xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
25 
26 #include <linux/delay.h>
27 #include <linux/notifier.h>
28 #include <linux/ptrace.h>
29 #include <linux/screen_info.h>
30 #include <linux/kdebug.h>
31 #include <linux/efi.h>
32 #include <linux/random.h>
33 #include <linux/kernel.h>
34 #include <linux/syscore_ops.h>
35 #include <clocksource/hyperv_timer.h>
36 #include "hyperv_vmbus.h"
37 
38 struct vmbus_dynid {
39 	struct list_head node;
40 	struct hv_vmbus_device_id id;
41 };
42 
43 static struct acpi_device  *hv_acpi_dev;
44 
45 static struct completion probe_event;
46 
47 static int hyperv_cpuhp_online;
48 
49 static void *hv_panic_page;
50 
51 /*
52  * Boolean to control whether to report panic messages over Hyper-V.
53  *
54  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
55  */
56 static int sysctl_record_panic_msg = 1;
57 
58 static int hyperv_report_reg(void)
59 {
60 	return !sysctl_record_panic_msg || !hv_panic_page;
61 }
62 
63 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
64 			      void *args)
65 {
66 	struct pt_regs *regs;
67 
68 	vmbus_initiate_unload(true);
69 
70 	/*
71 	 * Hyper-V should be notified only once about a panic.  If we will be
72 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
73 	 * the notification here.
74 	 */
75 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
76 	    && hyperv_report_reg()) {
77 		regs = current_pt_regs();
78 		hyperv_report_panic(regs, val, false);
79 	}
80 	return NOTIFY_DONE;
81 }
82 
83 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
84 			    void *args)
85 {
86 	struct die_args *die = (struct die_args *)args;
87 	struct pt_regs *regs = die->regs;
88 
89 	/* Don't notify Hyper-V if the die event is other than oops */
90 	if (val != DIE_OOPS)
91 		return NOTIFY_DONE;
92 
93 	/*
94 	 * Hyper-V should be notified only once about a panic.  If we will be
95 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
96 	 * the notification here.
97 	 */
98 	if (hyperv_report_reg())
99 		hyperv_report_panic(regs, val, true);
100 	return NOTIFY_DONE;
101 }
102 
103 static struct notifier_block hyperv_die_block = {
104 	.notifier_call = hyperv_die_event,
105 };
106 static struct notifier_block hyperv_panic_block = {
107 	.notifier_call = hyperv_panic_event,
108 };
109 
110 static const char *fb_mmio_name = "fb_range";
111 static struct resource *fb_mmio;
112 static struct resource *hyperv_mmio;
113 static DEFINE_MUTEX(hyperv_mmio_lock);
114 
115 static int vmbus_exists(void)
116 {
117 	if (hv_acpi_dev == NULL)
118 		return -ENODEV;
119 
120 	return 0;
121 }
122 
123 static u8 channel_monitor_group(const struct vmbus_channel *channel)
124 {
125 	return (u8)channel->offermsg.monitorid / 32;
126 }
127 
128 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
129 {
130 	return (u8)channel->offermsg.monitorid % 32;
131 }
132 
133 static u32 channel_pending(const struct vmbus_channel *channel,
134 			   const struct hv_monitor_page *monitor_page)
135 {
136 	u8 monitor_group = channel_monitor_group(channel);
137 
138 	return monitor_page->trigger_group[monitor_group].pending;
139 }
140 
141 static u32 channel_latency(const struct vmbus_channel *channel,
142 			   const struct hv_monitor_page *monitor_page)
143 {
144 	u8 monitor_group = channel_monitor_group(channel);
145 	u8 monitor_offset = channel_monitor_offset(channel);
146 
147 	return monitor_page->latency[monitor_group][monitor_offset];
148 }
149 
150 static u32 channel_conn_id(struct vmbus_channel *channel,
151 			   struct hv_monitor_page *monitor_page)
152 {
153 	u8 monitor_group = channel_monitor_group(channel);
154 	u8 monitor_offset = channel_monitor_offset(channel);
155 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
156 }
157 
158 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
159 		       char *buf)
160 {
161 	struct hv_device *hv_dev = device_to_hv_device(dev);
162 
163 	if (!hv_dev->channel)
164 		return -ENODEV;
165 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
166 }
167 static DEVICE_ATTR_RO(id);
168 
169 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
170 			  char *buf)
171 {
172 	struct hv_device *hv_dev = device_to_hv_device(dev);
173 
174 	if (!hv_dev->channel)
175 		return -ENODEV;
176 	return sprintf(buf, "%d\n", hv_dev->channel->state);
177 }
178 static DEVICE_ATTR_RO(state);
179 
180 static ssize_t monitor_id_show(struct device *dev,
181 			       struct device_attribute *dev_attr, char *buf)
182 {
183 	struct hv_device *hv_dev = device_to_hv_device(dev);
184 
185 	if (!hv_dev->channel)
186 		return -ENODEV;
187 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
188 }
189 static DEVICE_ATTR_RO(monitor_id);
190 
191 static ssize_t class_id_show(struct device *dev,
192 			       struct device_attribute *dev_attr, char *buf)
193 {
194 	struct hv_device *hv_dev = device_to_hv_device(dev);
195 
196 	if (!hv_dev->channel)
197 		return -ENODEV;
198 	return sprintf(buf, "{%pUl}\n",
199 		       &hv_dev->channel->offermsg.offer.if_type);
200 }
201 static DEVICE_ATTR_RO(class_id);
202 
203 static ssize_t device_id_show(struct device *dev,
204 			      struct device_attribute *dev_attr, char *buf)
205 {
206 	struct hv_device *hv_dev = device_to_hv_device(dev);
207 
208 	if (!hv_dev->channel)
209 		return -ENODEV;
210 	return sprintf(buf, "{%pUl}\n",
211 		       &hv_dev->channel->offermsg.offer.if_instance);
212 }
213 static DEVICE_ATTR_RO(device_id);
214 
215 static ssize_t modalias_show(struct device *dev,
216 			     struct device_attribute *dev_attr, char *buf)
217 {
218 	struct hv_device *hv_dev = device_to_hv_device(dev);
219 
220 	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
221 }
222 static DEVICE_ATTR_RO(modalias);
223 
224 #ifdef CONFIG_NUMA
225 static ssize_t numa_node_show(struct device *dev,
226 			      struct device_attribute *attr, char *buf)
227 {
228 	struct hv_device *hv_dev = device_to_hv_device(dev);
229 
230 	if (!hv_dev->channel)
231 		return -ENODEV;
232 
233 	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
234 }
235 static DEVICE_ATTR_RO(numa_node);
236 #endif
237 
238 static ssize_t server_monitor_pending_show(struct device *dev,
239 					   struct device_attribute *dev_attr,
240 					   char *buf)
241 {
242 	struct hv_device *hv_dev = device_to_hv_device(dev);
243 
244 	if (!hv_dev->channel)
245 		return -ENODEV;
246 	return sprintf(buf, "%d\n",
247 		       channel_pending(hv_dev->channel,
248 				       vmbus_connection.monitor_pages[0]));
249 }
250 static DEVICE_ATTR_RO(server_monitor_pending);
251 
252 static ssize_t client_monitor_pending_show(struct device *dev,
253 					   struct device_attribute *dev_attr,
254 					   char *buf)
255 {
256 	struct hv_device *hv_dev = device_to_hv_device(dev);
257 
258 	if (!hv_dev->channel)
259 		return -ENODEV;
260 	return sprintf(buf, "%d\n",
261 		       channel_pending(hv_dev->channel,
262 				       vmbus_connection.monitor_pages[1]));
263 }
264 static DEVICE_ATTR_RO(client_monitor_pending);
265 
266 static ssize_t server_monitor_latency_show(struct device *dev,
267 					   struct device_attribute *dev_attr,
268 					   char *buf)
269 {
270 	struct hv_device *hv_dev = device_to_hv_device(dev);
271 
272 	if (!hv_dev->channel)
273 		return -ENODEV;
274 	return sprintf(buf, "%d\n",
275 		       channel_latency(hv_dev->channel,
276 				       vmbus_connection.monitor_pages[0]));
277 }
278 static DEVICE_ATTR_RO(server_monitor_latency);
279 
280 static ssize_t client_monitor_latency_show(struct device *dev,
281 					   struct device_attribute *dev_attr,
282 					   char *buf)
283 {
284 	struct hv_device *hv_dev = device_to_hv_device(dev);
285 
286 	if (!hv_dev->channel)
287 		return -ENODEV;
288 	return sprintf(buf, "%d\n",
289 		       channel_latency(hv_dev->channel,
290 				       vmbus_connection.monitor_pages[1]));
291 }
292 static DEVICE_ATTR_RO(client_monitor_latency);
293 
294 static ssize_t server_monitor_conn_id_show(struct device *dev,
295 					   struct device_attribute *dev_attr,
296 					   char *buf)
297 {
298 	struct hv_device *hv_dev = device_to_hv_device(dev);
299 
300 	if (!hv_dev->channel)
301 		return -ENODEV;
302 	return sprintf(buf, "%d\n",
303 		       channel_conn_id(hv_dev->channel,
304 				       vmbus_connection.monitor_pages[0]));
305 }
306 static DEVICE_ATTR_RO(server_monitor_conn_id);
307 
308 static ssize_t client_monitor_conn_id_show(struct device *dev,
309 					   struct device_attribute *dev_attr,
310 					   char *buf)
311 {
312 	struct hv_device *hv_dev = device_to_hv_device(dev);
313 
314 	if (!hv_dev->channel)
315 		return -ENODEV;
316 	return sprintf(buf, "%d\n",
317 		       channel_conn_id(hv_dev->channel,
318 				       vmbus_connection.monitor_pages[1]));
319 }
320 static DEVICE_ATTR_RO(client_monitor_conn_id);
321 
322 static ssize_t out_intr_mask_show(struct device *dev,
323 				  struct device_attribute *dev_attr, char *buf)
324 {
325 	struct hv_device *hv_dev = device_to_hv_device(dev);
326 	struct hv_ring_buffer_debug_info outbound;
327 	int ret;
328 
329 	if (!hv_dev->channel)
330 		return -ENODEV;
331 
332 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
333 					  &outbound);
