hyper-V: kmsg dump register " 1304 "error 0x%x\n", ret); 1305 } else 1306 pr_err("Hyper-V: panic message page memory " 1307 "allocation failed"); 1308 } 1309 1310 register_die_notifier(&hyperv_die_block); 1311 atomic_notifier_chain_register(&panic_notifier_list, 1312 &hyperv_panic_block); 1313 } 1314 1315 vmbus_request_offers(); 1316 1317 return 0; 1318 1319 err_connect: 1320 cpuhp_remove_state(hyperv_cpuhp_online); 1321 err_alloc: 1322 hv_synic_free(); 1323 hv_remove_vmbus_irq(); 1324 1325 bus_unregister(&hv_bus); 1326 free_page((unsigned long)hv_panic_page); 1327 unregister_sysctl_table(hv_ctl_table_hdr); 1328 hv_ctl_table_hdr = NULL; 1329 return ret; 1330 } 1331 1332 /** 1333 * __vmbus_child_driver_register() - Register a vmbus's driver 1334 * @hv_driver: Pointer to driver structure you want to register 1335 * @owner: owner module of the drv 1336 * @mod_name: module name string 1337 * 1338 * Registers the given driver with Linux through the 'driver_register()' call 1339 * and sets up the hyper-v vmbus handling for this driver. 1340 * It will return the state of the 'driver_register()' call. 1341 * 1342 */ 1343 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1344 { 1345 int ret; 1346 1347 pr_info("registering driver %s\n", hv_driver->name); 1348 1349 ret = vmbus_exists(); 1350 if (ret < 0) 1351 return ret; 1352 1353 hv_driver->driver.name = hv_driver->name; 1354 hv_driver->driver.owner = owner; 1355 hv_driver->driver.mod_name = mod_name; 1356 hv_driver->driver.bus = &hv_bus; 1357 1358 spin_lock_init(&hv_driver->dynids.lock); 1359 INIT_LIST_HEAD(&hv_driver->dynids.list); 1360 1361 ret = driver_register(&hv_driver->driver); 1362 1363 return ret; 1364 } 1365 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1366 1367 /** 1368 * vmbus_driver_unregister() - Unregister a vmbus's driver 1369 * @hv_driver: Pointer to driver structure you want to 1370 * un-register 1371 * 1372 * Un-register the given driver that was previous registered with a call to 1373 * vmbus_driver_register() 1374 */ 1375 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1376 { 1377 pr_info("unregistering driver %s\n", hv_driver->name); 1378 1379 if (!vmbus_exists()) { 1380 driver_unregister(&hv_driver->driver); 1381 vmbus_free_dynids(hv_driver); 1382 } 1383 } 1384 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1385 1386 1387 /* 1388 * Called when last reference to channel is gone. 1389 */ 1390 static void vmbus_chan_release(struct kobject *kobj) 1391 { 1392 struct vmbus_channel *channel 1393 = container_of(kobj, struct vmbus_channel, kobj); 1394 1395 kfree_rcu(channel, rcu); 1396 } 1397 1398 struct vmbus_chan_attribute { 1399 struct attribute attr; 1400 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1401 ssize_t (*store)(struct vmbus_channel *chan, 1402 const char *buf, size_t count); 1403 }; 1404 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1405 struct vmbus_chan_attribute chan_attr_##_name \ 1406 = __ATTR(_name, _mode, _show, _store) 1407 #define VMBUS_CHAN_ATTR_RW(_name) \ 1408 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1409 #define VMBUS_CHAN_ATTR_RO(_name) \ 1410 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1411 #define VMBUS_CHAN_ATTR_WO(_name) \ 1412 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1413 1414 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1415 struct attribute *attr, char *buf) 1416 { 1417 const struct vmbus_chan_attribute *attribute 1418 = container_of(attr, struct vmbus_chan_attribute, attr); 1419 struct vmbus_channel *chan 1420 = container_of(kobj, struct vmbus_channel, kobj); 1421 1422 if (!attribute->show) 1423 return -EIO; 1424 1425 return attribute->show(chan, buf); 1426 } 1427 1428 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1429 .show = vmbus_chan_attr_show, 1430 }; 1431 1432 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1433 { 1434 struct hv_ring_buffer_info *rbi = &channel->outbound; 1435 ssize_t ret; 1436 1437 mutex_lock(&rbi->ring_buffer_mutex); 1438 if (!rbi->ring_buffer) { 1439 