xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision 7bcae826)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47 
48 struct vmbus_dynid {
49 	struct list_head node;
50 	struct hv_vmbus_device_id id;
51 };
52 
53 static struct acpi_device  *hv_acpi_dev;
54 
55 static struct completion probe_event;
56 
57 static int hyperv_cpuhp_online;
58 
59 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
60 			      void *args)
61 {
62 	struct pt_regs *regs;
63 
64 	regs = current_pt_regs();
65 
66 	hyperv_report_panic(regs);
67 	return NOTIFY_DONE;
68 }
69 
70 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
71 			    void *args)
72 {
73 	struct die_args *die = (struct die_args *)args;
74 	struct pt_regs *regs = die->regs;
75 
76 	hyperv_report_panic(regs);
77 	return NOTIFY_DONE;
78 }
79 
80 static struct notifier_block hyperv_die_block = {
81 	.notifier_call = hyperv_die_event,
82 };
83 static struct notifier_block hyperv_panic_block = {
84 	.notifier_call = hyperv_panic_event,
85 };
86 
87 static const char *fb_mmio_name = "fb_range";
88 static struct resource *fb_mmio;
89 static struct resource *hyperv_mmio;
90 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
91 
92 static int vmbus_exists(void)
93 {
94 	if (hv_acpi_dev == NULL)
95 		return -ENODEV;
96 
97 	return 0;
98 }
99 
100 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
101 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
102 {
103 	int i;
104 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
105 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
106 }
107 
108 static u8 channel_monitor_group(struct vmbus_channel *channel)
109 {
110 	return (u8)channel->offermsg.monitorid / 32;
111 }
112 
113 static u8 channel_monitor_offset(struct vmbus_channel *channel)
114 {
115 	return (u8)channel->offermsg.monitorid % 32;
116 }
117 
118 static u32 channel_pending(struct vmbus_channel *channel,
119 			   struct hv_monitor_page *monitor_page)
120 {
121 	u8 monitor_group = channel_monitor_group(channel);
122 	return monitor_page->trigger_group[monitor_group].pending;
123 }
124 
125 static u32 channel_latency(struct vmbus_channel *channel,
126 			   struct hv_monitor_page *monitor_page)
127 {
128 	u8 monitor_group = channel_monitor_group(channel);
129 	u8 monitor_offset = channel_monitor_offset(channel);
130 	return monitor_page->latency[monitor_group][monitor_offset];
131 }
132 
133 static u32 channel_conn_id(struct vmbus_channel *channel,
134 			   struct hv_monitor_page *monitor_page)
135 {
136 	u8 monitor_group = channel_monitor_group(channel);
137 	u8 monitor_offset = channel_monitor_offset(channel);
138 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
139 }
140 
141 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
142 		       char *buf)
143 {
144 	struct hv_device *hv_dev = device_to_hv_device(dev);
145 
146 	if (!hv_dev->channel)
147 		return -ENODEV;
148 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
149 }
150 static DEVICE_ATTR_RO(id);
151 
152 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
153 			  char *buf)
154 {
155 	struct hv_device *hv_dev = device_to_hv_device(dev);
156 
157 	if (!hv_dev->channel)
158 		return -ENODEV;
159 	return sprintf(buf, "%d\n", hv_dev->channel->state);
160 }
161 static DEVICE_ATTR_RO(state);
162 
163 static ssize_t monitor_id_show(struct device *dev,
164 			       struct device_attribute *dev_attr, char *buf)
165 {
166 	struct hv_device *hv_dev = device_to_hv_device(dev);
167 
168 	if (!hv_dev->channel)
169 		return -ENODEV;
170 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
171 }
172 static DEVICE_ATTR_RO(monitor_id);
173 
174 static ssize_t class_id_show(struct device *dev,
175 			       struct device_attribute *dev_attr, char *buf)
176 {
177 	struct hv_device *hv_dev = device_to_hv_device(dev);
178 
179 	if (!hv_dev->channel)
180 		return -ENODEV;
181 	return sprintf(buf, "{%pUl}\n",
182 		       hv_dev->channel->offermsg.offer.if_type.b);
183 }
184 static DEVICE_ATTR_RO(class_id);
185 
186 static ssize_t device_id_show(struct device *dev,
187 			      struct device_attribute *dev_attr, char *buf)
188 {
189 	struct hv_device *hv_dev = device_to_hv_device(dev);
190 
191 	if (!hv_dev->channel)
192 		return -ENODEV;
193 	return sprintf(buf, "{%pUl}\n",
194 		       hv_dev->channel->offermsg.offer.if_instance.b);
195 }
196 static DEVICE_ATTR_RO(device_id);
197 
198 static ssize_t modalias_show(struct device *dev,
199 			     struct device_attribute *dev_attr, char *buf)
200 {
201 	struct hv_device *hv_dev = device_to_hv_device(dev);
202 	char alias_name[VMBUS_ALIAS_LEN + 1];
203 
204 	print_alias_name(hv_dev, alias_name);
205 	return sprintf(buf, "vmbus:%s\n", alias_name);
206 }
207 static DEVICE_ATTR_RO(modalias);
208 
209 static ssize_t server_monitor_pending_show(struct device *dev,
210 					   struct device_attribute *dev_attr,
211 					   char *buf)
212 {
213 	struct hv_device *hv_dev = device_to_hv_device(dev);
214 
215 	if (!hv_dev->channel)
216 		return -ENODEV;
217 	return sprintf(buf, "%d\n",
218 		       channel_pending(hv_dev->channel,
219 				       vmbus_connection.monitor_pages[1]));
220 }
221 static DEVICE_ATTR_RO(server_monitor_pending);
222 
223 static ssize_t client_monitor_pending_show(struct device *dev,
224 					   struct device_attribute *dev_attr,
225 					   char *buf)
226 {
227 	struct hv_device *hv_dev = device_to_hv_device(dev);
228 
229 	if (!hv_dev->channel)
230 		return -ENODEV;
231 	return sprintf(buf, "%d\n",
232 		       channel_pending(hv_dev->channel,
233 				       vmbus_connection.monitor_pages[1]));
234 }
235 static DEVICE_ATTR_RO(client_monitor_pending);
236 
237 static ssize_t server_monitor_latency_show(struct device *dev,
238 					   struct device_attribute *dev_attr,
239 					   char *buf)
240 {
241 	struct hv_device *hv_dev = device_to_hv_device(dev);
242 
243 	if (!hv_dev->channel)
244 		return -ENODEV;
245 	return sprintf(buf, "%d\n",
246 		       channel_latency(hv_dev->channel,
247 				       vmbus_connection.monitor_pages[0]));
248 }
249 static DEVICE_ATTR_RO(server_monitor_latency);
250 
251 static ssize_t client_monitor_latency_show(struct device *dev,