334 	if (ret < 0)
335 		return ret;
336 
337 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
338 }
339 static DEVICE_ATTR_RO(out_intr_mask);
340 
341 static ssize_t out_read_index_show(struct device *dev,
342 				   struct device_attribute *dev_attr, char *buf)
343 {
344 	struct hv_device *hv_dev = device_to_hv_device(dev);
345 	struct hv_ring_buffer_debug_info outbound;
346 	int ret;
347 
348 	if (!hv_dev->channel)
349 		return -ENODEV;
350 
351 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
352 					  &outbound);
353 	if (ret < 0)
354 		return ret;
355 	return sprintf(buf, "%d\n", outbound.current_read_index);
356 }
357 static DEVICE_ATTR_RO(out_read_index);
358 
359 static ssize_t out_write_index_show(struct device *dev,
360 				    struct device_attribute *dev_attr,
361 				    char *buf)
362 {
363 	struct hv_device *hv_dev = device_to_hv_device(dev);
364 	struct hv_ring_buffer_debug_info outbound;
365 	int ret;
366 
367 	if (!hv_dev->channel)
368 		return -ENODEV;
369 
370 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
371 					  &outbound);
372 	if (ret < 0)
373 		return ret;
374 	return sprintf(buf, "%d\n", outbound.current_write_index);
375 }
376 static DEVICE_ATTR_RO(out_write_index);
377 
378 static ssize_t out_read_bytes_avail_show(struct device *dev,
379 					 struct device_attribute *dev_attr,
380 					 char *buf)
381 {
382 	struct hv_device *hv_dev = device_to_hv_device(dev);
383 	struct hv_ring_buffer_debug_info outbound;
384 	int ret;
385 
386 	if (!hv_dev->channel)
387 		return -ENODEV;
388 
389 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
390 					  &outbound);
391 	if (ret < 0)
392 		return ret;
393 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
394 }
395 static DEVICE_ATTR_RO(out_read_bytes_avail);
396 
397 static ssize_t out_write_bytes_avail_show(struct device *dev,
398 					  struct device_attribute *dev_attr,
399 					  char *buf)
400 {
401 	struct hv_device *hv_dev = device_to_hv_device(dev);
402 	struct hv_ring_buffer_debug_info outbound;
403 	int ret;
404 
405 	if (!hv_dev->channel)
406 		return -ENODEV;
407 
408 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
409 					  &outbound);
410 	if (ret < 0)
411 		return ret;
412 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
413 }
414 static DEVICE_ATTR_RO(out_write_bytes_avail);
415 
416 static ssize_t in_intr_mask_show(struct device *dev,
417 				 struct device_attribute *dev_attr, char *buf)
418 {
419 	struct hv_device *hv_dev = device_to_hv_device(dev);
420 	struct hv_ring_buffer_debug_info inbound;
421 	int ret;
422 
423 	if (!hv_dev->channel)
424 		return -ENODEV;
425 
426 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
427 	if (ret < 0)
428 		return ret;
429 
430 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
431 }
432 static DEVICE_ATTR_RO(in_intr_mask);
433 
434 static ssize_t in_read_index_show(struct device *dev,
435 				  struct device_attribute *dev_attr, char *buf)
436 {
437 	struct hv_device *hv_dev = device_to_hv_device(dev);
438 	struct hv_ring_buffer_debug_info inbound;
439 	int ret;
440 
441 	if (!hv_dev->channel)
442 		return -ENODEV;
443 
444 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
445 	if (ret < 0)
446 		return ret;
447 
448 	return sprintf(buf, "%d\n", inbound.current_read_index);
449 }
450 static DEVICE_ATTR_RO(in_read_index);
451 
452 static ssize_t in_write_index_show(struct device *dev,
453 				   struct device_attribute *dev_attr, char *buf)
454 {
455 	struct hv_device *hv_dev = device_to_hv_device(dev);
456 	struct hv_ring_buffer_debug_info inbound;
457 	int ret;
458 
459 	if (!hv_dev->channel)
460 		return -ENODEV;
461 
462 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
463 	if (ret < 0)
464 		return ret;
465 
466 	return sprintf(buf, "%d\n", inbound.current_write_index);
467 }
468 static DEVICE_ATTR_RO(in_write_index);
469 
470 static ssize_t in_read_bytes_avail_show(struct device *dev,
471 					struct device_attribute *dev_attr,
472 					char *buf)
473 {
474 	struct hv_device *hv_dev = device_to_hv_device(dev);
475 	struct hv_ring_buffer_debug_info inbound;
476 	int ret;
477 
478 	if (!hv_dev->channel)
479 		return -ENODEV;
480 
481 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
482 	if (ret < 0)
483 		return ret;
484 
485 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
486 }
487 static DEVICE_ATTR_RO(in_read_bytes_avail);
488 
489 static ssize_t in_write_bytes_avail_show(struct device *dev,
490 					 struct device_attribute *dev_attr,
491 					 char *buf)
492 {
493 	struct hv_device *hv_dev = device_to_hv_device(dev);
494 	struct hv_ring_buffer_debug_info inbound;
495 	int ret;
496 
497 	if (!hv_dev->channel)
498 		return -ENODEV;
499 
500 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
501 	if (ret < 0)
502 		return ret;
503 
504 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
505 }
506 static DEVICE_ATTR_RO(in_write_bytes_avail);
507 
508 static ssize_t channel_vp_mapping_show(struct device *dev,
509 				       struct device_attribute *dev_attr,
510 				       char *buf)
511 {
512 	struct hv_device *hv_dev = device_to_hv_device(dev);
513 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
514 	int buf_size = PAGE_SIZE, n_written, tot_written;
515 	struct list_head *cur;
516 
517 	if (!channel)
518 		return -ENODEV;
519 
520 	mutex_lock(&vmbus_connection.channel_mutex);
521 
522 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
523 		channel->offermsg.child_relid, channel->target_cpu);
524 
525 	list_for_each(cur, &channel->sc_list) {
526 		if (tot_written >= buf_size - 1)
527 			break;
528 
529 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
530 		n_written = scnprintf(buf + tot_written,
531 				     buf_size - tot_written,
532 				     "%u:%u\n",
533 				     cur_sc->offermsg.child_relid,
534 				     cur_sc->target_cpu);
535 		tot_written += n_written;
536 	}
537 
538 	mutex_unlock(&vmbus_connection.channel_mutex);
539 
540 	return tot_written;
541 }
542 static DEVICE_ATTR_RO(channel_vp_mapping);
543 
544 static ssize_t vendor_show(struct device *dev,
545 			   struct device_attribute *dev_attr,
546 			   char *buf)
547 {
548 	struct hv_device *hv_dev = device_to_hv_device(dev);
549 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
550 }
551 static DEVICE_ATTR_RO(vendor);
552 
553 static ssize_t device_show(struct device *dev,
554 			   struct device_attribute *dev_attr,
555 			   char *buf)
556 {
557 	struct hv_device *hv_dev = device_to_hv_device(dev);
558 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
559 }
560 static DEVICE_ATTR_RO(device);
561 
562 static ssize_t driver_override_store(struct device *dev,
563 				     struct device_attribute *attr,
564 				     const char *buf, size_t count)
565 {
566 	struct hv_device *hv_dev = device_to_hv_device(dev);
567 	char *driver_override, *old, *cp;
568 
569 	/* We need to keep extra room for a newline */
570 	if (count >= (PAGE_SIZE - 1))
571 		return -EINVAL;
572 
573 	driver_override = kstrndup(buf, count, GFP_KERNEL);
574 	if (!driver_override)
575 		return -ENOMEM;
576 
577 	cp = strchr(driver_override, '\n');
578 	if (cp)
579 		*cp = '\0';
580 
581 	device_lock(dev);
582 	old = hv_dev->driver_override;
583 	if (strlen(driver_override)) {
584 		hv_dev->driver_override = driver_override;
585 	} else {
586 		kfree(driver_override);
587 		hv_dev->driver_override = NULL;
588 	}
589 	device_unlock(dev);
590 
591 	kfree(old);
592 
593 	return count;
594 }
595 
596 static ssize_t driver_override_show(struct device *dev,
597 				    struct device_attribute *attr, char *buf)
598 {
599 	struct hv_device *hv_dev = device_to_hv_device(dev);
600 	ssize_t len;
601 
602 	device_lock(dev);
603 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
604 	device_unlock(dev);
605 
606 	return len;
607 }
608 static DEVICE_ATTR_RW(driver_override);
609 
610 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
611 static struct attribute *vmbus_dev_attrs[] = {
612 	&dev_attr_id.attr,
613 	&dev_attr_state.attr,
614 	&dev_attr_monitor_id.attr,
615 	&dev_attr_class_id.attr,
616 	&dev_attr_device_id.attr,
617 	&dev_attr_modalias.attr,
618 #ifdef CONFIG_NUMA
619 	&dev_attr_numa_node.attr,
620 #endif
621 	&dev_attr_server_monitor_pending.attr,
622 	&dev_attr_client_monitor_pending.attr,
623 	&dev_attr_server_monitor_latency.attr,
624 	&dev_attr_client_monitor_latency.attr,
625 	&dev_attr_server_monitor_conn_id.attr,
626 	&dev_attr_client_monitor_conn_id.attr,
627 	&dev_attr_out_intr_mask.attr,
628 	&dev_attr_out_read_index.attr,
629 	&dev_attr_out_write_index.attr,
630 	&dev_attr_out_read_bytes_avail.attr,
631 	&dev_attr_out_write_bytes_avail.attr,
632 	&dev_attr_in_intr_mask.attr,
633 	&dev_attr_in_read_index.attr,
634 	&dev_attr_in_write_index.attr,
635 	&dev_attr_in_read_bytes_avail.attr,
636 	&dev_attr_in_write_bytes_avail.attr,
637 	&dev_attr_channel_vp_mapping.attr,
638 	&dev_attr_vendor.attr,
639 	&dev_attr_device.attr,
640 	&dev_attr_driver_override.attr,
641 	NULL,
642 };
643 
644 /*
645  * Device-level attribute_group callback function. Returns the permission for
646  * each attribute, and returns 0 if an attribute is not visible.