mutex_unlock(&rbi->ring_buffer_mutex); 1440 return -EINVAL; 1441 } 1442 1443 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1444 mutex_unlock(&rbi->ring_buffer_mutex); 1445 return ret; 1446 } 1447 static VMBUS_CHAN_ATTR_RO(out_mask); 1448 1449 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1450 { 1451 struct hv_ring_buffer_info *rbi = &channel->inbound; 1452 ssize_t ret; 1453 1454 mutex_lock(&rbi->ring_buffer_mutex); 1455 if (!rbi->ring_buffer) { 1456 mutex_unlock(&rbi->ring_buffer_mutex); 1457 return -EINVAL; 1458 } 1459 1460 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1461 mutex_unlock(&rbi->ring_buffer_mutex); 1462 return ret; 1463 } 1464 static VMBUS_CHAN_ATTR_RO(in_mask); 1465 1466 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1467 { 1468 struct hv_ring_buffer_info *rbi = &channel->inbound; 1469 ssize_t ret; 1470 1471 mutex_lock(&rbi->ring_buffer_mutex); 1472 if (!rbi->ring_buffer) { 1473 mutex_unlock(&rbi->ring_buffer_mutex); 1474 return -EINVAL; 1475 } 1476 1477 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1478 mutex_unlock(&rbi->ring_buffer_mutex); 1479 return ret; 1480 } 1481 static VMBUS_CHAN_ATTR_RO(read_avail); 1482 1483 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1484 { 1485 struct hv_ring_buffer_info *rbi = &channel->outbound; 1486 ssize_t ret; 1487 1488 mutex_lock(&rbi->ring_buffer_mutex); 1489 if (!rbi->ring_buffer) { 1490 mutex_unlock(&rbi->ring_buffer_mutex); 1491 return -EINVAL; 1492 } 1493 1494 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1495 mutex_unlock(&rbi->ring_buffer_mutex); 1496 return ret; 1497 } 1498 static VMBUS_CHAN_ATTR_RO(write_avail); 1499 1500 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf) 1501 { 1502 return sprintf(buf, "%u\n", channel->target_cpu); 1503 } 1504 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1505 1506 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1507 char *buf) 1508 { 1509 return sprintf(buf, "%d\n", 1510 channel_pending(channel, 1511 vmbus_connection.monitor_pages[1])); 1512 } 1513 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1514 1515 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1516 char *buf) 1517 { 1518 return sprintf(buf, "%d\n", 1519 channel_latency(channel, 1520 vmbus_connection.monitor_pages[1])); 1521 } 1522 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1523 1524 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1525 { 1526 return sprintf(buf, "%llu\n", channel->interrupts); 1527 } 1528 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1529 1530 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1531 { 1532 return sprintf(buf, "%llu\n", channel->sig_events); 1533 } 1534 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1535 1536 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1537 char *buf) 1538 { 1539 return sprintf(buf, "%llu\n", 1540 (unsigned long long)channel->intr_in_full); 1541 } 1542 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1543 1544 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1545 char *buf) 1546 { 1547 return sprintf(buf, "%llu\n", 1548 (unsigned long long)channel->intr_out_empty); 1549 } 1550 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1551 1552 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1553 char *buf) 1554 { 1555 return sprintf(buf, "%llu\n", 1556 (unsigned long long)channel->out_full_first); 1557 } 1558 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1559 1560 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1561 char *buf) 1562 { 1563 return sprintf(buf, "%llu\n", 1564 (unsigned long long)channel->out_full_total); 1565 } 1566 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1567 1568 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1569 char *buf) 1570 { 1571 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1572 } 1573 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1574 1575 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1576 char *buf) 1577 { 1578 return sprintf(buf, "%u\n", 1579 channel->offermsg.offer.sub_channel_index); 