252 					   struct device_attribute *dev_attr,
253 					   char *buf)
254 {
255 	struct hv_device *hv_dev = device_to_hv_device(dev);
256 
257 	if (!hv_dev->channel)
258 		return -ENODEV;
259 	return sprintf(buf, "%d\n",
260 		       channel_latency(hv_dev->channel,
261 				       vmbus_connection.monitor_pages[1]));
262 }
263 static DEVICE_ATTR_RO(client_monitor_latency);
264 
265 static ssize_t server_monitor_conn_id_show(struct device *dev,
266 					   struct device_attribute *dev_attr,
267 					   char *buf)
268 {
269 	struct hv_device *hv_dev = device_to_hv_device(dev);
270 
271 	if (!hv_dev->channel)
272 		return -ENODEV;
273 	return sprintf(buf, "%d\n",
274 		       channel_conn_id(hv_dev->channel,
275 				       vmbus_connection.monitor_pages[0]));
276 }
277 static DEVICE_ATTR_RO(server_monitor_conn_id);
278 
279 static ssize_t client_monitor_conn_id_show(struct device *dev,
280 					   struct device_attribute *dev_attr,
281 					   char *buf)
282 {
283 	struct hv_device *hv_dev = device_to_hv_device(dev);
284 
285 	if (!hv_dev->channel)
286 		return -ENODEV;
287 	return sprintf(buf, "%d\n",
288 		       channel_conn_id(hv_dev->channel,
289 				       vmbus_connection.monitor_pages[1]));
290 }
291 static DEVICE_ATTR_RO(client_monitor_conn_id);
292 
293 static ssize_t out_intr_mask_show(struct device *dev,
294 				  struct device_attribute *dev_attr, char *buf)
295 {
296 	struct hv_device *hv_dev = device_to_hv_device(dev);
297 	struct hv_ring_buffer_debug_info outbound;
298 
299 	if (!hv_dev->channel)
300 		return -ENODEV;
301 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
302 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
303 }
304 static DEVICE_ATTR_RO(out_intr_mask);
305 
306 static ssize_t out_read_index_show(struct device *dev,
307 				   struct device_attribute *dev_attr, char *buf)
308 {
309 	struct hv_device *hv_dev = device_to_hv_device(dev);
310 	struct hv_ring_buffer_debug_info outbound;
311 
312 	if (!hv_dev->channel)
313 		return -ENODEV;
314 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
315 	return sprintf(buf, "%d\n", outbound.current_read_index);
316 }
317 static DEVICE_ATTR_RO(out_read_index);
318 
319 static ssize_t out_write_index_show(struct device *dev,
320 				    struct device_attribute *dev_attr,
321 				    char *buf)
322 {
323 	struct hv_device *hv_dev = device_to_hv_device(dev);
324 	struct hv_ring_buffer_debug_info outbound;
325 
326 	if (!hv_dev->channel)
327 		return -ENODEV;
328 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
329 	return sprintf(buf, "%d\n", outbound.current_write_index);
330 }
331 static DEVICE_ATTR_RO(out_write_index);
332 
333 static ssize_t out_read_bytes_avail_show(struct device *dev,
334 					 struct device_attribute *dev_attr,
335 					 char *buf)
336 {
337 	struct hv_device *hv_dev = device_to_hv_device(dev);
338 	struct hv_ring_buffer_debug_info outbound;
339 
340 	if (!hv_dev->channel)
341 		return -ENODEV;
342 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
343 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
344 }
345 static DEVICE_ATTR_RO(out_read_bytes_avail);
346 
347 static ssize_t out_write_bytes_avail_show(struct device *dev,
348 					  struct device_attribute *dev_attr,
349 					  char *buf)
350 {
351 	struct hv_device *hv_dev = device_to_hv_device(dev);
352 	struct hv_ring_buffer_debug_info outbound;
353 
354 	if (!hv_dev->channel)
355 		return -ENODEV;
356 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
357 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
358 }
359 static DEVICE_ATTR_RO(out_write_bytes_avail);
360 
361 static ssize_t in_intr_mask_show(struct device *dev,
362 				 struct device_attribute *dev_attr, char *buf)
363 {
364 	struct hv_device *hv_dev = device_to_hv_device(dev);
365 	struct hv_ring_buffer_debug_info inbound;
366 
367 	if (!hv_dev->channel)
368 		return -ENODEV;
369 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
370 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
371 }
372 static DEVICE_ATTR_RO(in_intr_mask);
373 
374 static ssize_t in_read_index_show(struct device *dev,
375 				  struct device_attribute *dev_attr, char *buf)
376 {
377 	struct hv_device *hv_dev = device_to_hv_device(dev);
378 	struct hv_ring_buffer_debug_info inbound;
379 
380 	if (!hv_dev->channel)
381 		return -ENODEV;
382 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
383 	return sprintf(buf, "%d\n", inbound.current_read_index);
384 }
385 static DEVICE_ATTR_RO(in_read_index);
386 
387 static ssize_t in_write_index_show(struct device *dev,
388 				   struct device_attribute *dev_attr, char *buf)
389 {
390 	struct hv_device *hv_dev = device_to_hv_device(dev);
391 	struct hv_ring_buffer_debug_info inbound;
392 
393 	if (!hv_dev->channel)
394 		return -ENODEV;
395 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
396 	return sprintf(buf, "%d\n", inbound.current_write_index);
397 }
398 static DEVICE_ATTR_RO(in_write_index);
399 
400 static ssize_t in_read_bytes_avail_show(struct device *dev,
401 					struct device_attribute *dev_attr,
402 					char *buf)
403 {
404 	struct hv_device *hv_dev = device_to_hv_device(dev);
405 	struct hv_ring_buffer_debug_info inbound;
406 
407 	if (!hv_dev->channel)
408 		return -ENODEV;
409 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
410 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
411 }
412 static DEVICE_ATTR_RO(in_read_bytes_avail);
413 
414 static ssize_t in_write_bytes_avail_show(struct device *dev,
415 					 struct device_attribute *dev_attr,
416 					 char *buf)
417 {
418 	struct hv_device *hv_dev = device_to_hv_device(dev);
419 	struct hv_ring_buffer_debug_info inbound;
420 
421 	if (!hv_dev->channel)
422 		return -ENODEV;
423 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
424 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
425 }
426 static DEVICE_ATTR_RO(in_write_bytes_avail);
427 
428 static ssize_t channel_vp_mapping_show(struct device *dev,
429 				       struct device_attribute *dev_attr,
430 				       char *buf)
431 {
432 	struct hv_device *hv_dev = device_to_hv_device(dev);
433 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