647  */
648 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
649 					 struct attribute *attr, int idx)
650 {
651 	struct device *dev = kobj_to_dev(kobj);
652 	const struct hv_device *hv_dev = device_to_hv_device(dev);
653 
654 	/* Hide the monitor attributes if the monitor mechanism is not used. */
655 	if (!hv_dev->channel->offermsg.monitor_allocated &&
656 	    (attr == &dev_attr_monitor_id.attr ||
657 	     attr == &dev_attr_server_monitor_pending.attr ||
658 	     attr == &dev_attr_client_monitor_pending.attr ||
659 	     attr == &dev_attr_server_monitor_latency.attr ||
660 	     attr == &dev_attr_client_monitor_latency.attr ||
661 	     attr == &dev_attr_server_monitor_conn_id.attr ||
662 	     attr == &dev_attr_client_monitor_conn_id.attr))
663 		return 0;
664 
665 	return attr->mode;
666 }
667 
668 static const struct attribute_group vmbus_dev_group = {
669 	.attrs = vmbus_dev_attrs,
670 	.is_visible = vmbus_dev_attr_is_visible
671 };
672 __ATTRIBUTE_GROUPS(vmbus_dev);
673 
674 /*
675  * vmbus_uevent - add uevent for our device
676  *
677  * This routine is invoked when a device is added or removed on the vmbus to
678  * generate a uevent to udev in the userspace. The udev will then look at its
679  * rule and the uevent generated here to load the appropriate driver
680  *
681  * The alias string will be of the form vmbus:guid where guid is the string
682  * representation of the device guid (each byte of the guid will be
683  * represented with two hex characters.
684  */
685 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
686 {
687 	struct hv_device *dev = device_to_hv_device(device);
688 	const char *format = "MODALIAS=vmbus:%*phN";
689 
690 	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
691 }
692 
693 static const struct hv_vmbus_device_id *
694 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
695 {
696 	if (id == NULL)
697 		return NULL; /* empty device table */
698 
699 	for (; !guid_is_null(&id->guid); id++)
700 		if (guid_equal(&id->guid, guid))
701 			return id;
702 
703 	return NULL;
704 }
705 
706 static const struct hv_vmbus_device_id *
707 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
708 {
709 	const struct hv_vmbus_device_id *id = NULL;
710 	struct vmbus_dynid *dynid;
711 
712 	spin_lock(&drv->dynids.lock);
713 	list_for_each_entry(dynid, &drv->dynids.list, node) {
714 		if (guid_equal(&dynid->id.guid, guid)) {
715 			id = &dynid->id;
716 			break;
717 		}
718 	}
719 	spin_unlock(&drv->dynids.lock);
720 
721 	return id;
722 }
723 
724 static const struct hv_vmbus_device_id vmbus_device_null;
725 
726 /*
727  * Return a matching hv_vmbus_device_id pointer.
728  * If there is no match, return NULL.
729  */
730 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
731 							struct hv_device *dev)
732 {
733 	const guid_t *guid = &dev->dev_type;
734 	const struct hv_vmbus_device_id *id;
735 
736 	/* When driver_override is set, only bind to the matching driver */
737 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
738 		return NULL;
739 
740 	/* Look at the dynamic ids first, before the static ones */
741 	id = hv_vmbus_dynid_match(drv, guid);
742 	if (!id)
743 		id = hv_vmbus_dev_match(drv->id_table, guid);
744 
745 	/* driver_override will always match, send a dummy id */
746 	if (!id && dev->driver_override)
747 		id = &vmbus_device_null;
748 
749 	return id;
750 }
751 
752 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
753 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
754 {
755 	struct vmbus_dynid *dynid;
756 
757 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
758 	if (!dynid)
759 		return -ENOMEM;
760 
761 	dynid->id.guid = *guid;
762 
763 	spin_lock(&drv->dynids.lock);
764 	list_add_tail(&dynid->node, &drv->dynids.list);
765 	spin_unlock(&drv->dynids.lock);
766 
767 	return driver_attach(&drv->driver);
768 }
769 
770 static void vmbus_free_dynids(struct hv_driver *drv)
771 {
772 	struct vmbus_dynid *dynid, *n;
773 
774 	spin_lock(&drv->dynids.lock);
775 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
776 		list_del(&dynid->node);
777 		kfree(dynid);
778 	}
779 	spin_unlock(&drv->dynids.lock);
780 }
781 
782 /*
783  * store_new_id - sysfs frontend to vmbus_add_dynid()
784  *
785  * Allow GUIDs to be added to an existing driver via sysfs.
786  */
787 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
788 			    size_t count)
789 {
790 	struct hv_driver *drv = drv_to_hv_drv(driver);
791 	guid_t guid;
792 	ssize_t retval;
793 
794 	retval = guid_parse(buf, &guid);
795 	if (retval)
796 		return retval;
797 
798 	if (hv_vmbus_dynid_match(drv, &guid))
799 		return -EEXIST;
800 
801 	retval = vmbus_add_dynid(drv, &guid);
802 	if (retval)
803 		return retval;
804 	return count;
805 }
806 static DRIVER_ATTR_WO(new_id);
807 
808 /*
809  * store_remove_id - remove a PCI device ID from this driver
810  *
811  * Removes a dynamic pci device ID to this driver.
812  */
813 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
814 			       size_t count)
815 {
816 	struct hv_driver *drv = drv_to_hv_drv(driver);
817 	struct vmbus_dynid *dynid, *n;
818 	guid_t guid;
819 	ssize_t retval;
820 
821 	retval = guid_parse(buf, &guid);
822 	if (retval)
823 		return retval;
824 
825 	retval = -ENODEV;
826 	spin_lock(&drv->dynids.lock);
827 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
828 		struct hv_vmbus_device_id *id = &dynid->id;
829 
830 		if (guid_equal(&id->guid, &guid)) {
831 			list_del(&dynid->node);
832 			kfree(dynid);
833 			retval = count;
834 			break;
835 		}
836 	}
837 	spin_unlock(&drv->dynids.lock);
838 
839 	return retval;
840 }
841 static DRIVER_ATTR_WO(remove_id);
842 
843 static struct attribute *vmbus_drv_attrs[] = {
844 	&driver_attr_new_id.attr,
845 	&driver_attr_remove_id.attr,
846 	NULL,
847 };
848 ATTRIBUTE_GROUPS(vmbus_drv);
849 
850 
851 /*
852  * vmbus_match - Attempt to match the specified device to the specified driver
853  */
854 static int vmbus_match(struct device *device, struct device_driver *driver)
855 {
856 	struct hv_driver *drv = drv_to_hv_drv(driver);
857 	struct hv_device *hv_dev = device_to_hv_device(device);
858 
859 	/* The hv_sock driver handles all hv_sock offers. */
860 	if (is_hvsock_channel(hv_dev->channel))
861 		return drv->hvsock;
862 
863 	if (hv_vmbus_get_id(drv, hv_dev))
864 		return 1;
865 
866 	return 0;
867 }
868 
869 /*
870  * vmbus_probe - Add the new vmbus's child device
871  */
872 static int vmbus_probe(struct device *child_device)
873 {
874 	int ret = 0;
875 	struct hv_driver *drv =
876 			drv_to_hv_drv(child_device->driver);
877 	struct hv_device *dev = device_to_hv_device(child_device);
878 	const struct hv_vmbus_device_id *dev_id;
879 
880 	dev_id = hv_vmbus_get_id(drv, dev);
881 	if (drv->probe) {
882 		ret = drv->probe(dev, dev_id);
883 		if (ret != 0)
884 			pr_err("probe failed for device %s (%d)\n",
885 			       dev_name(child_device), ret);
886 
887 	} else {
888 		pr_err("probe not set for driver %s\n",
889 		       dev_name(child_device));
890 		ret = -ENODEV;
891 	}
892 	return ret;
893 }
894 
895 /*
896  * vmbus_remove - Remove a vmbus device
897  */
898 static int vmbus_remove(struct device *child_device)
899 {
900 	struct hv_driver *drv;
901 	struct hv_device *dev = device_to_hv_device(child_device);
902 
903 	if (child_device->driver) {
904 		drv = drv_to_hv_drv(child_device->driver);
905 		if (drv->remove)
906 			drv->remove(dev);
907 	}
908 
909 	return 0;
910 }
911 
912 
913 /*
914  * vmbus_shutdown - Shutdown a vmbus device
915  */
916 static void vmbus_shutdown(struct device *child_device)
917 {
918 	struct hv_driver *drv;
919 	struct hv_device *dev = device_to_hv_device(child_device);
920 
921 
922 	/* The device may not be attached yet */
923 	if (!child_device->driver)
924 		return;
925 
926 	drv = drv_to_hv_drv(child_device->driver);
927 
928 	if (drv->shutdown)
929 		drv->shutdown(dev);
930 }
931 
932 #ifdef CONFIG_PM_SLEEP
933 /*
934  * vmbus_suspend - Suspend a vmbus device
935  */
936 static int vmbus_suspend(struct device *child_device)
937 {
938 	struct hv_driver *drv;
939 	struct hv_device *dev = device_to_hv_device(child_device);
940 
941 	/* The device may not be attached yet */
942 	if (!child_device->driver)
943 		return 0;
944 
945 	drv = drv_to_hv_drv(child_device->driver);
946 	if (!drv->suspend)
947 		return -EOPNOTSUPP;
948 
949 	return drv->suspend(dev);
950 }
951 
952 /*
953  * vmbus_resume - Resume a vmbus device
954  */
955 static int vmbus_resume(struct device *child_device)
956 {
957 	struct hv_driver *drv;
958 	struct hv_device *dev = device_to_hv_device(child_device);
959 
960 	/* The device may not be attached yet */
961 	if (!child_device->driver)
962 		return 0;
963 
964 	drv = drv_to_hv_drv(child_device->driver);
965 	if (!drv->resume)
966 		return -EOPNOTSUPP;
967 
968 	return drv->resume(dev);
969 }
970 #else
971 #define vmbus_suspend NULL
972 #define vmbus_resume NULL
973 #endif /* CONFIG_PM_SLEEP */
974 
975 /*
976  * vmbus_device_release - Final callback release of the vmbus child device
977  */
978 static void vmbus_device_release(struct device *device)
979 {
980 	struct hv_device *hv_dev = device_to_hv_device(device);
981 	struct vmbus_channel *channel = hv_dev->channel;
982 
983 	hv_debug_rm_dev_dir(hv_dev);
984 
985 	mutex_lock(&vmbus_connection.channel_mutex);
986 	hv_process_channel_removal(channel);
987 	mutex_unlock(&vmbus_connection.channel_mutex);
988 	kfree(hv_dev);
989 }
990 
991 /*
992  * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
993  *
994  * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
995  * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
996  * is no way to wake up a Generation-2 VM.
997  *
998  * The other 4 ops are for hibernation.