1580 } 1581 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1582 1583 static struct attribute *vmbus_chan_attrs[] = { 1584 &chan_attr_out_mask.attr, 1585 &chan_attr_in_mask.attr, 1586 &chan_attr_read_avail.attr, 1587 &chan_attr_write_avail.attr, 1588 &chan_attr_cpu.attr, 1589 &chan_attr_pending.attr, 1590 &chan_attr_latency.attr, 1591 &chan_attr_interrupts.attr, 1592 &chan_attr_events.attr, 1593 &chan_attr_intr_in_full.attr, 1594 &chan_attr_intr_out_empty.attr, 1595 &chan_attr_out_full_first.attr, 1596 &chan_attr_out_full_total.attr, 1597 &chan_attr_monitor_id.attr, 1598 &chan_attr_subchannel_id.attr, 1599 NULL 1600 }; 1601 1602 /* 1603 * Channel-level attribute_group callback function. Returns the permission for 1604 * each attribute, and returns 0 if an attribute is not visible. 1605 */ 1606 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1607 struct attribute *attr, int idx) 1608 { 1609 const struct vmbus_channel *channel = 1610 container_of(kobj, struct vmbus_channel, kobj); 1611 1612 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1613 if (!channel->offermsg.monitor_allocated && 1614 (attr == &chan_attr_pending.attr || 1615 attr == &chan_attr_latency.attr || 1616 attr == &chan_attr_monitor_id.attr)) 1617 return 0; 1618 1619 return attr->mode; 1620 } 1621 1622 static struct attribute_group vmbus_chan_group = { 1623 .attrs = vmbus_chan_attrs, 1624 .is_visible = vmbus_chan_attr_is_visible 1625 }; 1626 1627 static struct kobj_type vmbus_chan_ktype = { 1628 .sysfs_ops = &vmbus_chan_sysfs_ops, 1629 .release = vmbus_chan_release, 1630 }; 1631 1632 /* 1633 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1634 */ 1635 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1636 { 1637 const struct device *device = &dev->device; 1638 struct kobject *kobj = &channel->kobj; 1639 u32 relid = channel->offermsg.child_relid; 1640 int ret; 1641 1642 kobj->kset = dev->channels_kset; 1643 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1644 "%u", relid); 1645 if (ret) 1646 return ret; 1647 1648 ret = sysfs_create_group(kobj, &vmbus_chan_group); 1649 1650 if (ret) { 1651 /* 1652 * The calling functions' error handling paths will cleanup the 1653 * empty channel directory. 1654 */ 1655 dev_err(device, "Unable to set up channel sysfs files\n"); 1656 return ret; 1657 } 1658 1659 kobject_uevent(kobj, KOBJ_ADD); 1660 1661 return 0; 1662 } 1663 1664 /* 1665 * vmbus_remove_channel_attr_group - remove the channel's attribute group 1666 */ 1667 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 1668 { 1669 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 1670 } 1671 1672 /* 1673 * vmbus_device_create - Creates and registers a new child device 1674 * on the vmbus. 1675 */ 1676 struct hv_device *vmbus_device_create(const guid_t *type, 1677 const guid_t *instance, 1678 struct vmbus_channel *channel) 1679 { 1680 struct hv_device *child_device_obj; 1681 1682 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1683 if (!child_device_obj) { 1684 pr_err("Unable to allocate device object for child device\n"); 1685 return NULL; 1686 } 1687 1688 child_device_obj->channel = channel; 1689 guid_copy(&child_device_obj->dev_type, type); 1690 guid_copy(&child_device_obj->dev_instance, instance); 1691 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1692 1693 return child_device_obj; 1694 } 1695 1696 /* 1697 * vmbus_device_register - Register the child device 1698 */ 1699 int vmbus_device_register(struct hv_device *child_device_obj) 1700 { 1701 struct kobject *kobj = &child_device_obj->device.kobj; 1702 int ret; 1703 1704 dev_set_name(&child_device_obj->device, "%pUl", 1705 child_device_obj->channel->offermsg.offer.if_instance.b); 1706 1707 child_device_obj->device.bus = &hv_bus; 1708 child_device_obj->device.parent = &hv_acpi_dev->dev; 1709 child_device_obj->device.release = vmbus_device_release; 1710 1711 /* 1712 * Register with the LDM. This will kick off the driver/device 1713 * binding...which will eventually call vmbus_match() and vmbus_probe() 1714 */ 1715 ret = device_register(&child_device_obj->device); 1716 if (ret) { 1717 pr_err("Unable to register child device\n"); 1718 return ret; 1719 } 1720 1721 child_device_obj->channels_kset = kset_create_and_add("channels", 1722 NULL, kobj); 1723 if (!child_device_obj->channels_kset) { 1724 ret = -ENOMEM; 1725 goto err_dev_unregister; 1726 } 1727 1728 ret = vmbus_add_channel_kobj(child_device_obj, 1729 child_device_obj->channel); 1730 if (ret) { 1731 pr_err("Unable to register primary channeln"); 1732 goto err_kset_unregister; 1733 } 1734 1735 return 0; 1736 1737 err_kset_unregister: 1738 kset_unregister(child_device_obj->channels_kset); 1739 1740 err_dev_unregister: 1741 device_unregister(&child_device_obj->device); 1742 return ret; 1743 } 1744 1745 /* 1746 * vmbus_device_unregister - Remove the specified child device 1747 * from the vmbus. 1748 */ 1749 void vmbus_device_unregister(struct hv_device *device_obj) 1750 { 1751 pr_debug("child device %s unregistered\n", 1752 dev_name(&device_obj->device)); 1753 1754 kset_unregister(device_obj->channels_kset); 1755 1756 /* 1757 * Kick off the process of unregistering the device. 1758 * This will call vmbus_remove() and eventually vmbus_device_release() 1759 */ 1760 device_unregister(&device_obj->device); 1761 } 1762 1763 1764 /* 1765 * VMBUS is an acpi enumerated device. Get the information we 1766 * need from DSDT. 1767 */ 1768 #define VTPM_BASE_ADDRESS 0xfed40000 1769 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1770 { 1771 resource_size_t start = 0; 1772 resource_size_t end = 0; 1773 struct resource *new_res; 1774 struct resource **old_res = &hyperv_mmio; 1775 struct resource **prev_res = NULL; 1776 1777 switch (res->type) { 1778 1779 /* 1780 * "Address" descriptors are for bus windows. Ignore 1781 * "memory" descriptors, which are for registers on 1782 * devices. 1783 */ 1784 case ACPI_RESOURCE_TYPE_ADDRESS32: 1785 start = res->data.address32.address.minimum; 1786 end = res->data.address32.address.maximum; 1787 break; 1788 1789 case ACPI_RESOURCE_TYPE_ADDRESS64: 1790 start = res->data.address64.address.minimum; 1791 end = res->data.address64.address.maximum; 1792 break; 1793 1794 default: 1795 /* Unused resource type */ 1796 return AE_OK; 1797 1798 } 1799 /* 1800 * Ignore ranges that are below 1MB, as they're not 1801 * necessary or useful here. 1802 */ 1803 if (end < 0x100000) 1804 return AE_OK; 1805 1806 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1807 if (!new_res) 1808 return AE_NO_MEMORY; 1809 1810 /* If this range overlaps the virtual TPM, truncate it. */ 1811 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1812 end = VTPM_BASE_ADDRESS; 1813 1814 new_res->name = "hyperv mmio"; 1815 new_res->flags = IORESOURCE_MEM; 1816 new_res->start = start; 1817 new_res->end = end; 1818 1819 /* 1820 * If two ranges are adjacent, merge them. 1821 */ 1822 do { 1823 if (!*old_res) { 1824 *old_res = new_res; 1825 break; 1826 } 1827 1828 if (((*old_res)->end + 1) == new_res->start) { 1829 (*old_res)->end = new_res->end; 1830 kfree(new_res); 1831 break; 1832 } 1833 1834 if ((*old_res)->start == new_res->end + 1) { 1835 (*old_res)->start = new_res->start; 1836 kfree(new_res); 1837 break; 1838 } 1839 1840 if ((*old_res)->start > new_res->end) { 1841 new_res->sibling = *old_res; 1842 if (prev_res) 1843 (*prev_res)->sibling = new_res; 1844 *old_res = new_res; 1845 break; 1846 } 1847 1848 prev_res = old_res; 1849 old_res = &(*old_res)->sibling; 1850 1851 } while (1); 1852 1853 return AE_OK; 1854 } 1855 1856 static int vmbus_acpi_remove(struct acpi_device *device) 1857 { 1858 struct resource *cur_res; 1859 struct resource *next_res; 1860 1861 if (hyperv_mmio) { 1862 if (fb_mmio) { 1863 __release_region(hyperv_mmio, fb_mmio->start, 1864 resource_size(fb_mmio)); 1865 fb_mmio = NULL; 1866 } 1867 1868 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1869 next_res = cur_res->sibling; 1870 kfree(cur_res); 1871 } 1872 } 1873 1874 return 0; 1875 } 1876 1877 static void vmbus_reserve_fb(void) 1878 { 1879 int size; 1880 /* 1881 * Make a claim for the frame buffer in the resource tree under the 1882 * first node, which will be the one below 4GB. The length seems to 1883 * be underreported, particularly in a Generation 1 VM. So start out 1884 * reserving a larger area and make it smaller until it succeeds. 