434 	unsigned long flags;
435 	int buf_size = PAGE_SIZE, n_written, tot_written;
436 	struct list_head *cur;
437 
438 	if (!channel)
439 		return -ENODEV;
440 
441 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
442 		channel->offermsg.child_relid, channel->target_cpu);
443 
444 	spin_lock_irqsave(&channel->lock, flags);
445 
446 	list_for_each(cur, &channel->sc_list) {
447 		if (tot_written >= buf_size - 1)
448 			break;
449 
450 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
451 		n_written = scnprintf(buf + tot_written,
452 				     buf_size - tot_written,
453 				     "%u:%u\n",
454 				     cur_sc->offermsg.child_relid,
455 				     cur_sc->target_cpu);
456 		tot_written += n_written;
457 	}
458 
459 	spin_unlock_irqrestore(&channel->lock, flags);
460 
461 	return tot_written;
462 }
463 static DEVICE_ATTR_RO(channel_vp_mapping);
464 
465 static ssize_t vendor_show(struct device *dev,
466 			   struct device_attribute *dev_attr,
467 			   char *buf)
468 {
469 	struct hv_device *hv_dev = device_to_hv_device(dev);
470 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
471 }
472 static DEVICE_ATTR_RO(vendor);
473 
474 static ssize_t device_show(struct device *dev,
475 			   struct device_attribute *dev_attr,
476 			   char *buf)
477 {
478 	struct hv_device *hv_dev = device_to_hv_device(dev);
479 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
480 }
481 static DEVICE_ATTR_RO(device);
482 
483 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
484 static struct attribute *vmbus_dev_attrs[] = {
485 	&dev_attr_id.attr,
486 	&dev_attr_state.attr,
487 	&dev_attr_monitor_id.attr,
488 	&dev_attr_class_id.attr,
489 	&dev_attr_device_id.attr,
490 	&dev_attr_modalias.attr,
491 	&dev_attr_server_monitor_pending.attr,
492 	&dev_attr_client_monitor_pending.attr,
493 	&dev_attr_server_monitor_latency.attr,
494 	&dev_attr_client_monitor_latency.attr,
495 	&dev_attr_server_monitor_conn_id.attr,
496 	&dev_attr_client_monitor_conn_id.attr,
497 	&dev_attr_out_intr_mask.attr,
498 	&dev_attr_out_read_index.attr,
499 	&dev_attr_out_write_index.attr,
500 	&dev_attr_out_read_bytes_avail.attr,
501 	&dev_attr_out_write_bytes_avail.attr,
502 	&dev_attr_in_intr_mask.attr,
503 	&dev_attr_in_read_index.attr,
504 	&dev_attr_in_write_index.attr,
505 	&dev_attr_in_read_bytes_avail.attr,
506 	&dev_attr_in_write_bytes_avail.attr,
507 	&dev_attr_channel_vp_mapping.attr,
508 	&dev_attr_vendor.attr,
509 	&dev_attr_device.attr,
510 	NULL,
511 };
512 ATTRIBUTE_GROUPS(vmbus_dev);
513 
514 /*
515  * vmbus_uevent - add uevent for our device
516  *
517  * This routine is invoked when a device is added or removed on the vmbus to
518  * generate a uevent to udev in the userspace. The udev will then look at its
519  * rule and the uevent generated here to load the appropriate driver
520  *
521  * The alias string will be of the form vmbus:guid where guid is the string
522  * representation of the device guid (each byte of the guid will be
523  * represented with two hex characters.
524  */
525 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
526 {
527 	struct hv_device *dev = device_to_hv_device(device);
528 	int ret;
529 	char alias_name[VMBUS_ALIAS_LEN + 1];
530 
531 	print_alias_name(dev, alias_name);
532 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
533 	return ret;
534 }
535 
536 static const uuid_le null_guid;
537 
538 static inline bool is_null_guid(const uuid_le *guid)
539 {
540 	if (uuid_le_cmp(*guid, null_guid))
541 		return false;
542 	return true;
543 }
544 
545 /*
546  * Return a matching hv_vmbus_device_id pointer.
547  * If there is no match, return NULL.
548  */
549 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
550 					const uuid_le *guid)
551 {
552 	const struct hv_vmbus_device_id *id = NULL;
553 	struct vmbus_dynid *dynid;
554 
555 	/* Look at the dynamic ids first, before the static ones */
556 	spin_lock(&drv->dynids.lock);
557 	list_for_each_entry(dynid, &drv->dynids.list, node) {
558 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
559 			id = &dynid->id;
560 			break;
561 		}
562 	}
563 	spin_unlock(&drv->dynids.lock);
564 
565 	if (id)
566 		return id;
567 
568 	id = drv->id_table;
569 	if (id == NULL)
570 		return NULL; /* empty device table */
571 
572 	for (; !is_null_guid(&id->guid); id++)
573 		if (!uuid_le_cmp(id->guid, *guid))
574 			return id;
575 
576 	return NULL;
577 }
578 
579 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
580 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
581 {
582 	struct vmbus_dynid *dynid;
583 
584 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
585 	if (!dynid)
586 		return -ENOMEM;
587 
588 	dynid->id.guid = *guid;
589 
590 	spin_lock(&drv->dynids.lock);
591 	list_add_tail(&dynid->node, &drv->dynids.list);
592 	spin_unlock(&drv->dynids.lock);
593 
594 	return driver_attach(&drv->driver);
595 }
596 
597 static void vmbus_free_dynids(struct hv_driver *drv)
598 {
599 	struct vmbus_dynid *dynid, *n;
600 
601 	spin_lock(&drv->dynids.lock);
602 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
603 		list_del(&dynid->node);
604 		kfree(dynid);
605 	}
606 	spin_unlock(&drv->dynids.lock);
607 }
608 
609 /* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */
610 static int get_uuid_le(const char *str, uuid_le *uu)
611 {
612 	unsigned int b[16];
613 	int i;
614 
615 	if (strlen(str) < 37)
616 		return -1;
617 
618 	for (i = 0; i < 36; i++) {
619 		switch (i) {
620 		case 8: case 13: case 18: case 23:
621 			if (str[i] != '-')
622 				return -1;
623 			break;
624 		default:
625 			if (!isxdigit(str[i]))
626 				return -1;
627 		}
628 	}
629 
630 	/* unparse little endian output byte order */
631 	if (sscanf(str,
632 		   "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x",
633 		   &b[3], &b[2], &b[1], &b[0],
634 		   &b[5], &b[4], &b[7], &b[6], &b[8], &b[9],
635 		   &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16)
636 		return -1;
637 
638 	for (i = 0; i < 16; i++)
639 		uu->b[i] = b[i];
640 	return 0;
641 }
642 
643 /*
644  * store_new_id - sysfs frontend to vmbus_add_dynid()
645  *
646  * Allow GUIDs to be added to an existing driver via sysfs.