999  */
1000 
1001 static const struct dev_pm_ops vmbus_pm = {
1002 	.suspend_noirq	= NULL,
1003 	.resume_noirq	= NULL,
1004 	.freeze_noirq	= vmbus_suspend,
1005 	.thaw_noirq	= vmbus_resume,
1006 	.poweroff_noirq	= vmbus_suspend,
1007 	.restore_noirq	= vmbus_resume,
1008 };
1009 
1010 /* The one and only one */
1011 static struct bus_type  hv_bus = {
1012 	.name =		"vmbus",
1013 	.match =		vmbus_match,
1014 	.shutdown =		vmbus_shutdown,
1015 	.remove =		vmbus_remove,
1016 	.probe =		vmbus_probe,
1017 	.uevent =		vmbus_uevent,
1018 	.dev_groups =		vmbus_dev_groups,
1019 	.drv_groups =		vmbus_drv_groups,
1020 	.pm =			&vmbus_pm,
1021 };
1022 
1023 struct onmessage_work_context {
1024 	struct work_struct work;
1025 	struct {
1026 		struct hv_message_header header;
1027 		u8 payload[];
1028 	} msg;
1029 };
1030 
1031 static void vmbus_onmessage_work(struct work_struct *work)
1032 {
1033 	struct onmessage_work_context *ctx;
1034 
1035 	/* Do not process messages if we're in DISCONNECTED state */
1036 	if (vmbus_connection.conn_state == DISCONNECTED)
1037 		return;
1038 
1039 	ctx = container_of(work, struct onmessage_work_context,
1040 			   work);
1041 	vmbus_onmessage((struct vmbus_channel_message_header *)
1042 			&ctx->msg.payload);
1043 	kfree(ctx);
1044 }
1045 
1046 void vmbus_on_msg_dpc(unsigned long data)
1047 {
1048 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1049 	void *page_addr = hv_cpu->synic_message_page;
1050 	struct hv_message *msg = (struct hv_message *)page_addr +
1051 				  VMBUS_MESSAGE_SINT;
1052 	struct vmbus_channel_message_header *hdr;
1053 	const struct vmbus_channel_message_table_entry *entry;
1054 	struct onmessage_work_context *ctx;
1055 	u32 message_type = msg->header.message_type;
1056 
1057 	/*
1058 	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1059 	 * it is being used in 'struct vmbus_channel_message_header' definition
1060 	 * which is supposed to match hypervisor ABI.
1061 	 */
1062 	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1063 
1064 	if (message_type == HVMSG_NONE)
1065 		/* no msg */
1066 		return;
1067 
1068 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1069 
1070 	trace_vmbus_on_msg_dpc(hdr);
1071 
1072 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
1073 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1074 		goto msg_handled;
1075 	}
1076 
1077 	if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1078 		WARN_ONCE(1, "payload size is too large (%d)\n",
1079 			  msg->header.payload_size);
1080 		goto msg_handled;
1081 	}
1082 
1083 	entry = &channel_message_table[hdr->msgtype];
1084 
1085 	if (!entry->message_handler)
1086 		goto msg_handled;
1087 
1088 	if (msg->header.payload_size < entry->min_payload_len) {
1089 		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n",
1090 			  hdr->msgtype, msg->header.payload_size);
1091 		goto msg_handled;
1092 	}
1093 
1094 	if (entry->handler_type	== VMHT_BLOCKING) {
1095 		ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size,
1096 			      GFP_ATOMIC);
1097 		if (ctx == NULL)
1098 			return;
1099 
1100 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1101 		memcpy(&ctx->msg, msg, sizeof(msg->header) +
1102 		       msg->header.payload_size);
1103 
1104 		/*
1105 		 * The host can generate a rescind message while we
1106 		 * may still be handling the original offer. We deal with
1107 		 * this condition by relying on the synchronization provided
1108 		 * by offer_in_progress and by channel_mutex.  See also the
1109 		 * inline comments in vmbus_onoffer_rescind().
1110 		 */
1111 		switch (hdr->msgtype) {
1112 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1113 			/*
1114 			 * If we are handling the rescind message;
1115 			 * schedule the work on the global work queue.
1116 			 *
1117 			 * The OFFER message and the RESCIND message should
1118 			 * not be handled by the same serialized work queue,
1119 			 * because the OFFER handler may call vmbus_open(),
1120 			 * which tries to open the channel by sending an
1121 			 * OPEN_CHANNEL message to the host and waits for
1122 			 * the host's response; however, if the host has
1123 			 * rescinded the channel before it receives the
1124 			 * OPEN_CHANNEL message, the host just silently
1125 			 * ignores the OPEN_CHANNEL message; as a result,
1126 			 * the guest's OFFER handler hangs for ever, if we
1127 			 * handle the RESCIND message in the same serialized
1128 			 * work queue: the RESCIND handler can not start to
1129 			 * run before the OFFER handler finishes.
1130 			 */
1131 			schedule_work(&ctx->work);
1132 			break;
1133 
1134 		case CHANNELMSG_OFFERCHANNEL:
1135 			/*
1136 			 * The host sends the offer message of a given channel
1137 			 * before sending the rescind message of the same
1138 			 * channel.  These messages are sent to the guest's
1139 			 * connect CPU; the guest then starts processing them
1140 			 * in the tasklet handler on this CPU:
1141 			 *
1142 			 * VMBUS_CONNECT_CPU
1143 			 *
1144 			 * [vmbus_on_msg_dpc()]
1145 			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1146 			 * queue_work()
1147 			 * ...
1148 			 * [vmbus_on_msg_dpc()]
1149 			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1150 			 *
1151 			 * We rely on the memory-ordering properties of the
1152 			 * queue_work() and schedule_work() primitives, which
1153 			 * guarantee that the atomic increment will be visible
1154 			 * to the CPUs which will execute the offer & rescind
1155 			 * works by the time these works will start execution.
1156 			 */
1157 			atomic_inc(&vmbus_connection.offer_in_progress);
1158 			fallthrough;
1159 
1160 		default:
1161 			queue_work(vmbus_connection.work_queue, &ctx->work);
1162 		}
1163 	} else
1164 		entry->message_handler(hdr);
1165 
1166 msg_handled:
1167 	vmbus_signal_eom(msg, message_type);
1168 }
1169 
1170 #ifdef CONFIG_PM_SLEEP
1171 /*
1172  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1173  * hibernation, because hv_sock connections can not persist across hibernation.
1174  */
1175 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1176 {
1177 	struct onmessage_work_context *ctx;
1178 	struct vmbus_channel_rescind_offer *rescind;
1179 
1180 	WARN_ON(!is_hvsock_channel(channel));
1181 
1182 	/*
1183 	 * Allocation size is small and the allocation should really not fail,
1184 	 * otherwise the state of the hv_sock connections ends up in limbo.
1185 	 */
1186 	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1187 		      GFP_KERNEL | __GFP_NOFAIL);
1188 
1189 	/*
1190 	 * So far, these are not really used by Linux. Just set them to the
1191 	 * reasonable values conforming to the definitions of the fields.
1192 	 */
1193 	ctx->msg.header.message_type = 1;
1194 	ctx->msg.header.payload_size = sizeof(*rescind);
1195 
1196 	/* These values are actually used by Linux. */
1197 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1198 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1199 	rescind->child_relid = channel->offermsg.child_relid;
1200 
1201 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1202 
1203 	queue_work(vmbus_connection.work_queue, &ctx->work);
1204 }
1205 #endif /* CONFIG_PM_SLEEP */
1206 
1207 /*
1208  * Schedule all channels with events pending
1209  */
1210 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1211 {
1212 	unsigned long *recv_int_page;
1213 	u32 maxbits, relid;
1214 
1215 	if (vmbus_proto_version < VERSION_WIN8) {
1216 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1217 		recv_int_page = vmbus_connection.recv_int_page;
1218 	} else {
1219 		/*
1220 		 * When the host is win8 and beyond, the event page
1221 		 * can be directly checked to get the id of the channel
1222 		 * that has the interrupt pending.
1223 		 */
1224 		void *page_addr = hv_cpu->synic_event_page;
1225 		union hv_synic_event_flags *event
1226 			= (union hv_synic_event_flags *)page_addr +
1227 						 VMBUS_MESSAGE_SINT;
1228 
1229 		maxbits = HV_EVENT_FLAGS_COUNT;
1230 		recv_int_page = event->flags;
1231 	}
1232 
1233 	if (unlikely(!recv_int_page))
1234 		return;
1235 
1236 	for_each_set_bit(relid, recv_int_page, maxbits) {
1237 		void (*callback_fn)(void *context);
1238 		struct vmbus_channel *channel;
1239 
1240 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1241 			continue;
1242 
1243 		/* Special case - vmbus channel protocol msg */
1244 		if (relid == 0)
1245 			continue;
1246 
1247 		/*
1248 		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1249 		 * Guarantees that the channel data structure doesn't
1250 		 * get freed while the channel pointer below is being
1251 		 * dereferenced.
1252 		 */
1253 		rcu_read_lock();
1254 
1255 		/* Find channel based on relid */
1256 		channel = relid2channel(relid);
1257 		if (channel == NULL)
1258 			goto sched_unlock_rcu;
1259 
1260 		if (channel->rescind)
1261 			goto sched_unlock_rcu;
1262 
1263 		/*
1264 		 * Make sure that the ring buffer data structure doesn't get
1265 		 * freed while we dereference the ring buffer pointer.  Test
1266 		 * for the channel's onchannel_callback being NULL within a
1267 		 * sched_lock critical section.  See also the inline comments
1268 		 * in vmbus_reset_channel_cb().
1269 		 */
1270 		spin_lock(&channel->sched_lock);
1271 
1272 		callback_fn = channel->onchannel_callback;
1273 		if (unlikely(callback_fn == NULL))
1274 			goto sched_unlock;
1275 
1276 		trace_vmbus_chan_sched(channel);
1277 
1278 		++channel->interrupts;
1279 
1280 		switch (channel->callback_mode) {
1281 		case HV_CALL_ISR:
1282 			(*callback_fn)(channel->channel_callback_context);
1283 			break;
1284 
1285 		case HV_CALL_BATCHED:
1286 			hv_begin_read(&channel->inbound);
1287 			fallthrough;
1288 		case HV_CALL_DIRECT:
1289 			tasklet_schedule(&channel->callback_event);
1290 		}
1291 
1292 sched_unlock:
1293 		spin_unlock(&channel->sched_lock);
1294 sched_unlock_rcu:
1295 		rcu_read_unlock();
1296 	}
1297 }
1298 
1299 static void vmbus_isr(void)
1300 {
1301 	struct hv_per_cpu_context *hv_cpu
1302 		= this_cpu_ptr(hv_context.cpu_context);
1303 	void *page_addr = hv_cpu->synic_event_page;
1304 	struct hv_message *msg;
1305 	union hv_synic_event_flags *event;
1306 	bool handled = false;
1307 
1308 	if (unlikely(page_addr == NULL))
1309 		return;
1310 
1311 	event = (union hv_synic_event_flags *)page_addr +
1312 					 VMBUS_MESSAGE_SINT;
1313 	/*
1314 	 * Check for events before checking for messages. This is the order
1315 	 * in which events and messages are checked in Windows guests on
1316 	 * Hyper-V, and the Windows team suggested we do the same.