1885 */ 1886 1887 if (screen_info.lfb_base) { 1888 if (efi_enabled(EFI_BOOT)) 1889 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1890 else 1891 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1892 1893 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1894 fb_mmio = __request_region(hyperv_mmio, 1895 screen_info.lfb_base, size, 1896 fb_mmio_name, 0); 1897 } 1898 } 1899 } 1900 1901 /** 1902 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1903 * @new: If successful, supplied a pointer to the 1904 * allocated MMIO space. 1905 * @device_obj: Identifies the caller 1906 * @min: Minimum guest physical address of the 1907 * allocation 1908 * @max: Maximum guest physical address 1909 * @size: Size of the range to be allocated 1910 * @align: Alignment of the range to be allocated 1911 * @fb_overlap_ok: Whether this allocation can be allowed 1912 * to overlap the video frame buffer. 1913 * 1914 * This function walks the resources granted to VMBus by the 1915 * _CRS object in the ACPI namespace underneath the parent 1916 * "bridge" whether that's a root PCI bus in the Generation 1 1917 * case or a Module Device in the Generation 2 case. It then 1918 * attempts to allocate from the global MMIO pool in a way that 1919 * matches the constraints supplied in these parameters and by 1920 * that _CRS. 1921 * 1922 * Return: 0 on success, -errno on failure 1923 */ 1924 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1925 resource_size_t min, resource_size_t max, 1926 resource_size_t size, resource_size_t align, 1927 bool fb_overlap_ok) 1928 { 1929 struct resource *iter, *shadow; 1930 resource_size_t range_min, range_max, start; 1931 const char *dev_n = dev_name(&device_obj->device); 1932 int retval; 1933 1934 retval = -ENXIO; 1935 down(&hyperv_mmio_lock); 1936 1937 /* 1938 * If overlaps with frame buffers are allowed, then first attempt to 1939 * make the allocation from within the reserved region. Because it 1940 * is already reserved, no shadow allocation is necessary. 1941 */ 1942 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1943 !(max < fb_mmio->start)) { 1944 1945 range_min = fb_mmio->start; 1946 range_max = fb_mmio->end; 1947 start = (range_min + align - 1) & ~(align - 1); 1948 for (; start + size - 1 <= range_max; start += align) { 1949 *new = request_mem_region_exclusive(start, size, dev_n); 1950 if (*new) { 1951 retval = 0; 1952 goto exit; 1953 } 1954 } 1955 } 1956 1957 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1958 if ((iter->start >= max) || (iter->end <= min)) 1959 continue; 1960 1961 range_min = iter->start; 1962 range_max = iter->end; 1963 start = (range_min + align - 1) & ~(align - 1); 1964 for (; start + size - 1 <= range_max; start += align) { 1965 shadow = __request_region(iter, start, size, NULL, 1966 IORESOURCE_BUSY); 1967 if (!shadow) 1968 continue; 1969 1970 *new = request_mem_region_exclusive(start, size, dev_n); 1971 if (*new) { 1972 shadow->name = (char *)*new; 1973 retval = 0; 1974 goto exit; 1975 } 1976 1977 __release_region(iter, start, size); 1978 } 1979 } 1980 1981 exit: 1982 up(&hyperv_mmio_lock); 1983 return retval; 1984 } 1985 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1986 1987 /** 1988 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1989 * @start: Base address of region to release. 1990 * @size: Size of the range to be allocated 1991 * 1992 * This function releases anything requested by 1993 * vmbus_mmio_allocate(). 