647  */
648 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
649 			    size_t count)
650 {
651 	struct hv_driver *drv = drv_to_hv_drv(driver);
652 	uuid_le guid = NULL_UUID_LE;
653 	ssize_t retval;
654 
655 	if (get_uuid_le(buf, &guid) != 0)
656 		return -EINVAL;
657 
658 	if (hv_vmbus_get_id(drv, &guid))
659 		return -EEXIST;
660 
661 	retval = vmbus_add_dynid(drv, &guid);
662 	if (retval)
663 		return retval;
664 	return count;
665 }
666 static DRIVER_ATTR_WO(new_id);
667 
668 /*
669  * store_remove_id - remove a PCI device ID from this driver
670  *
671  * Removes a dynamic pci device ID to this driver.
672  */
673 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
674 			       size_t count)
675 {
676 	struct hv_driver *drv = drv_to_hv_drv(driver);
677 	struct vmbus_dynid *dynid, *n;
678 	uuid_le guid = NULL_UUID_LE;
679 	size_t retval = -ENODEV;
680 
681 	if (get_uuid_le(buf, &guid))
682 		return -EINVAL;
683 
684 	spin_lock(&drv->dynids.lock);
685 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
686 		struct hv_vmbus_device_id *id = &dynid->id;
687 
688 		if (!uuid_le_cmp(id->guid, guid)) {
689 			list_del(&dynid->node);
690 			kfree(dynid);
691 			retval = count;
692 			break;
693 		}
694 	}
695 	spin_unlock(&drv->dynids.lock);
696 
697 	return retval;
698 }
699 static DRIVER_ATTR_WO(remove_id);
700 
701 static struct attribute *vmbus_drv_attrs[] = {
702 	&driver_attr_new_id.attr,
703 	&driver_attr_remove_id.attr,
704 	NULL,
705 };
706 ATTRIBUTE_GROUPS(vmbus_drv);
707 
708 
709 /*
710  * vmbus_match - Attempt to match the specified device to the specified driver
711  */
712 static int vmbus_match(struct device *device, struct device_driver *driver)
713 {
714 	struct hv_driver *drv = drv_to_hv_drv(driver);
715 	struct hv_device *hv_dev = device_to_hv_device(device);
716 
717 	/* The hv_sock driver handles all hv_sock offers. */
718 	if (is_hvsock_channel(hv_dev->channel))
719 		return drv->hvsock;
720 
721 	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
722 		return 1;
723 
724 	return 0;
725 }
726 
727 /*
728  * vmbus_probe - Add the new vmbus's child device
729  */
730 static int vmbus_probe(struct device *child_device)
731 {
732 	int ret = 0;
733 	struct hv_driver *drv =
734 			drv_to_hv_drv(child_device->driver);
735 	struct hv_device *dev = device_to_hv_device(child_device);
736 	const struct hv_vmbus_device_id *dev_id;
737 
738 	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
739 	if (drv->probe) {
740 		ret = drv->probe(dev, dev_id);
741 		if (ret != 0)
742 			pr_err("probe failed for device %s (%d)\n",
743 			       dev_name(child_device), ret);
744 
745 	} else {
746 		pr_err("probe not set for driver %s\n",
747 		       dev_name(child_device));
748 		ret = -ENODEV;
749 	}
750 	return ret;
751 }
752 
753 /*
754  * vmbus_remove - Remove a vmbus device
755  */
756 static int vmbus_remove(struct device *child_device)
757 {
758 	struct hv_driver *drv;
759 	struct hv_device *dev = device_to_hv_device(child_device);
760 
761 	if (child_device->driver) {
762 		drv = drv_to_hv_drv(child_device->driver);
763 		if (drv->remove)
764 			drv->remove(dev);
765 	}
766 
767 	return 0;
768 }
769 
770 
771 /*
772  * vmbus_shutdown - Shutdown a vmbus device
773  */
774 static void vmbus_shutdown(struct device *child_device)
775 {
776 	struct hv_driver *drv;
777 	struct hv_device *dev = device_to_hv_device(child_device);
778 
779 
780 	/* The device may not be attached yet */
781 	if (!child_device->driver)
782 		return;
783 
784 	drv = drv_to_hv_drv(child_device->driver);
785 
786 	if (drv->shutdown)
787 		drv->shutdown(dev);
788 
789 	return;
790 }
791 
792 
793 /*
794  * vmbus_device_release - Final callback release of the vmbus child device
795  */
796 static void vmbus_device_release(struct device *device)
797 {
798 	struct hv_device *hv_dev = device_to_hv_device(device);
799 	struct vmbus_channel *channel = hv_dev->channel;
800 
801 	hv_process_channel_removal(channel,
802 				   channel->offermsg.child_relid);
803 	kfree(hv_dev);
804 
805 }
806 
807 /* The one and only one */
808 static struct bus_type  hv_bus = {
809 	.name =		"vmbus",
810 	.match =		vmbus_match,
811 	.shutdown =		vmbus_shutdown,
812 	.remove =		vmbus_remove,
813 	.probe =		vmbus_probe,
814 	.uevent =		vmbus_uevent,
815 	.dev_groups =		vmbus_dev_groups,
816 	.drv_groups =		vmbus_drv_groups,
817 };
818 
819 struct onmessage_work_context {
820 	struct work_struct work;
821 	struct hv_message msg;
822 };
823 
824 static void vmbus_onmessage_work(struct work_struct *work)
825 {
826 	struct onmessage_work_context *ctx;
827 
828 	/* Do not process messages if we're in DISCONNECTED state */
829 	if (vmbus_connection.conn_state == DISCONNECTED)
830 		return;
831 
832 	ctx = container_of(work, struct onmessage_work_context,