1317 	 */
1318 
1319 	if ((vmbus_proto_version == VERSION_WS2008) ||
1320 		(vmbus_proto_version == VERSION_WIN7)) {
1321 
1322 		/* Since we are a child, we only need to check bit 0 */
1323 		if (sync_test_and_clear_bit(0, event->flags))
1324 			handled = true;
1325 	} else {
1326 		/*
1327 		 * Our host is win8 or above. The signaling mechanism
1328 		 * has changed and we can directly look at the event page.
1329 		 * If bit n is set then we have an interrup on the channel
1330 		 * whose id is n.
1331 		 */
1332 		handled = true;
1333 	}
1334 
1335 	if (handled)
1336 		vmbus_chan_sched(hv_cpu);
1337 
1338 	page_addr = hv_cpu->synic_message_page;
1339 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1340 
1341 	/* Check if there are actual msgs to be processed */
1342 	if (msg->header.message_type != HVMSG_NONE) {
1343 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1344 			hv_stimer0_isr();
1345 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1346 		} else
1347 			tasklet_schedule(&hv_cpu->msg_dpc);
1348 	}
1349 
1350 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1351 }
1352 
1353 /*
1354  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1355  * buffer and call into Hyper-V to transfer the data.
1356  */
1357 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1358 			 enum kmsg_dump_reason reason)
1359 {
1360 	size_t bytes_written;
1361 	phys_addr_t panic_pa;
1362 
1363 	/* We are only interested in panics. */
1364 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1365 		return;
1366 
1367 	panic_pa = virt_to_phys(hv_panic_page);
1368 
1369 	/*
1370 	 * Write dump contents to the page. No need to synchronize; panic should
1371 	 * be single-threaded.
1372 	 */
1373 	kmsg_dump_get_buffer(dumper, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1374 			     &bytes_written);
1375 	if (bytes_written)
1376 		hyperv_report_panic_msg(panic_pa, bytes_written);
1377 }
1378 
1379 static struct kmsg_dumper hv_kmsg_dumper = {
1380 	.dump = hv_kmsg_dump,
1381 };
1382 
1383 static struct ctl_table_header *hv_ctl_table_hdr;
1384 
1385 /*
1386  * sysctl option to allow the user to control whether kmsg data should be
1387  * reported to Hyper-V on panic.
1388  */
1389 static struct ctl_table hv_ctl_table[] = {
1390 	{
1391 		.procname       = "hyperv_record_panic_msg",
1392 		.data           = &sysctl_record_panic_msg,
1393 		.maxlen         = sizeof(int),
1394 		.mode           = 0644,
1395 		.proc_handler   = proc_dointvec_minmax,
1396 		.extra1		= SYSCTL_ZERO,
1397 		.extra2		= SYSCTL_ONE
1398 	},
1399 	{}
1400 };
1401 
1402 static struct ctl_table hv_root_table[] = {
1403 	{
1404 		.procname	= "kernel",
1405 		.mode		= 0555,
1406 		.child		= hv_ctl_table
1407 	},
1408 	{}
1409 };
1410 
1411 /*
1412  * vmbus_bus_init -Main vmbus driver initialization routine.
1413  *
1414  * Here, we
1415  *	- initialize the vmbus driver context
1416  *	- invoke the vmbus hv main init routine
1417  *	- retrieve the channel offers
1418  */
1419 static int vmbus_bus_init(void)
1420 {
1421 	int ret;
1422 
1423 	ret = hv_init();
1424 	if (ret != 0) {
1425 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1426 		return ret;
1427 	}
1428 
1429 	ret = bus_register(&hv_bus);
1430 	if (ret)
1431 		return ret;
1432 
1433 	hv_setup_vmbus_irq(vmbus_isr);
1434 
1435 	ret = hv_synic_alloc();
1436 	if (ret)
1437 		goto err_alloc;
1438 
1439 	/*
1440 	 * Initialize the per-cpu interrupt state and stimer state.
1441 	 * Then connect to the host.
1442 	 */
1443 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1444 				hv_synic_init, hv_synic_cleanup);
1445 	if (ret < 0)
1446 		goto err_cpuhp;
1447 	hyperv_cpuhp_online = ret;
1448 
1449 	ret = vmbus_connect();
1450 	if (ret)
1451 		goto err_connect;
1452 
1453 	/*
1454 	 * Only register if the crash MSRs are available
1455 	 */
1456 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1457 		u64 hyperv_crash_ctl;
1458 		/*
1459 		 * Sysctl registration is not fatal, since by default
1460 		 * reporting is enabled.
1461 		 */
1462 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1463 		if (!hv_ctl_table_hdr)
1464 			pr_err("Hyper-V: sysctl table register error");
1465 
1466 		/*
1467 		 * Register for panic kmsg callback only if the right
1468 		 * capability is supported by the hypervisor.
1469 		 */
1470 		hv_get_crash_ctl(hyperv_crash_ctl);
1471 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1472 			hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1473 			if (hv_panic_page) {
1474 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1475 				if (ret) {
1476 					pr_err("Hyper-V: kmsg dump register "
1477 						"error 0x%x\n", ret);
1478 					hv_free_hyperv_page(
1479 					    (unsigned long)hv_panic_page);
1480 					hv_panic_page = NULL;
1481 				}
1482 			} else
1483 				pr_err("Hyper-V: panic message page memory "
1484 					"allocation failed");
1485 		}
1486 
1487 		register_die_notifier(&hyperv_die_block);
1488 	}
1489 
1490 	/*
1491 	 * Always register the panic notifier because we need to unload
1492 	 * the VMbus channel connection to prevent any VMbus
1493 	 * activity after the VM panics.
1494 	 */
1495 	atomic_notifier_chain_register(&panic_notifier_list,
1496 			       &hyperv_panic_block);
1497 
1498 	vmbus_request_offers();
1499 
1500 	return 0;
1501 
1502 err_connect:
1503 	cpuhp_remove_state(hyperv_cpuhp_online);
1504 err_cpuhp:
1505 	hv_synic_free();
1506 err_alloc:
1507 	hv_remove_vmbus_irq();
1508 
1509 	bus_unregister(&hv_bus);
1510 	unregister_sysctl_table(hv_ctl_table_hdr);
1511 	hv_ctl_table_hdr = NULL;
1512 	return ret;
1513 }
1514 
1515 /**
1516  * __vmbus_child_driver_register() - Register a vmbus's driver
1517  * @hv_driver: Pointer to driver structure you want to register
1518  * @owner: owner module of the drv
1519  * @mod_name: module name string
1520  *
1521  * Registers the given driver with Linux through the 'driver_register()' call
1522  * and sets up the hyper-v vmbus handling for this driver.
1523  * It will return the state of the 'driver_register()' call.
1524  *
1525  */
1526 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1527 {
1528 	int ret;
1529 
1530 	pr_info("registering driver %s\n", hv_driver->name);
1531 
1532 	ret = vmbus_exists();
1533 	if (ret < 0)
1534 		return ret;
1535 
1536 	hv_driver->driver.name = hv_driver->name;
1537 	hv_driver->driver.owner = owner;
1538 	hv_driver->driver.mod_name = mod_name;
1539 	hv_driver->driver.bus = &hv_bus;
1540 
1541 	spin_lock_init(&hv_driver->dynids.lock);
1542 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1543 
1544 	ret = driver_register(&hv_driver->driver);
1545 
1546 	return ret;
1547 }
1548 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1549 
1550 /**
1551  * vmbus_driver_unregister() - Unregister a vmbus's driver
1552  * @hv_driver: Pointer to driver structure you want to
1553  *             un-register
1554  *
1555  * Un-register the given driver that was previous registered with a call to
1556  * vmbus_driver_register()
1557  */
1558 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1559 {
1560 	pr_info("unregistering driver %s\n", hv_driver->name);
1561 
1562 	if (!vmbus_exists()) {
1563 		driver_unregister(&hv_driver->driver);
1564 		vmbus_free_dynids(hv_driver);
1565 	}
1566 }
1567 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1568 
1569 
1570 /*
1571  * Called when last reference to channel is gone.