1994 */ 1995 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1996 { 1997 struct resource *iter; 1998 1999 down(&hyperv_mmio_lock); 2000 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2001 if ((iter->start >= start + size) || (iter->end <= start)) 2002 continue; 2003 2004 __release_region(iter, start, size); 2005 } 2006 release_mem_region(start, size); 2007 up(&hyperv_mmio_lock); 2008 2009 } 2010 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2011 2012 static int vmbus_acpi_add(struct acpi_device *device) 2013 { 2014 acpi_status result; 2015 int ret_val = -ENODEV; 2016 struct acpi_device *ancestor; 2017 2018 hv_acpi_dev = device; 2019 2020 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2021 vmbus_walk_resources, NULL); 2022 2023 if (ACPI_FAILURE(result)) 2024 goto acpi_walk_err; 2025 /* 2026 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2027 * firmware) is the VMOD that has the mmio ranges. Get that. 2028 */ 2029 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2030 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2031 vmbus_walk_resources, NULL); 2032 2033 if (ACPI_FAILURE(result)) 2034 continue; 2035 if (hyperv_mmio) { 2036 vmbus_reserve_fb(); 2037 break; 2038 } 2039 } 2040 ret_val = 0; 2041 2042 acpi_walk_err: 2043 complete(&probe_event); 2044 if (ret_val) 2045 vmbus_acpi_remove(device); 2046 return ret_val; 2047 } 2048 2049 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2050 {"VMBUS", 0}, 2051 {"VMBus", 0}, 2052 {"", 0}, 2053 }; 2054 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2055 2056 static struct acpi_driver vmbus_acpi_driver = { 2057 .name = "vmbus", 2058 .ids = vmbus_acpi_device_ids, 2059 .ops = { 2060 .add = vmbus_acpi_add, 2061 .remove = vmbus_acpi_remove, 2062 }, 2063 }; 2064 2065 static void hv_kexec_handler(void) 2066 { 2067 hv_synic_clockevents_cleanup(); 2068 vmbus_initiate_unload(false); 2069 vmbus_connection.conn_state = DISCONNECTED; 2070 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2071 mb(); 2072 cpuhp_remove_state(hyperv_cpuhp_online); 2073 hyperv_cleanup(); 2074 }; 2075 2076 static void hv_crash_handler(struct pt_regs *regs) 2077 { 2078 vmbus_initiate_unload(true); 2079 /* 2080 * In crash handler we can't schedule synic cleanup for all CPUs, 2081 * doing the cleanup for current CPU only. This should be sufficient 2082 * for kdump. 2083 */ 2084 vmbus_connection.conn_state = DISCONNECTED; 2085 hv_synic_cleanup(smp_processor_id()); 2086 hyperv_cleanup(); 2087 }; 2088 2089 static int __init hv_acpi_init(void) 2090 { 2091 int ret, t; 2092 2093 if (!hv_is_hyperv_initialized()) 2094 return -ENODEV; 2095 2096 init_completion(&probe_event); 2097 2098 /* 2099 * Get ACPI resources first. 2100 */ 2101 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2102 2103 if (ret) 2104 return ret; 2105 2106 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2107 if (t == 0) { 2108 ret = -ETIMEDOUT; 2109 goto cleanup; 2110 } 2111 2112 ret = vmbus_bus_init(); 2113 if (ret) 2114 goto cleanup; 2115 2116 hv_setup_kexec_handler(hv_kexec_handler); 2117 hv_setup_crash_handler(hv_crash_handler); 2118 2119 return 0; 2120 2121 cleanup: 2122 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2123 hv_acpi_dev = NULL; 2124 return ret; 2125 } 2126 2127 static void __exit vmbus_exit(void) 2128 { 2129 int cpu; 2130 2131 hv_remove_kexec_handler(); 2132 hv_remove_crash_handler(); 2133 vmbus_connection.conn_state = DISCONNECTED; 2134 hv_synic_clockevents_cleanup(); 2135 vmbus_disconnect(); 2136 hv_remove_vmbus_irq(); 2137 for_each_online_cpu(cpu) { 2138 struct hv_per_cpu_context *hv_cpu 2139 = per_cpu_ptr(hv_context.cpu_context, cpu); 2140 2141 tasklet_kill(&hv_cpu->msg_dpc); 2142 } 2143 vmbus_free_channels(); 2144 2145 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2146 kmsg_dump_unregister(&hv_kmsg_dumper); 2147 unregister_die_notifier(&hyperv_die_block); 2148 atomic_notifier_chain_unregister(&panic_notifier_list, 2149 &hyperv_panic_block); 2150 } 2151 2152 free_page((unsigned long)hv_panic_page); 2153 unregister_sysctl_table(hv_ctl_table_hdr); 2154 hv_ctl_table_hdr = NULL; 2155 bus_unregister(&hv_bus); 2156 2157 cpuhp_remove_state(hyperv_cpuhp_online); 2158 hv_synic_free(); 2159 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2160 } 2161 2162 2163 MODULE_LICENSE("GPL"); 2164 2165 subsys_initcall(hv_acpi_init); 2166 module_exit(vmbus_exit); 2167