833 			   work);
834 	vmbus_onmessage(&ctx->msg);
835 	kfree(ctx);
836 }
837 
838 static void hv_process_timer_expiration(struct hv_message *msg,
839 					struct hv_per_cpu_context *hv_cpu)
840 {
841 	struct clock_event_device *dev = hv_cpu->clk_evt;
842 
843 	if (dev->event_handler)
844 		dev->event_handler(dev);
845 
846 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
847 }
848 
849 void vmbus_on_msg_dpc(unsigned long data)
850 {
851 	struct hv_per_cpu_context *hv_cpu = (void *)data;
852 	void *page_addr = hv_cpu->synic_message_page;
853 	struct hv_message *msg = (struct hv_message *)page_addr +
854 				  VMBUS_MESSAGE_SINT;
855 	struct vmbus_channel_message_header *hdr;
856 	struct vmbus_channel_message_table_entry *entry;
857 	struct onmessage_work_context *ctx;
858 	u32 message_type = msg->header.message_type;
859 
860 	if (message_type == HVMSG_NONE)
861 		/* no msg */
862 		return;
863 
864 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
865 
866 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
867 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
868 		goto msg_handled;
869 	}
870 
871 	entry = &channel_message_table[hdr->msgtype];
872 	if (entry->handler_type	== VMHT_BLOCKING) {
873 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
874 		if (ctx == NULL)
875 			return;
876 
877 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
878 		memcpy(&ctx->msg, msg, sizeof(*msg));
879 
880 		queue_work(vmbus_connection.work_queue, &ctx->work);
881 	} else
882 		entry->message_handler(hdr);
883 
884 msg_handled:
885 	vmbus_signal_eom(msg, message_type);
886 }
887 
888 
889 /*
890  * Direct callback for channels using other deferred processing
891  */
892 static void vmbus_channel_isr(struct vmbus_channel *channel)
893 {
894 	void (*callback_fn)(void *);
895 
896 	callback_fn = READ_ONCE(channel->onchannel_callback);
897 	if (likely(callback_fn != NULL))
898 		(*callback_fn)(channel->channel_callback_context);
899 }
900 
901 /*
902  * Schedule all channels with events pending
903  */
904 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
905 {
906 	unsigned long *recv_int_page;
907 	u32 maxbits, relid;
908 
909 	if (vmbus_proto_version < VERSION_WIN8) {
910 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
911 		recv_int_page = vmbus_connection.recv_int_page;
912 	} else {
913 		/*
914 		 * When the host is win8 and beyond, the event page
915 		 * can be directly checked to get the id of the channel
916 		 * that has the interrupt pending.
917 		 */
918 		void *page_addr = hv_cpu->synic_event_page;
919 		union hv_synic_event_flags *event
920 			= (union hv_synic_event_flags *)page_addr +
921 						 VMBUS_MESSAGE_SINT;
922 
923 		maxbits = HV_EVENT_FLAGS_COUNT;
924 		recv_int_page = event->flags;
925 	}
926 
927 	if (unlikely(!recv_int_page))
928 		return;
929 
930 	for_each_set_bit(relid, recv_int_page, maxbits) {
931 		struct vmbus_channel *channel;
932 
933 		if (!sync_test_and_clear_bit(relid, recv_int_page))
934 			continue;
935 
936 		/* Special case - vmbus channel protocol msg */
937 		if (relid == 0)
938 			continue;
939 
940 		/* Find channel based on relid */
941 		list_for_each_entry(channel, &hv_cpu->chan_list, percpu_list) {
942 			if (channel->offermsg.child_relid != relid)
943 				continue;
944 
945 			switch (channel->callback_mode) {
946 			case HV_CALL_ISR:
947 				vmbus_channel_isr(channel);
948 				break;
949 
950 			case HV_CALL_BATCHED:
951 				hv_begin_read(&channel->inbound);
952 				/* fallthrough */
953 			case HV_CALL_DIRECT:
954 				tasklet_schedule(&channel->callback_event);
955 			}
956 		}
957 	}
958 }
959 
960 static void vmbus_isr(void)
961 {
962 	struct hv_per_cpu_context *hv_cpu
963 		= this_cpu_ptr(hv_context.cpu_context);
964 	void *page_addr = hv_cpu->synic_event_page;
965 	struct hv_message *msg;
966 	union hv_synic_event_flags *event;
967 	bool handled = false;
968 
969 	if (unlikely(page_addr == NULL))
970 		return;
971 
972 	event = (union hv_synic_event_flags *)page_addr +
973 					 VMBUS_MESSAGE_SINT;
974 	/*
975 	 * Check for events before checking for messages. This is the order
976 	 * in which events and messages are checked in Windows guests on
977 	 * Hyper-V, and the Windows team suggested we do the same.
978 	 */
979 
980 	if ((vmbus_proto_version == VERSION_WS2008) ||
981 		(vmbus_proto_version == VERSION_WIN7)) {
982 
983 		/* Since we are a child, we only need to check bit 0 */
984 		if (sync_test_and_clear_bit(0, event->flags))
985 			handled = true;
986 	} else {
987 		/*
988 		 * Our host is win8 or above. The signaling mechanism
989 		 * has changed and we can directly look at the event page.
990 		 * If bit n is set then we have an interrup on the channel
991 		 * whose id is n.