1572  */
1573 static void vmbus_chan_release(struct kobject *kobj)
1574 {
1575 	struct vmbus_channel *channel
1576 		= container_of(kobj, struct vmbus_channel, kobj);
1577 
1578 	kfree_rcu(channel, rcu);
1579 }
1580 
1581 struct vmbus_chan_attribute {
1582 	struct attribute attr;
1583 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1584 	ssize_t (*store)(struct vmbus_channel *chan,
1585 			 const char *buf, size_t count);
1586 };
1587 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1588 	struct vmbus_chan_attribute chan_attr_##_name \
1589 		= __ATTR(_name, _mode, _show, _store)
1590 #define VMBUS_CHAN_ATTR_RW(_name) \
1591 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1592 #define VMBUS_CHAN_ATTR_RO(_name) \
1593 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1594 #define VMBUS_CHAN_ATTR_WO(_name) \
1595 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1596 
1597 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1598 				    struct attribute *attr, char *buf)
1599 {
1600 	const struct vmbus_chan_attribute *attribute
1601 		= container_of(attr, struct vmbus_chan_attribute, attr);
1602 	struct vmbus_channel *chan
1603 		= container_of(kobj, struct vmbus_channel, kobj);
1604 
1605 	if (!attribute->show)
1606 		return -EIO;
1607 
1608 	return attribute->show(chan, buf);
1609 }
1610 
1611 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1612 				     struct attribute *attr, const char *buf,
1613 				     size_t count)
1614 {
1615 	const struct vmbus_chan_attribute *attribute
1616 		= container_of(attr, struct vmbus_chan_attribute, attr);
1617 	struct vmbus_channel *chan
1618 		= container_of(kobj, struct vmbus_channel, kobj);
1619 
1620 	if (!attribute->store)
1621 		return -EIO;
1622 
1623 	return attribute->store(chan, buf, count);
1624 }
1625 
1626 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1627 	.show = vmbus_chan_attr_show,
1628 	.store = vmbus_chan_attr_store,
1629 };
1630 
1631 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1632 {
1633 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1634 	ssize_t ret;
1635 
1636 	mutex_lock(&rbi->ring_buffer_mutex);
1637 	if (!rbi->ring_buffer) {
1638 		mutex_unlock(&rbi->ring_buffer_mutex);
1639 		return -EINVAL;
1640 	}
1641 
1642 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1643 	mutex_unlock(&rbi->ring_buffer_mutex);
1644 	return ret;
1645 }
1646 static VMBUS_CHAN_ATTR_RO(out_mask);
1647 
1648 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1649 {
1650 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1651 	ssize_t ret;
1652 
1653 	mutex_lock(&rbi->ring_buffer_mutex);
1654 	if (!rbi->ring_buffer) {
1655 		mutex_unlock(&rbi->ring_buffer_mutex);
1656 		return -EINVAL;
1657 	}
1658 
1659 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1660 	mutex_unlock(&rbi->ring_buffer_mutex);
1661 	return ret;
1662 }
1663 static VMBUS_CHAN_ATTR_RO(in_mask);
1664 
1665 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1666 {
1667 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1668 	ssize_t ret;
1669 
1670 	mutex_lock(&rbi->ring_buffer_mutex);
1671 	if (!rbi->ring_buffer) {
1672 		mutex_unlock(&rbi->ring_buffer_mutex);
1673 		return -EINVAL;
1674 	}
1675 
1676 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1677 	mutex_unlock(&rbi->ring_buffer_mutex);
1678 	return ret;
1679 }
1680 static VMBUS_CHAN_ATTR_RO(read_avail);
1681 
1682 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1683 {
1684 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1685 	ssize_t ret;
1686 
1687 	mutex_lock(&rbi->ring_buffer_mutex);
1688 	if (!rbi->ring_buffer) {
1689 		mutex_unlock(&rbi->ring_buffer_mutex);
1690 		return -EINVAL;
1691 	}
1692 
1693 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1694 	mutex_unlock(&rbi->ring_buffer_mutex);
1695 	return ret;
1696 }
1697 static VMBUS_CHAN_ATTR_RO(write_avail);
1698 
1699 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1700 {
1701 	return sprintf(buf, "%u\n", channel->target_cpu);
1702 }
1703 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1704 				const char *buf, size_t count)
1705 {
1706 	u32 target_cpu, origin_cpu;
1707 	ssize_t ret = count;
1708 
1709 	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1710 		return -EIO;
1711 
1712 	if (sscanf(buf, "%uu", &target_cpu) != 1)
1713 		return -EIO;
1714 
1715 	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1716 	if (target_cpu >= nr_cpumask_bits)
1717 		return -EINVAL;
1718 
1719 	/* No CPUs should come up or down during this. */
1720 	cpus_read_lock();
1721 
1722 	if (!cpu_online(target_cpu)) {
1723 		cpus_read_unlock();
1724 		return -EINVAL;
1725 	}
1726 
1727 	/*
1728 	 * Synchronizes target_cpu_store() and channel closure:
1729 	 *
1730 	 * { Initially: state = CHANNEL_OPENED }
1731 	 *
1732 	 * CPU1				CPU2
1733 	 *
1734 	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1735 	 *
1736 	 * LOCK channel_mutex		LOCK channel_mutex
1737 	 * LOAD r1 = state		LOAD r2 = state
1738 	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1739 	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1740 	 *   [...]			  SEND CLOSECHANNEL
1741 	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1742 	 *
1743 	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1744 	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1745 	 *
1746 	 * Note.  The host processes the channel messages "sequentially", in
1747 	 * the order in which they are received on a per-partition basis.
1748 	 */
1749 	mutex_lock(&vmbus_connection.channel_mutex);
1750 
1751 	/*
1752 	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1753 	 * avoid sending the message and fail here for such channels.
1754 	 */
1755 	if (channel->state != CHANNEL_OPENED_STATE) {
1756 		ret = -EIO;
1757 		goto cpu_store_unlock;
1758 	}
1759 
1760 	origin_cpu = channel->target_cpu;
1761 	if (target_cpu == origin_cpu)
1762 		goto cpu_store_unlock;
1763 
1764 	if (vmbus_send_modifychannel(channel->offermsg.child_relid,
1765 				     hv_cpu_number_to_vp_number(target_cpu))) {
1766 		ret = -EIO;
1767 		goto cpu_store_unlock;
1768 	}
1769 
1770 	/*
1771 	 * Warning.  At this point, there is *no* guarantee that the host will
1772 	 * have successfully processed the vmbus_send_modifychannel() request.
1773 	 * See the header comment of vmbus_send_modifychannel() for more info.
1774 	 *
1775 	 * Lags in the processing of the above vmbus_send_modifychannel() can
1776 	 * result in missed interrupts if the "old" target CPU is taken offline
1777 	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1778 	 * But apart from this offlining scenario, the code tolerates such
1779 	 * lags.  It will function correctly even if a channel interrupt comes
1780 	 * in on a CPU that is different from the channel target_cpu value.
1781 	 */
1782 
1783 	channel->target_cpu = target_cpu;
1784 
1785 	/* See init_vp_index(). */
1786 	if (hv_is_perf_channel(channel))
1787 		hv_update_alloced_cpus(origin_cpu, target_cpu);
1788 
1789 	/* Currently set only for storvsc channels. */
1790 	if (channel->change_target_cpu_callback) {
1791 		(*channel->change_target_cpu_callback)(channel,
1792 				origin_cpu, target_cpu);
1793 	}
1794 
1795 cpu_store_unlock:
1796 	mutex_unlock(&vmbus_connection.channel_mutex);
1797 	cpus_read_unlock();
1798 	return ret;
1799 }
1800 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1801 
1802 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1803 				    char *buf)
1804 {
1805 	return sprintf(buf, "%d\n",
1806 		       channel_pending(channel,
1807 				       vmbus_connection.monitor_pages[1]));
1808 }
1809 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1810 
1811 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1812 				    char *buf)
1813 {
1814 	return sprintf(buf, "%d\n",
1815 		       channel_latency(channel,
1816 				       vmbus_connection.monitor_pages[1]));
1817 }
1818 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1819 
1820 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1821 {
1822 	return sprintf(buf, "%llu\n", channel->interrupts);
1823 }
1824 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1825 
1826 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1827 {
1828 	return sprintf(buf, "%llu\n", channel->sig_events);
1829 }
1830 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1831 
1832 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1833 					 char *buf)
1834 {
1835 	return sprintf(buf, "%llu\n",
1836 		       (unsigned long long)channel->intr_in_full);
1837 }
1838 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1839 
1840 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1841 					   char *buf)
1842 {
1843 	return sprintf(buf, "%llu\n",
1844 		       (unsigned long long)channel->intr_out_empty);
1845 }
1846 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1847 
1848 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1849 					   char *buf)
1850 {
1851 	return sprintf(buf, "%llu\n",
1852 		       (unsigned long long)channel->out_full_first);
1853 }
1854 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1855 
1856 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1857 					   char *buf)
1858 {
1859 	return sprintf(buf, "%llu\n",
1860 		       (unsigned long long)channel->out_full_total);
1861 }
1862 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1863 
1864 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1865 					  char *buf)
1866 {
1867 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1868 }
1869 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1870 
1871 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1872 				  char *buf)
1873 {
1874 	return sprintf(buf, "%u\n",
1875 		       channel->offermsg.offer.sub_channel_index);
1876 }
1877 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1878 
1879 static struct attribute *vmbus_chan_attrs[] = {
1880 	&chan_attr_out_mask.attr,
1881 	&chan_attr_in_mask.attr,
1882 	&chan_attr_read_avail.attr,
1883 	&chan_attr_write_avail.attr,
1884 	&chan_attr_cpu.attr,
1885 	&chan_attr_pending.attr,
1886 	&chan_attr_latency.attr,
1887 	&chan_attr_interrupts.attr,
1888 	&chan_attr_events.attr,
1889 	&chan_attr_intr_in_full.attr,
1890 	&chan_attr_intr_out_empty.attr,
1891 	&chan_attr_out_full_first.attr,
1892 	&chan_attr_out_full_total.attr,
1893 	&chan_attr_monitor_id.attr,
1894 	&chan_attr_subchannel_id.attr,
1895 	NULL
1896 };
1897 
1898 /*
1899  * Channel-level attribute_group callback function. Returns the permission for
1900  * each attribute, and returns 0 if an attribute is not visible.
1901  */
1902 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1903 					  struct attribute *attr, int idx)
1904 {
1905 	const struct vmbus_channel *channel =
1906 		container_of(kobj, struct vmbus_channel, kobj);
1907 
1908 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1909 	if (!channel->offermsg.monitor_allocated &&
1910 	    (attr == &chan_attr_pending.attr ||
1911 	     attr == &chan_attr_latency.attr ||
1912 	     attr == &chan_attr_monitor_id.attr))
1913 		return 0;
1914 
1915 	return attr->mode;
1916 }
1917 
1918 static struct attribute_group vmbus_chan_group = {
1919 	.attrs = vmbus_chan_attrs,
1920 	.is_visible = vmbus_chan_attr_is_visible
1921 };
1922 
1923 static struct kobj_type vmbus_chan_ktype = {
1924 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1925 	.release = vmbus_chan_release,
1926 };
1927 
1928 /*
1929  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1930  */
1931 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1932 {
1933 	const struct device *device = &dev->device;
1934 	struct kobject *kobj = &channel->kobj;
1935 	u32 relid = channel->offermsg.child_relid;
1936 	int ret;
1937 
1938 	kobj->kset = dev->channels_kset;
1939 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1940 				   "%u", relid);
1941 	if (ret)
1942 		return ret;
1943 
1944 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1945 
1946 	if (ret) {
1947 		/*
1948 		 * The calling functions' error handling paths will cleanup the
1949 		 * empty channel directory.
1950 		 */
1951 		dev_err(device, "Unable to set up channel sysfs files\n");
1952 		return ret;
1953 	}
1954 
1955 	kobject_uevent(kobj, KOBJ_ADD);
1956 
1957 	return 0;
1958 }
1959 
1960 /*
1961  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1962  */
1963 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1964 {
1965 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1966 }
1967 
1968 /*
1969  * vmbus_device_create - Creates and registers a new child device
1970  * on the vmbus.