992 		 */
993 		handled = true;
994 	}
995 
996 	if (handled)
997 		vmbus_chan_sched(hv_cpu);
998 
999 	page_addr = hv_cpu->synic_message_page;
1000 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1001 
1002 	/* Check if there are actual msgs to be processed */
1003 	if (msg->header.message_type != HVMSG_NONE) {
1004 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1005 			hv_process_timer_expiration(msg, hv_cpu);
1006 		else
1007 			tasklet_schedule(&hv_cpu->msg_dpc);
1008 	}
1009 
1010 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1011 }
1012 
1013 
1014 /*
1015  * vmbus_bus_init -Main vmbus driver initialization routine.
1016  *
1017  * Here, we
1018  *	- initialize the vmbus driver context
1019  *	- invoke the vmbus hv main init routine
1020  *	- retrieve the channel offers
1021  */
1022 static int vmbus_bus_init(void)
1023 {
1024 	int ret;
1025 
1026 	/* Hypervisor initialization...setup hypercall page..etc */
1027 	ret = hv_init();
1028 	if (ret != 0) {
1029 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1030 		return ret;
1031 	}
1032 
1033 	ret = bus_register(&hv_bus);
1034 	if (ret)
1035 		return ret;
1036 
1037 	hv_setup_vmbus_irq(vmbus_isr);
1038 
1039 	ret = hv_synic_alloc();
1040 	if (ret)
1041 		goto err_alloc;
1042 	/*
1043 	 * Initialize the per-cpu interrupt state and
1044 	 * connect to the host.
1045 	 */
1046 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
1047 				hv_synic_init, hv_synic_cleanup);
1048 	if (ret < 0)
1049 		goto err_alloc;
1050 	hyperv_cpuhp_online = ret;
1051 
1052 	ret = vmbus_connect();
1053 	if (ret)
1054 		goto err_connect;
1055 
1056 	/*
1057 	 * Only register if the crash MSRs are available
1058 	 */
1059 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1060 		register_die_notifier(&hyperv_die_block);
1061 		atomic_notifier_chain_register(&panic_notifier_list,
1062 					       &hyperv_panic_block);
1063 	}
1064 
1065 	vmbus_request_offers();
1066 
1067 	return 0;
1068 
1069 err_connect:
1070 	cpuhp_remove_state(hyperv_cpuhp_online);
1071 err_alloc:
1072 	hv_synic_free();
1073 	hv_remove_vmbus_irq();
1074 
1075 	bus_unregister(&hv_bus);
1076 
1077 	return ret;
1078 }
1079 
1080 /**
1081  * __vmbus_child_driver_register() - Register a vmbus's driver
1082  * @hv_driver: Pointer to driver structure you want to register
1083  * @owner: owner module of the drv
1084  * @mod_name: module name string
1085  *
1086  * Registers the given driver with Linux through the 'driver_register()' call
1087  * and sets up the hyper-v vmbus handling for this driver.
1088  * It will return the state of the 'driver_register()' call.
1089  *
1090  */
1091 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1092 {
1093 	int ret;
1094 
1095 	pr_info("registering driver %s\n", hv_driver->name);
1096 
1097 	ret = vmbus_exists();
1098 	if (ret < 0)
1099 		return ret;
1100 
1101 	hv_driver->driver.name = hv_driver->name;
1102 	hv_driver->driver.owner = owner;
1103 	hv_driver->driver.mod_name = mod_name;
1104 	hv_driver->driver.bus = &hv_bus;
1105 
1106 	spin_lock_init(&hv_driver->dynids.lock);
1107 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1108 
1109 	ret = driver_register(&hv_driver->driver);
1110 
1111 	return ret;
1112 }
1113 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1114 
1115 /**
1116  * vmbus_driver_unregister() - Unregister a vmbus's driver
1117  * @hv_driver: Pointer to driver structure you want to
1118  *             un-register
1119  *
1120  * Un-register the given driver that was previous registered with a call to
1121  * vmbus_driver_register()
1122  */
1123 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1124 {
1125 	pr_info("unregistering driver %s\n", hv_driver->name);
1126 
1127 	if (!vmbus_exists()) {
1128 		driver_unregister(&hv_driver->driver);
1129 		vmbus_free_dynids(hv_driver);
1130 	}
1131 }
1132 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1133 
1134 /*
1135  * vmbus_device_create - Creates and registers a new child device
1136  * on the vmbus.
1137  */
1138 struct hv_device *vmbus_device_create(const uuid_le *type,
1139 				      const uuid_le *instance,
1140 				      struct vmbus_channel *channel)
1141 {
1142 	struct hv_device *child_device_obj;
1143 
1144 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1145 	if (!child_device_obj) {
1146 		pr_err("Unable to allocate device object for child device\n");
1147 		return NULL;
1148 	}
1149 
1150 	child_device_obj->channel = channel;
1151 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1152 	memcpy(&child_device_obj->dev_instance, instance,
1153 	       sizeof(uuid_le));
1154 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1155 
1156 
1157 	return child_device_obj;
1158 }
1159 
1160 /*
1161  * vmbus_device_register - Register the child device
1162  */
1163 int vmbus_device_register(struct hv_device *child_device_obj)
1164 {
1165 	int ret = 0;
1166 
1167 	dev_set_name(&child_device_obj->device, "%pUl",
1168 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1169 
1170 	child_device_obj->device.bus = &hv_bus;
1171 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1172 	child_device_obj->device.release = vmbus_device_release;
1173 
1174 	/*
1175 	 * Register with the LDM. This will kick off the driver/device
1176 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1177 	 */
1178 	ret = device_register(&child_device_obj->device);
1179 
1180 	if (ret)
1181 		pr_err("Unable to register child device\n");
1182 	else
1183 		pr_debug("child device %s registered\n",
1184 			dev_name(&child_device_obj->device));
1185 
1186 	return ret;
1187 }
1188 
1189 /*
1190  * vmbus_device_unregister - Remove the specified child device
1191  * from the vmbus.
1192  */
1193 void vmbus_device_unregister(struct hv_device *device_obj)
1194 {
1195 	pr_debug("child device %s unregistered\n",
1196 		dev_name(&device_obj->device));
1197 
1198 	/*
1199 	 * Kick off the process of unregistering the device.
1200 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1201 	 */
1202 	device_unregister(&device_obj->device);
1203 }
1204 
1205 
1206 /*
1207  * VMBUS is an acpi enumerated device. Get the information we
1208  * need from DSDT.