1971  */
1972 struct hv_device *vmbus_device_create(const guid_t *type,
1973 				      const guid_t *instance,
1974 				      struct vmbus_channel *channel)
1975 {
1976 	struct hv_device *child_device_obj;
1977 
1978 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1979 	if (!child_device_obj) {
1980 		pr_err("Unable to allocate device object for child device\n");
1981 		return NULL;
1982 	}
1983 
1984 	child_device_obj->channel = channel;
1985 	guid_copy(&child_device_obj->dev_type, type);
1986 	guid_copy(&child_device_obj->dev_instance, instance);
1987 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1988 
1989 	return child_device_obj;
1990 }
1991 
1992 /*
1993  * vmbus_device_register - Register the child device
1994  */
1995 int vmbus_device_register(struct hv_device *child_device_obj)
1996 {
1997 	struct kobject *kobj = &child_device_obj->device.kobj;
1998 	int ret;
1999 
2000 	dev_set_name(&child_device_obj->device, "%pUl",
2001 		     &child_device_obj->channel->offermsg.offer.if_instance);
2002 
2003 	child_device_obj->device.bus = &hv_bus;
2004 	child_device_obj->device.parent = &hv_acpi_dev->dev;
2005 	child_device_obj->device.release = vmbus_device_release;
2006 
2007 	/*
2008 	 * Register with the LDM. This will kick off the driver/device
2009 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
2010 	 */
2011 	ret = device_register(&child_device_obj->device);
2012 	if (ret) {
2013 		pr_err("Unable to register child device\n");
2014 		return ret;
2015 	}
2016 
2017 	child_device_obj->channels_kset = kset_create_and_add("channels",
2018 							      NULL, kobj);
2019 	if (!child_device_obj->channels_kset) {
2020 		ret = -ENOMEM;
2021 		goto err_dev_unregister;
2022 	}
2023 
2024 	ret = vmbus_add_channel_kobj(child_device_obj,
2025 				     child_device_obj->channel);
2026 	if (ret) {
2027 		pr_err("Unable to register primary channeln");
2028 		goto err_kset_unregister;
2029 	}
2030 	hv_debug_add_dev_dir(child_device_obj);
2031 
2032 	return 0;
2033 
2034 err_kset_unregister:
2035 	kset_unregister(child_device_obj->channels_kset);
2036 
2037 err_dev_unregister:
2038 	device_unregister(&child_device_obj->device);
2039 	return ret;
2040 }
2041 
2042 /*
2043  * vmbus_device_unregister - Remove the specified child device
2044  * from the vmbus.
2045  */
2046 void vmbus_device_unregister(struct hv_device *device_obj)
2047 {
2048 	pr_debug("child device %s unregistered\n",
2049 		dev_name(&device_obj->device));
2050 
2051 	kset_unregister(device_obj->channels_kset);
2052 
2053 	/*
2054 	 * Kick off the process of unregistering the device.
2055 	 * This will call vmbus_remove() and eventually vmbus_device_release()
2056 	 */
2057 	device_unregister(&device_obj->device);
2058 }
2059 
2060 
2061 /*
2062  * VMBUS is an acpi enumerated device. Get the information we
2063  * need from DSDT.
2064  */
2065 #define VTPM_BASE_ADDRESS 0xfed40000
2066 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2067 {
2068 	resource_size_t start = 0;
2069 	resource_size_t end = 0;
2070 	struct resource *new_res;
2071 	struct resource **old_res = &hyperv_mmio;
2072 	struct resource **prev_res = NULL;
2073 
2074 	switch (res->type) {
2075 
2076 	/*
2077 	 * "Address" descriptors are for bus windows. Ignore
2078 	 * "memory" descriptors, which are for registers on
2079 	 * devices.
2080 	 */
2081 	case ACPI_RESOURCE_TYPE_ADDRESS32:
2082 		start = res->data.address32.address.minimum;
2083 		end = res->data.address32.address.maximum;
2084 		break;
2085 
2086 	case ACPI_RESOURCE_TYPE_ADDRESS64:
2087 		start = res->data.address64.address.minimum;
2088 		end = res->data.address64.address.maximum;
2089 		break;
2090 
2091 	default:
2092 		/* Unused resource type */
2093 		return AE_OK;
2094 
2095 	}
2096 	/*
2097 	 * Ignore ranges that are below 1MB, as they're not
2098 	 * necessary or useful here.
2099 	 */
2100 	if (end < 0x100000)
2101 		return AE_OK;
2102 
2103 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2104 	if (!new_res)
2105 		return AE_NO_MEMORY;
2106 
2107 	/* If this range overlaps the virtual TPM, truncate it. */
2108 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2109 		end = VTPM_BASE_ADDRESS;
2110 
2111 	new_res->name = "hyperv mmio";
2112 	new_res->flags = IORESOURCE_MEM;
2113 	new_res->start = start;
2114 	new_res->end = end;
2115 
2116 	/*
2117 	 * If two ranges are adjacent, merge them.
2118 	 */
2119 	do {
2120 		if (!*old_res) {
2121 			*old_res = new_res;
2122 			break;
2123 		}
2124 
2125 		if (((*old_res)->end + 1) == new_res->start) {
2126 			(*old_res)->end = new_res->end;
2127 			kfree(new_res);
2128 			break;
2129 		}
2130 
2131 		if ((*old_res)->start == new_res->end + 1) {
2132 			(*old_res)->start = new_res->start;
2133 			kfree(new_res);
2134 			break;
2135 		}
2136 
2137 		if ((*old_res)->start > new_res->end) {
2138 			new_res->sibling = *old_res;
2139 			if (prev_res)
2140 				(*prev_res)->sibling = new_res;
2141 			*old_res = new_res;
2142 			break;
2143 		}
2144 
2145 		prev_res = old_res;
2146 		old_res = &(*old_res)->sibling;
2147 
2148 	} while (1);
2149 
2150 	return AE_OK;
2151 }
2152 
2153 static int vmbus_acpi_remove(struct acpi_device *device)
2154 {
2155 	struct resource *cur_res;
2156 	struct resource *next_res;
2157 
2158 	if (hyperv_mmio) {
2159 		if (fb_mmio) {
2160 			__release_region(hyperv_mmio, fb_mmio->start,
2161 					 resource_size(fb_mmio));
2162 			fb_mmio = NULL;
2163 		}
2164 
2165 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2166 			next_res = cur_res->sibling;
2167 			kfree(cur_res);
2168 		}
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 static void vmbus_reserve_fb(void)
2175 {
2176 	int size;
2177 	/*
2178 	 * Make a claim for the frame buffer in the resource tree under the
2179 	 * first node, which will be the one below 4GB.  The length seems to
2180 	 * be underreported, particularly in a Generation 1 VM.  So start out
2181 	 * reserving a larger area and make it smaller until it succeeds.
2182 	 */
2183 
2184 	if (screen_info.lfb_base) {
2185 		if (efi_enabled(EFI_BOOT))
2186 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2187 		else
2188 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2189 
2190 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2191 			fb_mmio = __request_region(hyperv_mmio,
2192 						   screen_info.lfb_base, size,
2193 						   fb_mmio_name, 0);
2194 		}
2195 	}
2196 }
2197 
2198 /**
2199  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2200  * @new:		If successful, supplied a pointer to the
2201  *			allocated MMIO space.
2202  * @device_obj:		Identifies the caller
2203  * @min:		Minimum guest physical address of the
2204  *			allocation
2205  * @max:		Maximum guest physical address
2206  * @size:		Size of the range to be allocated
2207  * @align:		Alignment of the range to be allocated
2208  * @fb_overlap_ok:	Whether this allocation can be allowed
2209  *			to overlap the video frame buffer.
2210  *
2211  * This function walks the resources granted to VMBus by the
2212  * _CRS object in the ACPI namespace underneath the parent
2213  * "bridge" whether that's a root PCI bus in the Generation 1
2214  * case or a Module Device in the Generation 2 case.  It then
2215  * attempts to allocate from the global MMIO pool in a way that
2216  * matches the constraints supplied in these parameters and by
2217  * that _CRS.
2218  *
2219  * Return: 0 on success, -errno on failure
2220  */
2221 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2222 			resource_size_t min, resource_size_t max,
2223 			resource_size_t size, resource_size_t align,
2224 			bool fb_overlap_ok)
2225 {
2226 	struct resource *iter, *shadow;
2227 	resource_size_t range_min, range_max, start;
2228 	const char *dev_n = dev_name(&device_obj->device);
2229 	int retval;
2230 
2231 	retval = -ENXIO;
2232 	mutex_lock(&hyperv_mmio_lock);
2233 
2234 	/*
2235 	 * If overlaps with frame buffers are allowed, then first attempt to
2236 	 * make the allocation from within the reserved region.  Because it
2237 	 * is already reserved, no shadow allocation is necessary.
2238 	 */
2239 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2240 	    !(max < fb_mmio->start)) {
2241 
2242 		range_min = fb_mmio->start;
2243 		range_max = fb_mmio->end;
2244 		start = (range_min + align - 1) & ~(align - 1);
2245 		for (; start + size - 1 <= range_max; start += align) {
2246 			*new = request_mem_region_exclusive(start, size, dev_n);
2247 			if (*new) {
2248 				retval = 0;
2249 				goto exit;
2250 			}
2251 		}
2252 	}
2253 
2254 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2255 		if ((iter->start >= max) || (iter->end <= min))
2256 			continue;
2257 
2258 		range_min = iter->start;
2259 		range_max = iter->end;
2260 		start = (range_min + align - 1) & ~(align - 1);
2261 		for (; start + size - 1 <= range_max; start += align) {
2262 			shadow = __request_region(iter, start, size, NULL,
2263 						  IORESOURCE_BUSY);
2264 			if (!shadow)
2265 				continue;
2266 
2267 			*new = request_mem_region_exclusive(start, size, dev_n);
2268 			if (*new) {
2269 				shadow->name = (char *)*new;
2270 				retval = 0;
2271 				goto exit;
2272 			}
2273 
2274 			__release_region(iter, start, size);
2275 		}
2276 	}
2277 
2278 exit:
2279 	mutex_unlock(&hyperv_mmio_lock);
2280 	return retval;
2281 }
2282 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2283 
2284 /**
2285  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2286  * @start:		Base address of region to release.
2287  * @size:		Size of the range to be allocated
2288  *
2289  * This function releases anything requested by
2290  * vmbus_mmio_allocate().