1209  */
1210 #define VTPM_BASE_ADDRESS 0xfed40000
1211 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1212 {
1213 	resource_size_t start = 0;
1214 	resource_size_t end = 0;
1215 	struct resource *new_res;
1216 	struct resource **old_res = &hyperv_mmio;
1217 	struct resource **prev_res = NULL;
1218 
1219 	switch (res->type) {
1220 
1221 	/*
1222 	 * "Address" descriptors are for bus windows. Ignore
1223 	 * "memory" descriptors, which are for registers on
1224 	 * devices.
1225 	 */
1226 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1227 		start = res->data.address32.address.minimum;
1228 		end = res->data.address32.address.maximum;
1229 		break;
1230 
1231 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1232 		start = res->data.address64.address.minimum;
1233 		end = res->data.address64.address.maximum;
1234 		break;
1235 
1236 	default:
1237 		/* Unused resource type */
1238 		return AE_OK;
1239 
1240 	}
1241 	/*
1242 	 * Ignore ranges that are below 1MB, as they're not
1243 	 * necessary or useful here.
1244 	 */
1245 	if (end < 0x100000)
1246 		return AE_OK;
1247 
1248 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1249 	if (!new_res)
1250 		return AE_NO_MEMORY;
1251 
1252 	/* If this range overlaps the virtual TPM, truncate it. */
1253 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1254 		end = VTPM_BASE_ADDRESS;
1255 
1256 	new_res->name = "hyperv mmio";
1257 	new_res->flags = IORESOURCE_MEM;
1258 	new_res->start = start;
1259 	new_res->end = end;
1260 
1261 	/*
1262 	 * If two ranges are adjacent, merge them.
1263 	 */
1264 	do {
1265 		if (!*old_res) {
1266 			*old_res = new_res;
1267 			break;
1268 		}
1269 
1270 		if (((*old_res)->end + 1) == new_res->start) {
1271 			(*old_res)->end = new_res->end;
1272 			kfree(new_res);
1273 			break;
1274 		}
1275 
1276 		if ((*old_res)->start == new_res->end + 1) {
1277 			(*old_res)->start = new_res->start;
1278 			kfree(new_res);
1279 			break;
1280 		}
1281 
1282 		if ((*old_res)->start > new_res->end) {
1283 			new_res->sibling = *old_res;
1284 			if (prev_res)
1285 				(*prev_res)->sibling = new_res;
1286 			*old_res = new_res;
1287 			break;
1288 		}
1289 
1290 		prev_res = old_res;
1291 		old_res = &(*old_res)->sibling;
1292 
1293 	} while (1);
1294 
1295 	return AE_OK;
1296 }
1297 
1298 static int vmbus_acpi_remove(struct acpi_device *device)
1299 {
1300 	struct resource *cur_res;
1301 	struct resource *next_res;
1302 
1303 	if (hyperv_mmio) {
1304 		if (fb_mmio) {
1305 			__release_region(hyperv_mmio, fb_mmio->start,
1306 					 resource_size(fb_mmio));
1307 			fb_mmio = NULL;
1308 		}
1309 
1310 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1311 			next_res = cur_res->sibling;
1312 			kfree(cur_res);
1313 		}
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 static void vmbus_reserve_fb(void)
1320 {
1321 	int size;
1322 	/*
1323 	 * Make a claim for the frame buffer in the resource tree under the
1324 	 * first node, which will be the one below 4GB.  The length seems to
1325 	 * be underreported, particularly in a Generation 1 VM.  So start out
1326 	 * reserving a larger area and make it smaller until it succeeds.
1327 	 */
1328 
1329 	if (screen_info.lfb_base) {
1330 		if (efi_enabled(EFI_BOOT))
1331 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1332 		else
1333 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1334 
1335 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1336 			fb_mmio = __request_region(hyperv_mmio,
1337 						   screen_info.lfb_base, size,
1338 						   fb_mmio_name, 0);
1339 		}
1340 	}
1341 }
1342 
1343 /**
1344  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1345  * @new:		If successful, supplied a pointer to the
1346  *			allocated MMIO space.
1347  * @device_obj:		Identifies the caller
1348  * @min:		Minimum guest physical address of the
1349  *			allocation
1350  * @max:		Maximum guest physical address
1351  * @size:		Size of the range to be allocated
1352  * @align:		Alignment of the range to be allocated
1353  * @fb_overlap_ok:	Whether this allocation can be allowed
1354  *			to overlap the video frame buffer.
1355  *
1356  * This function walks the resources granted to VMBus by the
1357  * _CRS object in the ACPI namespace underneath the parent
1358  * "bridge" whether that's a root PCI bus in the Generation 1
1359  * case or a Module Device in the Generation 2 case.  It then
1360  * attempts to allocate from the global MMIO pool in a way that
1361  * matches the constraints supplied in these parameters and by
1362  * that _CRS.
1363  *
1364  * Return: 0 on success, -errno on failure
1365  */
1366 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1367 			resource_size_t min, resource_size_t max,
1368 			resource_size_t size, resource_size_t align,
1369 			bool fb_overlap_ok)
1370 {
1371 	struct resource *iter, *shadow;
1372 	resource_size_t range_min, range_max, start;
1373 	const char *dev_n = dev_name(&device_obj->device);
1374 	int retval;
1375 
1376 	retval = -ENXIO;
1377 	down(&hyperv_mmio_lock);
1378 
1379 	/*
1380 	 * If overlaps with frame buffers are allowed, then first attempt to
1381 	 * make the allocation from within the reserved region.  Because it
1382 	 * is already reserved, no shadow allocation is necessary.
1383 	 */
1384 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1385 	    !(max < fb_mmio->start)) {
1386 
1387 		range_min = fb_mmio->start;
1388 		range_max = fb_mmio->end;
1389 		start = (range_min + align - 1) & ~(align - 1);
1390 		for (; start + size - 1 <= range_max; start += align) {
1391 			*new = request_mem_region_exclusive(start, size, dev_n);
1392 			if (*new) {
1393 				retval = 0;
1394 				goto exit;
1395 			}
1396 		}
1397 	}
1398 
1399 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1400 		if ((iter->start >= max) || (iter->end <= min))
1401 			continue;
1402 
1403 		range_min = iter->start;
1404 		range_max = iter->end;
1405 		start = (range_min + align - 1) & ~(align - 1);
1406 		for (; start + size - 1 <= range_max; start += align) {
1407 			shadow = __request_region(iter, start, size, NULL,
1408 						  IORESOURCE_BUSY);
1409 			if (!shadow)
1410 				continue;
1411 
1412 			*new = request_mem_region_exclusive(start, size, dev_n);
1413 			if (*new) {
1414 				shadow->name = (char *)*new;
1415 				retval = 0;
1416 				goto exit;
1417 			}
1418 
1419 			__release_region(iter, start, size);
1420 		}
1421 	}
1422 
1423 exit:
1424 	up(&hyperv_mmio_lock);
1425 	return retval;
1426 }
1427 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1428 
1429 /**
1430  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1431  * @start:		Base address of region to release.
1432  * @size:		Size of the range to be allocated
1433  *
1434  * This function releases anything requested by
1435  * vmbus_mmio_allocate().
1436  */
1437 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1438 {
1439 	struct resource *iter;
1440 
1441 	down(&hyperv_mmio_lock);
1442 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1443 		if ((iter->start >= start + size) || (iter->end <= start))
1444 			continue;
1445 
1446 		__release_region(iter, start, size);
1447 	}
1448 	release_mem_region(start, size);
1449 	up(&hyperv_mmio_lock);
1450 
1451 }
1452 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1453 
1454 /**
1455  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1456  * @cpu_number: CPU number in Linux terms
1457  *
1458  * This function returns the mapping between the Linux processor
1459  * number and the hypervisor's virtual processor number, useful
1460  * in making hypercalls and such that talk about specific
1461  * processors.
1462  *
1463  * Return: Virtual processor number in Hyper-V terms
1464  */
1465 int vmbus_cpu_number_to_vp_number(int cpu_number)
1466 {
1467 	return hv_context.vp_index[cpu_number];
1468 }
1469 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1470 
1471 static int vmbus_acpi_add(struct acpi_device *device)
1472 {
1473 	acpi_status result;
1474 	int ret_val = -ENODEV;
1475 	struct acpi_device *ancestor;
1476 
1477 	hv_acpi_dev = device;
1478 
1479 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1480 					vmbus_walk_resources, NULL);
1481 
1482 	if (ACPI_FAILURE(result))
1483 		goto acpi_walk_err;
1484 	/*
1485 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1486 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1487 	 */
1488 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1489 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1490 					     vmbus_walk_resources, NULL);
1491 
1492 		if (ACPI_FAILURE(result))
1493 			continue;
1494 		if (hyperv_mmio) {
1495 			vmbus_reserve_fb();
1496 			break;
1497 		}
1498 	}
1499 	ret_val = 0;
1500 
1501 acpi_walk_err:
1502 	complete(&probe_event);
1503 	if (ret_val)
1504 		vmbus_acpi_remove(device);
1505 	return ret_val;
1506 }
1507 
1508 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1509 	{"VMBUS", 0},
1510 	{"VMBus", 0},
1511 	{"", 0},
1512 };
1513 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1514 
1515 static struct acpi_driver vmbus_acpi_driver = {
1516 	.name = "vmbus",
1517 	.ids = vmbus_acpi_device_ids,
1518 	.ops = {
1519 		.add = vmbus_acpi_add,
1520 		.remove = vmbus_acpi_remove,
1521 	},
1522 };
1523 
1524 static void hv_kexec_handler(void)
1525 {
1526 	hv_synic_clockevents_cleanup();
1527 	vmbus_initiate_unload(false);
1528 	vmbus_connection.conn_state = DISCONNECTED;
1529 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1530 	mb();
1531 	cpuhp_remove_state(hyperv_cpuhp_online);
1532 	hyperv_cleanup();
1533 };
1534 
1535 static void hv_crash_handler(struct pt_regs *regs)
1536 {
1537 	vmbus_initiate_unload(true);
1538 	/*
1539 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1540 	 * doing the cleanup for current CPU only. This should be sufficient
1541 	 * for kdump.
1542 	 */
1543 	vmbus_connection.conn_state = DISCONNECTED;
1544 	hv_synic_cleanup(smp_processor_id());
1545 	hyperv_cleanup();
1546 };
1547 
1548 static int __init hv_acpi_init(void)
1549 {
1550 	int ret, t;
1551 
1552 	if (x86_hyper != &x86_hyper_ms_hyperv)
1553 		return -ENODEV;
1554 
1555 	init_completion(&probe_event);
1556 
1557 	/*
1558 	 * Get ACPI resources first.
1559 	 */
1560 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1561 
1562 	if (ret)
1563 		return ret;
1564 
1565 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1566 	if (t == 0) {
1567 		ret = -ETIMEDOUT;
1568 		goto cleanup;
1569 	}
1570 
1571 	ret = vmbus_bus_init();
1572 	if (ret)
1573 		goto cleanup;
1574 
1575 	hv_setup_kexec_handler(hv_kexec_handler);
1576 	hv_setup_crash_handler(hv_crash_handler);
1577 
1578 	return 0;
1579 
1580 cleanup:
1581 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1582 	hv_acpi_dev = NULL;
1583 	return ret;
1584 }
1585 
1586 static void __exit vmbus_exit(void)
1587 {
1588 	int cpu;
1589 
1590 	hv_remove_kexec_handler();
1591 	hv_remove_crash_handler();
1592 	vmbus_connection.conn_state = DISCONNECTED;
1593 	hv_synic_clockevents_cleanup();
1594 	vmbus_disconnect();
1595 	hv_remove_vmbus_irq();
1596 	for_each_online_cpu(cpu) {
1597 		struct hv_per_cpu_context *hv_cpu
1598 			= per_cpu_ptr(hv_context.cpu_context, cpu);
1599 
1600 		tasklet_kill(&hv_cpu->msg_dpc);
1601 	}
1602 	vmbus_free_channels();
1603 
1604 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1605 		unregister_die_notifier(&hyperv_die_block);
1606 		atomic_notifier_chain_unregister(&panic_notifier_list,
1607 						 &hyperv_panic_block);
1608 	}
1609 	bus_unregister(&hv_bus);
1610 
1611 	cpuhp_remove_state(hyperv_cpuhp_online);
1612 	hv_synic_free();
1613 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1614 }
1615 
1616 
1617 MODULE_LICENSE("GPL");
1618 
1619 subsys_initcall(hv_acpi_init);
1620 module_exit(vmbus_exit);
1621