2291  */
2292 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2293 {
2294 	struct resource *iter;
2295 
2296 	mutex_lock(&hyperv_mmio_lock);
2297 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2298 		if ((iter->start >= start + size) || (iter->end <= start))
2299 			continue;
2300 
2301 		__release_region(iter, start, size);
2302 	}
2303 	release_mem_region(start, size);
2304 	mutex_unlock(&hyperv_mmio_lock);
2305 
2306 }
2307 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2308 
2309 static int vmbus_acpi_add(struct acpi_device *device)
2310 {
2311 	acpi_status result;
2312 	int ret_val = -ENODEV;
2313 	struct acpi_device *ancestor;
2314 
2315 	hv_acpi_dev = device;
2316 
2317 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2318 					vmbus_walk_resources, NULL);
2319 
2320 	if (ACPI_FAILURE(result))
2321 		goto acpi_walk_err;
2322 	/*
2323 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2324 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2325 	 */
2326 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2327 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2328 					     vmbus_walk_resources, NULL);
2329 
2330 		if (ACPI_FAILURE(result))
2331 			continue;
2332 		if (hyperv_mmio) {
2333 			vmbus_reserve_fb();
2334 			break;
2335 		}
2336 	}
2337 	ret_val = 0;
2338 
2339 acpi_walk_err:
2340 	complete(&probe_event);
2341 	if (ret_val)
2342 		vmbus_acpi_remove(device);
2343 	return ret_val;
2344 }
2345 
2346 #ifdef CONFIG_PM_SLEEP
2347 static int vmbus_bus_suspend(struct device *dev)
2348 {
2349 	struct vmbus_channel *channel, *sc;
2350 
2351 	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2352 		/*
2353 		 * We wait here until the completion of any channel
2354 		 * offers that are currently in progress.
2355 		 */
2356 		msleep(1);
2357 	}
2358 
2359 	mutex_lock(&vmbus_connection.channel_mutex);
2360 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2361 		if (!is_hvsock_channel(channel))
2362 			continue;
2363 
2364 		vmbus_force_channel_rescinded(channel);
2365 	}
2366 	mutex_unlock(&vmbus_connection.channel_mutex);
2367 
2368 	/*
2369 	 * Wait until all the sub-channels and hv_sock channels have been
2370 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2371 	 * they would conflict with the new sub-channels that will be created
2372 	 * in the resume path. hv_sock channels should also be destroyed, but
2373 	 * a hv_sock channel of an established hv_sock connection can not be
2374 	 * really destroyed since it may still be referenced by the userspace
2375 	 * application, so we just force the hv_sock channel to be rescinded
2376 	 * by vmbus_force_channel_rescinded(), and the userspace application
2377 	 * will thoroughly destroy the channel after hibernation.
2378 	 *
2379 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2380 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2381 	 */
2382 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2383 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2384 
2385 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);
2386 
2387 	mutex_lock(&vmbus_connection.channel_mutex);
2388 
2389 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2390 		/*
2391 		 * Remove the channel from the array of channels and invalidate
2392 		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2393 		 * up the relid (and other fields, if necessary) and add the
2394 		 * channel back to the array.
2395 		 */
2396 		vmbus_channel_unmap_relid(channel);
2397 		channel->offermsg.child_relid = INVALID_RELID;
2398 
2399 		if (is_hvsock_channel(channel)) {
2400 			if (!channel->rescind) {
2401 				pr_err("hv_sock channel not rescinded!\n");
2402 				WARN_ON_ONCE(1);
2403 			}
2404 			continue;
2405 		}
2406 
2407 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2408 			pr_err("Sub-channel not deleted!\n");
2409 			WARN_ON_ONCE(1);
2410 		}
2411 
2412 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2413 	}
2414 
2415 	mutex_unlock(&vmbus_connection.channel_mutex);
2416 
2417 	vmbus_initiate_unload(false);
2418 
2419 	/* Reset the event for the next resume. */
2420 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2421 
2422 	return 0;
2423 }
2424 
2425 static int vmbus_bus_resume(struct device *dev)
2426 {
2427 	struct vmbus_channel_msginfo *msginfo;
2428 	size_t msgsize;
2429 	int ret;
2430 
2431 	/*
2432 	 * We only use the 'vmbus_proto_version', which was in use before
2433 	 * hibernation, to re-negotiate with the host.
2434 	 */
2435 	if (!vmbus_proto_version) {
2436 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2437 		return -EINVAL;
2438 	}
2439 
2440 	msgsize = sizeof(*msginfo) +
2441 		  sizeof(struct vmbus_channel_initiate_contact);
2442 
2443 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2444 
2445 	if (msginfo == NULL)
2446 		return -ENOMEM;
2447 
2448 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2449 
2450 	kfree(msginfo);
2451 
2452 	if (ret != 0)
2453 		return ret;
2454 
2455 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2456 
2457 	vmbus_request_offers();
2458 
2459 	wait_for_completion(&vmbus_connection.ready_for_resume_event);
2460 
2461 	/* Reset the event for the next suspend. */
2462 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2463 
2464 	return 0;
2465 }
2466 #else
2467 #define vmbus_bus_suspend NULL
2468 #define vmbus_bus_resume NULL
2469 #endif /* CONFIG_PM_SLEEP */
2470 
2471 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2472 	{"VMBUS", 0},
2473 	{"VMBus", 0},
2474 	{"", 0},
2475 };
2476 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2477 
2478 /*
2479  * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2480  * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2481  * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2482  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2483  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2484  * resume callback must also run via the "noirq" ops.
2485  *
2486  * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2487  * earlier in this file before vmbus_pm.
2488  */
2489 
2490 static const struct dev_pm_ops vmbus_bus_pm = {
2491 	.suspend_noirq	= NULL,
2492 	.resume_noirq	= NULL,
2493 	.freeze_noirq	= vmbus_bus_suspend,
2494 	.thaw_noirq	= vmbus_bus_resume,
2495 	.poweroff_noirq	= vmbus_bus_suspend,
2496 	.restore_noirq	= vmbus_bus_resume
2497 };
2498 
2499 static struct acpi_driver vmbus_acpi_driver = {
2500 	.name = "vmbus",
2501 	.ids = vmbus_acpi_device_ids,
2502 	.ops = {
2503 		.add = vmbus_acpi_add,
2504 		.remove = vmbus_acpi_remove,
2505 	},
2506 	.drv.pm = &vmbus_bus_pm,
2507 };
2508 
2509 static void hv_kexec_handler(void)
2510 {
2511 	hv_stimer_global_cleanup();
2512 	vmbus_initiate_unload(false);
2513 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2514 	mb();
2515 	cpuhp_remove_state(hyperv_cpuhp_online);
2516 	hyperv_cleanup();
2517 };
2518 
2519 static void hv_crash_handler(struct pt_regs *regs)
2520 {
2521 	int cpu;
2522 
2523 	vmbus_initiate_unload(true);
2524 	/*
2525 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2526 	 * doing the cleanup for current CPU only. This should be sufficient
2527 	 * for kdump.
2528 	 */
2529 	cpu = smp_processor_id();
2530 	hv_stimer_cleanup(cpu);
2531 	hv_synic_disable_regs(cpu);
2532 	hyperv_cleanup();
2533 };
2534 
2535 static int hv_synic_suspend(void)
2536 {
2537 	/*
2538 	 * When we reach here, all the non-boot CPUs have been offlined.
2539 	 * If we're in a legacy configuration where stimer Direct Mode is
2540 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2541 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2542 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2543 	 *
2544 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2545 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2546 	 * 1) it's unnecessary as interrupts remain disabled between
2547 	 * syscore_suspend() and syscore_resume(): see create_image() and
2548 	 * resume_target_kernel()
2549 	 * 2) the stimer on CPU0 is automatically disabled later by
2550 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2551 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2552 	 * 3) a warning would be triggered if we call
2553 	 * clockevents_unbind_device(), which may sleep, in an
2554 	 * interrupts-disabled context.
2555 	 */
2556 
2557 	hv_synic_disable_regs(0);
2558 
2559 	return 0;
2560 }
2561 
2562 static void hv_synic_resume(void)
2563 {
2564 	hv_synic_enable_regs(0);
2565 
2566 	/*
2567 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2568 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2569 	 * automatically re-enabled in timekeeping_resume().
2570 	 */
2571 }
2572 
2573 /* The callbacks run only on CPU0, with irqs_disabled. */
2574 static struct syscore_ops hv_synic_syscore_ops = {
2575 	.suspend = hv_synic_suspend,
2576 	.resume = hv_synic_resume,
2577 };
2578 
2579 static int __init hv_acpi_init(void)
2580 {
2581 	int ret, t;
2582 
2583 	if (!hv_is_hyperv_initialized())
2584 		return -ENODEV;
2585 
2586 	init_completion(&probe_event);
2587 
2588 	/*
2589 	 * Get ACPI resources first.
2590 	 */
2591 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2592 
2593 	if (ret)
2594 		return ret;
2595 
2596 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2597 	if (t == 0) {
2598 		ret = -ETIMEDOUT;
2599 		goto cleanup;
2600 	}
2601 	hv_debug_init();
2602 
2603 	ret = vmbus_bus_init();
2604 	if (ret)
2605 		goto cleanup;
2606 
2607 	hv_setup_kexec_handler(hv_kexec_handler);
2608 	hv_setup_crash_handler(hv_crash_handler);
2609 
2610 	register_syscore_ops(&hv_synic_syscore_ops);
2611 
2612 	return 0;
2613 
2614 cleanup:
2615 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2616 	hv_acpi_dev = NULL;
2617 	return ret;
2618 }
2619 
2620 static void __exit vmbus_exit(void)
2621 {
2622 	int cpu;
2623 
2624 	unregister_syscore_ops(&hv_synic_syscore_ops);
2625 
2626 	hv_remove_kexec_handler();
2627 	hv_remove_crash_handler();
2628 	vmbus_connection.conn_state = DISCONNECTED;
2629 	hv_stimer_global_cleanup();
2630 	vmbus_disconnect();
2631 	hv_remove_vmbus_irq();
2632 	for_each_online_cpu(cpu) {
2633 		struct hv_per_cpu_context *hv_cpu
2634 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2635 
2636 		tasklet_kill(&hv_cpu->msg_dpc);
2637 	}
2638 	hv_debug_rm_all_dir();
2639 
2640 	vmbus_free_channels();
2641 	kfree(vmbus_connection.channels);
2642 
2643 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2644 		kmsg_dump_unregister(&hv_kmsg_dumper);
2645 		unregister_die_notifier(&hyperv_die_block);
2646 		atomic_notifier_chain_unregister(&panic_notifier_list,
2647 						 &hyperv_panic_block);
2648 	}
2649 
2650 	free_page((unsigned long)hv_panic_page);
2651 	unregister_sysctl_table(hv_ctl_table_hdr);
2652 	hv_ctl_table_hdr = NULL;
2653 	bus_unregister(&hv_bus);
2654 
2655 	cpuhp_remove_state(hyperv_cpuhp_online);
2656 	hv_synic_free();
2657 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2658 }
2659 
2660 
2661 MODULE_LICENSE("GPL");
2662 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2663 
2664 subsys_initcall(hv_acpi_init);
2665 module_exit(vmbus_exit);
2666